
Token Coherence: Decoupling Performance and Correctness

Milo M. K. Martin, Mark D. Hill, and David A. Wood
Computer Sciences Department

University of Wisconsin-Madison
{milo, markhill, david}@cs.wisc.edu

Abstract

Many future shared-memory multiprocessor servers will
both target commercial workloads and use highly-inte-
grated “glueless” designs. Implementing low-latency
cache coherence in these systems is difficult, because tra-
ditional approaches either add indirection for common
cache-to-cache misses (directory protocols) or require a
totally-ordered interconnect (traditional snooping proto-
cols). Unfortunately, totally-ordered interconnects are dif-
ficult to implement in glueless designs. An ideal coherence
protocol would avoid indirections and interconnect order-
ing; however, such an approach introduces numerous pro-
tocol races that are difficult to resolve.

We propose a new coherence framework to enable such
protocols by separating performance from correctness. A
performance protocol can optimize for the common case
(i.e., absence of races) and rely on the underlying correct-
ness substrate to resolve races, provide safety, and prevent
starvation. We call the combination Token Coherence,
since it explicitly exchanges and counts tokens to control
coherence permissions.

This paper develops TokenB, a specific Token Coherence
performance protocol that allows a glueless multiproces-
sor to both exploit a low-latency unordered interconnect
(like directory protocols) and avoid indirection (like
snooping protocols). Simulations using commercial work-
loads show that our new protocol can significantly outper-
form traditional snooping and directory protocols.

1 Introduction
The performance and cost of database and web servers is
important because the services they provide are becoming
increasingly part of our daily lives. Many of these servers
are shared-memory multiprocessors. In our view, work-
load and technology trends point toward a new design
space that provides opportunities to improve performance
and cost of these multiprocessor servers.

Workload trends. Since many commercial workloads
exhibit abundant thread-level parallelism, using multiple
processors is an attractive approach for increasing their
performance. To efficiently support the frequent communi-
cation and synchronization in these workloads [8], servers
should optimize the latency of cache-to-cache misses (i.e.,
those misses—often caused by accessing shared data—
that require data to move directly between caches).

To reduce cache-to-cache miss latency, many multiproces-
sor servers use snooping cache coherence. Bus-based
snooping protocols exploit totally-ordered broadcasts (i.e.,
all processors are guaranteed to observe all broadcasts in
the same order) to both satisfy cache-to-cache misses
directly and resolve protocol races. Protocol races can
occur, for example, when two processors request the same
block at the same time.

To overcome the increasingly difficult challenge of scaling
the bandwidth of shared-wire buses [13], some recent
snooping designs broadcast requests on a “virtual bus”
created with an indirect switched interconnect (e.g.,
Figure 1a). These interconnects can provide higher band-
width than buses, at the cost of additional switch chips.
The use of broadcast limits snooping’s scalability, but
small- to medium-sized snooping-based multiprocessors
(4-16 processors) suffice for many workloads, because
larger services tend to cluster machines to increase both
throughput and availability.

Technology trends. The increasing number of transistors
per chip predicted by Moore’s Law has encouraged and
will continue to encourage more integrated designs, mak-
ing “glue” logic (e.g., discrete switch chips) less desirable.
Many current and future systems will integrate proces-
sor(s), cache(s), coherence logic, switch logic, and mem-
ory controller(s) on a single die (e.g., Alpha 21364 [32]
and AMD’s Hammer [5]). Directly connecting these
highly-integrated nodes leads to a high-bandwidth, low-
cost, low-latency “glueless” interconnect (e.g., Figure 1b).

These glueless interconnects are fast but do not easily pro-
vide the virtual bus behavior required by traditional snoop-
ing protocols. Instead, most such systems use directory
protocols, which provide coherence without requiring
broadcast or a totally-ordered interconnect. These systems
maintain a directory at the home node (i.e., memory) that

This work is supported in part by the National Science Foundation (EIA-
9971256, EIA-0205286, CDA-9623632, and CCR-0105721), a Norm
Koo Graduate Fellowship and an IBM Graduate Fellowship (Martin),
two Wisconsin Romnes Fellowships (Hill and Wood), Spanish Secretaría
de Estado de Educación y Universidades (Hill sabbatical), and donations
from Intel Corporation, IBM, and Sun Microsystems.

resolves some protocol races by ordering requests on a
per-cache-block basis. Unfortunately, traditional directory
protocols must first send all requests to the home node,
adding an indirection to the critical path of cache-to-cache
misses—a poor match for commercial workloads.

Our approach. Ideally, a coherence protocol would both
avoid indirection latency for cache-to-cache misses (like
snooping protocols) and not require any interconnect
ordering (like directory protocols). One obvious approach
is to directly send broadcasts on an unordered intercon-
nect. This general approach has not been used, however,
because it suffers from numerous race cases that are diffi-
cult to make correct (as discussed in Section 2).

Token Coherence. Rather than abandoning this fast
approach, we use it to make the common case fast, but we
back it up with a substrate that ensures correctness. To this
end, we propose Token Coherence, which has two parts: a
correctness substrate and a performance protocol.

•Correctness substrate: The substrate (as described in
Section 3) provides a foundation for building correct
coherence protocols on unordered interconnects by
ensuring safety (i.e., guaranteeing all reads and writes
are coherent) and starvation avoidance (i.e., guarantee-
ing all reads and writes are eventually completed). The
substrate ensures safety by (1) associating a fixed num-
ber of tokens with each logical block of shared memory,
and (2) ensuring that a processor may read a cache block
only if it holds at least one of the block’s tokens, and it
may write a cache block only if it holds all of the block’s
tokens (allowing for a single writer or many readers, but
not both). Tokens are held with copies of the block in
caches and memory and exchanged using coherence
messages. The substrate provides starvation freedom via
persistent requests, which a processor invokes when it
detects possible starvation. Persistent requests always
succeed in obtaining data and tokens—even when races

occur—because once activated they persist in forward-
ing data and tokens until the request is satisfied.

•Performance protocol: Performance protocols (as
described in Section 4.1) use transient requests as
“hints” to direct the correctness substrate to send data
and tokens to the requesting processor. In the common
case, a transient request succeeds in obtaining the
requested data and tokens. However, transient requests
may fail to complete, principally due to races. Since the
correctness substrate prevents starvation (via persistent
requests) and guarantees safety (via token counting),
performance protocol bugs and various races may hurt
performance, but they cannot affect correctness.

Since Token Coherence never speculatively modifies
memory state, it is not a speculative execution technique,
and it requires no rollback or recovery mechanism.

TokenB. We target medium-sized glueless multiproces-
sors with unordered interconnects using a specific perfor-
mance protocol called Token-Coherence-using-Broadcast
or TokenB (Section 4.2). In TokenB, processors broadcast
transient requests and respond like a traditional MOSI
snooping protocol. TokenB directly locates the data in the
common case of no races, allowing for low-latency cache-
to-cache misses. When transient requests fail (due to
races), the protocol reissues them until the processor times
out and invokes a persistent request to prevent starvation.

