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Abstract
Extracting high-performance from the emerging Chip Multiproces-
sors (CMPs) requires that the application be divided into multiple
threads. Each thread executes on a separate core thereby increas-
ing concurrency and improving performance. As the number of
cores on a CMP continues to increase, the performance of some
multi-threaded applications will benefit from the increased num-
ber of threads, whereas, the performance of other multi-threaded
applications will become limited by data-synchronizationand
off-chip bandwidth. For applications that get limited by data-
synchronization, increasing the number of threads significantly
degrades performance and increases on-chip power. Similarly, for
applications that get limited by off-chip bandwidth, increasing the
number of threads increases on-chip power without providing any
performance improvement. Furthermore, whether an application
gets limited by data-synchronization, or bandwidth, or neither de-
pends not only on the application but also on the input set and
the machine configuration. Therefore, controlling the number of
threads based on the run-time behavior of the application can sig-
nificantly improve performance and reduce power.

This paper proposesFeedback-Driven Threading (FDT), a
framework to dynamically control the number of threads using run-
time information. FDT can be used to implementSynchronization-
Aware Threading (SAT), which predicts the optimal number of
threads depending on the amount of data-synchronization. Our
evaluation shows that SAT can reduce both execution time and
power by up to 66% and 78% respectively. Similarly, FDT can be
used to implementBandwidth-Aware Threading (BAT), which pre-
dicts the minimum number of threads required to saturate theoff-
chip bus. Our evaluation shows that BAT reduces on-chip power
by up to 78%. When SAT and BAT are combined, the average
execution time reduces by 17% and power reduces by 59%. The
proposed techniques leverage existing performance counters and
require minimal support from the threading library.

Categories and Subject Descriptors:
C.0 [General]: System architectures.
General Terms: Design, Performance.
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1. Introduction
It has become difficult to build large monolithic processorsbe-
cause of excessive design complexity and high power require-
ments. Consequently, industry [17] [19] [1] [31] has shifted to
Chip-Multiprocessor (CMP) architectures that tile multiple simpler
processor cores on a single chip. Industry trends [1] [31] show that
the number of cores will increase every process generation.How-
ever, because of the power constraints, each core on a CMP is ex-
pected to become simpler and power-efficient, and will have lower
performance. Therefore, performance of single-threaded applica-
tions may not increase with every process generation. To extract
high performance from such architectures, the applicationmust be
divided into multiple entities calledthreads. Such applications are
called multi-threaded applications. In multi-threaded applications,
threads operate on different portions of the same problem which in-
creases concurrency of execution. Multi-threaded applications can
broadly be classified into two categories [10]. First, when multi-
threading is done for the ease of programming and the number of
threads is fixed (for example, producer-consumer threads).Second,
when multi-threading is done solely for performance (for example,
matrix multiply) and changing the number of threads does notim-
pact correctness. Unfortunately, the performance of multi-threaded
applications does not always increase with the number of threads
because concurrently executing threads compete for shareddata
(data-synchronization) and shared resources (e.g. off-chip bus).
This paper analyzes techniques for choosing the best numberof
threads for the applications in the second category.

The number of threads for a given application can be set stat-
ically using profile information. However, we show that the best
number of threads for a given application can change significantly
with input set and machine configuration. With CMPs becoming
common, general purpose applications are being parallelized. Such
applications are expected to perform well across differentinput
sets and on varied machine configurations. Current systems set the
number of threads to be equal to the number of available proces-
sors [33][2][29], unless informed otherwise. This approach implic-
itly assumes that increasing the number of threads always improves
performance. However, when the performance of an application is
limited by the contention for shared data or bus bandwidth, addi-
tional threads do not improve performance. In such cases, these
threads only waste on-chip power. Furthermore, we show thatthe
increase in contention for shared data due to additional threads can,
in fact, increase execution time. Therefore, once the system gets
limited by data-synchronization, further increasing the number of
threads worsens both power and performance. Thus, for power-
efficient and high-performance execution of multi-threaded appli-
cations, it is important to choose the right number of threads. How-
ever, whether an application gets limited by data-synchronization,
or bandwidth, or neither is a function not only of the application
but also of the input set and the machine configuration. Therefore,
a mechanism that can control the number of threads at run-time,



depending on the application behavior, can significantly improve
performance and reduce power. This paper proposesFeedback-
Driven Threading (FDT), a framework that dynamically controls
the number of threads using run-time information. FDT samples
a small fraction of the parallelized kernels to estimate theapplica-
tion behavior. Based on this information, it estimates the number of
threads at which the performance of the kernel saturates. FDT is a
general framework which can handle several performance limiters.
While it is desirable to have a scheme that can handle all perfor-
mance bottlenecks, designing such a scheme may be intractable.
Therefore, in this paper, we use the FDT framework to address
the two major performance limiters: data-synchronizationand bus
bandwidth. Possible future work can extend FDT to handle other
performance limiters such as contention for on-chip cachesand on-
chip interconnect.

