
A Modified Approach to Data Cache Management

Gary Tyson

Department of Computer Science

University of California, Riverside

Riverside, CA

(tyson@cs.ucr.edu)

Abstract

As processor petiormance continues

Matthew Farrens
John Matthews

Andrew R. Pleszkun

Computer Science Department Department of Elecrncal

University of Califomi~ Davis and Computer Engineering

Davis, CA 95616 University of Colorado-Boulder

(farrens@cs.ucdavis.edu) Boulder, CO 80309-0425

(matthewj@cs.ucdavis,edu) (@tosca.colorado.edu)

to improve, more
e~-basis mus~ be placed on the perform&ce of the
memory system. In this paper, a detailed characterization
of &ta cache behavior for individual load instructions is
given. We show that by selectively applying cache line
allocation according the characteristics of individual load
instructions, overall pe@ormance can be improved for
both the data cache and the memory system. This
approach can improve some aspects of memory perfor-
mance by as much as 60 percent on existing executable.

1. Introduction

The average data access time is a measure of the
time it takes to read a data item from memory. Since most

programs need to access data, minimizing this term is cru-

cial to achieving high performance. Unfortunately, access

time to off-chip memory (meamvd in processor clock
cycles) has increased dramatically as the disparity
between main memory access times and processor clock
speeds widen. Since there is no indication that dynamic
memory access times will decrease significantly in the
near future, this situation is unlikely to change for a while.

In order to minimize the impact of slow main
memory access times, several strategies are available.
Most machines now include a first-level cache, which is
designed to reduce the average data access time by captur-
ing the most frequently used data items. If necessary, one
can also place a second-level cache into the system - since
the second-level cache will presumably be smaller than

This work was supported by National Science Foun-
dation Grants CCR-94-03651, CCR-92-13627, MIP-92-
57259, and grants tlom the SUN Microsystems and Tek-
tronix corporations.

1072-4451/95 $4.0001995 IEEE

Proceedings of MICRO-28

the main memory, it can be built using faster and mo~
expensive logic.

Another option is to interleave main memory, so
that each word of a cache line does not have to experience
the full latency of the main memory. Widening the bus
between the primary cache and the main memory (or
second-level cache) is also an option. Both of these
approaches have the effect of increasing the bandwidth of
the data flowing across the chip boundary. The effective
ness of these strategies depends on how easy it is for
designers to increase the number of pins on a chip ancVor
increase the rate at which these pins are driven.

As multiple-issue processors continue to increase
the number of instructions issued on each cycle, there has
been a corresponding increase in the demands placed on
the bandwidth to the &ta memory. The data cache in par-
ticular will be hard pressed to service more than one data
reference per cycle. Since it is not clear that traditional
methods of reducing the data cache miss rate and miss
penalty will be sufficient, we believe that a somewhat dif-
ferent approach is warranted. In this paper, we examine
the potential of reducing the average data access time by
dynamically deciding whether to cache a particular data
item based on the address of the load instruction generat-
ing the request. The techniques we will be describing are
largely orthogonal to standard miss rate/miss penalty
reduction techniques, and should work well in conjunction
with improvements made on other fronts.

2. Background

In a system with a cache, the average access time
for a memory reference is a function of the hit rate in the
cache, the corresponding miss rate and the the miss
penalty. In order to minimize the average access time, the
hit rate should be maximized (thereby minimizing the miss
rate) while simultaneously minimizing the miss penalty.

93

2.1. Reducing Miss Rate

The miss rate is best reduced by increasing the size
and/or the associativity of the cache. Unfortunately, in the
design of todays high-performance processors, it is
difficult to substantially increase either of these terms
because the access time of the data cache must first and
foremost match the clock cycle time of the processor.
Several studies have investigated the relationship between
cache access time, cache size and cache associativity
[MuQF91, WaRP92]. These studies carefully parametri-
zed a hardware model of the components of the cache
(such as data array, tag array, compare logic, bus delays,
etc.) and found, for example, that going from a direct
mapped to 2-way associative cache substantially increases
the access time to the cache. A similar conclusion can be
made when increasing the primary cache size much
beyond 16K bytes.

2.2. Reducing Miss Penalty

A number of studies have proposed techniques
(either compiler-based or hardware-based) that reduce the
miss penalty of the cache by performing some type of data
p~fetch [CaPo, ChBa95, KlLe91]. If data items w pre-
fetched during idle data cache cycles, references to a pre-
fetched item will find it already in the cache and thus will
not cause a miss and the associated miss penalty will not
be experienced. An example of hardware-based prefetch-
ing is the work by Chen and Baer [ChBa95]. In this paper
the authors propose keeping a history of the strides of data
references, and using that information to make predictions
as to what should be prefetched. IBM uses a similar
hardware approach mKPP93] in which they associate pre-
vious miss behavior with a load instruction and use that
information to do prefetching.

Among the most intriguing software approaches to
reducing the miss penalty is a study by Abraham, et. al.
[ASWR93] in which they observe that a very small
number of load instructions are responsible for causing a
disproportionate percentage of cache misses. By using
profiling techniques similar to those used to schedule code
for VLIW machines, the compiler can accurately identify
those data reference instructions which cause the highest
data cache miss rates. By recognizing these data refer-
ences and using special instructions to control the cache,
the software can effectively prefetch those instructions
and reduce the miss penalty.

3. Deciding What to Cache

Instead of concentrating on miss penalty, cache size
or cache associativity, we decided to look at the source of
cache misses. One could potentially reduce the miss rate
of the data cache by simply not caching those data refer-
ences that lead to a poor miss rate. As Abraham, et el.
[ASWR93] point out, a large percentage of the data misses
are caused by a very small number of instructions. Instead

of using this information to make prefetching decisions,
we decided to look at the impact on the data cache miss
rate if the data cache is smarter about what it decides to
cache and does not allow these troublesome instructions to
allocate space in the data cache. Such an approach has the
potential to more effectively utilize the cache because
instructions that generate a large number of cache misses
are removing more heavily utilized data items from the
cache. In addition, if we do not cache the data associated
with high-miss-rate instructions, memory bandwidth
requirements could be ~duced since these references
would only request a single word from memory, instead of
an entire cache line.

Since the study by Abraham, et el. [ASWR93] did
not look at an extensive set of benchmark programs, we
began by performing experiments similar to theirs in
which we measured the miss rate associated with indivi-
dual load and store instructions for a more extensive set of
programs. Using the ATOM program trace t%cilities
[SrWa94] and the SPEC92 suite of benchmarks, such
statistics were relatively straight-forward to gather. Each
program in the SPEC 92 suite was instrumented in order to
track the data cache hit rate associated with each unique
data address. We simulated a 32-byte line size, and both
8K-byte and 16K-byte caches, which were direct mapped,
2-way set associative, 4-way set associative, and direct-
mapped with a victim cache [Joup90].

