
Dynamic Branch Prediction with Perceptrons�
Daniel A. Jiménez Calvin Lin

Department of Computer Sciences
The University of Texas
Austin, TX 78712 USA

June 2, 2000

Abstract

This paper presents a new method for branch prediction. The
key idea is to use one of the simplest possible neural networks,
the perceptron, which provides better predictive capabilities
than commonly used two-bit counters, and which allows our
predictor to consider longer branch histories. The hardware
resources needed for our method scale linearly with the history
length, in contrast with other purely dynamic schemes that re-
quire exponential memory.

This paper describes our design and evaluates it with respect
to two well known predictors. We show that for a 4K byte
hardware budget our method improves misprediction rates on
a composite trace of SPEC2000 benchmarks by 14.7% over
the gshare predictor. Our experiments provide a better under-
standing of the situations in which traditional predictorsdo
and do not perform well. We show that because our predic-
tor works well for a particular class of branches, it works well
with traditional schemes as a component of a hybrid predic-
tor. Finally, we describe techniques that allow our complex
predictor to operate in one cycle.

1 Introduction

Modern computer architectures increasingly rely on specula-
tion to boost instruction level parallelism. For example, data
that is likely to be read in the near future is speculatively
prefetched, and predicted values are speculatively used before
actual values are available [12, 25]. Accurate prediction mech-
anisms have been the driving force behind these techniques,
so increasing the accuracy of predictors increases the perfor-
mance benefit of speculation. Machine learning techniques
offer the possibility of further improving performance by in-
creasing prediction accuracy. This paper proposes that one
machine learning technique can be implemented in hardware
to improve branch prediction.�This research was supported in part by DARPA Contract #F30602-97-1-
0150 from the US Air Force Research Laboratory and by NSF CAREERS
grant ACI-9984660.

Branch prediction is an essential part of modern microar-
chitectures. Rather than stall when a branch is encountered,
a pipelined processor uses branch prediction to speculatively
fetch and execute instructions along the predicted path. As
pipelines deepen and the number of instructions issued per cy-
cle increases, the penalty for a misprediction increases. Two-
level adaptive predictors yield good performance and are com-
monly used [27, 15]. Recent efforts to improve branch pre-
diction focus primarily on eliminatingaliasing, which occurs
when two unrelated branches destructively interfere by using
the same prediction resources. We take a different approach—
one that is largely orthogonal to previous work—by improving
the accuracy of the prediction mechanism itself.

Our work builds on the observation that all existing two-
level techniques use tables of saturating counters. It’s natural
to ask whether we can improve accuracy by replacing these
counters with neural networks, which provide good predic-
tive capabilities. Since most neural networks would be pro-
hibitively expensive to implement as branch predictors, weex-
plore the use of perceptrons, one of the simplest possible neu-
ral networks. Perceptrons are easy to understand, simple to
implement, and have several attractive properties that differ-
entiate them from more complex neural networks.

We propose a two-level scheme that uses fast perceptrons
instead of two-bit counters. Ideally, each static branch isal-
located its own perceptron to predict its outcome. Traditional
two-level adaptive schemes use a pattern history table of two-
bit saturating counters, indexed by a global history shift regis-
ter that stores the outcomes of previous branches. This struc-
ture limits the length of the history register to the logarithm of
the number of counters. Our scheme not only uses a more so-
phisticated prediction mechanism, but it can consider much
longer histories than saturating counters. Empirical results
show significant improvements for our approach. Our predic-
tor outperforms two high quality predictors on a composite of
the SPEC2000 bencmarks, but the performance advantage is
not uniform across benchmarks. For example, Figure 1 shows
that on the SPEC95 benchmark126.gcc our predictor im-
proves the misprediction rate by 31% over gshare when using

1

a hardware budget of 256K bytes. At the other extreme, our
predictor does not perform well on the099.go benchmark,
degrading the misprediction rate by 25% at a 256K hardware
budget.

This paper explains why and when our predictor performs
well. The neural network we have chosen works well for
the class oflinearly separable branches, a term we introduce.
We show that programs tend to have many linearly separable
branches, but when they do not, our predictor may not perform
as well as other techniques. Thus, our predictor works best as
a component of a hybrid prediction scheme, along with a more
traditional predictor. For example, on the two extreme cases
mentioned above, an untuned hybrid gshare/perceptron pre-
dictor with a 256K budget achieves a misprediction rate thatis
40% better than gshare’s for126.gcc, and 16% better than
gshare for099.go.

This paper makes the following contributions. (1) We in-
troduce the perceptron predictor, a new kind of branch predic-
tor that is often more accurate than existing techniques. (2)
We explore the design space for two-level branch predictors
based on perceptrons, empirically identifying good valuesfor
key parameters. (3) We carefully evaluate our method against
other dynamic global branch predictors. (4) We provide in-
sights as to why our new predictor performs better. (5) We
describe a novel pipelined approach that allows our technique
to make a prediction in less than one cycle. (6) Finally, we
explain why perceptron-based predictors introduce interesting
new ideas for future research.

1 2 4 8 16 32 64 128 256 512

Hardware Budget, Kilobytes

0

2

4

6

8

10

Pe
rc

en
t M

isp
re

di
ct

ed

Perceptron vs. other techniques, SPEC95 gcc

Gshare
Bi-Mode
Perceptron

Figure 1:Hardware Budget vs. Prediction Rate for126.gcc. The
perceptron predictor is more accurate than gshare and bi-mode for
hardware budgets over 16K.

2 Related Work

2.1 Neural networks

Artificial neural networks learn to compute a function using
example inputs and outputs. Neural networks have been used
for a variety of applications, including pattern recognition,
classification [10], image processing, and image understand-
ing [16, 14].