Shared data in a multi-threaded application is kept synchronized
using critical sections. The semantics of a critical section dictate
that only one thread can be executing it at any given time. When
each thread is required to execute the critical section, thetotal time
spent in the critical section increases linearly with the number of
threads. The increase in time spent in the critical section can off-
set the performance benefit obtained from the additional thread.
In such cases, further increasing the number of threads worsens
both power and performance. In Section 4, we propose an analyt-
ical model to analyze the performance of a data-synchronization
limited application. We use this model along with the FDT frame-
work to implementSynchronization-Aware Threading (SAT). SAT
can estimate the optimal number of threads at run-time depending
on the time spent in critical sections. For multi-threaded workloads
that are limited by data-synchronization, SAT reduces bothexecu-
tion time and power by up to 66% and 81% respectively.

For data-parallel applications where there is negligible data
sharing, the major performance limiter tends to be the off-chip
bandwidth. In such applications, demand for the off-chip band-
width increases linearly with the number of on-chip cores. Unfor-
tunately, off-chip bandwidth is not expected to increase atthe same
rate as the number of cores because it is limited by the numberof
I/O pins [12]. Therefore, performance of data-parallel applications
is likely to be limited by the off-chip bandwidth. Once the off-chip
bandwidth saturates, additional threads do not contributeto perfor-
mance while still consuming power. In Section 5, we propose an
analytical model to analyze the performance of bandwidth-limited
applications. We use this model along with the FDT frameworkto
implementBandwidth-Aware Threading (BAT). BAT can estimate
the minimum number of threads required to saturate the off-chip
bus. Our evaluation shows that BAT reduces on-chip power by up
to 78% without increasing the execution time.

The two techniques, BAT and SAT, can be combined. Our eval-
uation with 12 multi-threaded applications shows that the combi-
nation reduces the average execution time by 17% and the average
power by 59%. The proposed techniques leverage existing perfor-
mance counters and require minimal support from the threading
library.

2. Overview
Current systems set the number of threads equal to the number
of cores [33][2][29]. While some applications benefit from alarge
number of threads, others do not. The two major factors that limit
the performance of such applications are data-synchronization and
off-chip bandwidth. This section describes these two limitations
in detail. It also provides an overview of the proposed solution
for high-performance and power-efficient execution under these
limitations.

2.1 Limitations Due to Data-Synchronization

For multi-threaded applications, programmers ensure ordering of
accesses to shared data usingcritical sections. A critical section is
implemented such that only one thread can execute it at a given
time. Therefore, all executions of a critical section get serialized.
When all threads try to execute the critical section, the total time
spent in executing the critical sections increases linearly with the
number of threads. Furthermore, as the number of threads increase,
the fraction of execution time spent in the parallelized portion of
the code reduces. Thus, as the number of threads increase, the total
time spent in the critical sections increases and the total time spent
outside critical sections decreases. Consequently, critical sections
begin to dominate the execution time and the overall execution time
starts to increase.

  

Critical Section:
/* Serial part of the function */

UpdateLocalHistogram(Fraction of Page)
/* Parallel part of the function */

GetPageHistogram(Page *P)

    Add local histogram to global histogram

For each thread: {

Barrier

Return global histogram

}

Figure 1. A function from PageMine that counts the occurrence
of each ASCII character on a page of text

Figure 1 shows a function fromPageMine1 that counts the
number of times each ASCII character occurs on a page of text.
This function divides the work acrossT threads, each of which
gathers the histograms for its portion of the page (PageSize/T )
and adds it to the global histogram. Updates to the local histogram
can execute in parallel without requiring data-synchronization. On
the other hand, updates to the global histogram, which is a shared
data-structure, are guarded by a critical section. Therefore, one and
only one thread can update the global histogram at a given time.
As the number of threads increase, the fraction of executiontime
spent in gathering local histograms decreases because eachthread
has to process a smaller fraction of the page. Whereas, the number
of updates to the global histogram increases, which increases the
total time spent in updating the global histogram.

Figure 2 shows the normalized execution time ofPageMine

as the number of threads are increased from 1 to 32 (Section 3
describes our experimental methodology). The execution time de-
creases until 4 threads and increases substantially beyond6 threads
because the time spent in the critical section begins to dominate
the overall execution time. Therefore, having more than sixthreads
worsens both performance and power. A mechanism that can con-
trol the number of threads based on the fraction of time spentin crit-
ical sections can improve both performance and power-efficiency.

1 The code forPageMine is derived from the data mining benchmark
rsearchk [26]. This kernel generates a histogram, which is used as a
signature to find a page similar to a query page. This kernel iscalled
iteratively until the distance between the signatures of the query page and
a page in the document is less than the threshold. In our experiments, we
assume a page-size of 5280 characters (66 lines of 80 characters each) and
the histograms consists of 128 integers, one for each ASCII character.
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Figure 2. Execution time normalized with respect to one thread
for PageMine

