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"Perception,  then,   emerges as that relatively primitive, 

partly autonomous,   institutionalized,   ratiomorphic subsystem of cognition 

which achieves prompt and richly detailed orientation habitually concerning 

the vitally relevant,   mostly distal aspects of the environment on the basis 

of mutually vicarious,   relatively restricted and stereotyped,   insufficient 

evidence in uncertainty-geared interaction and compromise,   seemingly 

following the highest probability for smallness of error at the expense of 

the highest frequency of precision. "     From "Perception and the 

Representative Design of Psychological Experiments, " by Egon Brunswik. 

"That's a simplification.    Perception is standing on the side- 

walk,   watching all the girls go by." From "The New Yorker", 

December 19,   1959- 
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PREFACE 

It is only after much hesitation that the writer has reconciled him- 

self to the addition of the term "neurodynamics" to the list of such recent 

linguistic artifacts as "cybernetics",  "bionics'1,   "autonomies",  "biomimesis", 

"synnoetics",   " intelectronics",   and "robotics".    It is hoped that by selecting 

a term which more clearly delimits our realm of interest and indicates its 

relationship to traditional academic disciplines,   the underlying motivation of 

the perceptron  program may be more successfully communicated.    The term 

"perceptron",   originally intended as a generic name for a variety of theoretical 

nerve nets,   has an unfortunate tendency to suggest a specific piece of hardware, 

and it is only with difficulty that its well-meaning popularizers can be persuaded' 

to suppress their natural urge to capitalize the initial "P".    On being asked, 

"How is Perceptron performing today?" 1 am often tempted to respond,  "Very 

well,   thank you,   and how are Neutron and Electron behaving?" 

That the aims and methods of perceptron research are in need of 

clarification is apparent from the extent of the controversy within the scientific 

cor'rrunity since  1957,   concerning the value of the perceptron concept.    There 

seem to have been at least three main reasons for negative reactions to the 

program.    First,   was the admitted lack of mathematical rigor in preliminary re- 

ports.    Second, was the handling of the first public announcement of the program 

in 1958 by the popular press,   which fell to the task with all of the exuberance and 

sense of discretion of a pack of happy bloodhounds.    Such headlines as "Franken- 

stein Monster Designed by Navy RC'JU'  That Thinks"  (Tulsa,  Oklahoma Times) 

were hardly designed to inspire scientific confidence.    Third,   and perhaps most 

significant,   there has been a failure to comprehend the difference in motivation 

between the perceptron program and the various engineering projects concerned 

with automatic pattern recognition,  "artificial intelligence",   and advanced computers. 

For this writer,   the perceptron program is not primarily concerned with the inven- 
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tion of devices for "artificial intelligence", but rather with investigating the 

physical structures and neurodynamic principles which underlie "natural 

intelligence".    A perceptron is first: and foremost a brain model,  not an inven - 

tion for pattern recognition.    As a brain model,   its utility is in enabling us to 

determine the physical conditions for the emergence of various psychological 

properties.    It is by no means a "complete" model,   and we are fully aware of 

the simplifications which have been made from biological systems; but it is, 

at least,   an analyzable model.     The results of this approach have already been 

substantial; a number of fundamental principles have been established,  which 

are presented in this report,   and these principles may be freely applied, 

wherever they prove useful,   by inventors of pattern recognition machines and 

artificial intelligence systems. 

The purpose of this report is to set forth the principles,  motivation, 

and accomplishments of perceptron theory in their entirety,   and to provide a 

self-sufficient text for those who are interested in a serious study of neuro- 

dynamics.     The writer is convinced that this is as definitive a treatment as can 

reasonably be accomplished in a volume of managable size.    Since this volume 

attempts to present a consistent theoretica1 position,   however,   the svudent 

would be well advised to round out his  reading with several of the alternative 

approaches  referenced in Part I.     Within the last year,   a number of comprehen- 

sive reviews of the literature have appeared,  which provide convenient jumping- 

off points for such a study, :,! 

The work reported here has been performed jointly at the Cornell 

Aeronautical Laboratory in Buffalo and at Cornell University in Ithaca,    Both 

programs have been under the support of the Information Systems Branch of the 

Office of Naval Research -- the Buffalo program since July,   1957,   and the Ithaca 

See,   for example,   Minsky's article,  "Steps Toward Artificial Intelligence", 
Proc,  I. R. E. ,  49,   January,   1961,   for an entertaining statement of the views of 
the loyal opposition,   which includes an excellent bibliography. 
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program since September,   1959.    A number of other agencies have contributed 

to particular aspects of the program.    The Rome Air Development Center has 

assisted in the development of the Mark I perceptron,   and we are indebted to 

the Atomic Energy Commission for making the facilities of the NYU computing 

center available to us. 

[Treat many individuals have participated in this work.    R.   D.   Joseph 

and H.   D,   .dlock,   in particular,   have contributed ideas,   suggestions,   and 

criticisms to an extent which should entitle them to co-authorship of several 

chapters  of this volume,    I am especially indebted to both ol ti ^n. for their 

heroic performance in proofreading the mathematical exposition presented here, 

a task which has occupied many weeks of their time,   and which has saved me from 

committing many a mathematical felony.     Carl Kesler,   Trevor Barker,   David 

Feign,   and Louise Hay have rendered invaluable assistance in programming the 

various digital computers employed on the project,   while the engineering work 

on the Mark 1 was carried out primarily by Charles Wightman and Francis Martin 

at C. A. L.     The experimental program with the Mark I was  carried out by John 

Hay.    In addition to all of those who have contributed directly to the research 

activities,   the writer is  indebted to Professors Mark Kac,   BaiiUey Rosser,   and 

other members of the Cornell faculty for their administrative support and encourage' 

ment,   and to Alexander Stieber,   W .   S.   Holmes,   and the administrative staffs 

of the Cornell Aeronautical Laboratory and the Office of Naval Research whose 

confidence and support have carried the program successfully through its 

infancy. 

Frank Rosenblatt 
15 March 1961 
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PART  I 

DEVELOPMENT   OF   BASIC   CONCEPTS 



1 .     INTRODUCTION 

The theory to be preöented here is concerned with a class of 

" brain models" called perceptrons .    By "brain model" we shall mean 

any theoretical system which attempts to explain the psychological function- 

ing of a brain in terms of known laws of physics and mathematics,  and known 

facts of neuroanatomy and physiology.   A brain model may actually be cons- 

tructed,  in physical form,  as an aid to determining its logical potentialities 

and performance; this,  however,  is not an essential feature of the model- 

approach.    The essence of a theoretical model is that it is a system with 

known properties,   readily amenable to analysis,  which is hypothesized to 

embody the essential features of a system with unknown or ambiguous 

properties --in the present case,  the biological brain.    Brain models of 

different types have  been advanced by philosophers,   psychologists,  biologists, 

and mathematicians,   as well as electrical engineers  (c.f.,  Ref s .   17,   31,   33, 

54,   59,   61,   74,   91,   105,   109).    The perceptron is a relative newcomer to this 

field^aving first been described by this writer in  1957 (Ref.   78).    Perceptrons 

are of interest because their study appears to throw light upon the biophysics of 

cognitive systems: they illustrate,   in rudimentary form,   some of the processes 

by which organisms,   or other suitably organized entitites,   may come to 

possess "knowledge" of trj physical world in which they exist,  and by which 

the knowledge that they possess can be represented or reported when occasion 

demands.    The theory of the perceptron shows how such knowledge depends 

upon   the organization of the environment,  as well as on the perceiving 

system. 
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At the time that the first perceptron model was proposed,  the 

writer was primarily concerned with the problem of memory storage in 

biological systems,  and particularly with finding a mechanism which would 

account for the "distributed memory" and "equipotentiality" phenomena found 

by Lashley and others (Refs . 48,  49,   95).    It soon became clear that the 

problem of  memory mechanisms could not be divorced from a consideration 

of what it is that is remembered,  and as a consequence the perceptron became 

a model of a more general cognitive system,  concerned with both memory and 

perception.. 

A perceptron consists of a set of signal generating units (or 

"neurons") connected together to form a network.    Each of these units,  upon 

receiving a suitable input signal (either from other units in the network or 

from the environment; responds by generating an output signal,   which may 

be transmitted,  through connections,   to a selected set of receiving units.    Each 

perceptron includes a sensory input (i.e. ,   a set of units capable of responding 

to signals emanating from the environment) and one or more output units,  which 

generate signals which can be directly observed by an experimenter,   or by an 

automatic control mechanism.    The logical properties of a perceptron are 

defined by: 

1. Its topological organization (i.e.,  the connections among 

the signal units); 

Z. A set of signal propagation functions,  or rules governing 

the generation and transmission of signals; 

3. A set of memory functions or rules for modification of 

the network properties as a consequence of activity. 
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A perceptron is never studied in isolation,  but always as part of a 

closed experimental system,  which includes the perceptron itself,  a defined 

environment,  and a control mechanism or experimenter capable of applying 

well-defined rules for the modification,   or "reinforcement" of the perceptron's 

memory state.    In most analyses,  we are not concerned with a single percep- 

tron,  but rather with the properties of a class of perceptrons,  whose topolo- 

gical organizations come from some statistical distribution.    A perceptron, 

as distinct from some other types of brain models,  or "nerve nets",  is usually 

characterized by the great freedom which is allowed in establishing its 

connections,  and the reliance which is placed upon acquired biases,  rather 

than built-in logical algorithms,  as determinants of its behavior. 