Static branch prediction with neural networks. Neural
networks have been used to performstatic branch predic-
tion [4], where the likely direction of a branch is predictedat
compile-time by extracting program features such as control-
flow and opcode information and supplying these features as
input to a trained neural network. This approach achieves an
80% correct prediction rate, compared to 75% for static heuris-
tics [2, 4]. Static branch prediction performs worse than ex-
isting dynamic techniques, but is useful for performing static
compiler optimizations.

Branch prediction and genetic algorithms. Neural net-
works are part of the field of machine learning, which also
includes genetic algorithms. Emer and Gloy use genetic algo-
rithms to “evolve” branch predictors [7], but it is important to
note the difference between their work and ours. Their work
used evolution to design more accurate predictors, but the end
result is something similar to a highly tuned traditional predic-
tor. We propose putting intelligence in the microarchitecture,
so the branch predictor can learn and adapt on-line. In fact,
their approach cannot describe our new predictor.

2.2 Dynamic Branch Prediction

Dynamic branch prediction has a rich history in the literature.
Recent research focuses on refining the two-level scheme of
Yeh and Patt [27]. In this scheme, a pattern history table (PHT)
of two-bit saturating counters is indexed by a combination of
branch address and global or per-branch history. The high bit
of the counter is taken as the prediction. Once the branch out-
come is known, the counter is decremented if the branch is
not taken, or incremented otherwise. An important problem
in two-level predictors is aliasing [21], and many of the re-
cently proposed branch predictors seek to reduce the aliasing
problem [18, 17, 23, 6] but do not change the basic prediction
mechanism. Given a generous hardware budget, many of these
two-level schemes perform about the same as one another [6].

Most two-level predictors cannot consider long history
lengths, which becomes a problem when the distance between
correlated branches is longer than the length of a global history
shift register [9]. Even if a PHT scheme could somehow im-
plement longer history lengths, it may not help because longer
history lengths require longer training times for these meth-
ods [19].

2

Variable length path branch prediction [24] is one scheme
for considering longer paths. It avoids the PHT capacity prob-
lem by computing a hash function of the addresses along the
path to the branch. Using a complex multi-pass profiling
and compiler-feedback mechanism, this technique achieves
a misprediction rate of approximately 2.9% on the SPEC95
126.gcc benchmark when the hardware budget is 256K
bytes. Our predictor achieves superior performancewithout
compiler assistance or profiling. For the same hardware bud-
get, our predictor achieves a misprediction rate of 2.1%, and
our hybrid gshare/perceptron improves this to 1.8%.

3 Branch Prediction with Perceptrons

This section provides the background needed to understand
our predictor. We describe perceptrons, explain how they can
be used in branch prediction, and discuss their strengths and
weaknesses. Our method is essentially a two-level predictor,
replacing the pattern history table with a table of perceptrons.

3.1 Why perceptrons?

Perceptrons are a natural choice for branch prediction because
they can be efficiently implemented in hardware. Other forms
of neural networks, such as those trained by back-propagation,
and other forms of machine learning, such as decision trees,
are less attractive because of excessive implementation costs.
We also considered other simple neural architectures, suchas
ADALINE [26] and Hebb learning [10], but these were less ef-
fective than perceptrons (lower hardware efficiency for ADA-
LINE, less accuracy for Hebb).

One benefit of perceptrons is that by examining their
weights, i.e., the correlations they learn, it is easy to under-
stand the decisions that they make. By contrast, a criticismof
many neural networks is that it is difficult or impossible to de-
termine exactly how the neural network is making its decision.
Techniques have been proposed to extract rules from neural
networks [22], but these rules are not always accurate. Per-
ceptrons do not suffer from this opaqueness; the perceptron’s
decision-making process is easy to understand as the resultof
a simple mathematical formula. We discuss this property in
more detail in Section 5.6.

3.2 How Perceptrons Work

The perceptron was introduced in 1962 [20] as a way to study
brain function. We consider the simplest of many types of per-
ceptrons [3], asingle-layer perceptronconsisting of one artifi-
cial neuronconnecting severalinput unitsby weighted edges
to oneoutput unit. A perceptron learns a target Boolean func-
tion t(x1; :::; xn) of n inputs. In our case, thexi are the bits
of a global branch history shift register, and the target function
predicts whether a particular branch will be taken. Intuitively,

a perceptron keeps track of positive and negative correlations
between branch outcomes in the global history and the branch
being predicted.

Figure 2 shows a graphical model of a perceptron. A percep-
tron is represented by a vector whose elements are the weights.
For our purposes, the weights are signed integers. The output
is the dot product of the weights vector,w0::n, and the input
vector,x1::n (x0 is always set to 1, providing a “bias” input).
The outputy of a perceptron is computed asy = w0 + nXi=1 xiwi:����1 ����x1 ... ����xi ... ����xn

����y
SSSSSSww0 BBBBBBNw1 ������
 wi ������/ wn

Figure 2:Perceptron Model. The input valuesx1; :::; xn, are prop-
agated through the weighted connections by taking their respective
products with the weightsw1; :::; wn. These products are summed,
along with the bias weightw0, to produce the output valuey.

The inputs to our perceptrons arebipolar, i.e., eachxi is
either -1, meaninguntakenor 1, meaningtaken. A negative
output is interpreted aspredict untaken.A non-negative output
is interpreted aspredict taken.