For selected commercial workloads on a full-system simu-
lation of a 16-processor system (described in Section 5),
we find that (1) reissued and persistent requests are rare
(3.0% and 0.2% of requests, respectively), (2) TokenB is
faster than traditional snooping, because it allows use of
an unordered interconnect (15-28% faster), (3) TokenB is
faster than a directory protocol, because it avoids directory
indirections (17-54%), and (4) a directory protocol uses
less bandwidth than TokenB (21-25% for 16 processors),
but this additional bandwidth may not be a significant

Figure 1. (a) 16-processor two-level tree interconnect and (b) 16-processor (4x4) bi-directional torus interconnect.
The boxes marked “P” represent highly-integrated nodes that include a processor, caches, memory controller, and coherence
controllers. The indirect broadcast tree uses discrete switches, while the torus is a directly connected interconnect. In this
example, the torus has lower latency (two vs. four chip crossings on average) and does not require any glue chips; however,
unlike the indirect tree, the torus provides no request total order, making it unsuitable for traditional snooping.

(a) (b)

P P P P

P P P P

P P P P

Switch

PPPP

Switch

P P P P

Switch

PPPP

Switch

Root Switch

P P P P

P P P P

problem for the high-bandwidth glueless interconnects
that will be common in future systems. We present these
and other results in Section 6.

While TokenB provides an attractive alternative for small-
to medium-sized systems, Token Coherence is a general
coherence framework that enables the creation of other
performance protocols (described in Section 7) that can
reduce traffic for larger systems, use prediction to push
data, and support hierarchy with low complexity.

2 A Motivating Example Race
In this section, we first present a simple coherence race to
illustrate that naively sending requests without an ordering
point is incorrect. We then review how the race is handled
by traditional snooping protocols (by ordering requests in
the interconnect) and directory protocols (by ordering
requests at the home node). Finally, we forecast how
Token Coherence handles this and other races.

Fast (but incorrect) approach. Invalidation-based coher-
ence protocols provide the illusion of a single memory
shared by all processors by allowing either a single writer
or many readers, but not both at the same time. A fast way
to obtain read or write permission to a cache block would
allow requesters to broadcast requests to all other proces-
sors over a low-latency unordered interconnect. Doing this
naively, however, may allow a processor to erroneously
read stale (or incoherent) data when processors act on rac-
ing requests in different orders.

Consider the example illustrated in Figure 2a, in which
processor P0 desires read/write access to the block (i.e.,
MOESI [41] state modified or M), and processor P1 desires
read-only access (i.e., state shared or S). P0 broadcasts its
request at time �, which the interconnect promptly deliv-
ers to P1 at time � but belatedly to memory at time ❻
(e.g., due to contention on the unordered interconnect).
Processor P1 handles P0’s request but takes no action other
than an invalidation acknowledgment at time �, because it
lacks a valid copy. Later, at time �, P1 issues its request,
which the memory quickly satisfies at time ❺. Finally,
P0’s delayed request arrives at memory at time ❻, and the
memory satisfies the request at time ❼. After receiving
both responses, P0 believes (erroneously) that it has a writ-
able copy of the block, but P1 still holds a read-only copy.
If this situation arises, the memory consistency model—
the definition of memory access correctness in a multipro-
cessor system—may be violated.

Snooping protocols. Traditional split-transaction snoop-
ing protocols resolve this example race and other races by
relying on a totally-ordered interconnect—a virtual bus—
to provide a total order of all requests. This ordering
ensures that all processors (and memories) observe
requests in the same order (including their own requests,
to establish their place in the total order). In our example

race, request ordering was not consistent with a total order.
P1 observed its request as occurring after P0’s request,
while the memory observed P1’s request before P0’s
request. A total order would guarantee correct operation
because either P0’s invalidation would have occurred
before P1’s request (and thus P0 would transition to read-
only and respond to P1’s request), or P0’s request would
have arrived at P1 after P1’s request (invalidating P1’s
shared copy of the block). Unfortunately, interconnects
that enforce a total order may have higher latency or cost.

Directory protocols. Directory protocols resolve this
example race and other races without an ordered intercon-
nect by providing a per-block ordering point at the direc-
tory. A directory protocol prevents this example race by
(1) relying on the directory controller to determine which
request will be satisfied first, (2) using forwarded requests,
invalidations, and explicit acknowledgements to enforce
ordering, and (3) possibly blocking, queuing, or negatively
acknowledging requests in some cases. In our example,
P1’s request arrives at the home memory/directory first,
and the memory provides data. P0’s request arrives later,
and the home forwards an invalidation message to P1. P0’s
request completes after receiving an acknowledgment
from P1 and data from the home, knowing that no other
copies are present in the system. Unfortunately, the cost of
this solution is an added level of indirection on the critical
path of cache-to-cache misses.

Token Coherence. Token Coherence allows races to occur
but provides correct behavior in all cases with a correct-
ness substrate. This substrate ensures that processors only
read and write coherent blocks appropriately (safety) and
that processors eventually obtain a needed block (starva-
tion avoidance). Performance protocols seek to make the
common case fast with requests (or hints) for data move-
ment that do not always succeed due to races. After
describing the correctness substrate (in Section 3) and per-
formance protocols (in Section 4), we revisit this example
race in the context of Token Coherence (in Section 4.2).

❻

Ack (t=1)

Data (t=1)

Figure 2. Example Race. A request for shared
(ReqS) racing with a request for modified (ReqM).

Mem

P0 P1
ReqM

Data

ReqS

Ack

Data

� �

�

�❻

❼
Mem

P0 P1
� �

�

❺
❼

�

❾

Data
(t=2)

Mem

P0 P1
ReqM

ReqS

� �

�

❼
Mem

P0 P1
� �

�

❺
❼

�

ReqM

ReqM

(a) fast but incorrect (b) using token coherence

3 Correctness Substrate
The correctness substrate uses token counting to enforce
safety (do no harm), and it uses persistent requests to pre-
vent starvation (do some good). These two mechanisms
allow the substrate to move data around the system with-
out concern for order or races, allowing processors to only
read or write the block as appropriate, but still ensures that
a request for a block will eventually succeed in all cases.

3.1 Enforcing Safety via Token Counting

The correctness substrate uses tokens to ensure safety
without requiring indirection or a totally-ordered intercon-
nect. The system associates a fixed number of tokens with
each block of shared memory, and a processor is only
allowed to read a cache block when it holds at least one
token, or write a cache block when holding all tokens.

During system initialization, the system assigns each
block T tokens (where T is at least as large as the number
of processors). Initially, the block’s home memory module
holds all tokens for a block. Later, tokens are held also by
processor caches and coherence messages. Tokens and
data are allowed to move throughout the system as long as
the substrate maintains these four invariants:

•Invariant #1: At all times, each block has T tokens in
the system.