Because of a common heritage in the philosophy,  psychology, 

physiology,   and technology of the last few centuries,  there are bound to be 

similarities between the points of view and the basic assumptions of the 

theory presented here,   and of other theories.    The writer makes no claim to 

uniqueness in this respect.    In particular,  the neuron model employed is a 

direct descendant of that originally proposed by McCulloch and Pitts; the 

basic philosophical approach has been heavily influenced by the theories of 

Hebb and Hayek and the experimental findings of Lashley; moreover,  the 

writer's predilection for a probabilistic approach is shared with such theo- 

rists as Ashby,   Uttley,   Minsky,   MacKay,   and von Neumann,  among others. 

This volume is divided into four main sections.    Part I, 

commencing with this introduction,  attempts to review the background, 

basic sources of data,   concepts,  and methodology to be employed in the 

study of perceptrons.    In Chapter Z,  a brief review of the main alternative 
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approaches to the development of brain models is presented.    Chapter 3 

considers the physiological and psychological criteria for a suitable model, 

and attempts to evalute the empirical evidence which is available on several 

important issues.    Sufficient references to the literature are included  through- 

out these chapters so that the reader who requires additional background in 

any of the areas discussed can use this as a guide for further reading,    Part I 

concludes with Chapter 4,   in which basic definitions and some of the notation 

to be used in later sections are presented.    Parts II and III are devoted to a 

summary of the established theoretical results obtained to date.    In these 

sections,  the strategy will be to present a number of models of increasing 

complexity and sophistication,   with theorems and analytic results on each 

model to indicate its capabilities and deficiencies.    Wherever possible, 

established mathematical results will be presented first,  followed by empirical 

evidence from simulation and hardware experiments.    Part II (Chapters 5 

through 14) deals with the theory of three-layer series-coupled perceptrons, 

on which most work has been done to date.    These systems are called "mini- 

mal perceptrons".    Part III (Chapters  15 through 20) deals with the theory of 

multi-layer and cross-coupled perceptrons,   where a great deal still remains 

to be done,  but where the most provocative results have begun to emerge. 

Part IV is concerned with more speculative models and problems for future 

analysis.    Of necessity,  the final chapters become increasingly heuristic in 

character,   as the theory of perceptrons is not yet complete,   and new 

possibilities are continually coming to light. 

Part I (except for the chapter on definitions) is entirely non- 

mathematical.    In Part II,  and most of the remainder of the text,  familiarity 

with the elements of modern algebra and probability theory is assumed,  and 
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should be sufficient for most of the material.    In several proofs in Part II, 

and to a greater extent in Part III,  analytic methods are employed,  assuming 

knowledge of the calculus and differential equations; an elementary acquaintance 

with differential geometry would also be useful.    Symbolic logic is not required 

here,  but the student will find it necessary for reading much of the ancillary 

literature in the field. 

Several appendices are included which may prove helpful for 

cross-referencing equations,  definitions,  and experimental designs which 

are described in different chapters.    Appendix A is a list of all symbols used 

in a standard   manner throughout the volume.    Appendix B is a consolidated 

list of theorems and corollaries.    Appendix C lists the principal equations 

used in the analysis of performance, and basic quantitative functions.   Appendix 

A  contains   a   summary of the experiments used for testing and comparing 

different perceptrons.    These experiments are referred to by number, 

throughout the text,   and are described in detail as they are first introduced. 



2,     HISTORICAL REVIEW OF ALTERNATIVE APPROACHES 

2. 1     Approaches to the Brain Model Problem 

There are at least two basic points,  which are fundamental to a 

theory of brain functioning,  on which most of the present-day theorists seem 

to be in agreement.    First is the assumption that the essential properties of 

the brain are the topology and the dynamics of impulse-propagation in a net- 

work of nerve cells,  or neurons.    This has been contested by a few theorists 

who hold that the individual cells and their properties are less important than 

the bulk properties and electrical currents in the cortical medium as a whole 

(c.f.   Kohler,   Ref 45).    The "neuron doctrine",   however,  has now been 

accepted with sufficient universality that it need not be considered as an 

issue in this report (Bullock,  Ref. 11).       It will be assumed that the essential 

features of the brain can be derived in principle from a knowledge of the 

connections and states of the neurons which comprise it.    Secondly,  there is 

general agreement that the information-handling capabilities of biological 

networks do not depend upon any specifically vitalistic powers which could 

not be duplicated by man-made devices.    This also has occasionally been 

questioned,   even today,   by such neurologists as Eccles (Ref.   18) who 

advocate a dualistic approach in which the mind interacts with the body. 

Nonetheless,   all currently known properties of a nerve cell can be simulated 

electronically with readily available devices.    It is significant that the 

individual elements,  or cells,   of a nerve network have never been demons- 

trated to possess any specifically psychological functions,   such as "memory", 

"awareness",   or "intelligence".    Such properties,  therefore,  presumably 

reside in the organization and functioning of the network as a whole,   rather 
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than in its elementary parts.    In order to understand how the brain works,  it 

thus becomes necessary to investigate the consequences of combining simple 

neural elements in topological organizations analogous to that of the brain. 

We are therefore interested in the general class of such networks,  which 

includes the brain as a special case. 

While there is substantial agreement up to this point,  theorists 

are divided on the question of how closely the brain's methods of storage, 

recall,  and data processing resemble those practised in engineering today. 

On the one hand,  there is the view that the brain operates by built-in 

algorithmic methods analogous to those employed in digital computers,  while 

on the other hand,   there is the view that the brain operates by non-algorithmic 

methods,  bearing little resemblance to the familiar rules of logic and mathe- 

matics which are built into digital devices (c.f.  von Neumann,  Ref.   105).     The 

advocates of the second position (this writer included) maintain that new funda- 

mental principles must be discovered before it will be possible to formulate an 

adequate theory of brain mechanisms.    It is suggested that probabilistic and 

adaptive mechanisms are particularly important here.    This does not mean 

that the actual biological nervous system is  strictly one type of device or, 

the other; the issue concerns the matter of emphasis,  as to whether the brain 

is primarily a more or less conventional computing mechanism,  in which 

statistical or adaptive processes play an incidental and non-essential role, 

or whether the brain is so dependent upon such processes that a model which 

fails to take them into account will find itself unable to account for psycho- 

logical performance. 
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These two points of view are associated with two  basically- 

different procedures for studying the mechanisms of the brain and for the 

development of brain models.    The first procedure will be called the    icuo- 

typic model approach; it amounts to the detailed logical design of a special- 

purpose computer to calculate some predetermined "psychological function" 

such as the result of a recognition algorithm,  or a stimulus transformation, 

which is postulated as a plausible function for a nerve net. to calculate.    The 

physical properties of this computer are then compared with those of the 

brain,   in the hopes of finding resemblances.    The second procedure will be 

called the genotypic model approach.    Instead of beginning with a detailed 

description of functional requirements and designing a specific physical 

system to satisfy them,   this approach begins with a set of rules for genera- 

ting a class of physical systems,   and then attempts to analyse their perform- 

ance under characteristic experimental conditions to determine their common 

functional properties.    The results of such experiments are then compared 

with similar observations on biological systems,   in the hopes of finding a 

behavioral correspondence.    It is the purpose of this chapter to review the 

historical development and current status of these two alternative "philo- 

sophies of approach" to the brain model problem. 

2.2       Monotypic Models 

In the monotypic model approach,   the theorist generally begins 

by defining as accurately as possible the performance required from his 

model.    For example,  he may specify a data processing operation,   an 

input-output or stimulus-response function,   or a remembering and 
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regenerating operation.    In one typical model,   the system is required to 

normalize the size and position of a visual image, and to compare functions 

of this normalized image with certain stored quantities required for identifi- 

cation (Ref.  71).    Given a description of the required performance in 

sufficiently precise terms,  the theorist then proceeds to design a computing 

machine or control system embodying the required function,  generally limiting 

himself to the use of a set of modular switching devices which are analogous 

to biological neurons in their properties.    It is this last constraint which 

distinguishes the nerve net theorist from any other designer of special 

purpose computers confronted with the same problem.    It is hoped that a 

network which consists of neuron-like elements,  and is capable of computing 

the required functions,   will be found to resemble a biological nerve-net in its 

organization and the computational principles employed. 