3.3 Training Perceptrons

Oncey has been computed, the following algorithm is used to
train the perceptron. Lett be -1 if the branch was not taken,
or 1 if it was taken, and let� be thethreshold, a parameter
to the training algorithm used to decide when enough training
has been done.yout = (1 if y > �0 if �� � y � ��1 if y < ��
if yout 6= t then

for i := 0to n dowi := wi + txi
end for

end if

Sincet andxi are always either -1 or 1, this algorithm in-
crements theith weight when the branch outcome agrees withxi, and decrements the weight when it disagrees. Intuitively,
when there is mostly agreement, i.e., positive correlation, the
weight becomes large. When there is mostly disagreement,

3

i.e., negative correlation, the weight becomes negative with
large magnitude. In both cases, the weight has a large influ-
ence on the prediction. When there is weak correlation, the
weight remains close to 0 and contributes little to the output of
the perceptron.

3.4 Linear Separability

A limitation of perceptrons is that they are only capable of
learninglinearly separablefunctions [10]. Imagine the set of
all possible inputs to a perceptron as ann-dimensional space.
The solution to the equationw0 + nXi=1 xiwi = 0
is a hyperplane (e.g. a line, ifn = 2) dividing the space into
the set of inputs for which the perceptron will respondfalse
and the set for which the perceptron will respondtrue [10].
A Boolean function over variablesx1::n is linearly separa-
ble if and only if there exist values forw0::n such that all of
the true instances can be separated from all of thefalse in-
stances by that hyperplane. Since the output of a perceptronis
decided by the above equation, only linearly separable func-
tions can be learned perfectly by perceptrons1. As we will
show later, many of the functions describing the behavior of
branches in real programs are linearly separable. A percep-
tron can still give good predictions when learning a linearly
inseparable function, but it will not achieve 100% accuracy.
By contrast, two-level PHT schemes like gshare can learn any
Boolean function if given enough training time.

3.5 Putting it All Together

We can use a perceptron to learn correlations between partic-
ular branch outcomes in the global history and the behavior of
the current branch. These correlations are represented by the
weights. The larger the weight, the stronger the correlation,
and the more that particular branch in the global history con-
tributes to the prediction of the current branch. The input to
the bias weight is always 1, so instead of learning a correlation
with a previous branch outcome, the bias weight,w0, learns
the bias of the branch, independent of the history.

Figure 3 shows a block diagram for the perceptron predictor.
The processor keeps a table ofN perceptrons in fast SRAM,
similar to the table of two-bit counters in other branch predic-
tion schemes. The number of perceptrons,N , is dictated by
the hardware budget and number of weights, which itself is
determined by the amount of branch history we keep. Special
circuitry computes the value ofy and performs the training.

1This is strictly true only when the learning is done statically, i.e., pre-
dictions are made only after the learning is finished. In our case, learning is
dynamic, so a perceptron may learn to adapt to some non-linearity.

We discuss this circuitry in Section 6. When the processor en-
counters a branch in the fetch stage, the following steps are
conceptually taken:

1. The branch address is hashed to produce an indexi 20::N � 1 into the table of perceptrons.

2. Theith perceptron is fetched from the table into a vector
register,P0::n, of weights.

3. The value ofy is computed as the dot product ofP and
the global history register.

4. The branch is predicted not taken wheny is negative, or
taken otherwise.

5. Once the actual outcome of the branch becomes known,
the training algorithm uses this outcome and the value ofy to update the weights inP .

6. P is written back to theith entry in the table.

It appears that prediction is slow because many computa-
tions and SRAM transactions take place in steps 1 through 5.
However, Section 6 shows that a number of arithmetic and mi-
croarchitectural tricks allow this prediction step to be squeezed
into one clock cycle, even for long history lengths, with good
accuracy from the resulting predictor.

Branch Address History Register Branch Outcome

?����Select
Entry

- Table
of

Perceptrons

?6Selected Perceptron

&%'$Computey?6 &%'$Training

?-6����> 06Prediction

6�
Figure 3:Perceptron Predictor Block Diagram. The branch address
is hashed to select a perceptron that is read from the table. Together
with the global history register, the output of the perceptron is com-
puted, giving the prediction. The perceptron is updated with the train-
ing algorithm, then written back to the table.

4

4 Design Space

This section explores the design space for perceptron predic-
tors. Given a fixed hardware budget, three parameters need to
be tuned to achieve the best performance: the history length,
the number of bits used to represent the weights, and the
threshold.

History length. Long history lengths can yield more accu-
rate predictions [9] but also reduce the number of table entries,
thereby increasing aliasing. In our experiments, the best his-
tory lengths ranged from 12 to 62, depending on the hardware
budget.

Representation of weights. The weights for the perceptron
predictor are signed integers. Varying the number of bits al-
lowed us to trade hardware budget for accuracy. We found
that, depending on the hardware budget and history lengths,
using 7 to 9 bits give the best results.

Threshold. The threshold is a parameter to the perceptron
training algorithm that is used to decide whether the predictor
needs more training.

5 Experimental Results

We simulated the SPEC2000 integer benchmarks to compare
the perceptron predictor against two highly regarded tech-
niques from the literature.

5.1 Methodology

Predictors simulated. We chose to compare our new predic-
tor against gshare [18] and bi-mode [17], two of the best purely
dynamic global predictors from the branch prediction litera-
ture. We also simulated an untuned hybrid gshare/perceptron
predictor that uses a 2K byte choice table and the same choice
mechanism as that of the Compaq 21264 [15]. The simulated
predictors use only global pattern information, i.e., neither per-
branch nor path information was used. Additional informa-
tion can yield greater accuracy [8, 15], but our restrictionto
global information is typical of recent work in branch predic-
tion [17, 6], and our new technique is largely orthogonal to
these other techniques.

