A Modified Approach to Data Cache Management

Gary Tyson

Department of Computer Science
University of California, Riverside
Riverside, CA

Matthew Farrens
John Matthews

Computer Science Department
University of California, Davis
Davis, CA 95616

Andrew R. Pleszkun

Department of Electrical
and Computer Engineering
University of Colorado-Boulder

(tyson@cs.ucr.edu) (farrens@cs.ucdavis.edu) Boulder, CO 80309-0425
(matthewj@cs.ucdavis.edu) (arp@tosca.colorado.edu)
Abstract the main memory, it can be built using faster and more

As processor performance continues to improve, more
emphasis must be placed on the performance of the
memory system. In this paper, a detailed characterization
of data cache behavior for individual load instructions is
given. We show that by selectively applying cache line
allocation according the characteristics of individual load
instructions, overall performance can be improved for
both the data cache and the memory system. This
approach can improve some aspects of memory perfor-
mance by as much as 60 percent on existing executables.

1. Introduction

The average data access time is a measure of the
time it takes to read a data item from memory. Since most
programs need to access data, minimizing this term is cru-
cial to achieving high performance. Unfortunately, access
time to off-chip memory (measured in processor clock
cycles) has increased dramatically as the disparity
between main memory access times and processor clock
speeds widen, Since there is no indication that dynamic
memory access times will decrease significantly in the
near future, this situation is unlikely to change for a while.

In order to minimize the impact of slow main
memory access times, several strategies are available.
Most machines now include a first-level cache, which is
designed to reduce the average data access time by captur-
ing the most frequently used data items. If necessary, one
can also place a second-level cache into the system - since
the second-level cache will presumably be smaller than

This work was supported by National Science Foun-
dation Grants CCR-94-03651, CCR-92-13627, MIP-92-
57259, and grants from the SUN Microsystems and Tek-
tronix corporations.

1072-4451/95 $4.00 © 1995 IEEE
Proceedings of MICRO-28

93

expensive logic.

Another option is to interleave main memory, so
that each word of a cache line does not have to experience
the full latency of the main memory. Widening the bus
between the primary cache and the main memory (or
second-level cache) is also an option. Both of these
approaches have the effect of increasing the bandwidth of
the data flowing across the chip boundary. The effective-
ness of these strategies depends on how easy it is for
designers to increase the number of pins on a chip and/or
increase the rate at which these pins are driven.

As multiple-issue processors continue to increase
the number of instructions issued on each cycle, there has
been a corresponding increase in the demands placed on
the bandwidth to the data memory. The data cache in par-
ticular will be hard pressed to service more than one data
reference per cycle. Since it is not clear that traditional
methods of reducing the data cache miss rate and miss
penalty will be sufficient, we believe that a somewhat dif-
ferent approach is warranted, In this paper, we examine
the potential of reducing the average data access time by
dynamically deciding whether to cache a particular data
item based on the address of the load instruction generat-
ing the request. The techniques we will be describing are
largely orthogonal to standard miss rate/miss penalty
reduction techniques, and should work well in conjunction
with improvements made on other fronts.

2. Background

In a system with a cache, the average access time
for a memory reference is a function of the hit rate in the
cache, the comesponding miss rate and the the miss
penalty. In order to minimize the average access time, the
hit rate should be maximized (thereby minimizing the miss
rate) while simultaneously minimizing the miss penalty.

2.1. Reducing Miss Rate

The miss rate is best reduced by increasing the size
and/or the associativity of the cache. Unfortunately, in the
design of todays high-performance processors, it is
difficult to substantially increase either of these terms
because the access time of the data cache must first and
foremost match the clock cycle time of the processor.
Several studies have investigated the relationship between
cache access time, cache size and cache associativity
[MuQF91, WaRP92]. These studies carefully parameter-
ized a hardware model of the components of the cache
(such as data array, tag array, compare logic, bus delays,
etc.) and found, for example, that going from a direct
mapped to 2-way associative cache substantially increases
the access time to the cache. A similar conclusion can be
made when increasing the primary cache size much
beyond 16K bytes.

2.2. Reducing Miss Penalty

A number of studies have proposed techniques
(either compiler-based or hardware-based) that reduce the
miss penalty of the cache by performing some type of data
prefetch [CaPo,ChBa95,KiLe91]. If data items are pre-
fetched during idle data cache cycles, references to a pre-
fetched item will find it already in the cache and thus will
not cause a miss and the associated miss penalty will not
be experienced. An example of hardware-based prefetch-
ing is the work by Chen and Baer [ChBa95]. In this paper
the authors propose keeping a history of the strides of data
references, and using that information to make predictions
as to what should be prefetched. IBM uses a similar
hardware approach [EKPP93] in which they associate pre-
vious miss behavior with a load instruction and use that
information to do prefetching.

Among the most intriguing software approaches to
reducing the miss penalty is a study by Abraham, et. al.
[ASWR93] in which they observe that a very small
number of load instructions are responsible for causing a
disproportionate percentage of cache misses. By using
profiling techniques similar to those used to schedule code
for VLIW machines, the compiler can accurately identify
those data reference instructions which cause the highest
data cache miss rates. By recognizing these data refer-
ences and using special instructions to control the cache,
the software can effectively prefetch those instructions
and reduce the miss penalty.

3. Deciding What to Cache

Instead of concentrating on miss penalty, cache size
or cache associativity, we decided to look at the source of
cache misses. One could potentially reduce the miss rate
of the data cache by simply not caching those data refer-
ences that lead to a poor miss rate. As Abraham, et el.
[ASWRI3] point out, a large percentage of the data misses
are caused by a very small number of instructions. Instead

94

of using this information to make prefetching decisions,
we decided to look at the impact on the data cache miss
rate if the data cache is smarter about what it decides to
cache and does not allow these troublesome instructions to
allocate space in the data cache. Such an approach has the
potential to more effectively utilize the cache because
instructions that generate a large number of cache misses
are removing more heavily utilized data items from the
cache. In addition, if we do not cache the data associated
with high-miss-rate instructions, memory bandwidth
requirements could be reduced since these references
would only request a single word from memory, instead of
an entire cache line.

Since the study by Abraham, et el. [ASWR93] did
not look at an extensive set of benchmark programs, we
began by performing experiments similar to theirs in
which we measured the miss rate associated with indivi-
dual load and store instructions for a more extensive set of
programs. Using the ATOM program trace facilities
[SrWa94] and the SPEC92 suite of benchmarks, such
statistics were relatively straight-forward to gather. Each
program in the SPEC 92 suite was instrumented in order to
track the data cache hit rate associated with each unique
data address. We simulated a 32-byte line size, and both
8K-byte and 16K-byte caches, which were direct mapped,
2-way set associative, 4-way set associative, and direct-
mapped with a victim cache [Joup90].