•Invariant #2: A processor can write a block only if it
holds all T tokens for that block.

•Invariant #3: A processor can read a block only if it
holds at least one token for that block.

•Invariant #4: If a coherence message contains one or
more tokens, it must contain data.

Invariant #1 ensures that the substrate never creates or
destroys tokens. Invariants #2 and #3 ensure that a proces-
sor will not write the block while another processor is
reading it. Adding invariant #4 ensures that processors
holding tokens always have a valid copy of the data block.
In more familiar terms, token possession maps directly to
traditional coherence states: holding all T tokens is modi-
fied (M); one to T-1 tokens is shared (S); and no tokens is
invalid (I).

The token-based correctness substrate enforces these
invariants directly by counting tokens. The substrate main-
tains these invariants by induction; the invariants hold for
the initial system state, and all movements of data and
tokens preserve the invariants. Thus, safety is ensured
without reasoning about the interactions among non-stable
protocol states, data responses, acknowledgment mes-
sages, interconnect ordering, or system hierarchy.

Token Coherence enforces a memory consistency model
[4]—the definition of correctness for multiprocessor sys-
tems—in a manner similar to directory protocols. The
above guarantee of a “single writer” or “multiple readers
with no writer” is the same property provided by tradi-

tional invalidation-based directory protocols. For example,
the MIPS R10k processors [43] in the Origin 2000 [23]
use this guarantee to provide sequential consistency, even
without a global ordering point1. The Origin protocol uses
explicit invalidation acknowledgments to provide the
above guarantee. We provide the same guarantee by
explicitly tracking tokens for each block. As with any
coherence scheme, the processors are also intimately
involved in enforcing the memory consistency model.

Optimized token counting. An issue with the invariants
above is that data must always travel with tokens, even
when gathering tokens from shared copies. To avoid this
bandwidth inefficiency, the substrate actually allows
tokens to be transferred without data (similar to the data-
less invalidation acknowledgment messages in a directory
protocol). To enable this optimization, the substrate distin-
guishes a separate owner token, adds a data valid bit (dis-
tinct from the traditional tag valid bit), and maintains the
following four invariants (changes in italics):

•Invariant #1’: At all times, each block has T tokens in
the system, one of which is the owner token.

•Invariant #2’: A processor can write a block only if it
holds all T tokens for that block.

•Invariant #3’: A processor can read a block only if it
holds at least one token for that block and has valid
data.

•Invariant #4’: If a coherence message contains the
owner token, it must contain data.

Invariants #1’, #2’ and #3’ continue to provide safety.
Invariant #4’ allows coherence messages with non-owner
tokens to omit data, but it still requires that messages with
the owner token contain data (to prevent all processors
from simultaneously discarding data). Possession of the
owner token but not all other tokens maps to the familiar
MOESI state owned (O). System components (processors
and the home memory) maintain a valid bit, to allow com-
ponents to receive and hold non-owner tokens without
valid data. A component sets the valid bit when a message
with data and at least one token arrives, and a component
clears the valid bit when it no longer holds any tokens.

Tokens are held in processor caches (e.g., part of tag state),
memory (e.g., encoded in ECC bits [17, 32, 34]), and
coherence messages2. Since we do not track which proces-
sors hold them but only count tokens, tokens can be stored
in 2+log2T bits (valid bit, owner-token bit, and non-
owner token count). For example, encoding 64 tokens with
64-byte blocks adds one byte of storage (1.6% overhead).

1. The Origin protocol uses a directory to serialize some requests for the
same block; however, since memory consistency involves the ordering
relationship between different memory locations [4], using a distributed
directory is not alone sufficient to implement a memory consistency.

2. Like most coherence protocols (e.g., [11, 23, 32, 42]), we assume the
interconnect provides reliable message delivery.

Finally, there is important freedom in what the invariants
do not specify. While our invariants restrict the data and
token content of coherence messages, the invariants do not
restrict when or to whom the substrate can send coherence
messages. For example, to evict a block (and thus tokens)
from a cache, the processor simply sends all its tokens
(and data if the message includes the owner token) to the
memory. Likewise, anytime a processor receives a mes-
sage carrying tokens (with or without data), it can either
choose to accept it (e.g., if there is space in the cache) or
redirect it to memory (using another virtual network to
avoid deadlock). We use this freedom in three additional
ways. First, we define persistent requests to prevent starva-
tion (Section 3.2). Second, we define transient requests
that allow a performance protocol to send “hints” to
inform the substrate to which processor it should send data
and tokens (Section 4.1). Third, this freedom enables
many performance protocols (Section 4.2 and Section 7).

3.2 Avoiding Starvation via Persistent Requests

The correctness substrate provides persistent requests to
prevent starvation. A processor invokes a persistent
request whenever it detects possible starvation (e.g., it has
failed to complete a cache miss within a timeout period).
Since processors should only infrequently resort to persis-
tent requests, persistent requests must be correct but not
necessarily fast. The substrate uses persistent requests to
prevent starvation by performing the following steps:

•When a processor detects possible starvation, it initiates
a persistent request.

•The substrate activates at most one persistent request per
block.

•System nodes remember all activated persistent requests
and forward all tokens for the block—those tokens cur-
rently present and received in the future—to the initiator
of the request.

•When the initiator has sufficient tokens, its performs a
memory operation (e.g., a load or store instruction) and
deactivates its persistent request.

To guarantee starvation freedom, the system must provide
a fair mechanism for activating persistent requests.

Implementation. Processors invoke a persistent request
when a cache miss has not been satisfied within ten aver-
age miss times. The correctness substrate implements per-
sistent requests with a simple arbiter state machine at each
home memory module. The substrate directs persistent
requests to the home node of the requested block.
Requests may queue in a dedicated virtual network or at
the home node. The arbiter state machine activates at most
one request by informing all nodes. Each node responds
with an acknowledgement (to avoid races) and remembers
all active persistent requests using a hardware table. This
table contains an 8-byte entry per arbiter (i.e., per home
memory module). For example, a 64-node system requires

only a 512-byte table at each node. While a persistent
request is active, nodes must forward all tokens (and data,
if they have the owner token) to the requester. The node
will also forward tokens (and data) that arrive later,
because the request persists until the requester explicitly
deactivates it. Once the requester is satisfied, it sends a
message to the arbiter at the home memory module to
deactivate the request. The arbiter deactivates the request
by informing all nodes, who delete the entry from their
table and send an acknowledgement (again, to eliminate
races). Figure 3 shows the general operation of our imple-
mentation of the correctness substrate.

While this implementation of activating persistent requests
is sufficient for our experiments, we are currently develop-
ing a distributed arbitration scheme that efficiently trans-
fers highly-contended blocks directly between contending
processors.