While the simulation of animals,   saints,   and chessplayers by 

animated machines and clockwork devices goes back many centuries,  the 

idea of constructing such.devices out of simple logical elements with neuron- 

like properties is a relatively recent one,   and received its first impetus from 

two sources:   First,   Turing's papc r "On Computable Numbers",  in 1936,  and 

the subsequent development of stored-program digital computers by von 

Neumann and others during the 1940's (Refs.   1Z,   lOOjgave rise to an 

impressive family of "universal automata",  capable of executing programs 

which would enable them to perform any computation whatsoever with only 

the simplest of logical devices being employed as  "building blocks".    Second, 

the Chicago group of mathematical biophysicists which grew up about 

Rashevsky after the publication of his "Mathematical Biophysics" in 1938, 
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(Ref.  73) began to investigate the manner in which rrnerve nets" consisting of 

formalized neurons and connections might be made to perform psychological 

functions.    Householder,   Landahl,  Pitts, and others made notable contributions 

to this effort during the late igBO's and early 1940,s (Refs .  35,   69,  70). 

In 1943,  the doctrine and many of the fundamental theorems of this 

approach to nerve net theory were first stated in explicit form by McCulloch 

and Pitts,   in their well-known paper on "A Logical Calculus of the Ideas 

Immanent in Nervous Activity".    The fundamental thesis of the McCulloch- 

Pitts theory is that all psychological phenomena can be analyzed and understood 

in terms of activity in a network of two-state (all-or-nothing) logical devices. 

The specification of such a network and its propositional logic would,   in the 

words of the writers,   "contribute all that could be achieved" in psychology, 

"even if the analysis were pushed to ultimate psychic units or 'psychons1, 

for a psychon can be no less than the activity of a single neuron. . . The 'all- 

er-none' law of these activities,  and the conformity of their relations to 

those of the logic of propositions,   insure that the relations of psychons are 

those of the two-valued logic of propositions."   (Ref.  57).    Despite the 

apparent adherence to an outdated atomistic psychological approach,  there 

is an important contribution in the recognition that the proposed axiomatic 

representation of neural elements and their properties permits strict logical 

analysis of arbitrarily complicated networks of such elements,   and that 

such networks are capable of representing any logical proposition whatever. 

As von Neumann states in a summary of the McCulloch-Pitts model, 

(Ref.   103) "The  'functioning' of such a network may be defined by singling 

out some of the inputs of the entire system and some of its outputs,  and 
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then describing what original stimuli on the former are to cause what ultimate 

stimuli on the latter. . .McCulloch and Pitts' important result is that any- 

functioning in this sense which can be defined at all logically,   strictly, and 

unambiguously in a finite number of words can also be realized by such a 

formal neural network." 

A great variety of subsequent models have made use of this 

axiomatic representation, which we now refer to as the "McCulloch-Pitts 

neuron".   As stated in the original paper (Ref.  57),  the basic assumptions in 

this representation are: 

"    1.      The activity of the neuron is an 'all-or-none' 

process. 

2. A certain fixed number of synapses must be 

excited within the period of latent addition in 

order to excite a neuron at any time,  and this 

number is independent of previous acitivy and 

position on the neuron. 

3. The only significant delay within the nervous 

system is synaptic delay. 

4. The activity of any inhibitory synapse absolutely 

prevents excitation of the neuron at that time. 

5. The structure of the net does not change with time." 
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These postulates are such as to rule out memory except in the form of 

modifications of perpetual activity or circulating loops of impulses in the 

network.   Any non-volatile memory,   such that the functioning of the network 

at a given time depends upon previous activity even though a period of total 

inactivity has intervened,  is impossible in a McCulloch-Pitts network. 

However,  a McCulloch Pitts network can always be constructed which will em- 

body     whatever input-output relations might be realized by a system with 

an arbitrary memory mechanism,  provided activity is allowed to persist in 

the network. 

Later writers, notably Kleene (Ref.  43) have considered in 

more detail the kinds of events which can be represented by networks of 

McCulloch-Pitts neurons.    The only important limitation is that events 

whose definition depends upon the choice of a temporal origin point,   or 

events which extend infinitely into the past,  may not be representable by 

outputs from finite networks.    Any event which can be described as one of 

a definite set of possible input sequences over a finite period of time can be 

represented.    In particular,  any events which might conceivably be recognized 

by a biological system can be represented by outputs of networks of McCulloch- 

Pitts neurons, 

In later papers by Pitts and McCulloch (Ref.   71) and by 

Culbertson (Refs.   16,   17) specific automata designed to perform actual 

"psychological" functions such as pattern recognition,  have been described. 

Culbertson,   in particular, has carried out such designs in explicit detail for 

a large number of interesting problems.    The approach which he advocates 
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is expounded in his 1950 work on "Consciousness and Behavior" as 

follows: 

"Neuroanatomy and neurophysiology have not yet developed 
far enough to tell us the detailed interconnections holding 
within human  or animal nets. . .Consequently, . . . we cannot 
start with specified nerve nets and then in a straightforward 
way determine their properties.    Instead,  it is the reverse 
problem which always occurs in dealing with organic behavior. 
We are given at best the vaguely defined properties of an 
unknown net and from these must determine what the structure 
of that net might possibly be.    In other words, we know,   at 
least in a rough way,  what the net does (as this appears in 
the behavior of the animal or man) and from this information 
we have to figure out what structure the net must have. . .Our 
investigation passes through two stages.    In the first stage-- 
the behavioristic inquiry--we ignore the inner constituents, 
i.e. ,   the nervous  system and its activity,   and concentrate 
our attention instead on the observable relations between the 
stimuli affecting the organism and the responses to which 
these stimuli give rise. . .This makes the second stage--the 
functional inquiry --possible .    Here,  as Northrop says,   we 
concentrate our attention on the inner (throughput) consti- 
tuents of the system and point out the ways in which the 

...   receptor cells,   central cells,  and effector cells could be 
interconnected so that the input and output relations. . .would 
be those discovered in stage 1 . " 

While such a program can hardly be criticized on logical grounds, 

it appears pragmatically to have fallen short of the proposed goals.    Starting 

rather suddenly,   with the development of automata theory in the late  1930's, 

the ready applicability of symbolic logic brought this approach to early 

mathematical sophistication.    After the first flood of proposed models, 

further progress has been disappointingly trivial,  and returns seem to be 

diminishing rapidly.    The promised biological "explanations" have been 

particularly lacking.    In this writer's opinion,  there are at least five main 

reasons for this: 
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(1) There is a lack of sufficiently well defined psychological 

functions as a starting point.    The approach requires 

essentially full knowledge of input-output relations for the 

behavior of an organism,  and such knowledge is not 

available for any biological species . 

(2) Constructed solutions generally show poor correspondence 

to known conditions of neuroanatomy and neuroeconomy; 

the numbers of neurons required often exceed those in 

biological nervous systems,   and the logical organization 

generally requires a precision of connections which 

appears to be absent in the brain.    In some cases,   a 

single misconnection would be sufficient to make the 

system inoperable 

(3) The models fail to yield general laws of organization. 

A monotypic model is in general overdetermined, 

corresponding at best to a biological phenotype, 

rather than a species as a whole; its specification in 

the form of a detailed "wiring diagram" frequently 

misses essentials in a plethora of detail.    Unique 

solutions for the proposed functions are generally 

lacking and an enormous variety of models can be 

generated which appear to solve the same problem 

equally well.    Therefore, unless the system is actually 

tested against its biological counterpart,  nothing is 

gained by a detailed construction of the model except a 

further confirmation of an existence theorem which is 

already well established. 
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(4) The models lack predictive value.    Once a particular 

model has been proposed, further analysis can  reveal 

little that is not included in the functional description 

with which we began. 

(5) The models are not biologically testable in detail. 

Specific connections cannot be traced with sufficient 

precision in nervous tissue to say whether or not a 

particular wiring diagram is exactly realized.    Conse- 

quently,  the models are fated to remain purely specu- 

lative unless histological techniques are improved to 

a highly improbable degree. 

In the foregoing,   we have concentrated on the line of models 

which have attempted to represent the brain as a symbolic logic calculator, 

in which events of the outside world are represented by the firing or non- 

firing of particular neurons.    It is in these models that rigorous mathematical 

treatment has been most successfully achieved.    Not all monotypic models 

are of this variety,   however,    Field theorists  such as Köhler have taken 

exception to the idea that psychological phenomena can be represented in 

this fashion.    Köhler,   arguing for an isomorphic representation of perceptual 

phenomena,  asks (Ref.  46): "How  can a cortical process such as that of a 

square give rise to an apparition with certain structural characteristics,   if 

these characteristics are not present in the process itself?   According to 

Dr. McCulloch,   this is actually the case.    But if we follow the example of 

physics,  we shall hesitate to accept his view.    In physics,  the structural 
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characteristics of a state of affairs are given by the structural properties 

of the factors which determine that state of affairs. . . Situations in physics 

which depend upon the spatial distribution of given conditions never have 

more,  and more specific,   structural characteristics than are contained in 

the conditions".    While Köhler's own model is not generaly considered 

plausible today,   his criticism is a significant one,   and a number of theorists, 

such as Lashley (Rel.   50) MacKay    (Refs .  55, 56) and Green (Ref.   28) have 

been concerned with possible forms of representation of perceptual informa- 

tion which would preserve the intrinsic structural features of the perceived 

event rather than merely assigning an arbitrary symbol to it. 

