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ABSTRACT 
Cache miss stalls hurt performance because of the large gap 
between memory and processor speeds – for example, the popular 
server benchmark SPEC JBB2000 spends 45% of its cycles 
stalled waiting for memory requests on the Itanium® 2 processor.  
Traversing linked data structures causes a large portion of these 
stalls. Prefetching for linked data structures remains a major 
challenge because serial data dependencies between elements in a 
linked data structure preclude the timely materialization of 
prefetch addresses. This paper presents Mississippi Delta (MS 
Delta), a novel technique for prefetching linked data structures 
that closely integrates the hardware performance monitor (HPM), 
the garbage collector’s global view of heap and object layout, the 
type-level metadata inherent in type-safe programs, and JIT 
compiler analysis. The garbage collector uses the HPM’s data 
cache miss information to identify cache miss intensive traversal 
paths through linked data structures, and then discovers regular 
distances (deltas) between these linked objects. JIT compiler 
analysis injects prefetch instructions using deltas to materialize 
prefetch addresses. 
We have implemented MS Delta in a fully dynamic profile-guided 
optimization system: the StarJIT dynamic compiler [1] and the 
ORP Java virtual machine [9]. We demonstrate a 28-29% 
reduction in stall cycles attributable to the high-latency cache 
misses targeted by MS Delta and a speedup of 11-14% on the 
cache miss intensive SPEC JBB2000 benchmark. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Contructs and 
Features – Dynamic storage management; Classes and objects. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation, Languages. 

Keywords 
Prefetching, compiler optimization, garbage collection, cache 
misses, profile-guided optimization, virtual machines. 

1. INTRODUCTION 
Memory systems performance remains one of the biggest 
bottlenecks in processor performance. Figure 1 illustrates this 
problem, showing the percentage of execution cycles attributed to 
data cache stalls running the SPEC JBB2000 and SPEC JVM98 
benchmarks [29] on the Itanium® 2 processor. For memory-
intensive programs – such as SPEC JBB2000 and db – the 
processor spends up to 45% of its execution cycles stalled waiting 
for memory. This problem will only worsen as processor speed 
continues to outpace memory speed, and as the demand on the 
memory subsystem increases due to chip-level multiprocessing. 
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Figure 1. Percentage of execution cycles stalled due to data 

cache misses. 
Prefetching tackles the memory latency problem by fetching data into 
processor caches in advance of their use. To prefetch in a timely 
fashion, the processor must materialize the prefetch address early 
enough to overlap the prefetch latency with other computations or 
latencies. For both hardware and software-based strategies, prefetching 
for linked data structures remains a major challenge because serial data 
dependencies between elements in a linked data structure preclude the 
timely materialization of prefetch addresses.  
Figure 2 illustrates the challenge of prefetching for linked data 
structures. This figure shows three linked objects. Assume that 
traversal of this linked structure causes all three objects to miss in the 
cache. The processor cannot load the String object until it has loaded 
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the brandInfo field of Item.  Similarly, it cannot load the Char Array 
object until it has loaded the value field of String. Thus data 
dependences serialize cache misses during traversal, as illustrated by 
the chart. 
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Figure 2. Serial data dependences in linked data structures. 

This paper presents Mississippi Delta (MS Delta), a novel technique 
for prefetching linked data structures that starts with information from 
the hardware performance monitor (HPM), and uses the garbage 
collector (GC) to discover cache miss intensive paths through linked 
data structures and regular distances (deltas) between objects in these 
structures. The JIT compiler subsequently uses the deltas to materialize 
prefetch addresses in a timely fashion.  
Figure 3 shows how MS Delta uses deltas to predict prefetch 
addresses, thus avoiding data dependences and permitting timely 
prefetches. The GC discovers a regular delta between Item and String, 
as well as Item and Char Array. The JIT compiler uses this delta to 
inject prefetches of String and Char Array such that the prefetch 
latency overlaps the miss latency of Item, as illustrated by the chart. 
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Figure 3. Prefetching using deltas. 