4 Performance Protocols
This section first discusses performance protocol require-
ments and then presents TokenB, a performance protocol
targeting medium-sized glueless multiprocessors.

4.1 Obligations and Opportunities

Obligations. Performance protocols have no obligations,
because the processors and correctness substrate ensure
correctness. A null or random performance protocol would
perform poorly but not incorrectly. Therefore, perfor-
mance protocols may aggressively seek performance with-
out concern for corner-case errors.

Opportunities via Transient Requests. One way in
which performance protocols seek high performance is by
specifying a policy for using transient requests. Transient
requests are fast, unordered “hint” requests sent to one or
more nodes that often succeed, but may fail to obtain a
readable or writable block due to races, insufficient recipi-
ents, or being ignored by the correctness substrate. Perfor-
mance protocols can detect when a request has not (yet)
succeeded, because the requester has not obtained suffi-
cient tokens (i.e., one token to read the block, and all
tokens to write it). Performance protocols may reissue
transient requests or do nothing (since the processor will
eventually timeout and issue a persistent request).

A performance protocol also specifies a policy for how
system components respond to transient requests. If a tran-
sient request for a shared block encounters data with all
tokens, for example, a performance protocol can specify
whether the substrate should reply with the data and one
token or the data and all tokens (much like a migratory
sharing optimization [12, 40]). Active persistent requests
always override performance protocol policies to prevent
starvation.

A good performance protocol will use transient requests to
quickly satisfy most cache misses. Returning to the exam-

ple from Section 2 (illustrated in Figure 2b), both proces-
sors could broadcast transient requests. Even though the
requests race, frequently both processor’s misses would be
satisfied. In other cases, one or both may not succeed
(detected by insufficient tokens and a timeout). When this
occurs, the performance protocol can reissue those tran-
sient requests. In the worst case, one or both processors
may time out and issue persistent requests.

4.2 TokenB: Targeting Glueless Multiprocessors

The Token-Coherence-using-Broadcast (TokenB) perfor-
mance protocol uses three policies to target glueless multi-
processors with high-bandwidth unordered interconnects.

Issuing transient requests. Processors broadcast all tran-
sient requests. This policy works well for moderate-sized
systems where interconnect bandwidth is plentiful and
when racing requests are rare.

Responding to transient requests. Components (proces-
sors and the home memory) respond3 to transient requests
as they would in most MOSI protocols. A component with
no tokens (state I) ignores all requests. A component with
only non-owner tokens (state S) ignores shared requests,
but on an exclusive request it sends all its tokens in a data-
less message (like an invalidation acknowledgment in a
directory protocol). A component with the owner token
but not all other tokens (state O) sends the data with one
token (usually not the owner token) on a shared request,
and it sends the data and all its tokens on an exclusive
request. A component with all the tokens (state M)
responds the same way as a component in state O, with the
exception given in the next paragraph.

Figure 3. Correctness substrate state transitions for the (a) processor, (b) memory, and (c) persistent request
arbiter. As a simplification, the figure shows only tokens sent with data. The symbol t represents the current token count,
and T represents all the tokens. Solid arcs are transitions in response to incoming messages. Dashed arcs are transitions a
performance protocol (Section 4) can invoke at any time (e.g., when receiving a transient request). The “P” states occur
when a node receives a another processor’s persistent request from the arbiter. Each processor must also remember its own
persistent request, not explicitly shown in this figure. The initial states are emphasized with thick borders.

(a) Processor

(b) Memory

S/O

I

M

data & not
all token(s)

data &
all tokens

data &
token(s)

data &
last token(s)

data &
last token(s)

data &
all tokens

data &
token(s)

data &
token(s)

Receiving MessagesSending Messages

P

activation

activationt=0

0<t<T

t=T

t=0
data &
token(s)

activation

deactivation

(c) Arbiter

Idle

Deactivating

Activating

persistent

last ack

last ack

ack

ack

request

Receiving Persistent
Messages (from others)

t>0

t=0

Receiving Persistent
Messages

deactivation

data &
token(s)

P
t=0

Sending Receiving
MessagesMessages

data &
token(s)

data &
last token(s)

activation

activation

data &
token(s) data &

token(s)

(from others)

3. Technically, the performance protocol asks the correctness substrate to
respond on its behalf.

To optimize for common migratory sharing patterns, we
implement a well-known optimization for migratory data
[12, 40]. If a processor with all tokens (state M) has writ-
ten the block, and it receives a shared request, it provides
read/write permission to the block by responding with the
data and all tokens (instead of the data and one token). We
also implement an analogous optimization in all other pro-
tocols we compare against in the evaluation.

Reissuing transient requests. If a transient request has
not completed after a reasonable interval, we reissue the
transient request. We continue to reissue transient requests
until the processor invokes the persistent request mecha-
nism (approximately 4 times). We use both a small ran-
domized exponential backoff (much like ethernet) and
twice the recent average miss latency to calculate the re-
issue timeout. This policy adapts to the average miss
latency of the system (to avoid reissuing too soon), but it
also quickly reissues requests that do not succeed due to
occasional races. Since races are rare, on average only
3.0% of all misses are reissued even once (for our work-
loads and simulation assumptions, described next).

Example. Returning to the example race in Section 2
(Figure 2b), the block has three tokens that are initially
held by memory. P1 received one token in the response at
time ❺, allowing it to read the block. Due to the race, P0
only received two tokens in the response at time ❼ but
requires all three before it can write the block. After the
specified timeout interval, TokenB reissues P0’s request at
time �. P1 responds with the missing token at time ❾,
allowing P0 to finally complete its request.

5 Evaluation Methods
To evaluate Token Coherence, we simulate a multiproces-
sor server running commercial workloads using multiple
interconnection networks and coherence protocols. Our
target system is a 16-processor SPARC v9 system with
highly integrated nodes that each include a pipelined
dynamically scheduled processor, two levels of cache,
coherence protocol controllers, and a memory controller
for part of the globally shared memory. The system imple-
ments sequential consistency using invalidation-based
cache coherence and an aggressive, speculative processor
implementation [18, 43].

Our benchmarks consist of three commercial workloads:
an online transaction processing workload (OLTP), a static
web serving workload (Apache), and a Java middleware
workload (SPECjbb). We refer interested readers to
Alameldeen et al. [6] for a more detailed description and
characterization of these workloads.

We selected a number of coherence protocols, intercon-
nection networks, latencies, bandwidths, cache sizes, and
other structure sizes. Table 1 lists the system parameters
for both the memory system and the processors, chosen to

approximate the published parameters of systems like the
Alpha 21364 [32]. The coherence protocols and intercon-
nection networks are described below.