Table 1 presents a detailed breakdown of each
benchmark analyzed, the input that was used, the total
number of load data references and the hit rates for each
of the cache configurations simulated. Our results are not
surprising, and match those from many other studies - as
expected, direct mapped performs the worst in general
while increasing the associativity improves the accuracy.

In order to better understand what is causing the
cache misses we looked at the reference pattern of each
program in greater detail. Table 2 presents the cumulative
percentage of data references and data cache misses
caused by the most heavily executed load instructions in
an 8K-byte direct mapped cache. Each row of the table
contains the information gleaned from a run of the given
SPEC benchmark, and the 8 columns which are labeled
with a percentage of total load references and total data
cache misses each have two sub-columns indicating the
total number of instructions that caused that percentage
and the percentage of the total number of instructions that
represents.

If we look at the compress benchmark, for example,
we see that 34 instructions are responsible for 75% of all
load references and those 34 instruction account for 1.11%
of all load instructions in the benchmark (e.g. there are
3058 load instructions in compress and 34/3058 = 1.11%).
Continuing across the table, we see that 54 (1.77%) of the
load/store instructions account for 95% of the data refer-
ences. The remaining 98.23% of load/store instructions

Table 1: Data Cache Hit Rate for SPEC Benchmarks

SPEC Input # of 8K Cache Hit Rate (%) 16K Cache Hit Rate (%)
Benchmark File Load Refs D 2 4 v D 2 4 v
compress in 24434068 | 79.73 84.77 B8535 8438 | 81.33 8594 863 8541
eqntott int_pri_3.eqn | 231129466 | 94.14 954 0549 9547|9472 9562 9567 95.65
espresso.cps [cps.in 110649363 | 92.82 9449 9504 9445|9607 9684 9697 97.08
espresso.tail | tail.in 218814920 | 92.32 95.6 96.26 9547 | 95.58 98 98.68 9744
espresso.ti ti.in 123094748 1 92.74 9437 95.12 94.69 | 9562 9657 9699 96.84
gee.insn insn.i 42239266 | 91.19 94.06 95.02 93.87 | 94.5 9653 97.11 96.09
gec.integrate || integrate.i 18050705 | 90.68 9397 9509 93.62 | 9427 9658 9727 96.11
gee.stmt stmt.i 34338681 | 90.86 94.13 95.3 93.86 | 94.64 968 9747 9641
gec.tree tree.i 15088536 | 90.81 9404 9522 9379|9486 97.07 97.74 96.61
li li_input.Isp 1923073359 | 89.75 94.58 95.68 9481 | 934 96.59 9732 96.85
sc.Joadal loadal 325317586 | 8443 86.38 87.17 86.55(86.37 8764 8777 8751
sc.loada2 loada2 365851437 | 88.44 9044 91.14 9087]90.18 9176 9195 91.63
sc.loada3 loada3 104774876 | 92.73 9431 9496 947 [94.77 9562 9583 95.66
Int Ave 90.05 9281 93.60 9281|9279 9474 9516 94.56
doduc doducin 337197266 | 88.54 9296 9636 94.01 | 9131 9674 9729 9578
ear ref.m22 3833127750 | 96.73 97.62 97.52 97.72 | 98.69 99.53 9993 9928
fpppp natoms 1529995204 | 94.59 97.64 98.05 96.81 [9644 99.12 99.7 98.12
hydro2d hydro2d.in 1376293089 | 81.5 8369 8479 8336|8198 8468 8491 83.64
mdljdp2 input.file 414815687 | 85.51 88.44 91.56 89.23 | 93.00 9381 945 94.04
mdljsp2 input.file 753307193 | 95.33 9697 97.67 97.58 | 97.35 98.52 98,6 98.58
nasa NASA7.CHK | 1768897327 | 56.61 59.75 5828 62.32 | 64.7 69.66 69.61 68.89
ora params 1343836643 | 97.15 100.00 100.00 100.00 | 97.15 100.00 100.00 100.00
spice2g6 greycode.in 5265522592 | 69.75 7299 7426 7293 (7823 8121 8329 80.08
su2cor su2cor.in 1069475885 | 48.61 49.71 6453 8442|6297 6579 655 85.59
swm256 swm256.in 2851234080 | 75.72 68.66 66.54 9287 | 92.88 9264 9195 9323
tomcatv 247280519 | 63.78 60.25 66.03 86.08 | 7544 8624 88.06 88.06
wave5 758316846 | 89.08 91.58 9148 93.82]9476 9584 9581 9571
FP Ave 80.22 81.56 8362 88558653 8952 8993 90.85

generate only 5% of the data references. This demon-
strates a well known principle of program execution, that a
small portion of the program is responsible for much of
the execution effort. This is an effect of the 90/10 locality
rule which states that a program spends approximately
90% of execution time in only 10% of the code.

Given that a small number of instructions are
responsible for the majority of data references, it is rea-
sonable to expect that this same effect would be reflected
in the distribution of cache misses. This is also shown in
Table 2 - overall, we find that not only does the 90/10 law
still hold, but the miss pattern is even more clustered than
the overall reference pattern. For almost all benchmarks,
Iess than 5% of the total load instructions are responsible
for causing over 99% of all cache misses,

The data in Table 2 makes it clear that in general a
small number of load/store instruction have a dispropor-
tionately large effect on the cache miss rate when com-
pared to the number of total data references they generate,
This is not all that surprising if one considers program
behavior. References to global variables and to local vari-
ables (even if they reference the procedure call stack) can

95

account for the data references with a large hit rate, espe-
cially if one considers the looping behavior of programs.
Examples of references that generate low hit rates would
include references to items in a linked-list, or through an
array with a long stride.

4. Analysis of Caching Potential

Given that a small number of load instructions are
responsible for generating the majority of data cache
misses, we decided to measure the cache hit rate and the
corresponding memory bandwidth required if these trou-
blesome load instructions were prohibited from allocating
space in the data cache. In order to accomplish this, we
examined the cache behavior of each load instruction and
identified the ones with the lowest cache hit rate. These
were marked C/NA (Cacheable/Non-Allocatable), which
means that the data references generated by these load
instructions will not invoke the allocation policy of the
hardware cache management algorithm. It does not mean
that the data reference will not be in the cache - the data
item might be in the cache if a different instruction that
will allocate on miss references that address.