Figure 4 shows the high-level MS Delta algorithm as it abstracts from 
raw HPM samples up to prefetches. The HPM provides samples of 
high-latency cache misses. Each sample includes the instruction 
pointer address (IP) and the referent effective address (EA) of the 
memory access. MS Delta abstracts these raw samples first into the 
delinquent objects that caused the misses and then into a high level 
metadata graph, whose nodes represent object types, and whose edges 
represent relations induced by fields and array elements containing 
references. During heap traversal, the GC uses the delinquent objects 
to discover edges in the metadata graph that approximate the high-
latency traversals between linked data. It then composes these edges 

into delinquent paths representing linked data structure traversals that 
cause high- latency cache misses. Taking advantage of object 
placement, the GC determines regular deltas between objects along the 
paths. Knowing the deltas and the paths simplifies the JIT compiler 
analysis needed to schedule prefetches along a traversal path: The JIT 
combines the address of the first object in the path with the deltas to 
materialize prefetch targets. This means that the miss latency 
experienced by the first object in a traversal path hides the miss latency 
of subsequent objects along the path. 
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Figure 4. High-level MS Delta algorithm. 

This paper makes the following novel contributions. First, MS Delta 
uses dynamic hardware-based data cache miss profiling instead of 
software-based memory access profiling to greatly reduce the cost of 
profiling and to concentrate analysis on loads that actually cause cache 
misses instead of loads that fall along frequently executed yet cache 
resident paths. Second, MS Delta leverages the GC’s heap traversal to 
infer object layout properties (in the form of deltas between linked 
objects) useful for generating prefetch addresses in linked data 
structures. By using deltas to materialize prefetch addresses, MS Delta 
avoids the inherent serial dependences that make prefetching for linked 
data structures difficult. Third, MS Delta uses the GC’s object 
placement ability to maintain the deltas used for prefetching.  Fourth, 
MS Delta abstracts the raw cache miss data up to the type and type 
connectivity level instead of tracking individual addresses and objects.  
By abstracting the voluminous miss address information up to type-
level metadata, MS Delta concisely models cache miss behavior, 
eliminating the need to maintain potentially large historic address 
specific structures. In summary, MS Delta couples hardware data 
cache profiles and global heap properties with metadata to enhance 
and guide dynamic JIT compiler analysis, recompilation, and prefetch 
injection decisions. 
The rest of this paper is organized as follows. The next section 
describes our experimental framework. Section 3 describes the 
algorithm for building the metadata graph using the HPM samples. 
Sections 4 and 5 describe how the GC builds delinquent paths and 
discovers deltas between objects, respectively.  Section 6 describes the 
JIT algorithm for injecting prefetches and Section 7 presents 
experimental results on SPEC JVM98 and SPEC JBB2000. Section 8 
discusses related work. 
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2. EXPERIMENTAL FRAMEWORK 
We have implemented MS Delta in the context of the StarJIT dynamic 
compiler [1] and the ORP JVM [9] running on the Itanium® 2 
platform [19]. The ORP JVM supports dynamic profile-guided 
feedback to the JIT compiler, and contains a GC tool kit capable of 
supporting multiple collection algorithms [24] (e.g., generational, 
sliding compaction, parallel, concurrent). To improve memory 
performance, ORP and StarJIT can compress pointers from 64 bits to 
32 bits [2]. We have optimized the GC to take advantage of the 
Itanium® 2 processor features [16].  
StarJIT features an SSA-based intermediate representation and 
performs aggressive profile-guided global optimizations such as 
devirtualization, inlining, bounds-check elimination, and others.  
StarJIT also includes aggressive profile-guided code generator 
optimizations such as trace scheduling, speculation, code layout, and 
others.  StarJIT and ORP currently support two profiling strategies: 
control-flow edge profiling using software instrumentation and 
hardware cache miss sampling. The Itanium® processor supports 
sampling of hardware cache misses via an HPM called the 
Performance Monitoring Unit (PMU). 
All measurements reported in this paper were gathered by running the 
SPEC JVM98 and SPEC JBB2000 benchmarks on a commercially 
available 4 processor 1.5 GHz Itanium® 2 machine with 16 gigabytes 
of memory and 6 megabytes of 3rd-level cache (with 128-byte cache 
lines) running Microsoft’s Windows 2003 Enterprise Edition. Figure 5 
compares the performance of StarJIT and ORP with a leading edge 
commercial JVM for the Itanium® processor (BEA WebLogic 
JRockit™ 1.4.1 SDK Developer Release).  On these benchmarks, our 
baseline system performs 5-59% faster than the commercial JVM.  
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Figure 5.  Performance of ORP relative to a commercial JVM. 

3. BUILDING THE METADATA GRAPH 
MS Delta represents cache miss information in terms of types and 
their relationships using a concise metadata graph. This section 
describes how MS Delta abstracts HPM samples first into objects, 
then into types and related loads, and finally into the edges needed 
to build this graph. 