Table 1 presents a detaited breakdown of each
benchmark analyzed, the input that was used, the total
number of load data references and the hit rates for each
of the cache configurations simulated. Our results are not
surprising, and match those from many other studies - as
expected, direct mapped performs the worst in general
while increasing the associativity improves the accuracy.

In order to better understand what is causing the
cache misses we looked at the reference pattern of each
program in greater detail. Table 2 presents the cumulative
percentage of data references and data cache misses
caused by the most heavily executed load instructions in
an 8K-byte direct mapped cache. Each row of the table
contains the information gleaned from a run of the given
SPEC benchmark, and the 8 columns which are labeled
with a percentage of total load references and total data
cache misses each have two sub-columns indicating the
total number of instructions that caused that percentage
and the percentage of the total number of instructions that
represents.

If we lcmk at the compress benchmak, for example,

we see that 34 instructions are responsible for 75’ZO of all

load references and those 34 instruction account for 1.11%

of all load instructions in the benchmark (e.g. there are

3058 load instructions in compress and 34}3058 = 1.1 l%).

Continuing across the table, we see that 54 (1.77%) of the

load/store instructions account for 95% of the data n3fer-

ences. The xemaining 98.23% of load/sto~ instructions

94

Table 1: Data Cache Hit Rate for SPEC Benchmarks

SPEC Input #of 8K Cache Hit Rate (%) 16K Cache Hit Rate (%)
Benchmark File Load Refs D 2 4 v D 2 4 v

compress in 24434068 79.73 84.77 85.35 84.38 81.33 85.94 86.3 85.41
eqntott intflri_3.eqn 231129466 94.14 95.4 95.49 95.47 94.72 95.62 95.67 95.65
espresso.cps Cps.in 110649363 92.82 94.49 95.04 94.45 96.07 96.84 96.97 97.08
espresso.tail ta.il.in 218814920 92.32 95.6 %.26 95.47 95.58 98 98.68 97.44
espmsso.ti ti.in 123094748 92.74 94.37 95.12 94.69 95.62 96.57 96.99 96.84
gcc.insn insn.i 42239266 91.19 94.06 95.02 93.87 94.5 96.53 97.11 96.09
gcc.integrate integrate.i 18050705 90.68 93.97 95.09 93.62 94.27 96.58 97.27 96.11
gcc.stmt stmt.i 34338681 90.86 94.13 95,3 93.86 94.64 96.8 97.47 96.41
gcc.tree tree.i 15088536 90.81 94.04 95.22 93.79 94.86 97.07 97.74 96.61
li Ii.input.lsp 1923073359 89.75 94.58 95.68 94.81 93.4 96.59 97.32 96.85
Sc.loadal loadal 325317586 84.43 86.38 87.17 86.55 86.37 87.64 87.77 87.51
sc.loada2 loada2 365851437 88.44 90.44 91.14 90.87 90.18 91.76 91.95 91.63
se.loada3 loada3 104774876 92.73 94.31 94.96 94.7 94.77 95.62 95.83 95.66
Int Ave 90.05 92.81 93.60 92.81 92.79 94.74 95.16 94.56
doduc doducin 337197266 88.54 92.96 96.36 94.01 91.31 96.74 97.29 95.78
ear ref.m22 3833127750 %.73 97.62 97.52 97.72 98.69 99.53 99.93 99.28
fpppp natoms 1529995204 94.59 97.64 98.05 96.81 96.44 99.12 99.7 98.12
hydro2d hydro2d.in 1376293089 81.5 83.69 84.79 83.36 81.98 84.68 84.91 83.64
mdljdp2 input.file 414815687 85.51 88.44 91.56 89.23 93.00 93.81 94.5 94.04
mdljsp2 input.file 753307193 95.33 96.97 97.67 97.58 97.35 98.52 98.6 98,58
nasa NASA7.CHK 1768897327 56.61 59.75 58.28 62.32 64.7 69.66 69.61 68.89
Ora params 1343836643 97.15 100.00 100.00 100.00 97.15 100.00 100.00 100.00
spice2g6 greycode.in 5265522592 69.75 72.99 74.26 72.93 78.23 81.21 83.29 80.08
su2cor su2cor.in 1069475885 48.61 49.71 64.53 84.42 62.97 65.79 65.5 85.59
swm256 swm256.in 2851234080 75.72 68.66 66.54 92.87 92.88 92.64 91.95 93.23
tomcatv 247280519 63.78 60.25 66.03 86.08 75.44 86.24 88.06 88.06
wave5 758316846 89.08 91.58 91.48 93.82 94.76 95.84 95.81 95.71
FP Ave 80.22 81.56 83.62 88.55 86.53 89,52 89.93 90.85

Eenerate ordv 5% of the data references. This demon- account for the data references with a lame hit rate, e.me-
;tmtes a wel~known principle of program execution, that a
small portion of the program is responsible for much of
the exeeution effort. This is an effect of the 90/10 locality
rule which states that a program spends approximately
90% of execution time in only 10% of the code.

Given that a small number of instructions are
responsible for the majority of data references, it is rea-
sonable to expect that this same effect would be reflected
in the distribution of cache misses. This is also shown in
Table 2- overall, we find that not only does the 90/10 law
still hold, but the miss pattern is even more clustered than
the overall reference pattern. For almost all benchmarks,
less than 5% of the totat load instructions are responsible
for causing over 99% of all cache misses.

The data in Table 2 makes it clear that in general a
small number of load/store instruction have a dispropor-
tionately large effect on the cache miss rate when com-
pared to the number of total data references they generate.
This is not all that surprising if one considers program
behavior. References to global variables and to local vari-
ables (even if they reference the procedure call stack) can

cially if one considers the looping bebav~or of protis.
Examples of references that generate low hit rates would
include references to items in a linked-lii~ or through an
array with along stride.

4. Analysis of Caching Potential

Given that a small number of load instructions are
responsible for generating the majority of data cache
misses, we decided to measure the cache hit rate and the
corresponding memory bandwidth required if these trou-
blesome load instructions were prohibited from allocating
space in the data cache. In order to accomplish this, we
examined the cache behavior of each load instruction and
identified the ones with the lowest cache hit rate. These
were marked C/NA (Cacheable/Non-Allocatable), which
means that the data references generated by these load
instructions will not invoke the allocation potic y of the
hardware cache management algorithm. It does not mean
that the data reference will not be in the cache - the data
item might be in the cache if a different instruction that
will allocate on miss references that address.