2.2 Limitations Due to Off-Chip Bus Bandwidth

Data-synchronization does not affect all applications. For exam-
ple, data-parallel applications where threads operate on separate
data require negligible data-synchronization. For such applications,
contention for shared resources that do not scale with the num-
ber of threads is more likely to limit performance. One such re-
source is the off-chip bandwidth. For applications with negligible
data sharing, the demand for off-chip bandwidth increases linearly
with the number of threads. However, the off-chip bandwidthis not
expected to increase as the number of cores because it is limited by
the number of I/O pins [12]. Therefore, these applications become
off-chip bandwidth limited. Once the off-chip bus saturates, no fur-
ther performance improvement can be achieved by increasingthe
number of threads. Thus, the performance of an off-chip bus lim-
ited system is governed solely by the bus bandwidth and not bythe
number of threads. However, having more threads than required to
saturate the bus only consume on-chip power without contributing
to performance.

for i = 1 to N
sum = sum + A[i] * A[i]

  

EuclideanDistance(Point A)

/*Parallel threads compute partial sums*/

Return sqrt(sum)

Figure 3. A function which computes Euclidean Distance (ED) of
a point from origin in an N-dimensional space

Figure 3 shows a function which computes the Euclidean Dis-
tance (ED) of a point in an N dimensional space. The function con-
tains a data-parallel loop which can easily be distributed across
multiple threads with negligible data-synchronization. As the num-
ber of threads increase, more iterations are executed in parallel
which reduces the execution time until the off-chip bandwidth uti-
lization is 100%. Once the system is bandwidth limited, no further
performance improvement is obtained.

Figure 4a shows the normalized execution time ofED (N=100M)
as the number of threads increase from 1 to 32. The execution
time reduces until 8 threads and then becomes constant. Withmul-
tiple threads, the demand for off-chip bus increases linearly. Fig-
ure 4b shows the bandwidth utilization of this loop as the number
of threads increase from 1 to 32. Until 8 threads, the bandwidth uti-
lization increases linearly and then stays at 100% for more threads.
Therefore, having more than 8 threads does not reduce execution
time. However, more threads increase on-chip power consumption
which increases linearly with the number of threads. A threading
scheme that is sensitive to bandwidth consumption will avoid such
extraneous threads that consume power without improving perfor-
mance.
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Figure 4. (a) Normalized execution time with respect to one thread
for ED. (b) Bandwidth utilization ofED

2.3 Solution: Feedback-Driven Threading

For power-efficient and high-performance execution of multi-
threaded workloads, we proposeFeedback-Driven Threading (FDT).
Figure 5 shows an overview of the FDT framework. Unlike conven-
tional threading, which statically divides the work into a fixed num-
ber of threads, FDT dynamically estimates the number of threads
at which the performance saturates. FDT samples some portion
of the application to estimate the application behavior. For exam-
ple, if the system is likely to be bandwidth limited, FDT measures
bandwidth utilization during the training phase. After thetrain-
ing, FDT decides the number of threads based on this information.
While FDT is a general framework, this paper uses it to address
the two major performance limiters: data-synchronizationand bus
bandwidth. For high performance and power-efficient execution of
workloads that are limited by data-synchronization, the FDT frame-
work can be used to implementSynchronization-Aware Threading
(Section 4). Similarly, for power-efficient execution of bandwidth-
limited workloads, the FDT framework can be used to implement
Bandwidth-Aware Threading (Section 5). We present our experi-
mental methodology before we describe these two techniques.

(b) Conventional threading uses N threads

(c)   Feedback−Driven Threading

application behavior

Choose number of threads

K threads
Execute on

(K<=N)

based on train information

Train to sample

(a) Program to be executed
on a system with N cores

Figure 5. Overview of Feedback-Driven Threading



3. Experimental Methodology
3.1 Configuration

For our experiments we use a cycle-accurate x86 simulator. Con-
figuration of the simulated machine is shown in Table 1. We sim-
ulate a CMP system with 32 cores. Each core is two-wide issue,
in-order, with private L1 and L2 caches. The L3 cache is 8MB and
is shared among all cores. Memory is 200 cycles away and contains
32 banks. The off-chip bus is capable of servicing one cache line
every 32 cycles at its peak bandwidth. For power measurements,
we count the number of cores that are active in a given cycle and
the power is computed as the average of this value over the entire
execution time.

System 32-core CMP with shared L3 cache
In-order, 2-wide, 5-stage pipeline, 4-KB Gshare

Core 8KB write-through private I and D cache
64KB, 4-way associative, inclusive private L2 cache

On-chip Bi-directional ring. Separate control and data ring
Interconnect 64-byte wide, 1-cycle hop latency
Coherence Distributed directory-based MESI
Shared 8MB, 8-way associative with 8 banks,
L3 cache 20-cycle, 64-byte cache lines, LRU replacement
Memory 4:1 cpu/bus ratio, 64-bit wide, split-transaction
Data Bus pipelined bus, 40 -cycle latency
Memory 32 DRAM banks, approx. 200 cycle bank access,

bank conflicts, open/close pages, row buffers modeled

Table 1. Configuration of the simulated machine

3.2 Workloads

We simulate 12 multi-threaded applications from differentdo-
mains. The applications are divided into three categories.
The performance ofPageMine, ISort[3], GSearch[9], and
EP(psuedo-random number generator)[3] is limited by data-
synchronization. Whereas, the performance ofED, convert(a unix
utility), Transpose[30], and MTwister(psuedo-random number
generator)[30] is limited by bus bandwidth. Performance ofBT[3],
MG[3], BScholes[30], andSConv[30] is limited neither by data-
synchronization nor by off-chip bandwidth. Such applications con-
tinue to benefit from more threads. We believe that such applica-
tions will drive the number of cores on future CMPs and hence
we simulate a 32-core CMP. All applications were parallelized us-
ing OpenMP [8] directives and compiled using the Intel C Com-
piler [14]. We execute all applications to completion. Table 2 shows
the description and input-set for each application.