The main line of monotypic models,  although failing to provide 

a satisfactory brain model,  has left us a number of important analytic tools 

and concepts,   including the McCulloch-Pitts neuron,   and the theorems 

concerning the existence of networks  representing arbitrary functions .    For 

the actual design of plausible organizations,   however,   the genotypic approach 

appears to hold more promise. 

2.3        Genotypic Models 

In the monotypic approach,   the properties of the components, 

or neurons,  which comprise the networks are fully specified axiomatically, 

and the topology of the network is fully specified as well.    In the genotypic 

approach,   the properties of the components may be fully specified,   but the 

organization of the network is specified only in part,  by constraints and 

probability distributions which generate a class of systems rather than a 
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specific design.    The genotypic approach,  then,   is concerned with the 

properties of systems which conform to designated laws of organization, 

rather than with the logical function realized by a particular system. 

This difference in approach leads to important differences in 

the types of models which are generated,  and the kinds of things which can 

be done with them.    In the case of monotypic models, for example,   the 

prepositional calculus is applicable and probability theory is poorly suited 

to the analysis of performance,   since a single fully deterministic system is 

under consideration which either does or does not satisfy the required 

functional equations.    In dealing with genotypic models,  on the other hand, 

sumbolic logic is apt to prove cumbersome or totally inapplicable (even 

though,   in principle,   any particular system which is generated might be 

expressed by a set of logical propositions).    In the analysis of such models, 

the chief interest is in the properties of the class of systems which is 

generated by particular rules of organization,   and these properties are 

best described statistically.    Probability theory therefore plays a promi- 

nent part in this approach.    A second major difference is in the method of 

determining functional characteristics of the models.    In the monotypic 

approach,   the functional properties are generally postulated as a starting 

point.    In the genotypic approach,   they are the end-objective of analysis, 

and the physical system itself (or the statistical properties of the class of 

systems) constitutes the starting point.    This means that psychological 

functions need not be determined in full detail before setting out to construct 

a model,  and,  indeed,   it is hoped that such models may help in answering 

open psychological questions. 
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While the monotypic approach arose rather suddenly with the 

advent of modern computers and control system theory,  and rapidly advanced 

to a high level of mathematical sophistication,   the genotypic approach has 

been much more gradual in its development,  and has not yet developed all 

of the mathematical tools required to deal adequately with its problems. 

The genotypic models have been influenced less by the engineering sciences, 

and more by physiology and neuroanatomy.    The descriptive anatomy of the 

nineteenth century laid the groundwork for modern studies of localization of 

function in the brain, and neurologists such as John Hughlings Jackson noted 

the apparent  plasticity of the system -- the ability of neighboring regions to 

take over the function of damaged areas .    Pavlov and others speculated about 

possible mechanisms for adaptive modification of the central nervous system 

in the early part of this century,   and various hypotheses for the deposition of 

"memory traces" were of interest to psychologists and physiologists alike. 

The doctrine of equipotentiality,   propounded by Lashley (Ref.  49),   went even 

further in claiming complete interchangeability of most parts of the cerebral 

cortex,   and evidence for "distributed memory" which suggested that "traces" 

must be more or less uniformly dispersed throughout the cortical tissue 

began to accumulate.    All of this neurological evidence engendered a picture 

of the brain as a relatively undifferentiated structure,   capable of undergoing 

radical reorganization by means of unspecified adaptive mechanisms,   and 

showing only gross anatomical equivalence from one individual to another. 

While recent work on localization (Refs .   51,   65,   66,   94,   108) has shown 

some surprisingly precise mapping of functions,   modern morphological 

investigations (Refs.   8,   5Z,   93) have borne out the apparently statistical 

organization of the "fine structure" of neurons and their interconnections. 

It now seems reasonable to suppose that while there are many constraints 
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on the organization of neurons in the brain,  which are undoubtedly essential 

to the system's functioning,  these constraints take the form of prohibitions, 

biases,  and directional preferences,   rather than a specific blueprint which 

must be followed to the last detail.    In order words,   there are enormous 

numbers of functionally equivalent systems,  all obeying the same rules of 

organization,   and all equally likely to be generated by the genetic mechanisms 

of a particular species. 

While the neurologists mentioned above had a great deal to say 

about the observed and hypothetical organization of the brain,  they were not 

concerned with the construction of models in the sense of detailed theoretical 

systems from which precise deductions could be made.    Psychologists and 

philosophers,   more willing to indulge in speculation,   were the first to attempt 

detailed conjectures on the maturation of psychological functions in systems 

which might justifiably be called "brain models".    Hebb (Ref.  33) and Hayek 

(Ref.  32),   following the tradition of James Stuart Mill and Helmholtz, have 

attempted to show how an organism can acquire perceptual capabilities 

through a maturational process.    For Hayek,   the recognition of the attri- 

butes of a stimulus is essentialy   a problem in classification, and his point 

of view has inspired Uttley (Refs .   101,   10Z) to design a type of classifying- 

automaton which attempts to translate the approach into more rigorous 

mathematical form.    Htbb's model is more detailed in its biological 

description,   and suggests a process by which neurons which are frequently 

activated together become linked into functional organizations called 

"cell assemblies" and "phase sequences" which.,   when stimulated,   corres- 

pond to the evocation of an elementary idea or percept.    While Hebb's 
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work is far more complete in its specification of a "model" than most 

preceding suggestions along this line,   it is still too programmatic and too 

loose in its definitions to permit a rigorous testing of hypotheses.    It should 

be considered more as a description of what a satisfactory model might 

ultimately look like than as a fully formulated model in its own right.    None- 

theless,  it comes sufficiently close to a detailed specification so that 

Rochester and associates,  using an IBM computer,  were able to propose 

enough of the missing detail to put the cell assembly hypothesis to an 

empirical test (Ref.  77).    Unfortunately,  with a theory so loosely specified, 

the inconclusive results of the IBM experiments carry little weight in 

evaluating Hebb's original system.    Milner,  in a recent paper (Ref.  58) has 

attempted to update the Hebb theory,  and it may be that his model can be 

more readily translated into analyzable form,   although this has not yet been 

done . 

It is interesting that one of the first applications of probability 

theory to brain models is due to Landahl,  McCulloch,   and Pitts,  appearing 

in 1943 along with the McCulloch-Pitts symbolic logic model    (Ref.  47).    In 

this paper,   the topology of the network is still assumed to be a strictly 

deterministic,  fully known organization,   but impulses are assumed to be 

propagated with known frequencies but with uncertainties in their precise 

timing.    A theorem is stated which permits the substitution of frequencies 

for symbols in the logical equations of the network,   in order to obtain the 

expected frequency with which different cells will respond.    This statistical 

treatment is related to the work of von Neumann (Ref.   104) on the proba- 

bility of error in networks with fallible components. 
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The first systematic attempt to develop a family of statistically 

organized networks,  and to analyze these in a rigorous fashion by means of 

a genotypic approach seems to have been due to Shimbel and Rapoport,  in 

1948 (Ref.  92).    Starting with an axiomatic representation of neurons and 

connections,   similar to that of McCulloch and Pitts,  a network is character- 

ized by probability distributions for thresholds,   synaptic types,  and origins 

of connections,    A general  equation is then developed for the probability that 

a neuron at a specified location will fire at a specified time,  as a function of 
<:£*,       R „••- - 

preceding activity and parameters of the net.'' -This is applied to a number of 

specific classes of networks to determine the possibtiity of steady-state     ■ - 

activity,  and changes in the firing distribution with time.    This work isa;. 

forerunner of a number of stability studies (e.g. , Allanson,  Ref.   2) which 

are still of interest. 

The use of a digital computer by Rochester and associates was 

mentioned above in connection with Hebb's model.    Simulation of a statistically 

connected network to investigate possible learning capabilities was first 

carried out. successfully by Farley and Clark in 1954 (Ref.   10).    Although 

mathematical analysis was not attempted in either the Farley-Clark or the 

Rochester models,  they illustrate a convenient method of axiomatizing a 

network (by means of a computer program) to a degree which makes the 

investigation of hypotheses possible.    While none of these experiments led 

to very sophisticated systems,  they are of considerable historical interest, 

and the mechanism for pattern generalization proposed by Clark and Farley 

(Ref. 15) is essentially identical to that found in simple perceptrons. 
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Statistical models of various types have been proposed during the 

last decade.    In particular, the models of Beurle,   Taylor, and Uttley (Refs . 6, 

99,   101,  102) are of interest as attempts to analyze models with a clear 

resemblance to the organization of a primitive nervous system,  with receptors, 

associative elements,  and output or motor neurons.    Mareover- in some of 

these models,  environments of sufficient complexity to permit the repre- 

sentation of visual and temporal patterns (albeit of a very primitive type) 

are included in the analysis.    Minsky (Ref.   59) has also devised and analyzed 

several models capable of learning responses to simple stimuli. 