3.1 Delinquent Objects  
Each PMU sample forms a tuple comprising the load instruction 
pointer (IP), target effective address (EA), and latency of the load 
causing the miss. MS Delta programs the PMU to sample only 
high-latency cache misses so that it can concentrate on loads that 

access off-chip memory. MS Delta further eliminates samples 
whose EA do not fall within the contiguous garbage collected 
heap.  
Each sample refers to an object that caused a cache miss; we call 
such objects delinquent objects.  Each object starts with a header 
containing a virtual function table pointer (vtable) that identifies 
the type of the object. MS Delta abstracts a sample into a 
delinquent object by scanning backwards in memory starting from 
the EA of the sample, looking for a word that looks like a valid 
vtable.  To improve accuracy, the search probes a hash table 
containing valid vtables recorded by the class loader. The search 
ensures constant time by bounding the number of 8-byte words it 
visits to 100. If the search fails to locate a valid vtable it simply 
discards the sample. Of course a random sequence of bits can 
masquerade as a vtable (rare in practice) – we discuss later how to 
deal with this inaccuracy. After abstracting the effective addresses 
up into delinquent objects, MS Delta constructs the delinquent 
object set from the delinquent objects and their respective 
samples. 
Limiting the vtable search to at most 100 captures 97% of the 
interesting types in all of the SPEC JVM98 and SPEC JBB2000 
benchmarks except for compress, which exhibits misses in large 
arrays. MS Delta focuses on misses in linked data structures, 
which usually consist of relatively small objects instead of large 
arrays. Standard loop prefetching techniques can typically address 
misses to large arrays (see [30] for an overview).  

3.2 Delinquent Types and Loads 
Experimental data shows that only a few types and a few 
loads cause the majority of cache misses [27]. We refer to 
these types and loads as delinquent types and delinquent loads 
[10], respectively. The set of delinquent types and loads 
concisely characterizes an application’s cache misses. After 
identifying delinquent objects, MS Delta further abstracts the 
HPM data by rolling up the information contained in the 
delinquent object set to the set of delinquent types. 
To compute delinquent types the algorithm iterates through 
the delinquent object set accumulating the total miss latency 
for each type encountered. It then sorts these types by their 
latency and retains the topmost types whose cumulative 
latency contributes to most of the overall latency (types 
contribute to 90% of the latency in SPEC JBB2000, 5 
delinquent types contribute to 99% of the latency in db, and 9 
delinquent types contribute 96% in mtrt. Similarly, 88 loads 
contribute 88% of the latency in SPEC JBB2000, and 24 
loads contribute 90% of the latency in db.  
A delinquent load can access more than one delinquent type 
because of subtyping. We observed that in our benchmarks, 
each delinquent load accesses a dominant delinquent type. To 
filter out errors from misidentifying the correct vtable in a 
sample, MS Delta discards samples whose loads access non-
delinquent types. for example, 98%).  These types form the set of 
delinquent types. A similar algorithm computes the set of 
delinquent loads, looking at sample IPs instead of  types.  
Figure 6 and 7 show the cumulative cache miss latency 
contributed by the top sorted delinquent loads and types, 
respectively. These figures show that the set of delinquent loads 
and delinquent types is tractable. For example, 10 delinquent  
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Figure 6. Cumulative contribution of delinquent loads to total 

cache miss latency. 
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Figure 7. Cumulative contribution of delinquent types to total 

cache miss latency. 

3.3 The Metadata Graph 
The metadata graph consists of delinquent types and the edges 
between them called delinquent edges. MS Delta piggybacks 
on the GC’s heap traversal to collect information needed to 
identify the metadata graph. When MS Delta encounters an 
object of delinquent type during heap traversal, it iterates 
through each of the reference fields in the object to see if they 
point to a child object of delinquent type. If MS Delta finds 
such a child object the pair has one of 4 possible delinquent 
relationships: 

• Delinquent object to delinquent object (O O) if 
both objects are delinquent objects. 

• Delinquent object to delinquent type (O T) if only 
the parent is a delinquent object. 

• Delinquent type to delinquent object (T O) if only 
the child is a delinquent object. 

• Delinquent type to delinquent type (T T) if neither 
is a delinquent object. 