5.1 Coherence Protocols

We compare target systems using four distinct MOSI
coherence protocols. They all implement the previously
described migratory sharing optimization that improves
the performance of all the protocols. All request, acknowl-
edgment, invalidation, and dataless token messages are 8
bytes in size (including the 40+ bit physical address and
token count if needed); data messages include this 8 byte
header and 64 bytes of data. We compare the TokenB pro-
tocol (described in Section 4) with three other coherence
protocols:

Snooping. We based our traditional snooping protocol on
a modern protocol [11], and we added additional non-sta-
ble states to relax synchronous timing requirements. To
avoid the complexity and latency of a snoop response
combining tree to implement the “owner” signal, the pro-
tocol uses a single bit in memory to determine when the
memory should respond to requests [16].

Directory. We use a standard full-map directory protocol
inspired by the Origin 2000 [23] and Alpha 21364 [32].
The protocol requires no ordering in the interconnect and
does not use negative acknowledgments (nacks) or retries,
but it does queue requests at the directory controller in
some cases. The base system stores the directory state in
the main memory DRAM [17, 32, 34], but we also evalu-
ate systems with “perfect” directory caches by simulating
a zero cycle directory access latency.

Hammer. We use a reverse-engineered approximation of
AMD’s Hammer protocol [5] to represent a class of recent
systems whose protocols are not described in the academic
literature (e.g., Intel’s E8870 Scalability Port [7], IBM’s

Table 1. Target System Parameters

Coherent Memory System
split L1 I & D caches 128kBytes, 4-way, 2ns latency
unified L2 cache 4MBytes, 4-way, 6ns latency
cache block size 64 Bytes
DRAM/dir. latency 80ns (2 GBytes of DRAM)
memory/dir. controllers 6ns latency
network link bandwidth 3.2 GBytes/sec
network link latency 15ns (incl. wire, sync. & route)

Dynamically Scheduled Processors
clock frequency 1 Ghz
reorder buffer/scheduler 128/64 entries
pipeline width 4-wide fetch & issue
pipeline stages 11
direct branch predictor 1kBytes YAGS
indirect branch predictor 64 entry (cascaded)
return address stack 64 entry

Power4 [42] and xSeries Summit [10] systems). The pro-
tocol targets small systems (where broadcast is acceptable)
with unordered interconnects (where traditional snooping
is not possible), while avoiding directory state overhead
and directory access latency. In this protocol, a processor
first sends its request to a home node to be queued behind
other requests to the same block. In parallel with the mem-
ory access, the home node broadcasts the request to all
nodes who each respond to the requester with data or an
acknowledgment. Finally, the requester sends a message to
unblock the home node. By avoiding a directory lookup,
this protocol has lower latency for cache-to-cache misses
than a standard directory protocol, but it still requires indi-
rection through the home node.

5.2 Interconnection Networks

We selected two interconnects with high-speed point-to-
point links: an ordered “virtual bus” pipelined broadcast
tree (sufficient for traditional snooping) and an unordered
torus. We do not consider shared-wire (multi-drop) buses,
because designing high-speed buses is increasingly diffi-
cult due to electrical issues [13, section 3.4.1]. We selected
the link bandwidth of 3.2 GBytes/sec (4-byte wide links at
800 Mhz) and latency of 15 ns based on descriptions of
current systems (e.g., the Alpha 21364 [32] and AMD’s
hammer [5]). Messages are multiplexed over a single
shared interconnect using virtual networks and channels,
and broadcast messages use bandwidth-efficient tree-
based multicast routing [14, section 5.5].

Tree (Figure 1a). For our totally-ordered interconnect, we
use a two-level hierarchy of switches to form a pipelined
broadcast tree with a fan-out of four, resulting in a mes-
sage latency of four link crossings. This tree obtains the
total order required for traditional snooping by using a sin-
gle switch at the root. To reduce the number of pins per
switch, a 16-processor system using this topology has nine
switches (four incoming switches, four outgoing switches,
and a single root switch).

Torus (Figure 1b). For our unordered interconnect, we use
a two-dimensional, bidirectional torus like that used in the
Alpha 21364 [32]. A torus has reasonable latency and
bisection bandwidth, especially for small to mid-sized sys-
tems. For 16-processor systems, this interconnect has an
average message latency of two link crossings.

5.3 Simulation Methods

We simulate our target systems with the Simics full-sys-
tem multiprocessor simulator [26], and we extend Simics
with a processor and memory hierarchy model to compute
execution times [6]. Simics is a system-level architectural
simulator developed by Virtutech AB that can run unmod-
ified commercial applications and operating systems.
Simics is a functional simulator only, but it provides an
interface to support our detailed timing simulation. We use
TFsim [30], configured as described in Table 1, to model

superscalar processor cores that are dynamically sched-
uled, exploit speculative execution, and generate multiple
outstanding coherence requests. Our detailed memory
hierarchy simulator models the latency and bandwidth of
the interconnects described above, and it also captures
timing races and all state transitions (including non-stable
states) of the coherence protocols. All workloads were
warmed up and checkpointed to avoid system cold-start
effects, and we ensure that caches are warm by restoring
the cache contents captured as part of our checkpoint cre-
ation process. To address the variability in commercial
workloads, we adopt the approach of simulating each
design point multiple times with small, pseudo-random
perturbations of request latencies to cause alternative oper-
ating system scheduling paths in our otherwise determinis-
tic simulations [6]. Error bars in our runtime results
represent one standard deviation from the mean in each
direction.

6 Evaluation via Five Questions
We present evidence that Token Coherence can improve
performance via five questions.

Question #1: Can the number of reissued and persis-
tent requests be small? Answer: Yes; on average for our
workloads, 97% of TokenB’s cache misses are issued only
once. Since reissued requests are slower and consume
more bandwidth than misses that succeed on the first
attempt, reissued requests must be uncommon for TokenB
to perform well. Races are rare in our workloads,
because—even though synchronization and sharing are
common—multiple processors rarely access the same data
simultaneously due to the large amount of shared data.
Table 2 shows the percentage of all TokenB misses that are
not reissued, reissued once, reissued more than once, and
that eventually use persistent requests. For our workloads,
on average only 3.0% of cache misses are issued more
than once and only 0.2% resort to persistent requests.
(Table 2 shows Torus interconnect results, but Tree results,
not shown, are similar.)

Question #2: Can TokenB outperform Snooping?
Answer: Yes; with the same interconnect, TokenB and
Snooping perform similarly for our workloads; however,
by exploiting the lower-latency unordered Torus, TokenB
on the Torus is faster than Snooping on the Tree intercon-

Table 2. Overhead due to reissued requests

Percentage of Misses

Workload
Not

Reissued
Reissued

Once
Reissued
> Once

Persistent
Requests

Apache 95.75% 3.25% 0.71% 0.29%

OLTP 97.57% 1.79% 0.43% 0.21%

SPECjbb 97.60% 2.03% 0.30% 0.07%

Average 96.97% 2.36% 0.48% 0.19%

nect (15-28% faster). Figure 4a shows the normalized
runtime (smaller is better) of TokenB on the Tree and Torus
interconnects and Snooping on the Tree interconnect.
Snooping on the Torus is not applicable, because the Torus
does not provide the required total order of requests. The
dark grey bar shows the runtime when the bandwidth is
changed from 3.2 GB/s to unlimited. Figure 4b shows the
traffic in normalized average bytes per miss.