A contribution of considerable methodological significance was 

Ashby's "Design for a Brain",   in 195Z (Ref.  3).    While Ashby's work (despite 

its title) does not specify an actual brain model in our present sense,   it 

develops the rationale for an analysis of closed systems which must include 

the environment as well as the responding organism and rules of interaction 

as the object of   study.    Ashby's fields of variables correspond closely to 

our concept of "experimental systems" which will be defined in Chapter 4. 

In addition to his conceptual contribution,  which is concerned with the 

general  approach to be used rather than with a specific model, Ashby has 

demonstrated in a number of experiments how statistical mechanisms can 

yield adaptive behavior in an organism. 

While the genotypic approach has found favor among many 

biologists,  it is by no means universally accepted.    A typical criticism is 
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voiced by Sutherland (Ref.  97)   in connection with Hebb's system: 

"When Hebb's theory was first put forward,  it was hailed 
as showing how it might be possible to account for behavior 
in terms of plausible neurophysiological mechanisms. . . 
However,  a moment's reflection shows that,  if he is right, 
what he has really succeded   in doing is to demonstrate 
the utter impossibility of giving detailed neurophysiological 
mechanisms for explaining psychological or behavioral 
findings.   According to Hebb the precise circuits used in 
the brain for the classification of a particular shape will 
vary from individual   to individual with chance variation 
in nerve connectivity determined by genetic and matura- 
tional factors. . .  Different individuals will achieve the 
same end result in behavior by very different neurological 
circuits. . .  If Hebb's general system is right,   it precludes 
the possibility of every making detailed predictions about 
behavior from a detailed model of the system underlying 
behavior." 

While objections such as this seem to stem from a misunderstanding 

of the possibility of obtaining seemingly deterministic phenomena from a 

statistical substrate (as in statistical mechanics) the above argument is bols- 

tered by many findings which suggest complicated hereditary mechanisms 

for the analysis of stimuli in "instinctive" behavior.    The work of Sperry 

and Lettvin has already been cited in connection with the mechanisms for 

precise localization of connections which seem to exist in the brain.    Our 

conclusion is that the biological system must employ some mixture of 

specific connection mechanisms and statistically determined structures; 

just how much constraint is present in the genetic constitution of the brain is 

an open question. 
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On most of the specific points of criticism raised in connection 

with monotypic models, the genotypic approach seems to fare much better. 

Detailed psychological functions are not required as a starting point.    Detailed 

physiological knowledge of the brain would be helpful,  but even a rough para- 

metric description enables us to start off in the right direction,  and present 

models have a considerable way to go before they have assimilated all of the 

physiological data which are available. 

Since this approach begins with the physical model rather than the 

functions which must be performed,   it is easy to guarantee its conformity in 

size and organization to the general characteristics of a biological system. 

Most important is the fact that this approach appears to be yielding results of 

increasing significance and interest,   and the models frequently suggest 

progressive lines of development from simple first approximations to more 

sophisticated systems.    In the application of the genotypic approach to per- 

ceptrons,  a number of laws of considerable generality have been discovered, 

as will be seen in subsequent chapters. 

2.4       Position of the Present Theory 

The groundwork of perceptron theory was laid in 1957,   and 

subsequent studies by Rosenblatt,   Joseph, and others have considered a 

large number of models with different properties (Refs .  7,  30,   31,   40, 

41,   76,   79,   80,  81,   82,   84,   85,  86).    Perceptrons are genotypic models, 

with a memory mechanism which permits them to learn responses to 

stimuli in various types of experiments.    In each case,  the object of 
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analysis is an experimental system which includes the perceptron,  a defined 

environment,  and a training procedure or agency.    Results of such analyses 

can then be compared with results of comparable experiments on human or 

animal subjects to determine the functional correspondence and weaknesses 

of the model.    A number of specific psychological tasks and criteria,  which 

will be discussed in the following chapter,  are used for the comparison of 

different systems. 

Perceptrons are not intended to serve as detailed copies of any 

actual nervous system.    They are simplified networks,   designed to permit 

the study of lawful relationships between the organization of a nerve net,  the 

organization of its environment,  and the "psychological" performances of which 

the network is capable.    Perceptrons might actually correspond to parts of 

more extended networks in biological systems; in this case,  the results 

obtained will be directly applicable.    More likely,  they represent extreme 

simplifications of the central nervous  system,   in which some properties are 

exaggerated,   others suppressed.    In this case,   successive perturbations and 

refinements of the system may yield a closer approximation. 

The main strength of this approach is that it permits meaningful 

questions to be asked and answered about particular types of organization, 

hypothetical memory mechanisms,  and neuron models.    When exact 

analytic answers are unobtainable,  experimental methods,   either with 

digital simulation or hardware models,  are employed.    The model is not 

a terminal result,  but a starting point for exploratory analysis of its 

behavior. 
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3. PHYSIOLOGICAL AND PSYCHOLOGICAL CONSIDERATIONS 

La the last chapter,  a methodological doctrine was proposed, 

which undertakes to evaluate classes of brainlike systems by comparing 

their performance with that of biological subjects in behavioral experi- 

ments; by gradually increasing the sophistication and varying the axio- 

matic constraints which define the experimental systems,   it is hoped that 

models which closely resemble the biological prototype can ultimately be 

achieved.    In this chapter,  the desiderata for a satisfactory brain model 

are considered in more detail,  from the standpoint of physiology and 

psychology.    What are the parametric constraints,  functional properties, 

and performance criteria which must be met,   in order to achieve a model 

which is a plausible representation of the brain? 

The following discussion comes under three main headings: 

(1) established fundamentals; (2) current issues; and (3) the design of 

experimental tests of performance.    It is not our purpose to review all of 

the relevant background in biology and psychology,  but rather to highlight 

those points which bear most directly upon the present undertaking,  and 

to suggest certain areas in which investigations might provide decisive 

evidence for or against some of the models which we shall propose.    It 

will be noted that no attempt has been made to distinguish specifically 

"psychological" or specifically "physiological" problems in the following 

sections.    Such distinctions are not only arbitrary in a number of the 

cases  considered, but also tend to obscure the fact that we are interested 

in all of these problems because of their relevance to brain models,   rather 
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than   to psychology or physiology per se.     In this discussion, attention 

will be concentrated on the level of complexity which seems most commen- 

surate with that of the proposed models.    Psychological material on psycho- 

neuroses,  or on attitude formation, for example, while it might be brought 

to bear on the evaluation of some future models,  is hardly likely to be 

relevant at this time.    On the physiological side,  we are chiefly concerned 

with the overall organization of the nervous system,   its microstructure, 

and conditions for impulse transmissions; we are less concerned with 

details of neuroanatomy and neurochemistry,  although such data may 

become important in more sophisticated models,  where a closer correlation 

with the biological system is sought. 

4 

3.1        Established Fundamentals - -^ 

3.1.1    Neuron Doctrine and Nerve Impulses ■ 
•vor 

It was only during the first decade of this century that a strong 

case was developed for regarding the neuron as the basic anatomical unit 

of the nervous system.    The demonstration that this is the ca.se rests largely 

upon the work of Ramon y Cajal (Ref.   14).    Since Cajal's time,  a great variety 

of neurons,  differing in size,  nurnbers of dendritic and axonal processes,  and 

the distribution of these,   have been described by neuroanatomists (Refs.  8, 

5Z,   93).    Today it is generally accepted that in virtually all biological species, 

the nervous system consists of a network of neurons,  each consisting of a 

cell body with one or more afferent (incoming) processes,  or dendrites,  and 

one or more efferent (outgoing) processes,  or axons .    The axons branch into 
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small fibers which may make contact with,  but remain separate from the 

surface membrane of cells or dendrites upon which they terminate.    Neurons 

are generally divided into three classes:  (1) sensory neurons,  which generate 

signals in response to energy applied to sensory transducers,  such as photo- 

receptors or pressure sensitive corpuscles; (2) motor neurons,   (or effector 

neurons) which transmit signals to muscles or glands and directly control 

their activity;  (3) internuncial neurons,   (or associative neurons) which form 

a network connecting sensory and motor neurons to one another.    The brain, 

,-vor central nervous system,   is made up almost entirely of neurons of this 

.   last type . 