MS Delta maintains counts for each of the relationships in a 
sparse NxN matrix called the Dynamic Metadata Table 
(DMT), indexed using ids assigned to delinquent types. Each 
element in the matrix contains a linked list of nodes. Each 
node represents a field pointing from the parent type to the 
child type, and records delinquent relationships corresponding 

to that particular field. At the end of the heap traversal the 
matrix concisely characterizes the dynamic connectivity 
between each of the delinquent types. Note, that both the 
DMT and the metadata graph are small data structures; for 
example, SPEC JBB2000 contains only 10 delinquent types 
and thus produces a sparse 10 X 10 matrix. Furthermore, even 
though the object identification technique discussed in 
Section 3.1 occasionally misidentifies objects, the GC only 
encounters valid objects, thus making misidentification 
benign. 
Figure 8 shows a portion of the metadata graph for SPEC 
JBB2000. Type Item points to type String via fields name 
and brandInfo. Type String points to type Char Array, via 
field 
value.
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Figure 8.  Portion of SPEC JBB2000 metadata graph. 

Figure 9 shows the DMT for the metadata graph in Figure 8. 
The y-axis contains the parent delinquent types and the x-
axis contains the child delinquent types. Each element of 
the matrix contains a list of the fields connecting that 
element’s parent type to its child type, or null if no fields 
connect the two types. For example, the element DMT[Item, 
String] consists of a linked list of two nodes, one of which 
corresponds to the brandInfo field connecting type Item to 
type String and the second corresponds to the name field 
between the same two types. These nodes contain the 
delinquent relationship counters updated during heap 
traversal.  
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Figure 9. Portion of SPEC JBB2000 dynamic metadata table. 
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4. DETERMINING DELINQUENT PATHS 
A delinquent edge connects a parent type to a child type in the 
metadata graph and represents a delinquent load of the child using 
a reference field in the parent.  A delinquent path comprises one 
or more delinquent edges and represents a traversal of a linked 
data structure that frequently misses. The first type in a delinquent 
path is the delinquent base type. Discovering the delinquent base 
type and the associated load is key to locating where to inject 
prefetches.  
MS Delta uses the DMT to identify delinquent edges. For each 
pair of delinquent types MS Delta examines the DMT to see if 
heap traversal discovered an edge connecting the pair. If so, MS 
Delta sums the O O and the T O delinquent relationships for 
that edge. If this is greater than some lower bound N (a small 
fraction of the total number of distinguished objects), then MS 
Delta considers this edge a delinquent edge candidate and further 
calculates a complex edge weight (CEW): 

CEW = 100*O O + 10*T O + O T  
CEW gives the highest weighting to the O O component 
because it represents good evidence that the application followed 
this edge, causing a cache miss. The T O component is 
important because it indicates how we actually reached a known 
delinquent object following an edge (field dereference) from a 
delinquent type. The O T component is less important since it 
gives less assurance that the edge being followed leads to a 
delinquent object. This is particularly true if multiple fields in a 
delinquent type have the same type. MS Delta sorts the delinquent 
edge candidates based on their CEW, filtering all but the topmost 
edges. This information is then rolled up into the metadata graph.  
MS Delta builds delinquent paths by composing delinquent edges. 
Initially, each delinquent edge is a delinquent path.  To lengthen a 
delinquent path, MS Delta recursively finds an edge whose parent 
type matches the child type of the last edge in the path. The 
algorithm terminates once it finds the longest path for each 
delinquent edge, it encounters an array, or the path reaches a 
length limit. Each path has a weight equal to the sum of its edge’s 
CEWs. This delinquent path information is then rolled up into the 
metadata graph.  
The algorithm for building delinquent paths misses some paths 
because it requires all types along the path to be delinquent. If a 
delinquent object sits adjacent to its next downstream object so 
that they often reside in the same cache line, the second object 
will rarely be delinquent. Further analysis by the GC can detect 
when two connected types tend to reside on the same cache line, 
allowing the second type to be considered as part of the 
delinquent path. 

5. DETERMINING PREFETCH DELTAS 
For each delinquent path, the delta determination algorithm 
computes deltas relative to the path’s delinquent base type. The 
algorithm iterates through the delinquent object set and each time 
it encounters an object whose type matches a delinquent base 
type, it traces the objects along delinquent paths starting from the 
delinquent object. For each edge it traverses along the path (i.e., 
each field it dereferences) it calculates the delta from the base 
object, binning the delta into a delta histogram for that edge. 
After collecting the deltas into histograms, the algorithm discards 
deltas whose bins comprise less that 10% of the deltas for that 
edge and annotates the metadata graph’s edges with the remaining 