Table 2: Cumulative Load Instruction Reference Counts

Percent of Total Data References Percent of Total Data Cache Misses
Bench- ||Load 5% 90% 95% 99% 75% 90% 95% 99%

mark Inst |[#of |[%of [#0f | of |#0f | %of | #0f |% of ||#0of | % of | # of [% of | # of [% of | # of | % of
Insts | Total | Insts | Total | Insts | Total | Insts | Total ||Insts | Total | Insts | Total | Insts | Total | Insts | Total

compress 3058] 34 1.1i] 49 1.60| 34 1.77 60 1.96 6 0.20 291 15 0491 29 095
eqntott 4656 8 0177 59 1271 96 206| 157 3.37 6 0.13| 19 041 33 0.71| 96 206
espresso.cps {16647 137 0.82(299 1.80] 588 3.53| 1388 8.34|| 72 0.43] 237 142 423 254 998 5.99
espresso.tail {[16647 150 0.90| 366 2.20{ 599 3.60| 1265 7.60! 84 0.50| 235 141 385 2311 876 5.26
espresso.ti |[16647(159 0.96| 419 2.52| 690 4.14| 1408 8.46f 98 0.59] 302 1.81| 520 3.12{1105 6.64
gec.insn 51555({1322 2.56|2874 5.57|4232 8.21} 6931 13.44| 735 1.43 |1562 3.03 (2205 4.28 13862 7.49
gec.ntegrate||51555{[1750 3.39(3691 7.16(|5382 10.441 9003 17.46{ 880 1.71 2017 3.91 (3026 5.87 15814 11.28
gee.stmt 51555{[1765 3.42{3682 7.14|5409 10.49| 9215 17.87|| 972 1.89 (2176 4.22 (3301 6.40 15890 11.42
gec.tree 51555{(1929 3.74{4042 7.84|5993 11.62{10817 20.98(/1033 2.00 (2439 4.73 [3553 6.89 |6114 11.86
li 8083}l 103 1.27{ 165 2.04| 224 2.77] 345 4.27) 50 0.62] 108 1.34| 152 1.88] 236 292
sc.loadal 15968| 101 0.63] 252 1.58| 421 2.64| 1054 6.60|| 14 0.09| 71 044 | 141 088} 396 248
sc.Joada2 15968 133 0.83| 360 2.25| 552 3.46] 1207 7.56{ 47 0.29] 144 090| 252 158! 585 3.66
sc.loada3 15968} 119 0.75| 336 2.1 | 519 3.25| 1206 7.55| 82 0.51| 227 142} 328 2.05| 552 3.46
doduc 21313)/1485 6.97(2167 10.17{2404 11.28| 3069 14.4 || 301 1.41] 563 2.641 787 3.69 1069 5.02
ear 6079) 15 0.25(27 044] 39 064| 153 2.52| 14 0231 39 0.64] 49 081| 57 094
fpppp 19012|12106 11.08{2951 15.52(3233 17.00| 3586 18.86|| 147 0.77| 273 144 | 357 188! 499 262
hydro2d 17595) 253 1.44| 360 2.05| 448 2.55| 635 3.61} 121 0.69| 218 1.24 | 285 1.62| 438 249
mdljdp2 17493) 13 0.07| 61 0.35/ 98 0.56] 165 0.94) 19 0.11] 54 031| 66 038) 85 049
mdljsp2 17560 24 0.14] 82 047 121 069 215 1.22| 28 0.16| 68 039| 84 048] 113 064
nasa 17634| 192 1.09] 330 1.87| 432 245| 636 3.61| 99 0.56| 178 1.01!| 234 1.33| 383 2.17
ora 14526)f 31 021} 41 0.28] 47 032 84 0.58 3 0.02 4 0.03 5 0.03 6 0.04
spice2g6 35185| 100 0.28| 356 1.01{ 530 1.51| 716 2.03{ 11 0.03| 60 0.17| 105 0.3 | 234 067
su2cor 20636 189 0.92(394 1.91| 620 3.00| 1301 6.30) 137 0.66| 362 1.75| 547 2.65 (1227 5.95
swm256 15141)| 28 0.18] 50 0.33] 57 0.38 63 042 27 0.187 37 024 40 026 50 0.33
tomcatv 13422 63 047{ 92 0.69 101 0.75| 109 081| 29 022! 69 051 83 0.62| 94 0.70
waves 23087(| 276 1.20] 471 2.04| 608 2.63| 1076 4.66| 78 0.34| 187 0.81} 296 1.28| 514 223

It is important to stress that we are deciding whether
or not to allocate based on the instruction address, not the
effective address of the data reference. Thus, a cache
lookup for an item is unaffected by whether it is marked
C/NA or not - only the allocation on a miss is affected.
We looked at both static (similar to [ASWR93]) and
dynamic approaches to identifying and marking these
C/NA instructions.

4.1. Static Method

We began by modeling a simple strategy in which
all load instructions that do not meet a threshold for cache
hit rate are marked C/NA. We looked at several threshold
values, balancing the desire to remove poorly performing
loads with the conflicting desire to utilize the cache for as
many references as possible. We finally settled on a thres-
hold value of 75%, for a number of reasons. A lower
value was too aggressive in removing load references
from using the cache, and a higher value did not remove a
sufficient number of load instructions to help performance.
Furthermore, the 75% threshold also relates to the memory
bandwidth requirements for a cache line replacement (32

bytes) and a 64-bit load reference (8 bytes), and is the
same value settled on by [ASWR93]1.

4.1.1. Hit Rate and Memory Bandwidth Utilization

Table 3 shows the change in cache hit rate and
required memory bandwidth after the poorest performing
instructions were marked C/NA. Column one contains the
name of the benchmark program and the second shows the
range of instructions that were made C/NA (since the
count of instructions varied depending on the cache
configuration). Columns 3-7 show the change in hit rates
(compared to the entries in table 1) for caches that are
direct mapped and 2-way set associative. As can be seen
in the table, there was a uniform slight decrease in the hit
rate across all configurations.