The actual signals carried by these neurons may take one of 

several forms.     Until recently,   it was supposed that all information in the 

nervous system was represented by a code of all-or-nothing impulses, 

corresponding to on-off states of the neurons.    A sufficient input signal was 

supposed to trigger the receiving cell directly into emitting a spike potential, 

which was   transmitted without decrement from the receiving region of the 

.dendrites to the cell body,   and out along the axon to the terminal endbulbs, 

.where it might or might not succeed in triggering later cells in the network. 

In a recent review (Ref.   11) Bullock has pointed out that this view has been 

largely supplanted by a far more complicated picture.    While it is true that 

the transmission of signals over long distances is generally accomplished 

by means of all-or-nothing spike propagation along the axons of nerve cells, 

the spike impulse is not a direct response to impulses which arrive at the 

dendrites,  and may originate at a point which is separated by a considerable 
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distance from the site at which incoming impulses are received.    Essentially, 

the currently accepted concept is that the dendritic structure and cell body 

jointly act as an integrating system,  in which a series of incoming signals 

interact to establish a pre-firing state in a region at the base of the axon, 

from which impulses originate.    If this pre-firing state reaches a threshold 

level (presumably measured by membrane depolarization) at a point within 

the critical region,   a spike potential is initiated,  and spreads without decre- 

ment along the axon.    The interactions which may occur in the cell body and 

dendrites,  however,   involve potential fields in which the effects of impulses 

received at a given point spread over the surrounding membrane surface in 

a decrementing fashion.    These effects may be graded in intensity,  depending 

on frequency of impulses received,  and the  state of the receiving membrane 

at the time.    Successions of impulses arriving at the same synapse can 

sometimes cause an increase in the sensitivity of the receiving membrane 

(facilitation) and can sometimes cause a progressive diminution in sensitivity 

(Ref. 11).    There is evidence to suggest that different local patches of surface 

membrane are differently specialized,   and respond in different ways to 

impulses received,   even within the same neuron.    Some of these regions 

appear to act as sources of internally generated signals,  which may lead 

to spontaneous activity of the neuron,   and the emission of spike impulses 

without any input signals from outside the cell. 

Two main types of synapses are recognized: excitatory and 

inhibitory.    It is generally assumed,  although it has not been proven,   that 

a single neuron is either all excitatory or all inhibitory,   in its effect upon 

post-synaptic cells.    It remains possible,   however,   that the individual 
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synaptic endings are specialized,  some of them releasing a depolarizing 

transmitter substance (excitatory endings) while others release a hyper- 

polarizing substance (inhibitory endings).    A single synapse,   so far as 

is known,   remains either excitatory or inhibitory,  and is incapable of 

changing from one to the other. 

The nerve impulse itself is a basically non-linear response to 

stimulation.    It is supported by energy reserves of the axon by which it is 

transmitted,   rather than by a propagation of energy from the sources of 

excitation.    The nerve impulse is manifested by a moving zone of electrical 

depolarization of the surface membrane of the neuron,   the exterior of which 

is normally 70 to  100 millivolts positive relative to the interior.    This zone 

tends to spread along the axon due to ionic currents which tend to break 

down the potential difference between   the interior and exterior of the 

neuron,   until the membrane is  repolarized by metabolic processes  (see 

Eccles,   Refs .   18,   19  ).    The resulting "spike potential" takes the form of 

an electrically negative impulse (measured relative to the normal surface 

potential of the membrane) which propagates down the fiber with an average 

velocity of about 10 to  100 meters per second,   depending on the diameter 

of the fibers (c. f. ,   Brink,   Ref.   9). 

The arrival of a single (excitatory) impulse gives rise to a 

partial depolarization of the post-synaptic membrane surface,  which 

spreads over an appreciable area,   and decays exponentially with time. 

This is called a local excitatory state (1 , e. s. ).    The l.e.s. due to 

successive impulses is (approximately) additive.    Several impulses 

arriving in sufficiently close succession may thus combine to touch off 
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an impulse in the receiving neuron if the local excitatory state at the base 

of the axon achieves the threshold level.    This phenomenon is called 

temporal summation.    Similarly,  impulses which arrive  at different points 

on the cell body or on the dedrites may combine by spatial summation to 

trigger an impulse if the l.e.s, induced at the base of the axon is strong 

enough. 

The passage of an impulse in a given cell is followed by an 

absolute refractory period during which the cell cannot be fired again, 

regardless of the level of input activity.    This is equivalent to an infinite 

threshold during this period.    The spike potential and absolute refractory 

period last about 1 millisecond,    Finally,  there is a relative refractory 

period which may last for many milliseconds after the initial impulse. 

During this time,  the threshold gradually returns to normal,  and may 

even fall to somewhat below its normal level for a time.    While the 

response of a cell to a single momentary stimulus,   such as an electrical 

pulse,   is markedly non-linear (the amplitude of the generated impulse 

being quite independent of the amplitude of the triggering signal) the 

effect of a sustained excitatory signal,   in many cases,   is to evoke a 

volley of output spikes,  the frequency of which may be roughly propor- 

tional to the intensity of the stimulus over a wide range.    This is parti- 

cularly true of sensory neurons,   where the frequency of firing may be 

used to determine the intensity of the  stimulus energy with considerable 

accuracy. 
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The general picture of the nervous system,  then,   is one of a 

large set of signal generators,  each having one or more outputs,  on which 

nerve impulses may appear.    These impulses may vary in frequency,  and 

to some extent in amplitude,  but seem to carry information mainly in a 

pulse-coded form.    The signal generators themselves are decision elements 

of a most intricate type;  each one makes its decision to initiate an output 

impulse according to a complicated function of the series of signals received 

at each of its synapses or receptor areas,  as well as its own internal state. 

In a brain model,   a neuron of this complexity would tend to make the system 

unintelligible and unmanageable with the analytic and mathematical tools 

at our disposal.    Simplifications will therefore be introduced,   as in the 

manner of the McCulloch-Pitts neuron; but it should be remembered that 

the biological neuron is considerably more complicated,  and may incorporate 

within itself functions which we require whole networks of simplified neurons 

to realize . 

3.1.2     Topological Organization of the Network 

The human brain consists of some  10       neurons of all types. 

These are arranged in a network which receives inputs from receptor 

neurons at one end,   and conveys signals to the effector neurons at the 

output end.    Different sensory modalities  -- vision,   hearing,   touch, etc. -- 

communicate with the central nervous system by way of distinct nerve 

bundles,  which enter it at different points.    Each of these modalities, 

after passing its information through a network of cells which respond 

more or less exclusively to stimuli from that modality,   eventually contri- 
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butes to a common pool of activity in the "association areas" of the central 

nervous system (CNS).    Output signals originate either from the parts of 

the CNS which are specific to a particular modality (for example,  the 

pupillary reflex mechanism) or from the common activity areas (as in' 

speech).    Final outputs may go through a series of stages in which motor 

patterns or sequences are selected,  and detailed coordination is regulated. 

From these motor control regions, feedback paths re-enter the association 

areas and sensory integration areas,   so that the possibility of an elaborate 

servo-mechanism for the control of motor activity exists. 

While this general picture holds true for most biological 

organisms,  there is considerable variation both in gross and detailed 

anatomy,   from   species to species and individual to individual.    In under- 

taking to design a first order approximation to this structure for use in a 

brain model,   we will begin with a network consisting of a single array of 

sensory units,  a layer of association units,  and a single effector,  or 

response unit.    In later models,   more   complicated structures will be 

considered.    Even the  simplest models,   however,  are capable of showing 

a surprising similitude to the functional properties of the brain.    It seems 

reasonable,  therefore,   to regard the complications of neuroanatomy in the 

various species as elaborations of a basically simple schema,  which is to 

be found throughout.    This basic plan of organization is illustrated in 

Figure  1 . 
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The distribution of cell types and connection patterns has been 

studied by Lorente de No, Sholl,  Bok,  and others (Refs .  8,   52,   93).   A 

typical cell in the cerebral cortex receives input connections from some 

hundreds of other cells, which may be located in widely scattered regions, 

but its output is more likely to be transmitted to a relatively localized 

region.    Cells which receive sensory input signals are likely to have a 

restricted field of origins in a sensory surface,   such as the retina or 

the skin. 

The mapping of the frog retina into the brain has been studied 

by Lettvin (Ref.   51) who finds a rather precise topographic mapping,   in 

which several different types of information arc represented in different 

layers.       This topographic mapping is established genetically despite 

the fact that the fibers which transmit the information from the retina 

are apparently completely "scrambled" in the optic nerve.    Moreover, 

experiments by Sperry (Ref.   94) and more recently by Lettvin (Ref.  51) 

show that if the optic nerve is severed and allowed to grow together again, 

the fibers which originally transmitted to a particular terminal location will 

tend to reconnect to that same terminal location,  with surprisingly little 

loss of precision.    This points to a highly specific neural organizing 

capability,   which must be taken into account in considering admissible 

types of constraints for a brain model.    In the mammalian brain,   each 

sensory modality appears to be represented by an orderly topographic 

mapping analogous to that just described.    Auditory stimuli,   for example, 

are mapped into a region which is organized according to pitch;   tactile 

stimuli are mapped according to body location,  and so forth.    Similarly, 

- 

See also Section 3.1.4. 
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the motor neurons are organized,  in the cerebral cortex,  in an ordered 

arrangement which is topologically similar to the organization of the 

muscles which are controlled. 