95

Table 2: Cumulative Load Instruction Reference Counts

Percent of Totat Data References Perce

Bench- Load 75% 90% 95% 99% 75%
mark Inst #ofl%of l#ofl%of l#ofl%ofl #of I%of #ofl%of

Insts ITotal IInsts ITotal IInsts ITotal I Insts ITotal ll~sts ITotal

compress 3058 34 1.111 49 1.601 54 1.77 I 60 1.9611 6 0.20
eqntott 4656 8
e$resso.cps 16647 137
espressootail 16647 150
espresso.ti 16647 159
gcc.insn 51555 1322
gcc.integrate 51555 1750
gcc.stmt 51555 1765
gcc,tree 51555 1929
li 8083 103
Se.loadal 15968 101
se.loada2 15968 133
se.loada3 15968 119

0.17 59 1.27
0.82 299 1.80
0.90 366 2.20
0.96 419 2.52
2.56 2874 5.57
3.39 3691 7.16
3.42 3682 7.14
3.74 4042 7.84
1.27 165 2.04
0.63 252 1.58
0.83 360 2.25

96 2.06 157 3.37 60.13
588 3.53 1388 8.34 720.43
599 3.60 1265 7.60 840.50
690 4.14 1408 8.46 98 0.59

4232 8.21 693113.44 735 1.43
538210.44 900317.46 880 1.71
540910.49 921517.87 972 1.89
599311.62 1081720.98 1033 2.00
224 2.77 345 4.27 500.62
421 2.64 1054 6.60 140.09
552 3.46 1207 7.56 47 0.29

0.751 336 2.1 1 519 3.251 1206 7.5511 820.51

Idoduc
,, ,,
11213131114856.9712167 10.17 I2404 11.281 306914.4 II 301 1.41

Iear II 607911 15 0.251 27 0.441 39 0.641 153 2.5211 140.23

rndljdp2
mdljsp2
nasa
ora
spice2g6
su2cor
swm256
tomcatv

17493 13 0.07 61 0.35
17560 24 0.14 82 0.47
17634 192 1.09 330 1.87
14526 31 0.21 41 0.28
35185 100 0.28 356 1.01
20636 189 0.92 394 1.91
15141 28 0.18 50 0.33
13422 63 0.47 92 0.69

fpppp 19012210611.08295115.52 323317.00 358618.86
hydro2d 17595 253 1.44 360 2.05 448 2.55 635 3.61

165 0.94
215 1.22
636 3.61

84 0.58
716 2.03
301 6.30
63 0.42

98 0.56
121 0.69
432 2.45
47 0.32

530 1.51
620 3.00

57 0.38
101 0.75 109 0.81

wave5 112308711276 1.201 471 2.04 I 608 2.63 I 1076 4.66

It is important to stress that we axe deciding whether
or not to allocate based on the instruction address, not the
effeetive adchess of the data reference. Thus, a cache
lookup for an item is unaffected by whether it is marked
C/NA or not - only the allocation on a miss is affected.
We looked at both static (similar to [ASWR93]) and
dynamic approaches to identifying and marking these
C/NA instructions.

4.1. Static Method

We began by modeling a simple strategy in which
all load instructions that do not meet a threshold for cache
hit rate are marked C/NA. We looked at several threshold
values, balancing the desire to remove poorly performing
loads with the conflicting desire to utilize the cache for as
many references as possible. We finally settled on a thres-
hold value of 75%, for a number of reasons. A lower
value was too aggressive in removing load references
fmm using the cache, and a higher value did not remove a
sufficient number of load instructions to help performance.
Furthermore, the 75% threshold also relates to the memory
bandwidth requirements for a cache line replacement (32

147 0.77
121 0.69

19 0.11
28 0.16
99 0.56

3 0.02
11 0.03

137 0.66
27 0.18
29 0.22
78 0.34

[t of Total Data Cache Misses I

90%
~

4m[nsts Tota

19 0:41
237 1.42
235 1.41
302 1.81

1562 3.03
!017 3.91
!176 4.22
)A39 4.73

108 1.34
71 0.44

144 0.90
227 1.42

563 2.64
39 0.64

273 1.44
218 1.24

54 0.31
68 0.39

178 1.01
4 0.03

60 0.17
362 1.75

37 0.24
69 0.51

187 0.81

95%

z

#of %01
nsts Tota

15 .4
33 0.71

423 2.54
385 2.31
520 3.12
!205 4.28

1026 5.87
1301 6.40
1553 6.89
152 1.88
141 0.88
252 1.58
328 2.05

787 3.69
49 0.81

357 1.88
285 1.62

66 0.38
84 0.48

234 1.33
5 0.03

105 0.3
547 2.65
40 0.26
83 0.62

296 1.28

J

99%
#of % of
[nsts Total

29 09 5
96 2:06

998 5.99
876 5.26

1105 6.64
3862 7.49
581411,28
589011.42
511411.86
236 2,92
396 2.48
585 3.66
552 3.46

1069 5.02
57 0.94

499 2.62
438 2.49

85 0,49
113 0.64
383 2.17

6 0.04
234 0.67

1227 5.95
50 0.33
94 0.70

514 2,23

bytes) and a 64-bit load reference (8 bytes), and is the
&ne value settled on by [ASWR93].

4.1.1. Hlt Rate and Memory Bandwidth Unitization

Table 3 shows the change in cache hit rate and
required memory bandwidth after the poorest performing
instructions were marked C/NA. Column one contains the
name of the benchmark program and the seeond shows the
range of instmctions that were made C/NA (since the
count of instructions varied depending on the cache
configuration). Columns 3-7 show the change in hlt rates
(compared to the entries in table 1) for caches that are
direct mapped and 2-way set associative. As can be seen
in the table, there was a uniform slight decrease in tbe hh
rate across all configurations.