Gathering traces. Our simulations used the instrumented
assembly output of the gcc 2.95.1 compiler with optimiza-
tion flags-O3 -fomit-frame-pointer running on an
AMD K6-III under Linux to generate traces for all conditional
branch instructions. For each branch, the instrumented pro-
gram makes a call to a profiling procedure giving the branch
address and outcome. Branches in libraries or system calls
are not profiled. The traces, consisting of branch addresses

and outcomes, are fed to a program that simulates the different
branch prediction techniques.

Benchmarks simulated. We simulated the 12 SPEC2000
integer benchmarks, as well as two SPEC95 benchmarks,
126.gcc and099.go, that have been widely used in pre-
vious work. All benchmarks were simulated to completion
using the SPECtest inputs. For253.perlbmk, thetest
run executesperl on many small inputs, so the concatena-
tion of the resulting traces was used. For099.go, a smaller
board size of 20� 20 was used so that the program would pro-
duce a manageable number of traces. For Figure 1, the graph
presented earlier, we computed the average misprediction rates
for all 26 of theref inputs for126.gcc; we believe this best
represents the performance of all the predictors for the purpose
of comparing our results to those in other papers where it is
unclear which inputs are used.

We also generated a composite trace of the first 100 million
branch traces from each of the SPEC2000 integer benchmarks
to measure the overall performance of the predictors. When
a benchmark executed fewer than 100 million branches, traces
were copied from the beginning until there were enough. Since
the median number of branches generated by the benchmarks
is approximately 100 million, we believe this trace best repre-
sents the average workload for a high performance computer.

Tuning the predictors. We used the composite trace to tune
the parameters of each predictor for a variety of hardware bud-
gets. For gshare and bi-mode, we tuned the history lengths by
exhaustively trying every value from 1 to the the maximum
possible history length for each hardware budget, keeping the
value that gave the best prediction accuracy. For the percep-
tron predictor, we found for each history length and number
of bits per weight, the best value of the threshold by using an
intelligent search of the space of values, pruning areas of the
space that gave poor performance. We then tuned the history
length and number of bits per weight for each hardware budget
by exhaustive search. Table 1 shows the results of the history
length tuning.

Our hybrid gshare/perceptron predictor was not tuned.2 We
simply combined two predictors of equal size using the pa-
rameters for the individually tuned predictors, and we added a
mechanism, similar to the one in the Compaq 21264 [15], that
dynamically chooses between the two using a 2K byte table of
two-bit saturating counters. Our graphs reflect this added hard-
ware expense. We believe that this lack of tuning has greatest
impact at low hardware budgets.

Estimating area costs. Our hardware budgets do not include
the cost of the logic required to do the computation. By ex-
amining die photos, we estimate that at the longest history

2The final paper will provide results for a tuned hybrid gshare/perceptron
predictor.

5

lengths, this cost is approximately the same as that of 1K of
SRAM. Using the parameters tuned for the 4K hardware bud-
get, we estimate the extra hardware will consume about the
same logic as 256 bytes of SRAM. Thus, the cost for the com-
putation hardware is small compared to the size of the table.

5.2 Impact of History Length on Accuracy

One of the strengths of the perceptron predictor is its ability
to consider much longer history lengths than traditional two-
level schemes, which helps because highly correlated branches
can occur at a large distance from each other [9]. Any global
branch prediction technique that uses a fixed amount of his-
tory information will have an optimal history length for a given
set of benchmarks. As we can see from Table 1, the percep-
tron predictor works best with much longer histories than the
other two predictors. For example, with a 64K byte hardware
budget, gshare works best with a history length of 15, even
though the maximum possible length for gshare at 64K is 18.
At the same hardware budget, the perceptron predictor works
best with a history length of 62.

Hardware budget History Length
in kilobytes gshare bi-mode perceptron

1 6 7 12
2 8 9 22
4 8 11 28
8 11 13 34
16 14 14 36
32 15 15 59
64 15 16 59
128 16 17 62
256 17 17 62
512 18 19 62

Table 1:Best History Lengths. This table shows the best amount of
global history to keep for each of the branch prediction schemes.

5.3 Performance

Figure 4 shows the prediction rates achieved with increasing
hardware budgets on our composite trace. The perceptron
predictor’s advantage over the PHT methods is largest at the
smaller hardware budgets. At a budget of 4K bytes, the per-
ceptron predictor has a misprediction rate of 5.77%, an im-
provement of 14.7% over gshare and 10.0% over bimode. At
a large budget of 256K, the perceptron predictor has a mispre-
diction rate of 4.74%, an improvement of 4.7% over gshare
and 5.3% over bimode.

On the126.gcc benchmark, the perceptron predictor per-
forms particularly well at large hardware budgets. Using a 256
kilobyte hardware budget, the perceptron predictor achieves a

1 2 4 8 16 32 64 128 256 512

Hardware Budget, Kilobytes

0

2

4

6

8

10

P
er

ce
nt

 M
is

pr
ed

ic
te

d

Perceptron vs. other techniqes, composite

Gshare
Bi-Mode
Perceptron
Hybrid Perceptron + Gshare

Figure 4: Hardware Budget vs. Prediction Rate on the Com-
posite Trace. The perceptron predictor is more accurate than the
two PHT methods at all hardware budgets. The untuned hybrid
gshare/perceptron predictor is superior at hardware budgets greater
than 32K bytes.

misprediction rate of 2.12%, an improvement of 31.4% from
gshare and 39.9% from bimode. Figures 5 and 6 show the mis-
prediction rates on all of the SPEC2000 benchmarks, as well
as SPEC95126.gcc and099.go, for the three predictors
and the gshare/perceptron hybrid predictor for hardware bud-
gets of 4K and 16K bytes.