In contrast to the highly specific regional organization    in the 

gross anatomy of the sensory projection areas of the cortex,  the detailed 

microstructure of the network appears to be essentially random,  governed 

only by directional gradients and preferences,   and statistical distributions 

of fiber lengths for various types of cells (see Sholl,  Ref.   93).    In the 

human nervous system,   it appears that the most specific and constrained 

topological organizations are to be found in the sensory and motor systems, 

while the intervening association network of the CNS is less tightly 

controlled in its organization,   presumably depending more on learning 

and adaptive modification to establish the required pathways and linkages. 

The degree of precision in establishing the topological organization of 

neurons in even the most highly constrained reflex mechanisms is probably 

far less than that in most artificial data processing devices,  and must retain 

a certain degree of randomness wherever the number and density of 

connections is appreciable.    Unfortunately,   no data are available which 

would indicate the complexity of topological constraints which correspond 

to the highly complex inherited behavior patterns which are known to 

exist in many species.    Since the nature of such constraints is unknown, 

we shall avoid gratuitous assumptions about them,  as far as possible. 

In the development of brain models,   it will be our general strategy to   start 

out with minimally constrained networks,  and examine the consequences of 

introducing particular types of constraints,  one at a time. 
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3.1.3       Localization of Function 

Ever since the brain was first credited with the control of 

psychological activity,  attempts have been made to delineate separate 

functions for its different parts.    In the last century (largely under the 

influence of Gall) this took the form of an assignment of "mental-faculties" 

such  as intelligence,  combativeness,  amativeness,  and religiosity,  to 

special regions of the brain.    As techniques for the study of functional 

anatomy improved,  this gave way to a concept of organization into sensory 

tracts,  motor tracts,  and association tracts.    The functional organization 

which was revealed has been most firmly established in the case of sensory 

and motor tracts, where a particular position in the brain is correlated with 

a particular sensory locus,  or a particular set of muscles whose activity it 

controls.   An excellent review of sensory and motor mapping can be found 

in Ruch (Refs .  88,   89).    More recently,   a finer breakdown in the localization 

of sensory functions has been demonstrated by Lettvin and associates (Ref.  51), 

Four distinct types of information,   involving distinct aspects of the visual 

stimulus (contrast,   curvature,   movement,  and dimming of illumination) have 

been shown to be mapped into four distinct layers of the tectum of the frog. 

This suggests localization of analytic functions,   of a sort which has been 

suspected but not previously demonstrated. 

In dealing with the so-called "association areas" of the cerebral 

cortex,  and with other parts of the brain which are not clearly related to 

sensory data processing or motor coordination,   something of the old 

treatment in terms of "mental faculties" still remains; specifically, 

centers have been found which are commonly attributed with primary 
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responsibility for temporary and permanent memory, for emotional behavior, 

for speech recognition and speech production,  and (in the frontal lobes) for 

the integration of complex goal-directed activities.    The lack of clear opera- 

tional tests for such capabilities has been a hindrance to progress in such 

functional mapping,   and the results are considerably more ambiguous than 

is the case with sensory and motor functions.    A discussion of current 

evidence on brain localization with respect to these   "higher faculties" is 

found in Pribram (Ref.  72).    Much of the recent work is concerned with the 

localization of tracts which influence motivation,   alertness,  and conscious- 

ness in the organism (Refs.   1,   22,   38,   64,   65). 

One feature which is of particular importance for brain models 

is the apparent plasticity of localization in the "association areas" (or 

"intrinsic systems",   to use the terminology advocated by Primbram) in 

contrast to the relatively fixed and irreplaceable character of the sensory 

and motor tracts.    Loss of function,  due to destruction of association cortex, 

is apt to be transient,  with adjacent areas taking over the function after a 

period of readaptation .    Jackson,   in his classic studies of the motor cortex, 

(Ref.  36) observed that even here localization is not rigid and absolute,  and 

that a certain amount of flexibility exists,  permitting the functions of damaged 

tissue to be taken over by neighboring areas.    The sensory projection areas, 

on the other hand,  appear to be indispensible to perception; destruction of 

the optical cortex leads to permanent blindness in an area corresponding to 

the location of the lesion,   and similar phenomena are to be found in other 

sensory modalities.    Thus,  the extreme hypothesis of equipotentiality 

advocated originally by Lashley (Ref.  49), (who observed that cortical 
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ablation appeared to produce a general deficit in performance proportional 

to the amount of cortex extirpated,   rather than eliminating specific memories 

and abilities) has been modified in the direction of relative localization, 

which is quite strict for certain sensory functions,  and comparatively weak 

and readily modified   for more complicated control functions, thinking, and 

memory. 

A rather different approach to localization is suggested by the 

histological studies of cortical tissue,  initiated originally by Brodmann,  and 

pursued more recently by Lorente de No and Sholl (Refs .  52,   93).    The 

" cytoarchitectonic   areas" which have been described in these studies differ 

in their microstructure and detailed organization,  and attempts have been made 

to relate such differences to the function of the cortex in which they occur. 

To date,  this approach has not led to particularly significant results,  although 

in principle it may ultimately suggest the essential organizational properties 

which must be incorporated into a brain model. 

At the primitive level of organization to which our models will 

aspire at this time,   current data on brain localization are of only secondary 

interest.    The main features of the brain still seem to be adequately 

described by the general topological structure  shown in Fig.   I.    The 

"central integration and control network" indicated in the diagram is   known 

to possess some important internal demarcations in higher organisms,  but 

the precise functions of these parts and their interrelations is still largely 

speculative.    In simpler brains (crustacea,  for example) the gross 

organization is probably no more complex than indicated by the diagram; 

and it seems likely that in general it is the fine structure,   rather than the 

gross anatomy,   which determines the functional properties of the network. 
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3.1.4       Innate Computational Functions 

There is no doubt that mechanisms of considerable complexity, 

sufficient for perceptual tasks and the control of organized behavior,   can 

be created by genetic control of growth and maturation.    This is most 

dramatically evident in the instinctual patterns of insects (for example, 

the well known communication system of bees,  and the frequently cited 

behavior patterns of carpenter wasps),  but is also clearly present in 

vertebrates (e.g.,  the spawning behavior of salmon,  and the migratory 

behavior of birds,  as described in Ref.   90).    Recently,  Gibson and Walk 

have furnished clear experimental evidence for the innate perception of 

depth in mammals (Ref.  24).    All of these phenomena require "built-in" 

control mechanisms,   of a rather intricate sort;    In the cases just cited, 

these built-in.mechanisms are not known in any detail.    A number of more 

elementary functions   have been discovered,  however,   which provide some 

picture, of the types of "cornputational mechanisms" which are likely to 

exist throughout the central nervous   sytem. 

The stimulus analyzing mechanisms discovered by Lettvin and 

associates for  frog vision have already been mentioned.    In these studies,  it 

is found that certain ganglion cells in the frog retina respond only to contours 

or strong contrast gradients within their sensory field; others respond only to 

convex images; others to moving boundaries; and still others to a general 

dimming of illumination over their entire field.    Each of these four cell types 

transmits its information to a distinct layer of the frog's tectum,  where its 

position is mapped topographically.    Thus,   one layer represents a contour 

Other visual analyzing mechanisms have recently been demonstrated by 
Hubel and Wiesel (Ref,   113) in the cat's cortex (see Chapter Z3). 
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map,  or outline drawing of the stimulus field,  another represents a location 

map for small convex objects or corners,  a third represents movement 

vectors,  and a fourth indicates regions of dimming illumination. 

At the motor-control end of the nervous system,   a number of 

reflex arcs and servo-control systems have been analyzed.    The pupillary 

reflex,  for example,  has been analyzed as a typical     servomechanism by 

Stark and Baker (Ref.   96).    A considerable amount of work has also been 

done on the cerebellar servomechanisms which   regulate muscular action 

under the control of cortical decisions and kinesthetic feedback information 

(c.f.  Ruch,  Ref.   89).      It is probably safe to assume that similar closed-loop 

control systems,   employing familiar servomechanism principles,  are 

employed throughout the central nervous system for such purposes as 

controlling level of activity,  preventing runaway excitation phenomena 

(such as occur in epileptic seizures),   and regulating sensitivity to selected 

aspects of the sensory input data. 