On the Tree interconnect, due to TokenB’s occasionally
reissued requests, Snooping is slightly faster than TokenB
(1-5% and 1-3%) with both limited and unlimited band-
width, respectively (Figure 4a), and both protocols use
approximately the same interconnect bandwidth
(Figure 4b). However, since Snooping requires a totally-
ordered interconnect, only TokenB can exploit a lower-
latency unordered interconnect. Thus, by using the Torus,
TokenB is 26-65% faster than Snooping on Tree with lim-
ited bandwidth links, and 15-28% faster with unlimited
bandwidth links. This speedup results from (1) lower
latency for all misses (cache-to-cache or otherwise) due to
lower average interconnect latency, and (2) lower conten-
tion in Torus (by avoiding Tree’s central-root bottleneck).

Question #3: Can TokenB outperform Directory and
Hammer? Answer: Yes; by removing the latency of indi-
rection through the home node from the critical path of
cache-to-cache misses, TokenB is faster than both Direc-
tory and Hammer (17-54% and 8-29% faster, respec-
tively). Figure 5a shows the normalized runtime (smaller
is better) for TokenB, Hammer, and Directory on the Torus
interconnect with 3.2 GB/second links (the relative perfor-
mances on Tree, not shown, are similar). The light grey

bars illustrate the small increase in runtime due to limited
bandwidth in the interconnect. The grey striped bar for
Directory illustrates the runtime increase due to the
DRAM directory lookup latency.

TokenB is faster than Directory and Hammer by (1) avoid-
ing the third interconnect traversal for cache-to-cache
misses, (2) avoiding the directory lookup latency (Direc-
tory only), and (3) removing blocking states in the mem-
ory controller. Even if the directory lookup latency is
reduced to zero (to approximate a fast SRAM directory or
directory cache), shown by disregarding the grey striped
bar in Figure 5a, TokenB is still faster than Directory by 6-
18%. Hammer is 7-17% faster than Directory by avoiding
the directory lookup latency (but not the third interconnect
traversal), but Directory with the zero-cycle directory
access latency is 2-9% faster than Hammer due to conten-
tion in the interconnect. The performance impact of
TokenB’s additional traffic is negligible, because (1) the
interconnect has sufficient bandwidth due to high-speed
point-to-point links, and (2) the additional traffic of
TokenB is moderate, discussed next.

Question #4: How does TokenB’s traffic compare to
Directory and Hammer? Answer: TokenB generates less
interconnect traffic than Hammer, but a moderate amount
more than Directory (Hammer uses 79-90% more traffic
than TokenB, Directory uses 21-25% less than TokenB).
Figure 5b shows a traffic breakdown in normalized bytes
per miss (smaller is better) for TokenB, Hammer, and
Directory. The extra traffic of TokenB over Directory is not
as large as one might expect, because (1) both protocols
send a similar number of 72-byte data messages (81% of

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
ru

nt
im

e
(n

or
m

al
iz

ed
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n) Runtime: snooping v. token coherence

Effect of limited bandwidth
Unlimited bandwidth

T
ok

en
 -

 tr
ee

Sn
oo

pi
ng

 -
 tr

ee
T

ok
en

 -
 to

ru
s

no
t a

pp
lic

ab
le

Sn
oo

pi
ng

 -
 to

ru
s

Apache

T
ok

en
 -

 tr
ee

Sn
oo

pi
ng

 -
 tr

ee
T

ok
en

 -
 to

ru
s

no
t a

pp
lic

ab
le

Sn
oo

pi
ng

 -
 to

ru
s

OLTP

T
ok

en
 -

 tr
ee

Sn
oo

pi
ng

 -
 tr

ee
T

ok
en

 -
 to

ru
s

no
t a

pp
lic

ab
le

Sn
oo

pi
ng

 -
 to

ru
s

SPECjbb

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

tr
af

fi
c

(n
or

m
al

iz
ed

 b
yt

es
 p

er
 m

is
s)

Traffic: snooping v. token coherence

Reissues & persistent requests (token only)
Requests
Other non-data messages (token only)
Data responses & writebacks

T
ok

en

Sn
oo

pi
ng

Apache

T
ok

en

Sn
oo

pi
ng

OLTP

T
ok

en

Sn
oo

pi
ng

SPECjbb

Figure 4. Snooping v. TokenB: runtime and traffic
(a) (b)

Directory’s traffic on average), (2) request messages are
small (8 bytes), and (3) Torus supports broadcast tree rout-
ing (as stated in Section 5.2). Hammer, which targets
smaller systems, uses much more bandwidth than TokenB
or Directory, because every processor acknowledges each
request (shown by the light grey striped segment).

Question #5: Can the TokenB protocol scale to an
unlimited number of processors? Answer: No; TokenB
relies on broadcast, limiting its scalability. However,
Token Coherence is not limited to always broadcasting.
TokenB is more scalable than Hammer, because Hammer
uses broadcast and many acknowledgment messages.
TokenB is less scalable than Directory, because Directory
avoids broadcast. However, TokenB can perform well for
perhaps 32 or 64 processors if bandwidth is abundant (by
using high-bandwidth links [20] and coherence controllers
with high throughput [33, 36] and low power consumption
[31]). Experiments (not shown) using a simple micro-
benchmark indicate that, for a 64 processor system,
TokenB uses twice the interconnect bandwidth of Direc-
tory4. However, TokenB is a poor choice for larger or more
bandwidth-limited systems. For this reason, the next sec-
tion discusses other potential performance protocols.

7 Other Performance Protocol Opportunities
Token Coherence enables many performance protocols
beyond the broadcast-always TokenB protocol. Further-
more, since its correctness substrate guarantees safety and
prevents starvation, performance protocol designers can
innovate without fear of corner-case correctness errors.

Reducing traffic. We can reduce request traffic (by not
broadcasting transient requests) in several ways. First, we
can reduce the traffic to directory protocol-like amounts by
constructing a directory-like performance protocol. Pro-
cessors first send transient requests to the home node, and
the home redirects the request to likely sharers and/or the
owner by using a “soft state” directory [25]. Second, band-
width-adaptive techniques would allow a system to
dynamically adapt between TokenB and this directory-like
mode, providing high performance for multiple system
sizes and workloads [29]. Third, Token Coherence can use
destination-set prediction [2, 3, 9, 27] to achieve the per-
formance of broadcast while using less bandwidth by pre-
dicting a subset of processors to which to send requests.
Previously, these proposals required complicated protocols
or protocol extensions. By multicasting transient requests,
Token Coherence provides a simpler implementation of
these proposals, while eliminating the totally-ordered
interconnect required by some proposals [9, 27] and com-
plex races in other proposals [2, 3, 9, 27].