5.4 Why Does it Do Well?

The main advantage of the perceptron predictor is its ability to
consider longer history lengths. We support this observation
with an experiment. We simulated gshare and the perceptron
predictor at a 512K hardware budget, where the perceptron
predictor normally outperforms gshare. However, by only al-
lowing the perceptron predictor to use as many history bits as
gshare (18 bits), we find that gshare performs better, with a
misprediction rate of 4.83% compared with 5.35% for the per-
ceptron predictor. The inferior performance of this crippled
predictor has two likely causes: there is more destructive alias-
ing with perceptrons because they are larger, and thus fewer,
than gshare’s two-bit counters, and the perceptron predictor is
capable of learning only linearly separable functions of its in-
put, while gshare can potentially learn any Boolean function.

Figure 7 shows the result of simulating gshare and the per-
ceptron predictor with varying history lengths on the compos-
ite SPEC2000 trace. An 8M byte hardware budget was used
to allow gshare to consider longer history lengths than usual.
Each predictor becomes more accurate as it is allowed to con-
sider long histories, until gshare becomes worse and then runs
out of bits (since only logarithmically many history bits can be
considered), while the perceptron predictor continues to im-

6

099.go
126.gcc

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex

256.bzip2
300.twolf

Benchmark

0

5

10

15

20

25

Pe
rc

en
t M

is
pr

ed
ic

te
d

Gshare
Bi-mode
Perceptron
Hybrid Perceptron + Gshare

Figure 5:Misprediction Rates at a 4K budget. The perceptron pre-
dictor has a lower misprediction rate than gshare for all benchmarks
except for099.go, 176.gcc, 186.crafty and197.parser.
The hybrid predictor is consistently better than the PHT schemes.

099.go
126.gcc

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty
197.parser

252.eon
253.perlbmk

254.gap
255.vortex

256.bzip2
300.twolf

Benchmark

0

5

10

15

20

25

Pe
rc

en
t M

is
pr

ed
ic

te
d

Gshare
Bi-mode
Perceptron
Hybrid Perceptron + Gshare

Figure 6: Misprediction Rates at a 16K budget. Gshare outper-
forms the perceptron predictor only on099.go, 176.gcc and
186.crafty.

prove. The best performance from gshare is with a history
length of 18, where it achieves a misprediction rate of 5.20%.
The perceptron predictor is best at a history length of 62, the
longest history considered, where it achieves a misprediction
rate of 4.64%. Thus, the primary benefit of the perceptron
predictor appears to be its ability to handle longer branch his-
tories.

0 20 40 60

History Length

0

2

4

6

8

10

P
er

ce
nt

 M
is

pr
ed

ic
te

d

Gshare
Perceptron

Figure 7: History Length vs. Performance. The accuracy of the
perceptron predictor improves with history length, while gshare’s ac-
curacy bottoms out at 18.

5.5 When Does It Do Well?

The perceptron predictor does well when the branch being
predicted exhibitslinearly separable behavior.To define this
term, lethn be the most recentn bits of global branch his-
tory. For a static branchB, there exists a Boolean functionfB(hn) that best predictsB’s behavior. IffB is not linearly
separable, then gshare may predictB better than the percep-
tron predictor. We say such branches arelinearly inseparable.
It is this function,fB, that all branch predictors strive to learn.
We computedfB(h10) for each static branchB in the first 100
million branches of each benchmark and tested for linear sep-
arability of the function. (Our algorithm for this test takes time
superexponential inn, so we were unable to go beyond 10 bits
of history or 100 million dynamic branches. We believe these
numbers are good estimates for the purpose of this discussion.)

Intuitively, a linearly inseparable branch is one best pre-
dicted by a complex function of its history. For instance,
if a branch is taken when the exclusive-OR of the third and
fifth most recent branches istrue, it is linearly inseparable,
since there is no line separatingtrue instances of inputs to the
exclusive-OR function fromfalseones on the plane.

Figure 8 shows the misprediction rates on each benchmark
for a 512K budget, as well as the percentage of dynamically
executed branches that were linearly inseparable. We chose

7

a large hardware budget to minimize the effects of aliasing
and to isolate the effects of linear separability. We see that
the perceptron predictor performs better than gshare for the
benchmarks to the left, which have more linearly separable
branches than inseparable branches. Conversely, for all but
one of the benchmarks for which there are more linearly in-
separable branches, gshare performs better. Note that although
the perceptron predictor performs best on linearly separable
branches, it also has good performance overall.

The099.go benchmark is particularly hard to predict for
both gshare and the perceptron predictor. Figure 8 shows
that 82.82% of the dynamically executed branches were lin-
early inseparable. On these branches alone, the perceptron
predictor achieved a misprediction rate of 12.07%, compared
with 8.77% for gshare. However, on the other 17.18% of the
branches in099.go, the perceptron predictor achieved a mis-
prediction rate of 3.68%, slightly better than gshare’s 3.80%.

255.vortex

256.bzip2
126.gcc

254.gap
164.gzip

176.gcc
175.vpr

197.parser

300.twolf
186.crafty

252.eon
181.mcf

099.go

Benchmarks

0

20

40

60

80

100

P
er

ce
nt

 o
f D

yn
am

ic
 B

ra
nc

he
s

> 50% separable > 50% inseparable

% linearly inseparable branches
misprediction rate, Gshare
misprediction rate, Perceptron

Figure 8: Linear Separability vs. Performance at a 512K budget.
The perceptron predictor is better than gshare when the dynamic
branches are mostly linearly separable, and it tends to be less accurate
than gshare otherwise.