A potentially more meaningful measure of the
demands made on the memory system is to determine the
total amount of data (in bytes) that must be fetched from
the memory system. Since we used a system
configuration in our simulations similar to that of the
Alpha (32 byte cache lines and single references being 8
bytes), we were able to determine the total number of

96

Table 3: Change in Data Cache Hit Rate and Memory Bandwidth After Removal of Target Instructions (Static)

Bench-
mark

compress
eqntott
espresso.cps
espresso.tail
espresso.ti
gcc.insn
gcc.integrate
gcc.stmt
gcc.tree
li
sc.loadal
sc.loada2
sc.loada3
Int Ave

doduc
ear

fPPPP
hydro2d
mdljdp2
mdljsp2
nasa
Ora
spice2g6
su2cor
swm256
tomcatv
wave5
FP Ave

#of CjNA
nstructions
-Hl-

25-54
94-216
93-265
108-265
259-725
131-406
182-614
63-342
59-135
181-295
233-381
153-274

358-707
7-49

51-263
390-491
117-143
47-74

448-635

32;$6
889-1650

61-129
46-78

127-240

% Change in Cache Hit Rate

8K-byfi
Direct

=Z33-
-1.47
-2.44
-2.81
-2.72
-3.17
-2.95
-2.92
-2.38
-3.57

.16.56
-9.98
-3.78

-4.39

-2,69
-0.49
-1.87

-21.76
-6.80
-0.44

-15.27
-0.81

-23.95
-3.40
-4.19

-11.74
-2.55
-7.38

Cache

a
=K7?5

-1.58
-1.92
-1.35
-2.47
-2.27
-2.30
-2.04
-1.89
-3.52

-14.78
-10.07

-2.48

-3.73

-3.93
-0.35
-0.39

-19.53
-6.16
-0.33

-15.85
0.00

-24.63
-3.77
3.45

-9.35
-2.79
-6.43

16K-byt

m

7

-.
-1.54
-0.72
-0.25
-1.31
-2.07
-1.65
-1.36
-0.83
-2.24

-13.71 ~
-9.40
-2.11

-3.10

-2.25
-0.25
-1.71

-20.99
-5.57
-0.14

-17.43
-0.81

-26.87
-12.65

-0.21
-8.99
-1.57
-7.65

bytes that the memory system must process and the impact

Cache

&
=Z38-

-1.37
-0.54
-0.24
-1.05
-1.54
-1.27
-1.00
-0.49
-2.87

-13.32
-9.05
-0.61

-2.75

-2.11
0.03

-0.11
-17.94

-5.29
-0.12

-16.05
0.00

-27.24
-13.55

-0.28
-11.48
-1.03
-7.32

of these C/NA transformations on the bus activity.

We calculated the total bus utilization for the Static
case by multiplying the number of allocatable misses by 4
(32/8), and adding the number of references to instructions
marked C/NA. Dividing this number by the base case bus
utilization allows us to calculate tie percentage change in
the bus bandwidth needed by the Static approach. The
results of these calculations are shown in the last 4
columns of table 4. So, for example, after the C/NA
transformations the compress program run on a 16K-byte
2-way set associative data cache requires 61.62% less
baudwidth than that required by the same program run on
the same bardware without the C/NA transformations.

The table shows a significant overall decrease in the
mxpired memory bandwidth. In particular, it shows that
the static scheme used in conjunction with an 8K direct
mapped cache results in an average decrease in bus
activity of approximately 30% for both the integer and the
floating point programs.

% Change in Memory Bandwidth Requhements

8K-byl
Direct
-56.18
-17.51
-18.36
-25.08
-22.50
-24.29
-20.12
-20.76
-21.74
-17.48
-53.23
-47.16
-51.88

-30.48
-41.02

4.20
-26.27
10.67
-2.55
1.95

-43.49
-67.86
-49.39
-65.06
-43.84
-42.05
-24.25

-30.57

Cache
2-way
-. 2
-14.09
-20.93
-21.36
-27.83
-19.95
-14.51
-15.89
-19.32

3.98
-49.57
-40.44
-57.91
-27.73

-27.52
-2.51

-28.48
14.49
-8.01
2.22

-41.49
=0.38

-45.53
-64.71
-68.49
-45.27
-13.38
-25.31

4.1.2. Memory Activity

Z
Direct

=55Zf6-
-17.58
-17.50
-18.28
-17.85
-16.68
-12.41
-12.89
-16.93
-19.26
-51.18
-42.57
-52.21
-26.98

-36.88
-18.34
-13.03
10.54
-4.95
0.93

-36.53
-67.86
-34.30
-49.90

-2.65
-34.00

3.18
-21.83

Cache
Z-way

~
-13.84
-24.13

-6.69
-22.01
-7.59
-2.47
-5.96
-8.22
14.23

-52.62
-42.40
-66.11
-23.03

=iZXZ-
-19.14
-25.56
14.80
-6.07
1.59

-33.50
0.15

-27.79
-45.63

-3.24
5.59
2.91

-11.59

Another important measure of the effectiveness of
this technique is the amount of memory traffic that ensues.
This information is shown in Table 4. There are 4
classifications of load instructions shown in this table

Cacheable/Non-Allocatable - those load in-
structions that have been identified as C/NA.
Increased - load instructions that are cached
and have a higher miss rate because of the
transformation.
No Change - load instructions that are cached
and maintain their original cache hit activity.
Decreased - load instructions that are cached
and have a lower miss rate because of the
transformation.

In order to reduce the tremendous amount of data gen-
erated, we show information that has been aventged over
all benchmarks for rm 8K-by@ dwct mapped cnche.

In order to better understand what is happening,
imagine a situation where items A and B both map to the

97

Table 4 Analysis of Average Memory Reference Activity (Static)

Instruction Number of % of Memory Refs Pre- Memory Refs Post-Transformation
Classification Instructions Refs Transformation C/NA Non-C/NA

Change

CNA 351 19Yo 117282922 149,700,459 27.64%

Increased Miss Rate 443 12% 10,070:793 45,447,421 351.28%
No Change 3,882 35% 14397,639 . 14397,639 0.00%
Decreased Miss Rate 753 33% 43,831,661 31$60,346 -28.68%

Not Referenced 16,054 - . .

-’Mat 21.483 100% 185.483.016 149.700,459 91005406. . 29.77%

same cache line and are repeatedly accessed. In this case
each reference will experience a high miss rate. However,
by prohibiting one of these items (A, for example) from
allocating the cache line on a miss, the remaining item (B)
will experience a much lower miss rate due to the elimina-
tion of contention. This effect is shown in the Decreased
field of the table.

On the other hand, some items with a high miss rate
actually perform a useful function by bringing a line into
the cache that will be later referenced by other load
instructions. By eliminating the cache line allocation of
these instructions, the cache hit performance of these other
loads is decreased - this is reflected in the Increased field.

The iirst column of Table 4 shows the load instruc-
tion classification. The second and third columns show
the average number of load instructions and the percen-
tage of the total load references these instructions perform,
respectively. The fourth column contains the average
number of references to memory (the number of cache
misses) that occurred before any loads were marked
C/hIA. The fifth and sixth columns show the number of
memory references after the C/NA transformations were
performed and which instructions were responsible for the
references.

In this table we see that the total number of memory
references has increased by over 2970. This is due in large
pm-t to the 351% increase in the number of cache misses
experience by 443 of the non-C/NA load instructions.
This approach is apparently being too aggressive in mark-
ing loads C/NA - by blindly removing those loads with
poor performance, we are often simply shifting a miss
fmm that instruction to the next instruction referencing
that location. Clearly, a more refined approach to markmg
certain high miss load instructions C/NA is called for.