Type Workload Problem description Input set

PageMine Data mining kernel 1000 pages
CS ISort Integer sort n = 64K

limited GSearch Search in directed graphs 10K nodes
EP Linear Congruential PRNG 262K numbers
ED Euclidean distance n = 100M

BW Convert Image processing 320x240 pixels
limited Transpose 2D Matrix transpose 512x8192

MTwister Mersenne-Twister PRNG CUDA [30]
BT Fluid Dynamics 12x12x12

Scalable MG Multi-grid solver 64x64x64
BScholes Black-Scholes Pricing CUDA [30]

SConv 2D Separable convolution 512x512

Table 2. Details of simulated workloads

4. Synchronization-Aware Threading
Critical sections serialize accesses to shared data in multi-threaded
applications. As the number of threads increase, the total time spent
in the critical section increases. Therefore, the marginalreduction
in the execution time caused by each additional thread must offset
the marginal increase in execution time due to the critical section.
We explain this phenomenon with an example. Figure 6 shows the
execution of a program which spends 20% of its execution timein
the critical section and the remaining 80% in the parallel part. The
overall execution time with one thread is 10 units.
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Critical Section
Waiting for 
Critical Section
Parallel Portion

P=1
P=2

P=4

P=8

time

Figure 6. Example for analyzing impact of critical sections

When the program is executed with two threads, the time taken
to execute the parallel part is reduced to four units while the total
time to execute the critical section increases from two to four units.
Therefore, the total execution time reduces from 10 units to8 units.
However, overall execution time reduces with additional threads
only when the benefit from reduction in the parallel part is more
than the increase in the critical section. For example, increasing the
number of threads to four reduces the time for the parallel part from
four to two units but increases the time for the critical section from
four to eight units. Therefore, increasing the number of threads
from two to four increases the overall execution time from 8 units
to 10 units. Similarly, increasing the number of threads to eight
further increases the overall execution time to 17 units.

4.1 Analytical Model

We can analyze the impact of critical sections on overall execution
time using an analytical model. LetTCS be the time spent in the
critical section andTNoCS be the time to execute theparallel part
of the program. Let,(TP ) be the time to execute the critical sections
and the parallel part of the program when there areP threads. Then,
TP can be computed as:

TP =
TNoCS

P
+ P · TCS (1)

The number of threads(PCS) required to minimize the execu-
tion time can be obtained by differentiating Equation 1 withrespect
to P and equating it to zero.

d

dP
TP = −

TNoCS

P 2
+ TCS (2)

PCS =

r

TNoCS

TCS

(3)

Equation 3 shows that(PCS) increases only as thesquare-root
of the ratio of time outside the critical section to the time inside the
critical section. Therefore, even if the critical section is small, the
system can become critical section limited with just a few threads.
For example, if the critical section accounts for only 1% of the
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while(TRAIN)

Pcs

Tnocs. It sets TRAIN to false
thread to measure Tcs and
a few iterations using one
Training loop executes

Estimate Pcs

Spawn Pcs threads to
execute

iterations
remaining

LOOP

( i>=N )

( i<N ) BODY using Tcs and Tnocs
Compute 

when training completes

LOOP
BODY

(TRAINING)

LOOP

BODY

LOOP

BODY

Figure 7. Synchronization-Aware Threading

overall execution time, the system becomes critical section limited
with just 10 threads. Moreover, having more thanPCS threads, in-
creases both execution time as well as power consumption. There-
fore, a mechanism that predictsPCS for such applications can im-
prove both performance and power-efficiency. To that end, wepro-
pose Synchronization-Aware Threading (SAT). The next Section
describes the implementation of SAT.

4.2 Implementation of SAT

The value ofPCS can be computed ifTCS andTNoCS are known.
Using the FDT framework, SAT samples a small fraction of the
application kernel to estimateTCS andTNoCS . We perform SAT
only on loop kernels that have been parallelized by the program-
mer.2 Figure 7 shows the implementation of the SAT mechanism
for a typical kernel. It consists of three parts: training, estimation,
and execution.

4.2.1 Training:

The training loop is generated using a method similar toloop peel-
ing [18]. The compiler divides the loop into two parts. The first
part, which executes only a few iterations, is used for training. To
measureTCS , the compiler inserts instructions to read the cycle
counter3 at the entry and exit of the critical section.TCS is com-
puted at runtime by calculating the difference between the two cy-
cle counts.TNoCS can be estimated if the total time to execute each
iteration is known. The execution time required for each iteration
is also measured by reading the cycle counter at the beginning and
end of the loop and taking the difference.TNoCS is computed by
subtractingTCS from the total time for one iteration. In our experi-
ments, we perform loop-peeling and instrumentation of the training
loop using a source transformation tool.