Some branches require longer histories than others for ac-
curate prediction, and the perceptron predictor often has an
advantage for these branches. Figure 9 shows the relationship
between this advantage and the required history length, with
one curve for linearly separable branches and one for insepa-
rable branches. They axis represents the advantage of our pre-
dictor, computed by subtracting the misprediction rate of the
perceptron predictor from that of gshare. We sorted all static
branches according to their “best” history length, which isthex axis. Each data point represents the average misprediction
rate of static branches (without regard to execution frequency)
that have a given best history length. Since Everset al show
that most branches can be predicted by looking at three previ-
ous branches [9], we can use the perceptron predictor to find
these best lengths: Using a perceptron trained for each branch,

we find the most distant of the three weights with the greatest
magnitude. As the best history length increases, the advan-
tage of the perceptron predictor generally increases as well.
Our predictor performs is more accurate for linearly separa-
ble branches. For linearly inseparable branches, our predictor
performs generally better when the branches require long his-
tories, while gshare sometimes performs better when branches
require short histories.

Knowing that the perceptron predictor does well on a partic-
ular type of frequently executed branches motivated the hybrid
perceptron/gshare predictor, which is very good at distinguish-
ing between predictors.

0 20 40 60

Best History Length

0

5

10

gs
ha

re
 %

 m
is

pr
ed

ic
te

d
- p

er
ce

pt
ro

n
%

 m
is

pr
ed

ic
te

d Linearly inseparable branches
Linearly separable branches

Figure 9: Classifying the Advantage of our Predictor. Above thex axis, the perceptron predictor is better on average. Below the x
axis, gshare is better on average. For linearly separable branches, our
predictor is more accurate than gshare on average. For inseparable
branches, our predictor is sometimes less accurate for branches that
require short histories, and it is more accurate for branches that re-
quire long histories, on average.

5.6 Additional Advantages of Our Predictor

Assigning confidence to decisions.Our predictor can pro-
vide a confidence-level in its predictions that can be usefulin
guiding hardware speculation. The output,y, of the percep-
tron predictor is not a Boolean value, but a number that we
interpret astakenif y � 0. The value ofy provides impor-
tant information about the branch since the distance ofy from
0 is proportional to thecertaintythat the branch will be taken
[14]. This confidence can be used, for example, to allow a
microarchitecture to speculatively execute both branch paths
when confidence is low, and to execute only the predicted path
when confidence is high. Some branch prediction schemes ex-
plicitly compute a confidence in their predictions [13], butin
our predictor this information comes free.

8

Analyzing branch behavior with perceptrons. Percep-
trons can be used to analyze correlations among branches. The
perceptron predictor assigns each bit in the branch historya
weight. When a particular bit is strongly correlated with a par-
ticular branch outcome, the magnitude of the weight is higher
than when there is less or no correlation. Thus, the perceptron
predictor learns to recognize the bits in the history of a partic-
ular branch that are important for prediction, and it learnsto
ignore the unimportant bits. This property of the perceptron
predictor can be used with profiling to provide feedback for
other branch prediction schemes. For example, our methodol-
ogy in Section 5.5 could be used with a profiler to provide path
length information to the variable length path predictor [24].

5.7 Effects of Context Switching

Branch predictors can suffer a loss in performance after a con-
text switch, having to warm up while relearning patterns [8].
We simulated the effects of context switching by interleaving
branch traces from each of the SPEC2000 integer benchmarks,
switching to the next program after 60,000 branches. This
workload represents an unrealistically heavy amount of con-
text switching, but it serves as a good indicator of performance
in extreme conditions, and it uses the same methodology as
other recent work [6]. Note that previous studies have used
the eight SPEC95 integer benchmarks, so our use of the 12
SPEC2000 benchmarks will likely lead to higher mispredic-
tion rates.

Figure 10 shows that context switching affects the percep-
tron predictor more significantly than the other two predictors.
For example, without heavy context switching (Figure 4) the
perceptron predictor is better than the PHT schemes at every
hardware budget, but with context switching the perceptron
scheme meets the performance of the others at a 16K bud-
get. The perceptron predictor is affected by context switching
more than the other techniques because it is more susceptible
to aliasing. The hybrid gshare/perceptron predictor performs
much better in the presence of context switching; this benefit
of hybrid predictors has been noticed before [8]. From these
results we conclude that to achieve good performance in con-
ditions adverse to the perceptron predictor, we should use a
hardware budget of at least 16K bytes, the same size as the
Compaq 21264’s branch predictor.

6 Implementation

We now show how to implement our predictor efficiently.

Computing the Perceptron Output. Since -1 and 1 are the
only possible input values to the perceptron, multiplication
is not needed to compute the dot product. Instead, we sim-
ply add when the input bit is 1 and subtract (add the two’s-
complement) when the input bit is -1. This computation is sim-

1 2 4 8 16 32 64 128 256 512

Hardware Budget, Kilobytes

0

5

10

P
e

rc
e

n
t
M

is
p

re
d

ic
te

d

Perceptron vs. other techniqes, context switching

Gshare
Bi-Mode
Perceptron
Hybrid Perceptron + Gshare

Figure 10: Budget vs. Misprediction Rate for Simulated Context
Switching. The perceptron predictor is more affected by heavy con-
text switching than gshare or bi-mode.

ilar to that performed by multiplication circuits, which must
find the sum of partial products that are each a function of an
integer and a single bit. Furthermore, only the sign bit of the
result is needed to make a prediction, so the other bits of the
output can be computed more slowly without having to wait
for a prediction.