deltas. Note, that by only traversing paths starting from delinquent 
objects, MS Delta effectively samples paths and deltas. 
The deltas indicate distances between bases of two objects that 
miss. Cache misses, however, typically occur on an access to a 
field at some offset within the object; therefore, MS Delta also 
determines the effective offsets that cause misses by iterating over 
the delinquent object set, subtracting the object base from the 
effective address the HPM delivered. MS Delta then annotates the 
metadata graph’s edges with these effective offsets. The JIT adds 
the deltas and the effective offsets to the address of the base object 
to determine the prefetch target. This refinement proved more 
effective than simply prefetching the entire referent object. 
The delta determination algorithm computes path-specific deltas, 
improving prefetch accuracy. For example, depending on the path, 
the character array associated with each string object is sometimes 
located before the string object and sometimes after it. One path 
wants to use the negative delta to prefetch the character array 
while another path wants to use a positive delta. The delta 
determination algorithm distinguishes between these two paths. 

5.1 Maintaining Deltas during GC 
The ORP GC allocates using a frontier pointer scheme [16] 
resulting in allocation order object placement. For many 
applications (e.g., SPEC JBB2000 and db) allocation order results 
in delinquent objects having regular deltas along delinquent paths. 
To maintain allocation order and also deal with fragmentation the 
ORP GC employs sliding compaction. 
Performing compaction prior to calculating deltas results in more 
regular deltas between objects. This seems primarily due to short-
lived objects being interspersed with the longer living delinquent 
objects. Because MS Delta abstracts deltas up to the type level, 
improving delta consistency improves prefetch effectiveness. 
Compaction (or any other object movement during garbage 
collection), however, requires the GC to update the delinquent 
object set during the repoint phase. 

5.2 Computing Prefetch Deltas 
The benefit of prefetching a cache line is the total cache miss 
latency avoided. To estimate this, MS Delta combines delta 
information from all delinquent paths starting at each base 
delinquent type. It adds each delta and effective offset and 
divides the sum by the cache line size to compute a delta in 
terms of cache lines.  It then bins the associated latency into a 
histogram for that base delinquent type. Each histogram bin 
reflects the benefit from prefetching that bin’s cache line. MS 
Delta then assigns a low, medium, or high confidence rating 
based on this benefit, and does not prefetch low confidence 
cache lines. MS Delta prefetches medium confidence cache 
lines using a non-temporal prefetch instruction [19], which 
minimizes the risk of cache pollution, and prefetches high 
confidence cache lines using a regular prefetch instruction. 
Figure 10 shows the layout for the metadata graph shown in 
Figure 8. Consider the two paths starting at Item containing 
Char Arrays of variable size. The varying size of the Char 
Arrays reduces the accuracy of the deltas along the second 
path. If, however, the deltas are abstracted to cache lines as 
above, the prefetch will help along at least one of the paths.  

271



 

Item String Char 
Array 

Char 
Array 

String 

 
Figure 10. Example layout for Figure 8. 

6. INJECTING PREFETCHES 
The compiler identifies the candidate methods in which MS 
Delta injects prefetches, and the intermediate representation 
(IR) for the delinquent loads, using a map from IPs to loads in 
the IR. For each delinquent load of a base type, the compiler 
follows use-def links to track down the operation that 
produces that load’s effective address – that is, the operation 
that adds the field offset to the object’s base address. It then 
generates instructions that add the base address to the 
constant prefetch deltas, thus materializing prefetch 
addresses. Finally, the JIT injects prefetches before the base 
type’s delinquent load. Before invoking the compiler, MS 
Delta filters out any delinquent load of a base type that 
accounts for less than 10% of all misses of its delinquent type, 
thus focusing the compiler analysis. 
In contrast to prefetch techniques in scientific codes, which 
typically overlap prefetch latency with computation, MS Delta 
overlaps prefetch latency with the miss latency of the base 
type’s delinquent load. This approach eliminates 
microarchitecture-specific memory latency calculations, and 
generalizes across microarchitecture generations (which may 
have different memory latency) because both the miss and 
prefetch latency increase at the same rate. 

7. RESULTS 
We have run MS Delta against SPEC JBB2000 and the SPEC 
JVM98 suite. SPEC JBB2000 shows considerable 
improvement, while the SPEC JVM98 benchmarks show 
neither improvements nor degradations.  

0%
10%
20%
30%
40%
50%

sp
ec

jb
b

co
m

pr
es

s

je
ss db

ja
va

c
m

pe
g

m
trt

ja
ck

%
 o

f e
xe

cu
tio

n 
cy

cl
es

heap-high latency heap-low latency
non-heap- high latency non-heap- low latency

 
Figure 11. Cycles spent on memory stalls. 