A potentially more meaningful measure of the
demands made on the memory system is to determine the
total amount of data (in bytes) that must be fetched from
the memory system. Since we used a system
configuration in our simulations similar to that of the
Alpha (32 byte cache lines and single references being 8
bytes), we were able to determine the total number of

96

Table 3: Change in Data Cache Hit Rate and Memory Bandwidth After Removal of Target Instructions (Static)

% Change in Cache Hit Rate % Change in Memory Bandwidth Requirements
Bench- # of C/NA || 8K-byte Cache | 16K-byte Cache 8K-byte Cache 16K-byte Cache

mark Instructions || Direct | 2-way | Direct | 2-way || Direct 2-way | Direct 2-way
compress 5-10 234 -1.76]] -3.08 [238 [-56.18 6262 || -55.36 -61.62
eqntott 25-54 -147 | -158(-1.54 -1.37 -17.51 -14.09 -17.58 -13.84
espresso.cps || 94-216 -244 | -1924 -0.72 -0.54 -18.36 -20.93 -17.50 -24.13
espresso.tail || 93-265 2281 | -135) -0.25 -0.24 -25.08 -21.36 -18.28 -6.69
espresso.ti 108-265 272 247 -1.31 -1.05 -22.50 -27.83 -17.85 -22.01
gee.insn 259-725 -3.17 | 227 -2.07 -1.54 -24.29 -19.95 -16.68 -7.59
gec.integrate || 131-406 295 -230| -1.65 -1.27 -20.12 -14.51 -12.41 -2.47
gee.stmt 182-614 <292 | -2.04) -1.36 -1.00 -20.76 -15.89 -12.89 -5.96
gec.tree 63-342 -238 | -1.89| -0.83 -0.49 -21.74 -19.32 -16.93 -8.22
it 59-135 357 | 352 -224 -2.87 -17.48 3.98 -19.26 14,23
sc.loadal 181-295 | -16.56 | -14.78 {{ -13.71 | -13.32 -53.23 -49.57 -51.18 -52.62
sc.loada2 233-381 -9.98 | -10.07 || -9.40 -9.05 -47.16 -40.44 -42.57 -42.40
sc.loada3 153-274 -3.78 | -248| -2.11 -0.61 -51.88 -5791 -52.21 -66.11
Int Ave -439 | 373 -3.10 -2.75 -30.48 -27.73 -26.98 -23.03
doduc 358-707 269 | -393| -225 -2.11 -41.02 -27.52 -36.88 -14.84
ear 7-49 049 [035} -0.25 0.03 -4.20 -2.51 -18.34 -19.14
fpppp 51-263 -187(0391 -1.71 -0.11 -26.27 -28.48 -13.03 -25.56
hydro2d 390-491 || -21.76 | -19.53 }| -20.99 | -17.94 10.67 14.49 10.54 14.80
mdljdp2 117-143 -680| -6.16| -5.57 -5.29 -2.55 -8.01 -4.95 -6.07
mdljsp2 47-74 044 | -033| -0.14 -0.12 1.95 222 0.93 1.59
nasa 448-635 |[-15.27 | -15.85 || -17.43 | -16.05 -43.49 4149 -36.53 -33.50
ora 0-3 081 0.00)| -0.81 0.00 -67.86 -0.38 -67.86 0.15
spice2g6 320-446 | -23.95 | -24.63 || -26.87 | -27.24 -49.39 -45.53 -34.30 -27.79
su2cor 889-1650 || -3.40 | -3.77 | -12.65 | -13.55 -65.06 -64.71 -49.90 -45.63
swm256 61-129 419 345) -0.21 -0.28 -43.84 -68.49 -2.65 -3.24
tomcatv 46-78 -11.74 | 935 -8.99 | -11.48 -42.05 -45.27 -34.00 5.59
wave5 127-240 255 -279| -1.57 -1.03 -24.25 -13.38 3.18 291
FP Ave -7138 [-643] -7.65 -132 -30.57 -25.31 -21.83 -11.59

bytes that the memory system must process and the impact
of these C/NA transformations on the bus activity.

We calculated the total bus utilization for the Static
case by multiplying the number of allocatable misses by 4
(32/8), and adding the number of references to instructions
marked C/NA. Dividing this number by the base case bus
utilization allows us to calculate the percentage change in
the bus bandwidth needed by the Static approach. The
results of these calculations are shown in the last 4
columns of table 4. So, for example, after the C/NA
transformations the compress program run on 2 16K-byte
2-way set associative data cache requires 61.62% Iless
bandwidth than that required by the same program run on
the same hardware without the C/NA transformations.

The table shows a significant overall decrease in the
required memory bandwidth. In particular, it shows that
the static scheme used in conjunction with an 8K direct
mapped cache results in an average decrease in bus
activity of approximately 30% for both the integer and the

floating point programs.

97

4.1.2, Memory Activity

Another important measure of the effectiveness of
this technique is the amount of memory traffic that ensues.
This information is shown in Table 4. There are 4
classifications of load instructions shown in this table:

Cacheable/Non-Allocatable - those load in-
structions that have been identified as C/NA.
Increased - load instructions that are cached
and have a higher miss rate because of the
transformation.

No Change - load instructions that are cached
and maintain their original cache hit activity.
Decreased - load instructions that are cached
and have a lower miss rate because of the
transformation.

In order to reduce the tremendous amount of data gen-
erated, we show information that has been averaged over
all benchmarks for an 8K-byte direct mapped cache.

In order to better understand what is happening,
imagine a situation where items A and B both map to the

Table 4: Analysis of Average Memory Reference Activity (Static)

Instruction Number of | % of {Memory Refs Pre- Memory Refs Post-Transformation Change
Classification Instructions| Refs | Transformation C/NA Non-C/NA 8

'CNA 351 | 19% | 117,282922 149,700,459 - 27.64% |
Increased Miss Rate 443 12% 10,070,793 - 45,447,421 351.28%
No Change 3,882 35% 14,297,639 - 14,297,639 0.00%
Decreased Miss Rate 753 33% 43,831,661 - 31,260,346 -28.68%
Not Referenced 16,054 - - - - -
[Total 21,483 | 100% 185,483,016 149,700,459 91,005,406 A1%

same cache line and are repeatedly accessed. In this case
each reference will experience a high miss rate. However,
by prohibiting one of these items (A, for example) from
allocating the cache line on a miss, the remaining item (B)
will experience a much lower miss rate due to the elimina-
tion of contention, This effect is shown in the Decreased
field of the table.

On the other hand, some items with a high miss rate
actually perform a useful function by bringing a line into
the cache that will be later referenced by other load
instructions. By eliminating the cache line allocation of
these instructions, the cache hit performance of these other
loads is decreased - this is reflected in the Increased field.

The first column of Table 4 shows the load instruc-
tion classification. The second and third columns show
the average number of load instructions and the percen-
tage of the total load references these instructions perform,
respectively. The fourth column contains the average
number of references to memory (the number of cache
misses) that occurred before any loads were marked
C/NA. The fifth and sixth columns show the number of
memory references after the C/NA transformations were
performed and which instructions were responsible for the
references.

In this table we see that the total number of memory
references has increased by over 29%. This is due in large
part to the 351% increase in the number of cache misses
experience by 443 of the non-C/NA load instructions.
This approach is apparently being too aggressive in mark-
ing loads C/NA - by blindly removing those loads with
poor performance, we are often simply shifting a miss
from that instruction to the next instruction referencing
that location. Clearly, a more refined approach to marking
certain high miss load instructions C/NA is called for.