4.2. Improved Static Method

In order to improve the performance of the simple
static technique, the number of instructions marked C/NA
had to be reduced. This was accomplished by associating
with each cache line the address of the instruction that was
responsible for bringing that line into the cache. This

information allowed us to distinguish between misses that
bring data into the cache that is later referenced

(performed a useful pmfetch) and those misses that are not
referenced before the data is returned to memory due to
the cache replacement strategy. Only instructions that do
not perform a useful prefetch are marked C/NA. We refer
to this as the Improved Static Method.

In our simulations, this modification to the static
approach was implemented in the following mannec We
used the same 75% hit rate threshold to identify potential
C/NA instructions. Once these were identified, they were
analyzed to determine if they were performing a useful
prefetch. If at least 3/4 of the misses prove to be pre-
fetehes, then the instruction was ~moved from the C/NA
list resulting in a less aggressive application of C/NA.

4.2.1. Hlt Rate and Memory Bandwidth Unitization

As shown in Table 5, the Improved Static approach
provides hit mtes very close to those presented in Table 1.
Cache performance was only slightly worse for the both
the integer and floating point benchmarks (on average).

Table 5 also shows how the impmved Static scheme
affects the bus bandwidth. The table shows that the
Improved Static scheme consistently reduced the memory
bandwidth requirements over the original Static scheme.
This was achieved by reducing the memory requirements
for more than 1/2 of the cache misses, those that did not
allocate a new cache line. In particular, Table 5 shows
that the improved static scheme used in conjunction with
an 8K cache results in an average decrease in bus activity
by as approximately as 30%, and by more than 50% for 5
of the programs.

4.2.2. Memory Activity

An examination of the memory activity shown in
Table 6 reveals several interesting observations. For
example, the number of instructions in the C/NA class
dropped from 351 to 187, indicating that there area lot of
instructions with high miss rates that are actually perform-
ing useful work (prefetching). As one might expect, the
increase in memory activity due to the C/NA instructions
dropped as well. However, the most dramatic change is in
the number of insmuctions that have their miss rate
increase - this drops from 443 to 307, resulting in a reduc-
tion in memory activity from 35190 to 62%.

98

Table 5 Change in Data Cache Hit Rate and Memory Bandwidth After Removal of Instructions (Improved Static)

Bench-
mark

compress
eqntott
espresso.cps
espresso.tail
espresso.ti
gcc.insn
gccointegrat{
gcc.stmt
gcc.tree
li
Sc.loadal
Sc.loadaz
sc.loada3
Int Ave

doduc
ear

fPPPP
hydro2d
mdljdp2
mdljsp2
nasa
o
s~ce2g6
su2cor
swm256
tomcatv
wave5
~P Ave

#of C/NA
nstmctioni
~

11-30
50-120
38-129
59-145
89-341
30-185
62-290
30-176
21-49

77-123
91-160
48-103

83-254
2-17

28-110
70-115
33-49
10-18

237-379
0-1

161-246
323-1522

39-99
3-31
38-88

% Change in Cache Hit Rate
8K-byt
Direct
=llX

-1.19
-0.36
0.18

-0.35
-0.97
-1.06
-1.08
-1.13
0.24

-5.40
-3.86
-1.23
-1.27
0.83
0.13
0.00

-0.84
-0.50
0.00

-3.86
-0.20

-22.34
0.73

-0.01
4.96
0.06

-1.62

-
%che
2-way
m
-1.45
-0.46
-0.04
-0.36
-0.55
-0.75
-0.59
-1.08
0.07

-5.87
-3.56
-0.18
-1.28
-0.04
0.10
0.07

-0.02
-0.29
0.01

-3.18
0.00

-23.44

:::
4.33

-0.36
-1.32

16K-by
Direct
=CiJ2=

-1.28
-0.17
0.18
-0.24
-0.37
-0.44
-0.35
-0.42
0.63

-4.81
-3.09
-0.69
-0.93
0.60
0.19

-0.23
-0.78
-0.18
0.00

-4.34
-0.20

-25.52
-5.00
0.00
3.29

-0.12
-2.48

Cache

-
x

-1.28
-0.10
-0.09
0.01

-0.22
-0.21
-0.20
-0.19
0.00

-4,31
-2.64
0.61

-0.85
-0.22
0.08
0.03

-0.02
-0.08
0.00

-4.59
0.00

-25.99
-5.34

-%:
0.02

-2.79

% Change in Memory Ba
8K-byte Cache

Direct
58 /1

:18:43
-22.12
-14.09
-25.79
-26.25
-22.30
-23.10
-23.53
-22.28
-55.96
-48.87
-52.32

-31.83
-43.10

-8.94
-31.10

-2.03
-2.87
-0.44

49.17
-41.07
49.81
-67.06
-45.73
43.71
-29.23

-31.87

2-way
-6262
-14:55
-24.03

-7.68
-31.43
-23.94
-17.81
-19.20
-21.27

-5.86
-53.69
-43.87
-58.66
-29.59
-26.68

-7.31
-29.77

-0.57
-9.57
-0.57

-47.01
-0.38

46.30
-67.16
-69.26
-40.95
-18.63
-28.01

width Requirements
16K-bvte Cache

Direct “

=3K1-2=
-18.60
-17.50
-13.17
-23.24
-18.99
-15.18
-15.24
-17.88
-26.74
-54.97
44.61
-53.67
-29.07

-39.75
-26.67
-19.74

-1.92
-3.42
-0.38

<2.61
-41.07
-35.16
-54.26

-3.30
-40.31

-3.27
-23.99

Table 6: Analysis of Average Memory Reference Activity (Improved Static)

-. . .
1Increased Miss Rate

1
307

2-way
-6162
-14:20
-24.78

4.60
-28.83
-13.32

45.89
-9.50
-9.74
-2.69

-57.45
-45.t%
-68.19

-26.88
-15.68
-21.74
-27.41

-0.22
-5.23
-0.17

-39.44
0.15

-29.04
-50.52

4.42
-3.85
-3.34

-15.45

% of Memory Refs Pre- Memory Refs Post-Transformation
Refs Transformation CfNA Non-C/NA

Change

11% 71.394.580 87.222.835 I . 22.17%I t —-, –,—

7% I
1 ,

12050;735 . 19,620324 I 62.81%1

Not Referenced 16,05

Total I 21,4& , _____ , _. .,_-_, ___

47%
35%

.

m

37X4,1 11 37,264,111 0.00%
73,301,176 51,759,319 -29.39%

.