To simplify the mechanism, the training loop is always executed
in single threaded mode. Training loop is terminated if the ratio
of TCS to TNoCS is stable (within 5%) for three consecutive

2 For the applications in our studies, we identify these parallelized kernels
with the help ofOpenMP directive parallel. However, SAT is not re-
stricted to applications parallelized withOpenMP directives and can easily
be extended to other threading primitives
3 Instructions to read the on-chip cycle counter exist in mostmodern ISAs.

iterations. Otherwise, the training continues for a maximum of 1%
of the total iterations.

4.2.2 Estimation:

The estimation stage computesPCS using Equation 3 and the
values ofTCS and TNoCS measured during training. The value
of PCS is rounded to the nearest integer. The number of threads is
chosen as the minimum ofPCS and the number of cores available
on the chip.

4.2.3 Execution:

The remaining iterations of the loop are executed using the esti-
mated number of threads. This is performed in our experiments us-
ing theOpenMP clausenum threads, which allows the number of
threads to be changed at runtime.

4.3 Results

Figure 8 shows the execution time with SAT for the four applica-
tions that are limited by data-synchronization:PageMine, ISort,
GSearch, andEP. We also show the normalized execution time for
the baseline system as the number of threads is varied from 1 to
32. For all cases, the execution time with SAT is within 1% of the
minimum execution time.

ForPageMine, execution time decreases until 4 threads and be-
gins to increase beyond 6 threads. The critical section consumes
approximately 2.34% of the total execution time in each iteration
of the loop. Therefore, SAT estimates the best number of threads
to be 6.53 (rounded to 7). ForISort, the execution time is min-
imized at 7 threads, which is successfully predicted by SAT.The
main kernel inGSearch has two separate critical sections. After a
particular node and its children have been searched, threads remove
these nodes from the queue of nodes that are still to be searched.
In addition, all nodes visited by the threads are marked to avoid re-
dundant searches. Therefore, the fraction of time within the critical
section varies across iterations. On average, 3.84% of timeis spent
in the critical section. SAT trains for 1% of the iterations and cor-
rectly chooses 5 threads. ForEP, having 4 threads minimizes the
execution time while SAT predicts 5 threads.
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Figure 8. Performance of SAT. Vertical axis shows the normalized
execution time and horizontal axis shows the number of threads.

4.4 Adaptation of SAT to Application Behavior

The time spent inside and outside the critical section typically
depends on the input set. Therefore, the number of threads that
minimize execution time also varies with the input set. Figure 9
shows the number of threads that minimize execution time for
PageMine as the page-size is varied from 1KB to 25KB (default
page-size is 5.2KB). The best number of threads varies widely with
the page-size. Therefore, a solution that chooses the best number
of threads statically for one page-size will not be optimal for other
page sizes. As SAT is a run-time technique, it can adapt to changes
in the application behavior.
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Figure 9. Best number of threads vs page-size forPageMine

Figure 10 shows the normalized execution time forPageMine

for page sizes of 2.5KB and 10KB as the number of threads is
varied from 1 to 32. SAT correctly chooses the right number of
threads for both the page sizes.
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Figure 10. Performance of SAT for 2.5KB and 10KB page-size

5. Bandwidth-Aware Threading
Data-synchronization does not affect all applications. For exam-
ple, data-parallel applications where threads operate on separate
data require negligible synchronization. For such applications, the
working set is typically huge and the demand for bandwidth in-
creases linearly with the number of threads.
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Figure 11. Example for analyzing bandwidth limited systems

Figure 11 demonstrates the bandwidth usage of a typical data
parallel application. When a single thread executes, only 25% of
execution time is spent transmitting data on the off-chip bus. There-
fore, utilization of the off-chip bus is 25%. If the same loopis split
across two threads, the execution time reduces and the bus utiliza-
tion increases to 50%. Similarly, increasing the number of threads
to four further reduces execution time while saturating thebus. As
the bus is 100% utilized, the system becomes off-chip bus limited
and further increasing the number of threads from four to eight does
not reduce the execution time.

5.1 Analytical Model

We analyze the impact of off-chip bus bandwidth on overall ex-
ecution time using an analytical model. LetBU1 be the percent
bus utilization with a single thread. When the working set ofthe
application is large, the bus utilization increases linearly with the
number of threads. In such cases, the bus utilization(BUP ) with P
threads can be computed as:

BUP = P · BU1 (4)

WhenBUP becomes 100%, the system becomes off-chip band-
width limited. Therefore, the number of threads (PBW ) required to
saturate the bus can be computed as:

PBW =
100

BU1

(5)

Thus, if a single thread utilizes the off-chip bus for 10% of the time,
then the system will become off-chip bandwidth limited for more
than 10 threads. Once the number of threads is sufficient to saturate
the bus, the performance of the system becomes a function of bus
speed rather than the number of threads. IfT1 is the time to execute
theparallel part of the program with one thread, then the execution
time (TP ) with P threads is:

TP =

(

T1

P
P ≤ PBW ,

T1

PBW

P > PBW .
(6)

Increasing the number of threads beyondPBW does not reduce
execution time, however, it does increase the on-chip power. There-
fore, a mechanism that can estimatePBW for such applications
can reduce the on-chip power. To this end, we proposeBandwidth-
Aware Threading (BAT). The next section describes the implemen-
tation of BAT.