4.2, Improved Static Method

In order to improve the performance of the simple
static technique, the number of instructions marked C/NA
had to be reduced. This was accomplished by associating
with each cache line the address of the instruction that was
responsible for bringing that line into the cache. This
information allowed us to distinguish between misses that
bring data into the cache that is later referenced

98

(performed a useful prefetch) and those misses that are not
referenced before the data is returned to memory due to
the cache replacement strategy. Only instructions that do
not perform a useful prefetch are marked C/NA. We refer
to this as the Improved Static Method.

In our simulations, this modification to the static
approach was implemented in the following manner: We
used the same 75% hit rate threshold to identify potential
C/NA instructions. Once these were identified, they were
analyzed to determine if they were performing a useful
prefetch. If at least 3/4 of the misses prove to be pre-
fetches, then the instruction was removed from the C/NA
list, resulting in a less aggressive application of C/NA.

4.2.1. Hit Rate and Memory Bandwidth Utilization

As shown in Table 5, the Improved Static approach
provides hit rates very close to those presented in Table 1.
Cache performance was only slightly worse for the both
the integer and floating point benchmarks (on average).

Table 5 also shows how the improved Static scheme
affects the bus bandwidth. The table shows that the
Improved Static scheme consistently reduced the memory
bandwidth requirements over the original Static scheme.
This was achieved by reducing the memory requirements
for more than 1/2 of the cache misses, those that did not
allocate a new cache line. In particular, Table 5 shows
that the improved static scheme used in conjunction with
an 8K cache results in an average decrease in bus activity
by as approximately as 30%, and by more than 50% for 5
of the programs.

4.2.2. Memory Activity

An examination of the memory activity shown in
Table 6 reveals several interesting observations. For
example, the number of instructions in the C/NA class
dropped from 351 to 187, indicating that there are a lot of
instructions with high miss rates that are actually perform-
ing useful work (prefetching). As one might expect, the
increase in memory activity due to the C/NA instructions
dropped as well. However, the most dramatic change is in
the number of instructions that have their miss rate
increase - this drops from 443 to 307, resulting in a reduc-
tion in memory activity from 351% to 62%.

Table 5: Change in Data Cache Hit Rate and Memory Bandwidth After Removal of Instructions (Improved Static)

% Change in Cache Hit Rate % Change in Memory Bandwidth Requirements
Bench- ||#of C/NA|l 8K-byte Cache | 16K-byte Cache 8K-byte Cache 16K-byte Cache
mark __|Instructions|| Direct | 2-way | Direct | 2-way Direct 2-way Direct 2-way
compress 37 || 028 | -1.16] -1.02 -2.38 -38. -62.62 -38.12 -61.62
eqntott 11-30 -119 [-145) -1.28 -1.28 -18.43 -14.55 -18.60 -14.20
espresso.cps|| 50-120 036 | -046§ -0.17 -0.10 -22.12 -24.03 -17.50 -24.78
espresso.tail || 38-129 0.18 | -0.04 0.18 -0.09 -14.09 -7.68 -13.17 -6.60
spresso.ti 59-145 035] 036 -0.24 0.01 -25.79 -31.43 -23.24 -28.83
cc.insn 89-341 097 | 055§ -037 -0.22 -26.25 -23.94 -18.99 -13.32
cc.integrate|| 30-185 -1.06 | -0.75|| -044 -0.21 -22.30 -17.81 -15.18 -6.89
cc.stmt 62-290 -1.08 | -059| -0.35 -0.20 -23.10 -19.20 -15.24 -9.50
cc.tree 30-176 -1.13 | -108 | -042 -0.19 -23.53 -21.27 -17.88 9.74
i 2149 024 | 0.07 0.63 0.00 -22.28 -5.86 -26.74 -2.69
c.loadal 77-123 -5401 -587(-4.81 -4.31 -55.96 -53.69 -54.97 -57.45
Joada2 91-160 386 -3.56 | -3.09 -2.64 -48.87 -43.87 -44.61 -45.64
Joada3 48-103 -123 1 -018 | -0.69 0.61 -52.32 -58.66 -53.67 -68.19
Int Ave -127 | -128) -093 -0.85 -31.83 -29.59 -29.07 -26.88
doduc 83-254 083 | -0.04 0.60 -0.22 -43.10 -26.68 -39.75 -15.68
ear 2-17 0.13] 0.10 0.19 0.08 -8.94 -731 -26.67 -21.74
fpppp 28-110 000 007} -023 0.03 -31.10 -29.77 -19.74 -27.41
hydro2d 70-115 084 | 002§ -0.78 -0.02 -2.03 -0.57 -1.92 0.22
mdljdp2 33-49 050 -029| -0.18 -0.08 -2.87 -9.57 -3.42 -5.23
mdljsp2 10-18 000 | 0.01 0.00 0.00 0.44 -0.57 -0.38 0.17
nasa 237379 | -386| -3.18| -4.34 -4.59 -49.17 -47.01 42,61 -39.44
ora 0-1 020} 0.00f(-020 0.00 -41.07 -0.38 -41.07 0.15
pice2g6 161-246 || -22.34 | -2344 | -25.52 | -25.99 -49.81 -46.30 -35.16 -29.04
Echor 323-1522 | 073 124 | -5.00 -5.34 -67.06 -67.16 -54.26 -50.52
wm256 39-99 001 | 444 0.00 0.09 -45.73 -69.26 -3.30 -4.42
tomcatv 3-31 496 | 4.33 3.29 -0.25 -43.71 -40.95 -40.31 -3.85
waves 38-88 006 | -036(-0.12 0.02 -29.23 -18.63 -3.27 -3.34
FP Ave -1.62] -132 -248 -2.79 -31.87 -28.01 -23.99 -15.45
Table 6: Analysis of Average Memory Reference Activity (Improved Static)
Instruction Number of | % of | Memory Refs Pre- Memory Refs Post-Transformation Change
Classification Instructions | Refs | Transformation C/NA Non-C/NA 8
CNA 187 11% 71,394,580 87,222,835 - 22.17%
Increased Miss Rate 307 7% 12,050,735 - 19,620,224 62.81%
No Change 4,152 47% 37,264,111 - 37,264,111 0.00%
Decreased Miss Rate 782 35% 73,301,176 - 51,759,319 -29.39%
Not Referenced 16,054 - - I = -
Total 21483 [100% 194,010,602 87,222,835 108,643,654 0.96%

The most significant number in Table 6 is the total
change in memory activity. This shows that by applying
the improved Static method to a program the cache hit
rates can be maintained while simultaneously decreasing
the amount of traffic to memory.,

5. Dynamic Cache Model

It is clear that the use of the improved static
approach will improve data cache performance. However,
the static approach requires training runs of the program,

99

and the introduction of new instructions in order to specify
the alternate cache operation. Both of these factors
markedly decrease the applicability of this approach. Our
goal is to develop a scheme that will provide the same per-
formance enhancement transparently.