194.010.602 87322 ,835 1087643,654 0.96%’

The most significant number in Table 6 is the total
change in memory activity. This shows that by applying
the improved Static method to a program the cache hit
rates can be maintained while simultaneously decreasing
the amount of traffic to memory.

5. Dynamic Cache Model

It is clear that the use of the improved static
approach will improve data cache performance. However,
the static approach requires training runs of the program,

and the introduction of new instructions in order to specify
the alternate cache operation. Both of these factors
markedly decrease the applicability of this approach. Our
goal is to develop a scheme that will provide the same per-
formance enhancement transparently.

In order to select which items should be marked
C/hIA, we turn to the body of work on branch prediction
strategies. There has been a great amount written about
bmnch prediction strategies recently
[CaGr94,FiFr92, PaS92, Smit81,YeP91,YeP92, YeP931.

99

Briefly, dynamic bmnch prediction strategies collect run-
time information about branch behavior to predict whether
a branch will be taken in the future. Typically, these stra-
tegies associate several bits of information with a branch
instruction. TM information is updated each time the
branch instruction is executed and is used to make a pred-
iction about the branch instruction’s behavior.

In a similar way, several bits can be associated with
a load instruction. A table, similar to a branch prediction
table, can be maintained which tracks whether the data
refe~nced by a load instruction caused a miss in the data
cache. This information can then be used to decide
whether an instruction should be marked C/NA.

In our study, we simulated nu”ssprealction tables
using a 2-bh counter associated with each load instruction.
A miss prediction counter is initially set to zero and it is
incremented each time a load causes a cache miss. If the
load instruction causes a cache hic the counter is decre-
mented. When the counter enters its highest state (“ 1l“),
the instruction is marked C/NA.

It is worth stressing again that the counters simply
inform the cache allocation hardware whether the data
should be placed in the cache on a miss. Regardless of the
state of the counters, a data cache lookup is performed on
every data reference, since the data may have been
brought into the cache by some other instruction. Thus,
there is the possibility that in one phase of program execu-
tion an instruction will be prevented from caching its data
but in a different phase of the program it will be allowed
to do so. This differs from the static methods presented in
the previous section because the load instruction’s status,
whether it is C/NA or no~ can change during the execu-
tion of the progmm. Since the C/NA marking is main-
tained as part of the miss prediction table, it does not
require new types of instructions to be added to the archi-
tecture as would be the case with a static scheme.

Experiments were performed using 2-bit counter
miss prediction schemes. Initially the size of the miss
prediction table was unlimited in order to evaluate the
ability of the 2-bh scheme to track a hitimiss history. In
later runs the size of the miss prediction table was fixed.

Table 7 summarizes the average memory reference
activity when using 2-bit counters for miss prediction on
the SPEC benchmarks. As in Tables 4 and 6 for the static
schemes, the results are averaged across all the bench-
marks for an 8K byte direct mapped cache configuration.
Unlike the results for the static schemes, the C/NA
instruction classification is broken down into 3 categories.
This is necessary because with a dynamic scheme an
instruction can be in the C/NA state only part of the time.
Thus, we decided on the three categories (1) ~ C/NA,
the instruction was in the C/NA state for less than 5% of
its references, but for at least one reference, (2) 5-95

C/NA, the instruction was in the C/NA state for between
5% and 95% of its references, and (3) >95 C/NA, the
instruction was in the C/NA state for 95% or more of its
references. Another difference in these tables is the
separation of the post-transformation misses into two
types, those misses that do not cause a cache lime replace-
ment (because the load instruction is in the C/NA state),
and those misses that do cause a line replacement.

Looking at the results shown in Table 7, we first
note that the number of instructions that spend some
amount of time in the C/NA state is much larger than for
either of the static methods. This is seen by comparing the
iirst line (C/NA) of Tables 4 and 6 with the first three lines
of Table 7. Clearly the dynamic behavior of the program
has a significant impact on whether the data item for a par-
ticular load instruction will be found in the cache. Further
comparisons between the static results and dynamic results
indicate thag as one might expect, the 2-bit dynamic
scheme is moving instructions from the Increase, No
Change and Decrease categories into one of the C/NA
categories. Overall, this shift increased the average
number of memory references by 92. 15%.

As with the first static scheme, the 2-bit miss predic-
tion scheme is too aggressive in classifying instructions as
C/NA. Too quickly marking an instruction as C/NA
results in the large 92% increase in memory references.
As a next step, we modified the 2-bit scheme to mimic the
Improved Static scheme. In the Improved Dynamic
scheme, each line of the cache has associated with it the
address of the load instruction that brought that line into

Table 7: Analysis of Average Memory Reference Activity - Dynamic 2-bit Counter Scheme

Instruction Number of % of Memory Refs Pre- Memory Refs Post-Transformation

Classification Instructions Refs Transformation CiNA Non-C/NA
Change

<5 CNA 762 33’7 6633 966 4446802 3 402802 20.40%

5-95 CNA 359 6; 21;74;;685 74:689:60; ~:450:122 264.00%
>95 CNA 509 15% 61,618,437 174,892281 219,579 184.19%

Increased Miss Rate 292 5% 1364,062 . 1,833,090 45.02%

No Change 2,999 21% 8,624,533 8,624,533 0.00%

Decreased Miss Rate 507 20% 24,824,073 9,764,111 -60.67%

Not Referenced 16,054 -

Total 21483$ 100?”o 184408757,, 294049907,, 60394338 92157. 0

100

Table 8: Anal

Instruction
Classification

<5 CNA
5-95 CNA
>95 CNA

Increased Miss Rate
No Change
Decreased Miss Rate
Not Referenced
Total

sis of Avers;

Number of
Instructions

127
27
60

294
4,263

657
16,054
21,483

!Mem

% of
Refs

-i3?Z
1%
3%
7%

49%
27%

100%

ry Reference Activity - Improved Dynamic 2-bit Counter Scheme

Memory Refs Pre- Memory Refs Post-Transformation
Transformation CJNA Non-C/NA

Change

40 882322 7,444 ,975 33045 60 -O96V
13:190,156 10,163,917 3:245$02 1:66;
16,139,174 22374,664 108,829 38.69%
10,322,771 14,972,303 45.04%
59,529,909 . 59,529,909 0.00%
49,787,636 36,480,045 -26.73%

. . .

189,851,867 39,883.556 147.382.549 -1.36%

the cache. On a cache hit, the 2-bit counter associated
with the instruction that caused the hit is decremersted and
in addition, the 2-bit counter associated with the instruc-
tion that brought the cache line into the cache is also
decmmented. Thus, those instructions that do useful pre-
fetching of data for other instructions are not marked as
C/NA. Results of simulations using the Improved
Dynamic 2-bit miss prediction table are shown in Table 8.