Figure 11 shows that the SPEC JVM98 benchmarks do not 
exhibit many high-latency cache misses to the heap, whereas 
SPEC JBB2000 spends 27% of its execution stalled on high-
latency cache misses to the heap. This figure categorizes each 
cache miss latency cycle according to whether it was to the 
heap, and whether it was a high or low-latency miss. High-
latency misses typically access DRAM, which has a latency of 
300-400 cycles. MS Delta, therefore, should aim to improve 
on SPEC JBB200 without degrading the other applications. 
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Figure 12. SPEC JBB2000 metadata graph with deltas. 

Figure 12 shows the metadata graph that MS Delta builds for 
SPEC JBB2000 when run using compressed 32-bit pointers 
[2]. The edges contain the deltas (in cache lines) and field 
names. SPEC JBB2000 has seven delinquent types, some 
lying along multiple paths.  MS Delta injects prefetches for 
seven delinquent paths at four locations in two methods.  
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Figure 13. Improvements in SPEC JBB2000. 

Figure 13 shows that MS Delta speeds up SPEC JBB2000 by 11-
14% over our baseline system. This figure shows speedups for 4 
different system configurations: using 64-bit versus compressed 
32-bit pointers, and small (8 kilobyte) versus large (16 megabyte) 
pages. 
Figure 14 shows the non-heap, low-latency heap, and high-latency 
heap stall cycles for the baseline system and MS Delta, using 64-
bit and 32-bit pointers with a small page size. With 32-bit 
pointers, MS Delta reduces high-latency heap miss stalls from 
25% down to 18% of the total cycles, a 28% reduction in high-
latency heap miss stalls. Similarly, with 64-bit pointers, MS Delta 
reduces high-latency heap miss stalls from 28% down to 20% of 
the total cycles, a 29% reduction in latency in high-latency heap 
miss stalls. 

272



0%
10%
20%
30%
40%
50%
60%

32b ptr,
base

32b ptr,
MS Delta

64b ptr,
base

64b ptr,
MS Delta

%
 o

f e
xe

cu
tio

n 
cy

cl
es

non-heap low latency high latency
 

Figure 14. Data stall reduction in SPEC JBB2000 with 64-bit 
and compressed 32-bit pointers. 

The ORP GC uses a frontier pointer based allocation scheme and a 
sliding compaction algorithm. We had assumed that the GC would 
need to proactively place objects based on delinquent paths but 
discovered that this didn’t appear to be required. Further investigation 
revealed that allocation order placement already arranged objects in an 
appropriate order. It is important to note that object placement schemes 
that segregate individual objects based on size or schemes that result in 
random placement will not produce deltas usable by MS Delta.  
The SPEC JVM98 benchmark db is an example of a benchmark that 
is sensitive to cache size. On an earlier generation Itanium® processor 
with a smaller 3-megabyte 3rd-level cache, MS Delta located two 
delinquent paths, and prefetch injection resulted in an overall 
improvement of 2%. When we moved to the later generation processor 
a noticeable reduction in high-latency cache misses reduced the 
opportunity for MS Delta and while our performance did not degrade 
we no longer saw any improvement. 
Db is interesting in another aspect since it shows one of the drawbacks 
to the current algorithm, that of misidentifying the IP associated with 
the base of a delinquent path. MS Delta detected two delinquent loads 
that loaded the same type. At one delinquent load this type formed the 
base of a delinquent path and the inserted prefetch produced a 5% 
improvement. Unfortunately at the other IP the detected delinquent 
path did not actually exist. Injecting prefetches at the second IP 
reduces performance from 5% down to only 2%, a graphic example of 
the dangers of over aggressive prefetching. We leave for future work 
how to deal with this problem.  

7.1 Overheads 
Any system relying on dynamic profile-guided optimization includes a 
feedback loop that profiles the running code followed by recompiling 
the code followed by executing the code. The value of the optimization 
is the difference between the benefit of the optimizations and the cost 
of the profiling, analysis, and recompilation. Reducing profiling cost or 
frequency can control the cost. MS Delta uses the HPM, which has a 
very low sampling overhead, to reduce the cost. Not surprisingly, the 
cost related to GC heap traversal dominates.   
For SPEC JBB2000, a sampling rate of 1400, which generates one 
sample every 1400 high-latency cache misses, results in the delinquent 
paths shown in Figure 12. Increasing the rate produces the same 
delinquent types and paths.  (Similarly for db on the previous 
generation Itanium® processor.) Obtaining a sample costs about 1000 
cycles. We measured a negligible overhead (i.e., much less than 1%) 
due to collecting samples on SPEC JBB2000. 