In order to select which items should be marked
C/NA, we turn to the body of work on branch prediction
strategies. There has been a great amount written about
branch prediction strategies recently
[CaGr94, FiFr92,PaS92, Smit81, YeP91, YeP92, YeP93].

Briefly, dynamic branch prediction strategies collect run-
time information about branch behavior to predict whether
a branch will be taken in the future. Typically, these stra-
tegies associate several bits of information with a branch
instruction. This information is updated each time the
branch instruction is executed and is used to make a pred-
iction about the branch instruction’s behavior.

In a similar way, several bits can be associated with
a load instruction. A table, similar to a branch prediction
table, can be maintained which tracks whether the data
referenced by a load instruction caused a miss in the data
cache. This information can then be used to decide
whether an instruction should be marked C/NA.

In our study, we simulated miss prediction tables
using a 2-bit counter associated with each load instruction.
A miss prediction counter is initially set to zero and it is
incremented each time a load causes a cache miss. If the
load instruction causes a cache hit, the counter is decre-
mented. When the counter enters its highest state ("11"),
the instruction is marked C/NA.

It is worth stressing again that the counters simply
inform the cache allocation hardware whether the data
should be placed in the cache on a miss. Regardless of the
state of the counters, a data cache lookup is performed on
every data reference, since the data may have been
brought into the cache by some other instruction. Thus,
there is the possibility that in one phase of program execu-
tion an instruction will be prevented from caching its data,
but in a different phase of the program it will be allowed
to do so. This differs from the static methods presented in
the previous section because the load instruction’s status,
whether it is C/NA or not, can change during the execu-
tion of the program, Since the C/NA marking is main-
tained as part of the miss prediction table, it does not
require new types of instructions to be added to the archi-
tecture as would be the case with a static scheme.

Experiments were performed using 2-bit counter
miss prediction schemes. Initially the size of the miss
prediction table was unlimited in order to evaluate the
ability of the 2-bit scheme to track a hit/miss history. In
later runs the size of the miss prediction table was fixed.

Table 7 summarizes the average memory reference
activity when using 2-bit counters for miss prediction on
the SPEC benchmarks. As in Tables 4 and 6 for the static
schemes, the results are averaged across all the bench-
marks for an 8K byte direct mapped cache configuration.
Unlike the results for the static schemes, the C/NA
instruction classification is broken down into 3 categories.
This is necessary because with a dynamic scheme an
instruction can be in the C/NA state only part of the time.
Thus, we decided on the three categories: (1) <5 C/NA,
the instruction was in the C/NA state for less than 5% of
its references, but for at least one reference, (2) 5-95
CINA, the instruction was in the C/NA state for between
5% and 95% of its references, and (3) > 95 CINA, the
instruction was in the C/NA state for 95% or more of its
references. Another difference in these tables is the
separation of the post-transformation misses into two
types, those misses that do not cause a cache line replace-
ment (because the load instruction is in the C/NA state),
and those misses that do cause a line replacement.

Looking at the results shown in Table 7, we first
note that the number of instructions that spend some
amount of time in the C/NA state is much larger than for
either of the static methods. This is seen by comparing the
first line (C/NA) of Tables 4 and 6 with the first three lines
of Table 7. Clearly the dynamic behavior of the program
has a significant impact on whether the data item for a par-
ticular load instruction will be found in the cache. Further
comparisons between the static results and dynamic results
indicate that, as one might expect, the 2-bit dynamic
scheme is moving instructions from the Increase, No
Change and Decrease categories into one of the C/NA
categories. Overall, this shift increased the average
number of memory references by 92.15%.

As with the first static scheme, the 2-bit miss predic-
tion scheme is too aggressive in classifying instructions as
C/NA. Too quickly marking an instruction as C/NA
results in the large 92% increase in memory references.
As a next step, we modified the 2-bit scheme to mimic the
Improved Static scheme. In the Improved Dynamic
scheme, each line of the cache has associated with it the
address of the load instruction that brought that line into

Table 7: Analysis of Average Memory Reference Activity - Dynamic 2-bit Counter Scheme

Instruction Number of | % of |Memory Refs Pre- Memory Refs Post-Transformation Chan
Classification Instructions | Refs | Transformation C/NA Non-C/NA ge

<5 CNA 762 33% 66,335,966 44,468,025 35,402,802 20.40%}
5-95 CNA 359 6% 21,741,685 74,689,601 4,450,122 264.00%
>95 CNA 509 15% 61618437 174,892,281 219,579 184.19%
Increased Miss Rate 292 5% 1,264,062 - 1,833,090 45.02%
No Change 2,999 21% 8,624,533 - 8,624,533 0.00%
Decreased Miss Rate 507 20% 24,824,073 - 9,764,111 -60.67%
Not Referenced 16,054 - - - - -
Total 21483 | 100% | 184,408,757 294,049,907 60294238 | 92.15%]

100

Table 8: Analysis of Average Memory Reference Activity - Improved Dynamic 2-bit Counter Scheme

Instruction Number of | % of | Memory Refs Pre- Memory Refs Post-Transformation Ch
Classification Instructions | Refs | Transformation C/NA Non-C/NA ange
<SCNA 127 13% 40,882,222 7444975 33,045,760 0.96%
5-95 CNA 27 1% 13,190,156 10,163,917 3,245,702 1.66%
> 95 CNA 60 3% 16,139,174 22,274,664 108,829 38.69%
Increased Miss Rate 294 7% 10,322,771 - 14,972,303 45.04%
No Change 4,263 49% 59,529,909 - 59,529,909 0.00%
Decreased Miss Rate 657 27% 49,787,636 - 36,480,045 -26.73%
Not Referenced 16,054 - - - - -
Total 21,483 100% 189,851,867 39,883,556 147,382,549 -1.36%
the cache. On a cache hit, the 2-bit counter associated
with the instraction that caused the hit is decremented and 0.84 i Rate (infinite Tabie) 0.0
in addition, the 2-bit counter associated with the instruc- 083 + N\ | ---A---HitRate (Fixed Table)
tion that brought the cache line into the cache is also 082} \| —@——Bandwidih (Infinite Table) || 555
decremented. Thus, those instructions that do useful pre- 08t | «— — — —Bandwidth (Fixed Table) o 5
fetching of data for other instructions are not marked as 0s0 1 Be >« 080g
C/NA. Results of simulations using the Improved g AN . 5
Dynamic 2-bit miss prediction table are shown in Table 8. £01 ¥ N T~ T T 0'75§§
.] Eos | ¢—0—R——0—0—@ —
As can be seen in Table 8, the number of instruc- o A 0702
tions that are placed in the C/NA category is much smaller T .. 8
when compared with those in Table 7. This results in 0.76 + Avep .. 1osss
reducing the number of memory references such that there 075 o—8—a—a—a—=a 'ﬁ
is actually a 1.36% decrease compared to a conventional 0.74 P M 0.60
cache. The small change in the number of memory refer- - 2 3 § § 2 §
ences and the small number of instructions in the C/NA - a8 %

categories indicate that perhaps this improved strategy is
too conservative in marking instructions whose data
should not be cached.