As can be seen in Table 8, the number of instruc-
tions that are placed in the C/NA category is much smaller
when compared with those in Table 7. This results in
reducing the number of memory references such that there
is actually a 1.36% decrease compared to a conventional
cache. The small change in the number of memory refer-
ences and the small number of instructions in the C/NA
categories indicate that perhaps this improved strategy is
too conservative in marking instructions whose data
should not be cached.

Table 9 provides a summary of the ni!sults of an
analysis of the memory bandwidth requirements of the
dynamic schemes for each of the SPEC benchmarks. This
analysis accounts for transferring an entire cache line from
memory on a cache misses and also referencing data items
that will not be cached. The data in the table is a compu-
tation of the percentage of memory bandwidth xequired
compared to a conventional cache scheme that does not
use a miss pdiction table. The columns of the table
show the average memory bandwidth required for 8K-byte
and 16-byte direct mapped and 2-way associative caches
using the 2-bit dynamic and impmved dynamic strategies.

The results in Table 9 indicate that the bandwidth
requirements of the dynamic schemes are not reduced as
substantially as with the static schemes. This makes sense
since with the static schemes, we have more information
when marking which instructions should be C/NA.
Nonetheless, for most programs the bandwidth require-
ments are reduced, and in several cases the nxluctions are
substantial. Furthermore, the data in Tables 7-10 indicate
the trade-offs ketween caching data items and the resultant
bandwidth requirements. Wkh the more aggressive
dynamic strategy, where more
C/NA, there is more memory

instructions are marked
activity. However, the

0.s4

0.83

0.82

0.81

0.77

0.76

0.75

0.74

I ‘“
— — - -Bandwidth (Fixed Table)

A.
“AU\\

.- % ----- ——. 1

[.=:-.!9
‘-A..

‘A---A -.. I

0.90

0.60

Table Size (4-Way Set Associative)

Figure 1. Performance of Fixed Size MM
Prediction Buffer Using 2-bit Dynamic Prediction

memory activity is for a single data item instead of an
entire cache line. Thus, there is a reduction in the required
memory bandwidth. On the other hant with the
Improved Dynamic strategy, them is less memory activity,
but the ~quired memory bandwidth is higher than the sim-
ple dynamic scheme (though still less than the require-
ments of an unmodified cache) since the memory activity
involves more fetches of entire cache lines.

The final set of experiments that we performed
involved fixing the size of the miss prediction table. For
this set of experiments we looked at a direct mapped cache
of 8K-bytes using the first dynamic prediction strategy.
The miss prediction table was fixed 4-way set associative,
while the table size was varied. The results of these
experiments am summarized in Figure 1.

In Figure 1, we have plotted the table size on hor-
izontal axis, while the hit rate in the table and the resultant
bandwidth requirements are plotted on the vertical axis.
As can be seen in the center of the figure, a miss table of
256 entries reduces the average memory bandwidth
requirements to a vaIue very close to what one would get
with an infinitely large miss pmliction table.

101

Table 9: Change in Cache Hit Rate and Memory Bandwidth After Removal of Instructions (Improved Dynamic)

Bench-

mark
compress
eqntott
espresso.cps
espresso.tail
espresso.ti
gcc.insn
gcc.integrati
gcc.stmt
gcc.tree
li
Sc.loadal
sc.loada2
sc.loada3
Int Ave

doduc
ear

fPPPP
hydro2d
mdljdp2
mdljsp2
nasa
ora
spice2g6
su2cor
swm256
tomcatv
wave5
FP Ave

! of C/NA
nstruction!
~

52-73
120-247
75-204
180-315
291-551
310-595
338-676
200-481
47-91
66-137
85-155
38-91

8-24
1-8

84-97
82-135
17-21
12-14

317-354
3-3

236-301
318-1267

46-50
1-39

96-125

% Change ir

8K-bvte Cache
Direc;
=OXi
-0.05
-0.25
-0.01
-0.02
-0.29
-0.09
-0.02
0.06
-0.05
-7.22
-6.06
-1.71
-1.24

0.32
0.02

-0.08
0.13

-0.04
0.00

-0.15
0.00

-4.09
2.62
0.00

-4.86
-1.46
-0.58

a
m37-
-0.03
-0.30
-0.16
0.31

-0.40
-0.44
-0.35
-0.23
0.22

-5.46
-3.85
0.13

-0.86
1.09
0.05

-0.78
-0.34
0.77
0.61

-0.02
0.00

-3.56
26.09
24.21
25.83

1,21

5.78

hche Hit Rate
16K-bvte Cache
Direct “

m
-0.11
-0.13
-0.03
0.02

-0.27
-0.10
-0.06
-0.01
0.03

-6.30
-5.85
-0.93
-1.10

0.31

-::
0.17

-0.01
0.00

-2.88
0.00

-4.17
1.08
0.00

-1.18
-1.31
-0.62

2X2L
71Ti-

-0.11
0.13

-0.57
0.29

-0.64
-0.58
-0.46
-0.49
0.25

-5.32
-4.09
0.24

-0.93
-0.94
-0.23
-0.98
-1.05
0.22
0.06

-4.73
0.00

-4.56
15.73
0.59
1.82

% Change in Memory Ba

8K-bvte Cache
Direct “

5031
~20:23

-7.54
-1.04

-14.43
-8.30
-8.78
-7.72
-6.95
-7.36

-54.99
-51.02
-46.88
-21.97

-5.25
-0.50
-1.15
-3.21
-0.82
-0.15

-51.68
0.00

-27.39
-24.86

-0.46
-13.69

%-l-=%&

2-way
6369

124:79
-8.54
-0.80

-18.17
-8.50
-8.48
-7.19
-6.99
-1.04

-52.64
-43.57
-58.07
-23.27

-1.32
2.12

4.37
-0.08
-0.92
-0.13

-50.01
-0.09

-25.86
0.72

-1.53
0.00

-7.49
-6.84

width Requirements
16K-byte Cache

Direct

=i37f3-
-20.60
-6.87
-0.23

-13.59
-6.32
-6.66
-5.95
-5.82

-10.14
-54.17
-51.46
-50.29
-21.35
-6.45
-7.39
3.10

-3.08
-0.58
-0.12

47.34
0.00

-17.34
-16.75

-1.49
-3.21
-0.97
-7.82

2-way
-=38X5-

-24.16
-8.72
-0.43

-17.96
-6.75
-5.91
-5.40
-5.13
-0.38

-52.94
-43.09
-62.59
-22.49

-1.24
-2.35
-3.82
-0.05
-0.51
0.01

-44.59
0.18

-16.68
0.33

-1.60

-8%
-5.42

6. Conclusions and Future Work Since this static analysis requires executing the

In this work we have investigated the t)otential for
improving average data access time-by being-more selec-
tive in what data items are cached. This work was
motivated by the apparent limitations in the size, organiza-
tion and speed of tirst level data caches. To make the data
cache smarter with what items it caches, we iirst examined
and analyzed which instructions generated data cache
misses. In this analysis, we confirmed and expanded on

the results of other work that indicates a very small
number of instructions are responsible for a very large
percentage of data cache misses.