Predictive push. The decoupling of correctness and per-
formance provides an opportunity to reduce the number of
cache misses by predictively pushing data between system
components. This predictive transfer of data can be trig-
gered by a coherence protocol predictor [1, 21, 35], by
software (e.g., the KSR1’s “poststore” [37] and DASH’s
“deliver” [24]), or by allowing the memory to push data
into processor caches. Since Token Coherence allows data
and tokens to be transferred between system components
without affecting correctness, these schemes are easily
implemented correctly as part of a performance protocol.4. The additional cost of tree-based broadcast on Torus grows as .

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
ru

nt
im

e
(n

or
m

al
iz

ed
 c

yc
le

s
pe

r
tr

an
sa

ct
io

n) Runtime: directory v. token coherence

Effect of limited bandwidth
Effect of directory access (directory only)
Unlimted bandwidth/zero latency directory access

T
ok

en

H
am

m
er

D
ir

ec
to

ry

Apache

T
ok

en

H
am

m
er

D
ir

ec
to

ry

OLTP

T
ok

en

H
am

m
er

D
ir

ec
to

ry
SPECjbb

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

tr
af

fi
c

(n
or

m
al

iz
ed

 b
yt

es
 p

er
 m

is
s)

Traffic: directory v. token coherence

Reissues & persistent requests (token only)
Requests, forwarded requests, & invalidations
Other non-data messages
Data responses & writebacks

T
ok

en

H
am

m
er

D
ir

ec
to

ry

Apache

T
ok

en

H
am

m
er

D
ir

ec
to

ry

OLTP

T
ok

en

H
am

m
er

D
ir

ec
to

ry

SPECjbb

Figure 5. Directory and Hammer v. TokenB: runtime and traffic
(a) (b)

Θ n()

Hierarchical system support. Token Coherence can also
accelerate hierarchical systems, an increasingly important
concern with the rise of chip multiprocessors (CMPs, e.g.,
IBM’s Power4 [42]). Power4 uses extra protocol states to
allow neighboring processors to respond with data, reduc-
ing traffic and average miss latency. A Token Coherence
performance protocol could achieve this more simply by
granting extra tokens to requesters, and allowing those
processors to respond with data and tokens to neighboring
processors. Other hierarchical systems connect smaller
snooping based modules into larger systems (e.g., [7, 10,
24]). Token Coherence may allow for a single protocol to
more simply achieve the latency and bandwidth character-
istics of these hierarchical systems, without requiring the
complexity of two distinct protocols and the bridge logic
between them.

8 Related Work
Protocol and interconnect co-design. Timestamp Snoop-
ing [28] adds ordering sufficient for traditional snooping to
an unordered interconnect by using timestamps and reor-
dering requests at the interconnect end points. Other
approaches eschew virtual buses by using rings or a hierar-
chy of rings [15, 37, 42] or race-free interconnects [22].
Token Coherence addresses similar problems, but instead
uses a new coherence protocol on an unordered intercon-
nect to remove indirection in the common case.

Coherence protocols. Acacio et al. separately target read-
miss latency [2] and write-miss latency [3] by augmenting
a directory protocol with support for predicting current
holders of the block. In many cases, the system grants per-
mission without indirection, but in other cases, prediction
is not allowed, requiring normal directory-based request
ordering and directory indirection. In contrast, we intro-
duce a simpler, unified approach that allows for correct
direct communication in all cases, only resorting to a
slower mechanism for starvation prevention. Shen et al.
[38] use term rewriting rules to create a coherence proto-
col that allows operations from any of several sub-proto-
cols, forming a trivially-correct hybrid protocol. We
similarly provide a correctness guarantee, but we use
tokens to remove ordering overheads from the common
case. The Dir1SW directory protocol [19] keeps a count of
sharers at the memory for detecting the correct use of
check-in/check-out annotations, and Stenstrom [39] pro-
poses systems that use limited directory state and state in
caches to track sharers. Token Coherence uses similar state
in the memory and caches to count tokens, but it uses
tokens to enforce high-level invariants that avoid directory
indirection in the common case. Li and Hudak [25]
explore a protocol in which each node tracks a probable
owner, allowing requests to quickly find the current owner
of the line. This approach could be used to improve a per-
formance protocol or a persistent request mechanism.

9 Conclusions
To enable low-latency cache-to-cache misses on unordered
interconnects, this paper introduces Token Coherence.
Token Coherence resolves protocol races without indirec-
tion or a totally-ordered interconnect by decoupling coher-
ence into a correctness substrate and a performance
protocol. The correctness substrate guarantees correct
transfer and access to blocks by tracking tokens, and it
prevents starvation using persistent requests. Free from the
burden of correctness, the performance protocol directly
requests blocks without concern for races. We introduced
TokenB, a specific performance protocol based on broad-
casting transient requests and reissuing requests when
occasional races occur. TokenB can outperform traditional
snooping by using low-latency, unordered interconnects.
TokenB outperforms directory protocols by avoiding
cache-to-cache miss indirections, while using only a mod-
erate amount of additional bandwidth.

By decoupling performance and correctness, Token
Coherence may be an appealing framework for attacking
other multiprocessor performance and design complexity
problems. Future performance protocols may reduce
request bandwidth via destination-set prediction, reduce
miss frequency via predictive push, and gracefully handle
hierarchical systems. By using the substrate to ensure cor-
rectness, these optimizations can be implemented with lit-
tle impact on system complexity.

Acknowledgments
We thank Virtutech AB, the Wisconsin Condor group, and
the Wisconsin Computer Systems Lab for their help and
support. We thank Alaa Alameldeen, Allan Baum, Adam
Butts, Joel Emer, Kourosh Gharachorloo, Anders Landin,
Alvin Lebeck, Carl Mauer, Kevin Moore, Shubu Mukher-
jee, Amir Roth, Dan Sorin, Craig Zilles, the Wisconsin
Multifacet group, and the Wisconsin Computer Architec-
ture Affiliates for their comments on this work.

References
[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An Evaluation

of Fine-Grain Producer-Initiated Communication in Cache-Coher-
ent Multiprocessors. In Proceedings of the Third IEEE Symposium
on High-Performance Computer Architecture, Feb. 1997.

[2] M. E. Acacio, J. González, J. M. García, and J. Duato. Owner Pre-
diction for Accelerating Cache-to-Cache Transfers in a cc-NUMA
Architecture. In Proceedings of SC2002, Nov. 2002.

[3] M. E. Acacio, J. González, J. M. García, and J. Duato. The Use of
Prediction for Accelerating Upgrade Misses in cc-NUMA Multipro-
cessors. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pages 155–164, Sept.
2002.

[4] S. V. Adve and K. Gharachorloo. Shared Memory Consistency
Models: A Tutorial. IEEE Computer, 29(12):66–76, Dec. 1996.