Table 9 provides a summary of the results of an
analysis of the memory bandwidth requirements of the
dynamic schemes for each of the SPEC benchmarks. This
analysis accounts for transferring an entire cache line from
memory on a cache misses and also referencing data items
that will not be cached. The data in the table is a compu-
tation of the percentage of memory bandwidth required
compared to a conventional cache scheme that does not
use a miss prediction table. The columns of the table
show the average memory bandwidth required for 8K-byte
and 16-byte direct mapped and 2-way associative caches
using the 2-bit dynamic and improved dynamic strategies.

The results in Table 9 indicate that the bandwidth
requirements of the dynamic schemes are not reduced as
substantially as with the static schemes. This makes sense
since with the static schemes, we have more information
when marking which instructions should be C/NA.
Nonetheless, for most programs the bandwidth require-
ments are reduced, and in several cases the reductions are
substantial. Furthermore, the data in Tables 7-10 indicate
the trade-offs between caching data items and the resultant
bandwidth requirements. With the more aggressive
dynamic strategy, where more instructions are marked
C/NA, there is more memory activity. However, the

101

Table Size (4-Way Set Associative)

Figure 1. Performance of Fixed Size Miss
Prediction Buffer Using 2-bit Dynamic Prediction

memory activity is for a single data item instead of an
entire cache line. Thus, there is a reduction in the required
memory bandwidth. On the other hand, with the
Improved Dynamic strategy, there is less memory activity,
but the required memory bandwidth is higher than the sim-
ple dynamic scheme (though still less than the require-
ments of an unmodified cache) since the memory activity
involves more fetches of entire cache lines.

The final set of experiments that we performed
involved fixing the size of the miss prediction table. For
this set of experiments we looked at a direct mapped cache
of 8K-bytes using the first dynamic prediction strategy.
The miss prediction table was fixed 4-way set associative,
while the table size was varied. The results of these
experiments are summarized in Figure 1.

In Figure 1, we have plotted the table size on hor-
izontal axis, while the hit rate in the table and the resultant
bandwidth requirements are plotted on the vertical axis.
As can be seen in the center of the figure, a miss table of
256 entries reduces the average memory bandwidth
requirements to a value very close to what one would get
with an infinitely large miss prediction table.

Table 9: Change in Cache Hit Rate and Memory Bandwidth After Removal of Instructions (Improved Dynamic)

% Change in Cache Hit Rate % Change in Memory Bandwidth Requirements
Bench- |[[# of C/NA}{ 8K-byte Cache | 16K-byte Cache 8K-byte Cache 16K-byte Cache

mark |lInstructions|| Direct | 2-way | Direct | 2-way Direct 2-way Direct 2-way
compress 7-7 036 | -0.57 -0.39 -0.75 -50.31 -63.69 -45.45 -38.86
eqntott 52-73 005 | 003 || -0.11 -0.11 -20.23 -24.79 -20.60 -24.16
espresso.cps|| 120-247 || -0.25 | -0.30 || -0.13 0.13 -71.54 -8.54 -6.87 -8.72
espresso.tail | 75-204 || -0.01 | -0.16 || -0.03 -0.57 -1.04 -0.80 -0.23 -0.43
espresso.ti 180-315 || -0.02 0.31 0.02 0.29 -14.43 -18.17 -13.59 -17.96
gcc.insn 291-551 || -0.29 | -040 || -0.27 -0.64 -8.30 -8.50 -6.32 -6.75
gcc.integratell 310-595 || -0.09 | -0.44 | -0.10 -0.58 -8.78 -8.48 -6.66 -5.91
gce.stmt 338-676 || -0.02 | -0.35 | -0.06 -046 -1.72 -7.19 -5.95 -5.40
gcc.tree 200-481 006 | -0.23 |[-0.01 -0.49 -6.95 -6.99 -5.82 -5.13
li 4791 -0.05 0.22 0.03 0.25 -1.36 -1.04 -10.14 -0.38
sc.loadal 66-137 <722 | 546 || -6.30 -5.32 -54.99 -52.64 -54.17 -52.94
sc.Joada2 85-155 606 | -3.85 || -5.85 4.09 -51.02 -43.57 -51.46 -43.09
sc.Joada3 38-91 -1.71 0.13 || -093 0.24 -46.88 -58.07 -50.29 -62.59
Int Ave -124 | 086 || -1.10 -0.93 -21.97 -23.27 -2135 -22.49
doduc 8-24 0.32 1.09 0.31 -0.94 -5.25 -132 -645 -1.24
ear 1-8 0.02 0.05 0.09 -0.23 -0.50 212 -139 -2.35
fpppp 84-97 -0.08 | 078 || -0.19 -0.98 -1.15 437 3.10 -3.82
hydro2d 82-135 0.13 | -0.34 0.17 -1.05 -3.21 -0.08 -3.08 -0.05
mdljdp2 17-21 -0.04 0.77 || -0.01 0.22 -0.82 -0.92 -0.58 -0.51
mdljsp2 12-14 0.00 0.61 0.00 0.06 -0.15 -0.13 -0.12 0.01
nasa 317-354 § -0.15 | -0.02 || -2.88 -4.73 -51.68 -50.01 4734 -44.59
ora 3-3 0.00 0.00 0.00 0.00 0.00 -0.09 0.00 0.18
spice2g6 236-301 || 4.09 | -3.56 || -4.17 -4.56 -27.39 -25.86 -17.34 -16.68
su2cor 318-1267 || 2.62 | 26.09 1.08 15.73 -24.86 0.72 -16.75 0.33
swm256 46-50 000 | 24.21 0.00 0.59 -046 -1.53 -1.49 -1.60
tomcatv 1-39 486 | 2583 || -1.18 1.82 -13.69 0.00 -3.21 0.00
waves 96-125 -1.46 1.21 || -1.31 -0.97 -5.07 -7.49 -0.97 -0.10
FP Ave -0.58 578 || -0.62 0.38 -10.33 -6.84 -7.82 -5.42

6. Conclusions and Future Work

In this work, we have investigated the potential for
improving average data access time by being more selec-
tive in what data items are cached. This work was
motivated by the apparent limitations in the size, organiza-
tion and speed of first level data caches. To make the data
cache smarter with what items it caches, we first examined
and analyzed which instructions generated data cache
misses. In this analysis, we confirmed and expanded on
the results of other work that indicates a very small
number of instructions are responsible for a very large
percentage of data cache misses.