5.2 Implementation of BAT

The value ofPBW can be computed ifBU1 is known. BAT uses the
FDT framework to estimate the value ofBU1 and is implemented
similar to SAT, except for three differences:

1. Training: The training loop has code to measure the off-chip bus
utilization. The number of cycles the off-chip bus is utilized is
measured by reading a performance monitoring counter4 at the
start and end of the loop. The difference in the two readings
denotes the number of cycles the off-chip bus is busy. The total
time to execute each iteration is measured similarly by reading
the cycle counter and taking the difference. Bus utilization is
computed as the ratio of the bus busy cycles to the total cycles.

2. Termination: Training terminates after at most 1% of the loop
iterations are executed. Additionally, after 10000 cycles, if the
product of the average bus utilization times the number of
cores available on chip is less than 100%, BAT predicts that
the system can not become bandwidth limited and training
terminates.

3. Estimation: The estimation stage computesPBW using Equa-
tion 5 and the value ofBU1. PBW is rounded up to the next
integer because a higher number of threads may not hurt per-
formance while a smaller number can. The number of threads
is chosen as the minimum ofPBW and the number of cores
available on the chip.

5.3 Results

Figure 12 shows the execution time with BAT for the four ap-
plications that are limited by off-chip bandwidth:ED, convert,
Transpose, andMTwister. We also show the normalized execu-
tion time for the baseline system as the number of threads is varied
from 1 to 32. For all cases, the execution time with BAT is within
3% of the minimum execution time.
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Figure 12. Performance of BAT. Vertical axis denotes normalized
execution time and horizontal axis the number of threads.

The kernel inED incurs a miss every 225 cycles on average. The
bus utilization with a single thread is approximately 14.3%. The ex-
ecution time is minimum with 8 threads, however, BAT predicts 7
threads. This occurs because BAT assumes that bandwidth utiliza-
tion increases linearly with the number of threads. However, the
contention for other shared resources like on-chip cache, on-chip

4 Counters to track the number of cycles the off-chip bus is busy already ex-
ist in some of the current processors. For example, theBUS DRDY CLOCKS

counter in the Intel Core2Duo [23] processor and theBUS DATA CYCLE

counter in Intel Itanium2 [16] processor . If such a counter does not cur-
rently exist in the system, then the performance monitoringframework can
easily be extended to report this information.

interconnect, dram-bank causes the bandwidth utilizationto scale
slightly sub-linearly. Nevertheless, the execution time of BAT with
7 threads is similar to that with 8.

The kernel inconvert computes one row of the output image
at a time and writes it to a buffer. Both reading and writing the
image consumes off-chip bandwidth. As bus utilization witha
single thread is approximately 5.8%, BAT predicts 17 threads. The
execution time with BAT is similar to the minimum execution time,
which occurs with 18 threads.

The data-parallel kernel inTranspose computes the transpose
of a matrix. Each thread operates on a different column of the
matrix and bus utilization is high (12.2% with a single thread).
BAT predicts 8 threads which is similar to the minimum number
of threads that cause the bus utilization to reach 100%.

MTwister includes two data-parallel kernels. The first kernel
implements a Mersenne-Twister random number generator [24].
The second kernel applies the Box-Muller transformation [4] on the
random numbers generated by the first kernel. The data set does not
fit in the L3 cache. The performance of the first kernel continues to
scale until 32 threads. However, performance of the second kernel
saturates at 12 threads due to bandwidth limitation. Thus, the two
kernels require different number of threads and staticallychoosing
a fixed number of threads for the whole program cannot lead to
minimum power. BAT correctly predicts the number of threadsto
be 32 for the first kernel and 12 for the second kernel, reducing the
average number of threads to 21. Thus, BAT saves power without
impacting the execution time.

The results show that BAT correctly estimates the minimum
number of threads required to saturate the off-chip bandwidth.
BAT can significantly reduce on-chip power for such applications
because on-chip power consumed in cores is directly proportional
to the number of active cores. Compared to the case where as many
threads are used as the number of on-chip cores, BAT reduces the
power consumed in the cores by 78% forED, 47% forconvert,
75% forTranspose, and 31% forMTwister. Additionally, as BAT
does not impact execution time significantly, the savings inpower
can be directly interpreted as savings in energy.