Delay. A 54 � 54 multiplier in a 0.25�m process can oper-
ate in 2.7 nanoseconds [11], which is approximately two clock
cycles with a 700 MHz clock. At the longer history lengths,
an implementation of our predictor resembles a 54� 54 mul-
tiply, but the data corresponding to the partial products (i.e.,
the weights) are narrower, at most 9 bits. Thus, any carry-
propagate adders, of which there must be at least one in a mul-
tiplier circuit, will not need to be as deep. We believe that
a good implementation of our predictor at a large hardware
budget will take no more than two clock cycles to make a pre-
diction. For smaller hardware budgets, one cycle operationis
feasible. Two cycles is also the amount of time claimed for the
variable length path branch predictor [24]. That work proposes
pipelining the predictor to reduce delay. We next describe a
similar technique for our predictor that will often result in an
effective prediction time of zero cycles.

Pipelined Operation. As we have described it, our scheme
fetches a perceptron from SRAM and computes the sign of its
output, all during the instruction fetch stage. To avoid pre-
diction delays of more than one cycle, we have pipelined the
prediction mechanism, so that the address of theith branch in
a dynamic sequence is used to select a neuron for thei + 1st

branch. We reorder the operations described in Section 3 as
follows:

9

1. When a prediction for branchi is requested, we return
the prediction computed by the previous iteration of this
algorithm; if the preceding branch occurred more than a
few cycles ago, this takes no time at all, since the bit is
already available.

2. When the actual outcome of branchi is known, the cur-
rent contents of theP register are trained and then written
back to the table of perceptrons.

3. The global history register is updated. At the same time,
the address of branchi is concatenated with the outcome
of branchi (0 or 1) and hashed to select a perceptron for
branchi+ 1. (In our simulations, the hashing function is
simply modulus.)

4. The selected perceptron is read intoP .

5. A prediction for branchi + 1 is made using the updated
global history register and the contents ofP , and sent to a
latch to be read when branch prediction is next requested.

If there are no indirect branches (e.g. jumps through tables,
procedure returns, etc.) between branchi and branchi + 1,
then the combination of the address and the outcome of branchi fully determines the identity of branchi, so the “right” per-
ceptron is fetched before branchi + 1 is ever encountered.
If there is an indirect branch between branchesi and i + 1,
then the perceptron chosen for branchi+1 may not always be
the same. We have found that in practice accuracy is dimin-
ished by only about 0.1%. As long as branches do not occur in
close succession, this mechanism effectively provides branch
predictions in zero cycles. This scheme can likely be adapted
to work with other global branch predictors to provide faster
prediction.

Training. The training algorithm of Section 3.3 can be im-
plemented efficiently in hardware. Since there are no depen-
dences between loop iterations, all iterations can executein
parallel. Since in our case bothxi andt can only be -1 or 1,
the loop body can be restated as “incrementwi by 1 if t = xi,
and decrement otherwise,” a quick arithmetic operation since
thewi are at most 9-bit numbers:

for each bit in parallel
if t = xi thenwi := wi + 1
elsewi := wi � 1
end if

7 Conclusions

In this paper we have introduced a new branch predictor that
uses neural networks—the perceptron in particular—as the ba-
sic prediction mechanism. Perceptrons are attractive because

they can use long history lengths without requiring exponen-
tial resources. A potential weakness of perceptrons is their in-
creased computational complexity when compared with two-
bit counters, but we have shown how a perceptron predictor
can be implemented efficiently with respect to both area and
delay. Another weakness of perceptrons is their inability to
learn linearly inseparable functions, but despite this weakness
the perceptron predictor performs well, achieving a lower mis-
prediction rate, at all hardware budgets, than two well-known
global predictors for our composite SPEC2000 trace.

We have shown that there is benefit to considering his-
tory lengths longer than those previously considered. Vari-
able length path prediction considers history lengths of upto
23 [24], and a study of the effects of long branch histories
on branch prediction only considers lengths up to 32 [9]. We
have found that additional performance gains can be found for
branch history lengths of up to 62.

We have also learned why the perceptron predictor is ac-
curate. PHT techniques provide a general mechanism that
does not scale well with history length. Our predictor instead
performs particularly well on two classes of branches, those
that are linearly separable, and those that require long history
lengths. Because these two classes represent a large number
of dynamic branches, our predictor performs well.

Because our approach is largely orthogonal to many of the
recent ideas in branch prediction, there is considerable room
for future work. We can decrease aliasing by tuning our pre-
dictor to use the bias bits that were introduced by the Agree
predictor [23]. We can also employ perceptrons in a hybrid
predictor that uses both global and local histories, which have
proven to work better than purely global schemes [8]. We have
preliminary experimental evidence that such hybrid schemes
can be improved by using perceptrons, and we intend to con-
tinue this study in more detail.

More significantly, perceptrons have interesting character-
istics that open up new avenues for future work. Because the
perceptron predictor has different strengths and weaknesses
from counter-based predictors, new hybrid schemes can be
developed. Along these lines, we plan to tune our hybrid
gshare/perceptron predictor and to explore other hybrid tech-
niques. We also plan to develop compiler-based branch classi-
fication techniques to make such hybrid predictors even more
effective. We already have a starting point for this work, which
is to focus on the distinction between linearly separable and in-
separable branches, and between branches that require short
history lengths and long history lengths. As noted in Sec-
tion 5.6, perceptrons can also be used to guide speculation
based on branch prediction confidence levels, and perceptron
predictors can be used in recognizing important bits in the his-
tory of a particular branch.