[5] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD Opteron
Shared Memory MP Systems. In Proceedings of the 14th HotChips
Symposium, Aug. 2002. http://www.hotchips.org/archive/hc14/pro-
gram/28_AMD_Hammer_MP_HC_v8.pdf.

[6] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore,
M. Xu, D. J. Sorin, M. D. Hill, and D. A. Wood. Simulating a $2M
Commercial Server on a $2K PC. IEEE Computer, 36(2):50–57,
Feb. 2003.

[7] M. Azimi, F. Briggs, M. Cekleov, M. Khare, A. Kumar, and L. P.
Looi. Scalability Port: A Coherent Interface for Shared Memory
Multiprocessors. In Proceedings of the 10th Hot Interconnects Sym-
posium, pages 65–70, Aug. 2002.

[8] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory System
Characterization of Commercial Workloads. In Proceedings of the
25th Annual International Symposium on Computer Architecture,
pages 3–14, June 1998.

[9] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill,
and D. A. Wood. Multicast Snooping: A New Coherence Method
Using a Multicast Address Network. In Proceedings of the 26th An-
nual International Symposium on Computer Architecture, pages
294–304, May 1999.

[10] J. M. Borkenhagen, R. D. Hoover, and K. M. Valk. EXA
Cache/Scalability Controllers. In IBM Enterprise X-Architecture
Technology: Reaching the Summit, pages 37–50. International Busi-
ness Machines, 2002.

[11] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE Mi-
cro, 18(1):39–49, Jan/Feb 1998.

[12] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for Detect-
ing Migratory Shared Data. In Proceedings of the 20th Annual Inter-
national Symposium on Computer Architecture, May 1993.

[13] W. J. Dally and J. W. Poulton. Digital Systems Engineering. Cam-
bridge University Press, 1998.

[14] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An
Engineering Approach. Morgan Kaufmann, revised edition, 2003.

[15] K. Farkas, Z. Vranesic, and M. Stumm. Scalable Cache Consistency
for Hierarchically Structured Multiprocessors. The Journal of Su-
percomputing, 8(4), 1995.

[16] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Memo-
ry-access Times. Electronics, 57(1):164–169, Jan. 1984.

[17] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk. Efficient ECC-
Based Directory Implementations for Scalable Multiprocessors. In
Proceedings of the 12th Symposium on Computer Architecture and
High-Performance Computing (SBAC-PAD 2000), Oct. 2000.

[18] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to
Enhance the Performance of Memory Consistency Models. In Pro-
ceedings of the International Conference on Parallel Processing,
volume I, pages 355–364, Aug. 1991.

[19] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood. Coopera-
tive Shared Memory: Software and Hardware for Scalable Multipro-
cessor. ACM Transactions on Computer Systems, 11(4):300–318,
Nov. 1993.

[20] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos. High-Speed
Electrical Signaling: Overview and Limitations. IEEE Micro, 18(1),
January/February 1998.

[21] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas. Data For-
warding in Scalable Shared-Memory Multiprocessors. In Proceed-
ings of the 1995 International Conference on Supercomputing, July
1995.

[22] A. Landin, E. Hagersten, and S. Haridi. Race-Free Interconnection
Networks and Multiprocessor Consistency. In Proceedings of the
18th Annual International Symposium on Computer Architecture,
May 1991.

[23] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 241–251, June 1997.

[24] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta,
J. Hennessy, M. Horowitz, and M. Lam. The Stanford DASH Mul-
tiprocessor. IEEE Computer, 25(3):63–79, Mar. 1992.

[25] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory
Systems. ACM Transactions on Computer Systems, 7(4):321–359,
1989.

[26] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[27] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A.
Wood. Using Destination-Set Prediction to Improve the Laten-
cy/Bandwidth Tradeoff in Shared Memory Multiprocessors. In Pro-
ceedings of the 30th Annual International Symposium on Computer
Architecture, June 2003.

[28] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen,
R. M. Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and
D. A. Wood. Timestamp Snooping: An Approach for Extending
SMPs. In Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, pages 25–36, Nov. 2000.

[29] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Band-
width Adaptive Snooping. In Proceedings of the Eighth IEEE Sym-
posium on High-Performance Computer Architecture, Feb. 2002.

[30] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First
Simulation. In Proceedings of the 2002 ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages 108–
116, June 2002.

[31] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY:
Filtering Snoops for Reduced Power Consumption in SMP Servers.
In Proceedings of the Seventh IEEE Symposium on High-Perfor-
mance Computer Architecture, Jan. 2001.

[32] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The
Alpha 21364 Network Architecture. In Proceedings of the 9th Hot
Interconnects Symposium, Aug. 2001.

[33] A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J. Joseph. High-
Throughput Coherence Controllers. In Proceedings of the Sixth
IEEE Symposium on High-Performance Computer Architecture,
Jan. 2000.

[34] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, and M. Parkin. The
S3.mp Scalable Shared Memory Multiprocessor. In Proceedings of
the International Conference on Parallel Processing, volume I,
pages 1–10, Aug. 1995.

[35] D. Poulsen and P.-C. Yew. Data Prefetching and Data Forwarding
in Shared-Memory Multiprocessors. In Proceedings of the Interna-
tional Conference on Parallel Processing, volume II, pages 296–
280, Aug. 1994.

[36] I. Pragaspathy and B. Falsafi. Address Partitioning in DSM Clusters
with Parallel Coherence Controllers. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Tech-
niques, Oct. 2000.

[37] E. Rosti, E. Smirni, T. Wagner, A. Apon, and L. Dowdy. The
KSR1: Experimentation and Modeling of Poststore. In Proceedings
of the 1993 ACM Sigmetrics Conference on Measurement and Mod-
eling of Computer Systems, pages 74–85, May 1993.

[38] X. Shen, Arvind, and L. Rudolph. CACHET: An Adaptive Cache
Coherence Protocol for Distributed Shared-Memory Systems. In
Proceedings of the 1999 International Conference on Supercomput-
ing, pages 135–144, June 1998.

[39] P. Stenström. A Cache Consistency Protocol for Multiprocessors
with Multistage Networks. In Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture, May 1989.

[40] P. Stenström, M. Brorsson, and L. Sandberg. Adaptive Cache Co-
herence Protocol Optimized for Migratory Sharing. In Proceedings
of the 20th Annual International Symposium on Computer Architec-
ture, pages 109–118, May 1993.

[41] P. Sweazey and A. J. Smith. A Class of Compatible Cache Consis-
tency Protocols and their Support by the IEEE Futurebus. In Pro-
ceedings of the 13th Annual International Symposium on Computer
Architecture, pages 414–423, June 1986.

[42] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. IBM Server Group Whitepa-
per, Oct. 2001.

[43] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, 16(2):28–40, Apr. 1996.