The samples are collected in buffers of 5000 samples each.  GC 
consumes full buffers, flushing any partially-filled buffers. If an 
application does not exhibit enough cache misses between GCs, MS 
Delta will not see sufficient cache misses to apply its analysis (and will 
not incur any overhead other than sample collection). To characterize 
SPEC JVM98, which has few high-latency cache misses, we had to 
increase the sampling rate to 100. 
GC takes up approximately 2% of execution time for SPEC JBB2000. 
Performing path and delta determination at each GC (and then 
discarding the results) increases this time to 4%. So for SPEC 
JBB2000 the upper bound on the cost is 2% or double the normal cost 
of GC. 
Performing delta and path analysis at a GC is necessary only if the 
program moves to a new phase that could benefit from prefetching. 
Therefore, once MS Delta has samples it determines the potential 
benefit from prefetching. If the benefit is too low, or there is no 
significant change in miss behavior since the last prefetch optimization 
(i.e., no phase change), then there is no point in performing any further 
analysis regardless of the cost. We detect phase changes using the 
following metrics: 

• Changes in the set of delinquent types. 

• Changes in the set of delinquent loads. 

• Increase in the rate of high-latency cache misses. 

• Changes in the number of threads producing samples. 

On SPEC JBB2000, MS Delta processes the samples, 
calculates the paths and deltas during GC, and recompiles 
only once, resulting in minimal overhead during warm-up. 
The total compilation cost was approximately 0.08 seconds, 
negligible for SPEC JBB2000, which runs for several 
minutes.  

7.2 Filtering Characterization 
Figure 15 shows the effectiveness of filtering samples for 
our benchmarks; the only benchmark not shown is 
compress for which the vtable search algorithm could not 
find a vtable for almost all samples because most misses 
were to large arrays.   

0%
1%
2%
3%
4%
5%
6%
7%
8%

specjbb
jess db

javac
mpeg

mtrt jack

%
 o

f s
am

pl
es

 re
m

ov
ed

vtable not found not delinquent load
not delinquent type

 
Figure 15. Effectiveness of filtering. 
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This figure shows the percentage of samples eliminated if 
(a) the object vtable was not found, which eliminates less 
than 2% of the samples;  (b) the sample’s load was not a 
delinquent load, which eliminates up to an additional 5% of 
the samples; and (c) the sample’s delinquent load did not 
access a delinquent type, which eliminates less the 1% of 
the samples. These filters combined eliminate 2 to 7.5% of 
the samples. 

7.3 Delta Characterization 
To determine whether allocation order produces predictable 
deltas between objects, we instrumented the GC to look at 
each reference and determine the number of cache lines 
separating the referencing object from the referent object. 
From this we construct a histogram of deltas for each field 
of reference type, and extract the most common cache line 
delta from each histogram. We sum these most common 
deltas to determine the percent of total references that 
exhibit the most common deltas for their field. Figure 16 
shows that for a GC that maintains allocation order 
placement the percent of common deltas ranges from 20% to 
52% across the SPEC JVM98 and SPEC JBB2000 
benchmarks suite, a surprising high number. This data 
shows how often one can correctly predict the value of a 
reference field using the most common delta for that field; 
for example, 20% of SPEC JBB2000’s references can be 
correctly predicted using deltas. 
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Figure 16. Percent of references with frequent field-level 

deltas. 

7.4 Delinquency Characterization 
Figure 17 breaks out total execution cycles stalled due to memory 
latency according to object age. This includes both high and low- 
latency stalls as well as non-heap stalls. An object is young until it 
has survived a garbage collection at which point it matures. For 
SPEC JBB2000 and db, the two benchmarks with the highest 
memory stalls, mature objects account for most of the memory 
stalls. This indicates that objects causing most of the miss latency 
survive a garbage collection, and are thus available for delta and 
delinquency analysis by the GC. This further indicates that 
delinquent objects are available to the GC in case it decides to 
induce deltas between objects along a delinquent path as it moves 
them during a GC cycle. 
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Figure 17. Age of objects causing latency. 