Based on this observation, we analyzed the impact
on cache and memory system performance if certain data
items were not cached. In the first part of our simulation
studies, we determined whether an instruction’s data item
should be cached by performing a static analysis of pro-
gram behavior. The results of these studies indicate that
the amount of memory activity, the required memory
bandwidth, could be substantially reduced by not caching
all data items.

102

Since this static analysis requires executing the
entire program and marking which instructions should
have their data cached, we then looked at dynamic
schemes that could dynamically detect which data items
should be cached. The dynamic schemes we investigated
are based on 2-bit branch prediction schemes. Instead of a
branch prediction table, we have a miss prediction table
that holds a 2-bit counter associated with load and store
instructions. We investigated two 2-bit miss prediction
strategies. Both of these strategies offered a reduction in a
program’s memory bandwidth requirements. However,
neither dynamic scheme performed as well as the our
improved static scheme.

We have performed a preliminary study of the feasi-
bility of incorporating a hardware-based speculative pre-
fetch unit to extend this work. Caches work well in
exploiting the spatial and temporal locality of certain data
references, but fail when locality is missing. Prefetch
works well when there is regularity in the access pattern
regardless of locality. By incorporating a hardware pre-
fetch unit for C/NA items, it may be possible to hide the

latency of even those loads that have little locality.

Another possible application of a dynamic scheme
similar to the one described in this paper involves dynami-
cally configuring a cache coherence protocol to fit the
requirements for each load instruction; instructions that
are likely to share data could use a different protocol from
those that access local data.

We believe that using a method of dynamic
configuration of cache operations like the one described in
this paper can have broad applicability. Similar schemes
can not only improve the performance of the cache, but
can allow for other hardware based memory enhance-
ments to be selectively applied.

7. References

[ASWR93] S. G. Abraham, R. A. Sugumar, D. Windheiser, B.

[CaG194]

[CaPo}

[ChBa%35]

[EKPP93]

[FiFr92]

[Joup90]

[KILe91]

R. Rau and R. Gupta, *‘Predictability of Load/Store
Instruction Latencies’’, Proceedings of the 26th
Annual International Symposium on
Microarchitecture, Austin, Texas (December 1-3,
1993), pp. 139-152.

B. Calder and D. Grunwald, “‘Fast and Accurate
Instruction Fetch and Branch Prediction”,
Proceedings of the 21st Annual International

Symposium on Computer Architecture, Chicago,
Dlfinois (April 18-21, 1994), pp. 2-11.

D. Callahan and A. Porterfield, ‘‘Data Cache
Performance and Supercomputer Applications’,
Proceedings of Supercomputing ’90, pp. 564-572.

T. Chen and J. Baer, ‘‘Effective Hardware Based
Data Prefetching for High-Performance
Processors’’, IEEE Transactions on Computers,
vol.44,n0.5 (May 1995), pp. 609-623.

P. G. Emma, J. W. Knight, J. H. Pomerene, T. R.
Puzak and R. N. Rechtschaffen, ‘‘Cache Miss
Facility with Stored Sequences for Data Fetching”’,
US. Patent 5,233,702(Issued: August 3, 1993).

J. A. Fisher and S. M. Freudenberger, ‘Predicting
Conditional Branch Directions from Previous Runs
of & Program’’, Proceedings of the Fifth
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Boston, MA (October 12-15, 1992), pp.
85-95.

. N. Jouppi, ‘‘Improving Direct-Mapped Cache

Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers”,
Proceedings of the Seventeenth Annual
International Symposium on Computer
Architecture, vol. 18, no. 2 (May 1990), pp.
364-373.

A. C. Klaiber and H. M. Levy, ‘“‘An Architecture
for Software-Controlled Data Prefetching”,

103

[MuQE91]

[PaS92]

[Smit81]

[SrWa94]

[WaRP92]

[YeP91]

[YeP92]

[YeP93]

Proceedings of the Eighteenth Annual International
Symposium on Computer Architecture, Toronto,
Canada (May 27-30, 1991), pp. 43-53.

J. M. Mulder, N. T. Quach and M. J. Flynn, *‘An
Area Model for On-Chip Memories and its
Application”’, IEEE Journal of Solid-State Circuits,
vol. 26,n0.2 (February 1991), pp. 98-105.

S. Pan, K. So and J. T. Rahmeh, “‘Improving the
Accuracy of Dynamic Branch Prediction Using
Branch Correlation’’, Proceedings of the Fifth
International Conference on Architectural Support
for Programming Languages and Operating
Systems, Boston, MA (October 12-15, 1992), pp.
76-84.

J. E. Smith, ““A Study of Branch Prediction
Strategies’’, Proceedings of the Eighth Annual
International ~ Symposium on Computer
Architecture, Minneapolis, Minnesota (May 1981),
pp. 135-148.

A. Srivastava and D. W. Wall, “‘Atom: A system
for building customized program analysis tools’’,
Proceedings of the ACM SIGPLAN Notices 1994
Conference on Programming Languages and
Implementations(June 1994), pp. 196-205.

T. Wada, S. Rajan and S. A. Przybylski, ‘‘An
Analytical Access Time Model for On-Chip Cache
Memories’’, IEEE Journal of Solid-State Circuits,
vol.27,n0.8 (August 1992), pp. 1147-1156.

T. Yeh and Y. Patt, ‘“Two-Level Adaptive Training
Branch Prediction’’, Proceedings of the 24ih
Annual International Symposium on
Microarchitecture, Albuquerque, New Mexico
(November 18-20, 1991), pp. 51-61.

T. Yeh and Y. Patt, *‘Alternative Implementations
of Two-Level Adaptive Training Branch
Prediction”’, Proceedings of the Nineteenth Annual
International ~ Symposium on Computer
Architecture, Queensland, Australia (May 19-21,
1992), pp. 124-134,

T. Yeh and Y. Patt, *“‘A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch
History’’, Proceedings of the Twentieth Annual
International Symposium on Computer
Architecture, San Diego, CA (May 16-19, 1993),
pp. 257-266.