5.4 Adaptation of BAT to Machine Configuration

The minimum number of threads required to saturate the bus is
dependent on the system bus bandwidth. Figure 13 shows the nor-
malized execution time forconvert as the number of threads is
varied from 1 to 32 for two systems: first with one-half the band-
width of the baseline machine and the second with double the band-
width. For the first system, the execution time saturates at 8threads,
whereas, for the second system it continues to decrease. Therefore,
a solution that statically chooses the number of threads required
to saturate the bus bandwidth of one system can, in fact, hurtper-
formance for another system. For example, using 8 threads for the
second system doubles its execution time. BAT computes the num-
ber of threads required to saturate the bus at runtime, therefore, it
is robust to changes in the machine configuration. For the twosys-
tems, BAT correctly predicts the number of threads as 8 and 32.
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Figure 13. Performance of BAT as off-chip bandwidth is varied
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Figure 15. Execution time and power for (SAT+BAT) and an oracle scheme.The values are normalized to 32 threads.

6. Combining SAT and BAT using FDT
SAT reduces execution time and power consumption for data-
synchronization limited workloads while BAT saves power for
bandwidth-limited workloads. Both techniques can be combined
within the FDT framework. The best number of threads computed
by BAT and SAT for a given application can be different. In such
cases, we choose the minimum of the two values. It can be proved
that choosing the minimum of the two values minimizes overall
execution time. The proof is included in the Appendix.

6.1 Implementation

To combine SAT and BAT the values ofPCS andPBW are com-
puted at runtime using the FDT framework. The implementation
remains the same as explained in Section 4.2 and Section 5.2,ex-
cept for three differences. First, the training loop measures the in-
puts required for both SAT and BAT. Second, the training loopdoes
not terminate until the training for both SAT and BAT is complete.
Third, the number of threadsPF DT is computed using equation 7.

PF DT = MIN(PBW , PCS , num available cores) (7)

6.2 Results

Figure 14 shows the execution time and power with the combina-
tion (SAT+BAT) normalized to the case of conventional threading
which spawns as many threads as available cores (32 in our study).
The applications are grouped depending on whether they are lim-
ited by data-synchronization (PageMine, ISort, GSearch, EP), or
bandwidth (ED, convert, Transpose, MTwister), or neither (BT,
MG, BScholes, SConv). The bar labeledgmean shows the geomet-
ric mean measured over all the 12 applications.

As expected, (SAT+BAT) combines the performance and power
benefits of the two schemes. For all four data-synchronization lim-

ited applications, significant reduction in both executiontime and
power is achieved. For all four bandwidth limited applications, a
significant power reduction is achieved. Forconvert, increasing
the number of threads increases the L3 cache misses for each of
the individual threads. Therefore, curtailing the number of threads
to 17 reduces both power as well as execution time. For the four
applications limited neither by data-synchronization noroff-chip
bandwidth, FDT retains the performance benefits of more threads
by always choosing 32 threads. Therefore, it affects neither the ex-
ecution time nor the power consumption. On average, (SAT+BAT)
reduces the execution time by 17% and power by 59%.

6.3 Comparison with Best Static Policy

We also compare (SAT+BAT) to an oracle scheme that statically
sets the number of threads using off-line information. We imple-
mented the oracle scheme by simulating the application for all pos-
sible number of threads and selecting the fewest number of threads
required to be within 1% of the minimum execution time. Figure 15
shows the execution time and power for (SAT+BAT) and the ora-
cle scheme, normalized to the case when there are 32 threads.For
MTwister, (SAT+BAT) reduces power by 31% compared to the or-
acle scheme.MTwister contains two kernels. For the first kernel,
the best number of threads is 32 and for the second kernel, thebest
number of threads is 12. The oracle scheme chooses 32 threadsfor
the whole program, whereas, (SAT+BAT) chooses 32 threads for
the first kernel and 12 threads for the second kernel. For all other
applications, the execution time and power with (SAT+BAT) is sim-
ilar to the oracle scheme. However, (SAT+BAT) has the advantage
that it does not require any prior information about the application
and is robust to changes in the input set (Section 4.4) and machine
configuration (Section 5.4).



7. Related Work
With multi-core architectures becoming mainstream, industry has
started to focus on multi-threaded applications. Several tools have
been released in the recent past for improving the performance of
such applications. For example, the Intel Vtune performance an-
alyzer [15] enables the programmers to analyze and tune multi-
threaded applications. Published guidelines [11] [13] that accom-
pany such tools encourage programmers to carefully choose the
number of threads taking thread-spawning overhead and synchro-
nization overhead into account. OpenMP [8], a popular parallel
programming paradigm, includes an optionOMP DYNAMIC, which
allows the runtime library to dynamically adjust the numberof
threads. The Sun OpenMP compiler [33] uses this option to restrict
the number of threads to the “number of physical CPUs on the ma-
chine”. We are not aware of any OpenMP library in either industry
or academia that uses run-time information to dynamically control
the number of threads.

We discussed that increasing the number of threads may satu-
rate or worsen performance. Other researchers have made similar
observations. For example, Nieplosha et al. [28] studied the perfor-
mance of scientific workloads on Cray MTA-2 and Sun Niagara.
They show that some benchmarks get bandwidth limited on Nia-
gara with as few as 8 threads. Furthermore, they also show that
performance of some irregular scientific applications can decrease
for more than 8 threads. Similar observations were made by Saini
et al. [32] for a different machine.