8. RELATED WORK 
Several authors have recognized the importance of garbage 
collection techniques to improve memory performance by 
positioning objects. One of earliest works employed cdr coding in 
the Lisp Machine [14]. White [31] suggested that paging 
performance should be a primary task of garbage collection. 
Chilimbi and Larus [5] improved cache line packing by using 
software to monitor loads and having the GC place objects based 
on temporal locality. Yefim et al [28] used allocation frequency to 
identify prolific types and then to place objects based on 
prolificacy. Wilson et al [32] focused on  ameliorating the 
negative paging effects associated with garbage collection by 
improving the placement of objects using connectivity. Inagaki et 
al [18] also recognize the benefits of maintaining allocation order 
at garbage collection time to maintain deltas between objects. 
Early prefetching work concentrated on improving performance in 
scientific code with densely packed arrays; see [30] for a survey. 
Prefetching linked data structures requires predicting the access 
patterns, a challenging problem. Luk et al [23] and Wu et al [34] 
use stride prefetching to exploit regular patterns of access in 
linked-list traversals. The literature for hardware stride 
prefetching is abundant; for example, see Sair et al [26]. Several 
authors have recently recognized the existence of deltas between 
loads or between objects that can be used for prefetching. Inagaki 
et al [18] explore software delta prefetching within loops and 
Zhou et al [35] explore hardware value prediction. 
Helper or speculative threads [20] attempt to prefetch data by 
forcing cache misses ahead of the worker thread. These 
techniques can use MS Delta techniques to materialize prefetch 
addresses in the helper thread without loss of generality of either 
technique. 
Roth and Sohi [25] prefetch linked data structures by augmenting 
objects with fields containing the addresses of objects to prefetch. 
MS Delta materializes prefetch addresses using constant deltas 
compiled into the code rather than augmenting objects with a new 
field. 
Chilimbi and Hirzel [6] predict hot data streams using a finite 
state machine that represents a program’s frequently executed 
address streams.  In contrast, MS Delta concisely models the 
cache miss behavior of a program using metadata, and predicts 
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miss addresses using deltas, which allow MS Delta to prefetch 
addresses that have not been profiled. 
Similar to MS Delta, other authors have also used metadata to 
concisely model memory behavior. Wu et al [33] use types to 
characterize cache misses. Their characterization of cache misses 
replaces effective address with the object type, thus achieving a 
more concise representation to compress traces of data cache 
misses. Calder at al [4] recognized other forms of metadata that 
allow concise modeling; for example  allocation units managed by 
‘malloc-like’ allocators and memory regions (stack, heap, constant 
area, etc).  Abstracting addresses up to metadata dramatically 
reduces the amount of information needing analysis, and exposes 
patterns in address streams.  
MS Delta uses hardware monitoring, which has fewer overheads 
than software monitoring and accurately identifies delinquent 
loads, which benefit from prefetch. Other authors [23][22] have 
also used hardware monitoring of cache misses to concentrate 
prefetch on delinquent loads. In contrast, several authors have 
used software instrumentation to predict cache misses. Chilimbi 
and Hirzel [6] used whole program instrumentation to track 
memory references, using bursty profiling to reduce 
instrumentation overhead. Chilimbi and Larus [5] reduce 
instrumentation overhead by tracking only the base address of an 
object. Wu et al [34] and Inagaki et al [18] used software-based 
profiling to guide prefetching optimizations in loops, where cache 
misses are likely to occur.  

9. CONCLUSIONS 
In this paper, we have presented Mississippi Delta, a novel 
technique for prefetching linked data structures that closely 
integrates the hardware performance monitor, the garbage 
collector’s global view of heap and object layout, the type-level 
metadata inherent in type-safe programs, and JIT compiler 
analysis. We have shown how Mississippi Delta’s dynamic closed 
loop system abstracts raw addresses and instruction pointers 
delivered by the hardware up into a concise metadata graph where 
reasoning can be done at the type level instead of at the raw 
address level. We have shown how Mississippi Delta guides the 
JIT analysis in inserting timely prefetches by finding delinquent 
paths through the metadata graph and calculating deltas. Finally, 
we have shown how these prefetch techniques result in a 11-14% 
speedup on the cache miss intensive SPEC JBB2000 benchmark. 
Mississippi Delta further expands the garbage collector’s role to 
include observing memory system performance and guiding 
memory optimizations using global heap properties related to 
object placement and connectivity. Mississippi Delta 
demonstrates that researchers should view the garbage collector as 
an integral part of the dynamic profile feedback loop that 
produces highly optimized code. 
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