Based on this observation, we analyzed the impact
on cache and memory system performance if certain data
items were not cached. In the first part of our simulation
studies, we determined whether an instruction’s data item

should be cached by performing a static analysis of pro-
gmm behavior. The results of these studies indicate that
the amount of memory activity, the required memory
bandwidth, could be substantially reduced by not caching
all data items.

entire progmm and marking which instructions should
have their data cache~ we then looked at dynamic
schemes that could dynamically detect which data items
should be cached. The dynamic schemes we investigated
are based on 2-bit branch prediction schemes. Instead of a
branch prediction table, we have a miss pre&ction table
that holds a 2-bit counter associated with load and store
instructions. We investigated two 2-bit miss prediction
strategies. Both of these strategies offered a reduction in a
program’s memory bandwidth requirements. However,
neither dynamic scheme performed as well as the our
improved static scheme.

We have performed a preliminary study of the feasi-
bility of incorporating a hardware-based speculative pre-
fetch unit to extend this work. Caches work well in
exploiting the spatial and temporal locality of certain data
references, but fail when locality is missing. Prefetch
works well when there is regularity in the access pattern
regardless of locality. By incorporating a hardware pre-
fetch unit for C/NA items, it may be possible to hide the

102

latency of even those loads that have little locality.

Another possible application of a dynamic scheme
similar to the one described in this paper involves dynami-
CMY configuring a cache coherence protocol to fit the
requirements for each load instruction instructions that
are likely to share data could use a different protocol from
those that access local data.

We believe that using a method of dynamic
configuration of cache operations like the one described in
this paper can have broad applicability. Similar schemes
can not only improve the performance of the cache, but
can allow for other hardware based memory enhance-
ments to be selectively applied.

7. References

[ASWR93]

[CaGf14]

[CSPO]

[ChBa95]

[EKPP93]

[FiFr92]

[Joup90]

[KlLe91]

S. G. Abraham,R. A. Sugumar, D. Windheiser, B.
R. Rau and R. Guptaj “Predictability of Load/Store
Instruction Latencies”, Proceedings of the 26th
Annual Internatwnal Symposium

Microarchitecture, Austin, Texas (December 15
1993), pp. 139-152.

B. Calder and D. Grunwald, “Fast and Accurate
Instruction Fetch and Branch Prediction”,

Proceedings of the 21st Annual International
Symposium on Compuier Architecture, Chicago,
Illinois (April 18-21, 1994), pp. 2-11.

D. Callahan and A. Porterfield, “Data Cache
Performance and Supercomputer Applications”,

Proceedings of Supercomputing ’90, pp. 564-572.

T. Chen and J. Baer, “Effective Hardware Based
Data Prefetching for High-Performance

Processors”, IEEE Transactions on Computers,

vol. 44, no. 5 (May 1995), pp. 609-623.

P. G. Emm% J. W. Knigh$ J. H. Pomerene, T. R.

punk and R. N. Rechtschaffen, “Cache Miss

Facitity with Stored Sequences for Data Fetching”,

Us. Patent 5z33,702(Issued August 3, 1993).

J. A. Fisher and S. M. Freudenberger, “Predicting
Conditional Branch Directions tiom Previous Runs

of a program”, Proceedings of the Fifih

Internatwnal Conference on Architectural Support

for Programming Languages and Operating

~t5ns, Boston, MA (October 12-15, 1992), pp.

N. Jouppi “Improving Direct-Mapped Cache

Performance by the Addition of a Small Fulty-

Associative Cache and Prefetch Buffers”,

Proceedings of the Seventeenth Annual

Internatwnal Symposium on Computer

Architecture, vol. 18, no. 2 (May 1990), pp.

364-373.

A. C. Kk&r and H. M. Levy, “An Architecture

for Software-Controtled Data Prefetching”,

[MuQF91]

[PaS92]

[Smit81]

[SrWa94]

NSRP92]

YeP91]

YeP92]

Proceedings of the Eighteenth Annual Internatwnal
Symposium on Computer Architecture, Toronto,

Canada (May 27-30, 1991), pp. 43-53.

J. M. Mulder, N. T. Quach and M. J. Flynn, “An

Area Model for On-Chip Memories and its

Application”, IEEE Journal of Solid-State Circuits,
vol. 26, no. 2 (Febmary 1991), pp. 98-105.

S. Pan, K. So and J. T. Rahmeh, “Improving the
Accuracy of Dynamic Branch Prediction Using

Branch Correlation”, Proceedings of the F@h
International Conference on Architectural Support
for Programming Languages and Operating

Systems, Boston, MA (October 12-15, 1992), pp.

76-84.

J. E. Smith, “A Study of Branch Prediction

Strategies”, Proceedings of the Eighth Annual

International Symposium on computer
Architecture, Minneapolis, Minnesota (May 1981),

pp. 135-148.

A. Srivastava and D. W. Wall, “Atom: A system

for building customized program analysis toots”,

Proceedings of the ACM SIGPLAN Notices 1994
Conference on Programming Longuages and

Impkmentations(June 1994), pp. 196-205.

T. Wad% S. Rajan and S. A. Przybylski, “An

Analytical Access Tme Model for On-Chip Cache
Memories”, IEEE Journal of Solid-State Circuits,

vol. 27, no. 8 (August 1992), pp. 1147-1156.

T. Yeh and Y. Pa% “Two-Level Adaptive Training

Branch Prediction”, Proceedings of the 24th

Annual International Symposium on
Microarchitecture, Albuquerque, New Mexico

(Novemker 18-20, 1991), pp. 51-61.

T. Yeh and Y. Pa% “Alternative Implementations

of Two-Level Adaptive Training Branch

Prediction”, Proceedings of the Nineteenth Annual

International Symposium on computer
Architecture, Queensland, Australia (May 19-21,

1992), pp. 124-134,

~eP93] T. Yeh and Y. Pa& “A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch

History”, Proceedings of the Twentieth Annual

International Symposium on computer

Architecture, San Diego, CA (May 16-19, 1993),

pp. 257-266.

103