The studies in [20] describe a compile time technique that takes
communication overhead into account in order to improve thread
scheduling in SMP systems. Nguyen et al. [27] and Corbalan et
al. [6][7] investigate a system that measures the efficiencyat differ-
ent allocations and adjusts the job allocation in SMPs. However, the
trade-offs in SMPs and CMPs are different. For example, the inter-
processor communication delays are significantly more in case of
SMPs compared to CMPs. Similarly, the off-chip bandwidth in-
creases with the number of processors in SMP but may not in case
of CMPs. Furthermore, the training time overhead for [27][6][7]
increases with the number of possible processor allocations which
causes the speedup to decrease as more processors are added to the
system. Whereas, our technique requires only a single training loop
to estimate the speedup for all possible number of threads, which
substantially reduces training overhead.

McCann et al. [25] propose a scheduling mechanism to maxi-
mize throughput when the information about speedup versus num-
ber of cores for the competing application is known apriori.How-
ever, such information is dependent on input set and machinecon-
figuration. Our work does not assume such apriori knowledge.
Brecht et al. [5] present a theoretical analysis to show thatusing
job characteristics in making scheduling decisions is useful. How-
ever, both [25] and [5] have fundamentally different objective than
ours in that our aim is to improve the performance of asingle multi-
threaded application.

FDT samples the application at runtime to estimate application
behavior. Other researchers have also used temporal sampling for
power and performance optimizations in CMPs. For example, Ku-
mar et al. sample a given single-threaded application on different
cores of a heterogeneous CMP [21][22]. However, they did these
studies for multi-programmed workloads that were composedof
different applications, had a predetermined number of applications
(threads), and had no data-sharing. The objective of our study is to
improve power and performance of multi-threaded applications for
which the number of threads can be varied and can contain signifi-
cant amount of shared data. Furthermore, studies [21] and [22] are
restricted to heterogeneous CMPs and do not provide any power or
performance benefits for homogeneous CMPs (used in our study).

8. Conclusion
Multi-threading enables applications to achieve high performance
on chip-multiprocessors. However, the number of threads must be
picked carefully to ensure high performance and low power. In this
paper, we analyze the two major performance limiters of multi-
threaded applications: data-synchronization and off-chip band-
width. For applications that get limited by data-synchronization,
increasing the number of threads significantly increases execution
time as well as power. Similarly, for applications that get limited
by off-chip bandwidth, increasing the number of threads increases
on-chip power without providing any performance improvement.
A mechanism that can control the number of threads based on the
application behavior can reduce both execution time and power. To
this end, we make the following contributions:

1. We proposeFeedback-Driven Threading (FDT), a dynamic
technique to control the number of threads at runtime based
on the application behavior.

2. We propose a simple analytical model that captures the impact
of data-synchronization on execution time. Based on this model
and the FDT framework, we developSynchronization-Aware
Threading (SAT).

3. We propose a simple analytical model that estimates the mini-
mum number of threads required to saturate the bus. Based on
this model and the FDT framework, we developBandwidth-
Aware Threading (BAT).

4. We combine SAT and BAT within the FDT framework. Our
evaluation, with 12 multi-threaded applications, shows that the
combination reduces the average execution time by 17% and
power by 59%.

The proposed techniques leverage existing performance coun-
ters and require minimal support from the threading library. More-
over, these techniques do not require any prior informationabout
the application and are robust to variation in input set and machine
configuration.

9. Future Work
We assumed that only one thread executes per core assuming no
SMT on individual cores. However, the conclusions derived in this
paper are also applicable to CMP systems with SMT-enabled cores.
Our model for bandwidth utilization assumes that bandwidthre-
quirement increases linearly with the number of threads, which
ignores cache contention and data-sharing. More comprehensive
models that take these effects into account can be developed. For
non-iterative kernels, the compiler can generate a specialized train-
ing loop for estimating application behavior. Although this paper
uses the FDT framework to implement only SAT and BAT, FDT is
a generalized framework which can be used to handle other perfor-
mance limiters such as contention for on-chip interconnect, cache,
or DRAM banks.
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Appendix
When BAT and SAT are combined, the best number of threads for
SAT (PCS) and BAT (PBW ) can be different. In such case, choos-
ing the minimum of the two values minimizes overall execution
time. This can be proved as follows:

There are two cases:

1. PCS < PBW . This case is shown in Figure 16. The execution
time decreases while the number of threads(P ) is less than
PCS and then it starts to increase. WhenP is greater than
PBW , the execution time spent outside the critical sections
becomes constant instead of reducing. Therefore, the overall
execution time increases linearly with the number of threads.
Thus, selectingPCS minimizes the overall execution time.

Pcs Pbw

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Number of threads

Figure 16. Overall execution time whenPCS <PBW

2. PBW < PCS . This case is shown in Figure 17. The execution
time decreases whileP is less thanPBW . WhenP is greater
thanPBW , the execution time spent outside the critical sections
ceases to reduce, which means that the system becomes limited
by critical sections sooner and effectivePCS shifts to PBW .
Therefore, afterPBW , overall execution time increases linearly
with the number of threads. Thus, selectingPBW minimizes
the overall execution time.

Number of threads

PcsPbw

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Figure 17. Overall execution time whenPBW < PCS