Finally, studies have shown that as clock rates increase over
the next 15 years, wire delays will make large data structures
less feasible [1]. Finding ways to reduce the aliasing problem
for small hardware budgets will be essential to the continued

10

success of this and other branch prediction techniques. Us-
ing branch classification [5] to allow the compiler to choose
among different predictors, e.g. between the perceptron pre-
dictor or gshare, will likely allow the same performance at
a significant hardware savings. Thus, a deeper understand-
ing the nature of branches for which the perceptron predictor
performs better will be important for developing classification
strategies.

Acknowledgments. It’s our pleasure to thank Steve Keckler
and Kathryn McKinley for many stimulating discussions on
this topic, and to thank Steve, Kathryn, and Ibrahim Hur for
their comments on earlier drafts of this paper.

References

[1] V. Agarwal, M.S. Hrishikesh, S. W. Keckler, and D. Burger.
Clock rate versus ipc: The end of the road for conventional mi-
croarchitectures. Inthe 27th Annual International Symposium
on Computer Architecture (to appear), May 2000.

[2] T. Ball and J. Larus. Branch prediction for free. InProceedings
of the SIGPLAN ’93 Conference on Programming Language
Design and Implementation, pages 300–313, June 1993.

[3] H. D. Block. The perceptron: A model for brain functioning.
Reviews of Modern Physics, 34:123–135, 1962.

[4] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn. Evidence-based static branch predic-
tion using machine learning.ACM Transactions on Program-
ming Languages and Systems, 19(1), 1997.

[5] P.-Y. Chang and U. Banerjee. Branch classification: a new
mechanism for improving branch predictor performance. In
Proceedings of the 27th International Symposium on Microar-
chitecture, November 1994.

[6] A.N. Eden and T.N. Mudge. The YAGS branch prediction
scheme. InProceedings of the 31st Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, November 1998.

[7] J. Emer and N. Gloy. A language for describing predictorsand
its application to automatic synthesis. InProceedings of the
24th International Conference on Computer Architecture, June
1997.

[8] M. Evers, P.-Y. Chang, and Y. N. Patt. Using hybrid branchpre-
dictors to improve branch prediction accuracy in the presence
of context switches. InProceedings of the 23rd International
Conference on Computer Architecture, May 1996.

[9] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An analysis
of correlation and predictability: What makes two-level branch
predictors work. InProceedings of the 25th Annual Interna-
tional Symposium on Computer Architecture, July 1998.

[10] L. Faucett. Fundamentals of Neural Networks: Architectures,
Algorithms and Applications. Prentice-Hall, Englewood Cliffs,
NJ, 1994.

[11] Y. Hagihara, S. Inui, A. Yoshikawa, S. Nakazato, S. Iriki,
R. Ikeda, Y. Shibue, T. Inaba, M. Kagamihara, and M. Ya-
mashina. A 2.7ns 0.25um CMOS 54� 54b multiplier. InPro-
ceedings of the IEEE International Solid-State Circuits Confer-
ence, February 1998.

[12] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach, Second Edition. Morgan Kaufmann
Publishers, 1996.

[13] E. Jacobsen, E. Rotenberg, and J.E. Smith. Assigning con-
fidence to conditional branch predictions. InProceedings of
the 29th Annual International Symposium on Microarchitecture,
December 1996.

[14] D. A. Jimenez and N. Walsh. Dynamically weighted ensemble
neural networks for classification. InProceedings of the 1998
International Joint Conference on Neural Networks, May 1998.

[15] R.E. Kessler, E.J. McLellan, and D.A. Webb. The Alpha 21264
microprocessor architecture. Technical report, Compaq Com-
puter Corporation, 1998.

[16] A. D. Kulkarni. Artificial Neural Networks for Image Under-
standing. Van Nostrand Reinhold, 1993.

[17] C.-C. Lee, C.C. Chen, and T.N. Mudge. The bi-mode branch
predictor. InProceedings of the 30th Annual International Sym-
posium on Microarchitecture, November 1997.

[18] S. McFarling. Combining branch predictors. TechnicalReport
TN-36m, Digital Western Research Laboratory, June 1993.

[19] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict andca-
pacity aliasing in conditional branch predictors. InProceedings
of the 24th International Conference on Computer Architecture,
June 1997.

[20] F. Rosenblatt.Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms. Spartan, 1962.

[21] S. Sechrest, C.-C. Lee, and T.N. Mudge. Correlation andalias-
ing in dynamic branch predictors. InProceedings of the 23rd
International Conference on Computer Architecture, May 1999.

[22] R. Setiono and H. Liu. Understanding neural networks via rule
extraction. InProceedings of the 14th International Joint Con-
ference on Artificial Intelligence, pages 480–485, 1995.

[23] E. Sprangle, R.S. Chappell, M. Alsup, and Y. N. Patt. TheAgree
predictor: A mechanism for reducing negative branch history
interference. InProceedings of the 24th International Confer-
ence on Computer Architecture, June 1997.

[24] J. Stark, M. Evers, and Y. N. Patt. Variable length path branch
prediction. InProceedings of the 8th International Conference
on Architectural Support for Programming Languages and Op-
erating Systems, October 1998.

[25] K. Wang and M. Franklin. Highly accurate data value prediction
using hybrid predictors. InProceedings of the 30th Annual In-
ternational Symposium on Microarchitecture, December 1997.

[26] B. Widrow and Jr. M.E. Hoff. Adaptive switching circuits. In
IRE WESCON Convention Record, part 4, pages 96–104, 1960.

[27] T.-Y. Yeh and Y. Patt. Two-level adaptive branch prediction.
In Proceedings of the 24th ACM/IEEE Int’l Symposium on Mi-
croarchitecture, November 1991.

11