It is worth noting that most of the specific computing mechanisms 

used in muscular control appear to be of an analog variety,   rather than digital; 

they make use of intensities and frequencies of activity for the direct control 

of servo-systems,   rather than computing a control formula from encoded 

data and then generating the control signal required.    The stimulus analyzing 

mechanisms found by Lettvin,   however,   constitute a sort of digital code,   in 

which stimulus properties are represented by presence or absence of signals 

from particular neurons.    It seems likely,   as von Neumann has observed 

(Ref. 105) that the brain makes extensive use of both digital and analog 

principles in its operation,  and it appears that both types of devices may 

be genetically determined. 

-44 



An interesting example of theoretical speculations on possible 

computational functions employed in shape discrimination in the octopus can 

be found in Sutherland (Ref.  98).   Sutherland reviews several alternative 

theories,  and presents evidence in support of his own conjecture that the 

octopus responds to an analysis of the horizontal and vertical dimensions 

of the stimulus measured along all possible cross-sections .    No attempt is 

made,  however,  to tie the computational process to a particular neurological 

structure,  or to indicate a mechanism which might carry out the indicated 

operations . 

3.1.5.     Phenomena of Learning and Forgetting 

Thus far,   we have concentrated on the anatomical and physio- 

logical features of the nervous system which appear to be basic for the 

design of a brain model.    We now turn to some of the behavioristic and 

psychological functions which a brain model should be able to demonstrate. 

Phenomena of retention and adaptation in organisms have been 

studied in a variety of experiments,  varying greatly in their design.    In 

traditional usage,   "memory" experiments have been concerned more with 

the retention and recall of experience,   while "learning" experiments are 

concerned with the acquisition and modification of behavior.    Both types of 

investigation,   however,   are concerned with lasting modifications in the state 

of the organism,  and in complicated problems  (e.g.,   those involving 

"insight") one tends to merge into the other; accordingly,  all of these 

experiments will be considered together in this discussion. 
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Quantitative studies of learning and memory in psychology- 

stem from the classical experiments of Ebbinghaus,  in 1885,  on the learning 

and retention of nonsense syllables.    Using himself as a subject,  he obtained 

learning and forgetting curves, and demonstrated many of the phenomena of 

recognition and retention which have interested psychologists ever since. 

Related phenomena have been studied by Bartlett (Ref.   5 ) using more highly 

organized material.    A second type of experiment,  the conditioned reflex 

experiment,  first employed by Pavlov,   is characterized by the association 

of an existing response to a new stimulus, which did not evoke the response 

prior to the conditioning procedure.    A third type of experiment,  employed 

originally by Thorndike and recently  studied extensively by Skinner and 

others,  is concerned with the learning of a pattern of behavior which is 

instrumental to the solution of a  problem,   or which satisfies a drive. 

Where such problem-solving behavior appears to depend in a crucial way 

upon a "cognitive restructuring" of the situation,  or the formation of a new 

"concept",  we have an experiment in "insight" or "concept formation",   as 

in the studies of the Gestalt psychologists. 

It is possible that these three types of experiments are actually 

demonstrating fundamentally different mechanisms of learning.    The first 

deals with recognition and recall of previous perceptual experience; the 

second is concerned with ehe generalization of responses from initial 

stimuli to new stimuli by virtue of temporal association; the third is 

concerned with the discovery and establishment of problem-solving behavior. 

Still  other experiments deal with such phenomena as short-term memory 

span,   acquisition of needs and motives,  attitude formation,   perfection nr v 
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motor skill,  or learning to make fine perceptual judgements.    Undoubtedly, 

the same physiological processes are tapped in many of these tasks; on the 

other hand,  attempts at subsuming all of them under a set of general "laws 

of learning" does not seem to be particularly helpful for our present purpose. 

From the standpoint of brain model construction,   it seems safest to regard 

each type of learning experiment as a distinct problem,  with its own variables 

and rules of behavior which we hope that our model will duplicate under 

equivalent experimental conditions.    The main value of such psychological 

experimentation,  then,   is to provide us with a set of "calibration experiments", 

by means of which a model can be compared with known organisms under well 

defined conditions.    The reader who is unfamiliar with the literature of 

learning experimentation will find the reviews by Hilgard,   Brogden,  and 

Hovland (in Ref.     1 12 ) particularly helpful . 

In a number of experiments,   attempts have been made to find 

the actual physiological correlates of the learning or memory phenomenon. 

Notable among these are the experiments of Penfield (Ref.   68),   who finds 

that electrical stimulation of selected points on the cortex may evoke long 

and vivid sequences of past experience,  apparently with hallucinatory clarity. 

John (Ref.   39) has  recently reviewed experiments in cortical conditioning,  and 

reported a number of interesting results of his own,   which suggest that 

memory may involve modification of the connections between the deep centers 

of the brain stem and the cerebral cortex,   with the reticular formation playing 

a particularly significant role.    The experiments of Olds (Refs .   64,   65,   66) 

on the reinforcing effects of electrical stimulation applied to certain points 

in the hypothalamus and adjacent structures suggest that these may be 

involved in the motivational aspect of learning.    Such experiments,  which 

have only recently become possible through the improvement of electro- 

physiological techniques,  are likely to become increasingly valuable as 

guides to theory construction. 



3,1.6       Field Phenomena in Perception 

Early studies of perception were largely concerned with the 

absolute question of what perceptions are made of; such studies were 

concerned with range and sensitivity of sensory abilities,   measurement of 

limits and thresholds,  and the detailed dissection of sensory stimuli into 

fundamental components.    Such studies form the main subject matter of 

classicial psychophysics.    In psychology,   they gave rise to an atomistic 

approach (reaching its utlimate expression in the work of Titchener) in 

which it was proposed that any phenomenon of perception could be   accounted 

for by a proper compounding of sensory elements,  each of which retains its 

own identity,  like a piece of tile in a mosaic.    During the last few decades, 

largely under the influence of the Gestalt psychologists,   studies of perception 

have turned from the question of the constituents of perception to the question 

of the conditions under which a given perception occurs.    It is now generally 

accepted that what is perceived depends not only upon the properties of the 

stimulus object,   or image,  which is recognized,   but. upon the organization 

of the entire sensory field in which it is embedded.    This is true not only 

in vision,   but in other sensory modalities as well. 

The field phenomena which have been studied include the effects 

of contrast,  figure-ground organization,   frames of reference,  depth perception, 

size constancy,  and illusions.    The reader is referred to Kcffka (Ref.   44 ) 

and Gibson (Ref.   Z6 ) for detailed discussion of these topics.    For present 

purposes,  the most important implication of this work is that a physical 

model for a perceiving system must permit the interaction of all elemoits 

in a spatially organized field.    It is not sufficient simply to detect sets of 

elements which represent a "pattern"; the perception of a pattern,  and the 
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interpretation of it,  depends in a fundamental way on metric relationships 

to other sense data from the same modality,  and correlations with sensory 

data from entirely different modalities.    The perception of a line as "upright", 

for example,  depends on its observed angles relative to visual standards of 

"uprightness",   such as the corners of a room,  and also upon the gravity 

senses and kinesthetic data which provide a frame of reference for "up" 

and "down".    The decision that two disjoint patches of illumination represent 

parts of the same object rather than different objects depends upon their 

contrast or resemblance to the field structure around them,  as well as on 

their relationship to one another.    It is possible (as Gibson has suggested) 

that recognition is never achieved,   in biological systems,   by the representation 

of a particular receptor configuration, but only by the representation of sets 

of relations (angles,   ratios,  etc.) as its elementary data.    If this   is the 

cace,  a suitable set of analyzing mechanisms,   capable of measuring such 

variables must be included in the pre-recognition tracts of a brain model. 

As our models gain in sophistication,   it is,   in fact,   becoming increasingly 

apparent that such analyzing mechanisms are essential for purposes of 

efficiency and economy of design. 

The perceptrons to be considered initially will not possess 

intrinsic field-organization properties.    With the introduction of cross- 

coupled systems,   such properties begin to emerge.    An evaluation of 

these systems by means of typical "Gestalt perception experiments" has 

barely begun at the present time,  but represents one of the most important 

tasks to be undertaken. 
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3.1.7       Choice-Mechanisms in Perception and Behavior 

Selective attention and "set" are fundamental phenomena in 

the control of psychological activity.    They indicate mechanisms for 

choosing between alternative courses of action,  or points of view,  and 

play a logical role analogous to the selection of different branches in a 

"flow diagram" of a digital computing routine.   Attention and psychological 

set are largely determined by the situational context in which behavior 

occurs,  and by the current "goals"   or "purposes" of the organism, which 

may be thought of as choices of a superordinate sort,  under which sub- 

decisions are made to select particular modes of activity.    For example, 

an individual who is set to look for a word in a dictionary will be most 

attentive to the sequence of letters in boldfaced type,  while someone who 

is looking for torn pages will probably be unaware of the particular  letter 

combinations,  and someone who is simply scanning the volume to look for 

pictures is apt   to notice neither the spelling nor the condition of the 

pages. 

The importance of set,  or attitude,  for learning has been 

emphasized by Hebb (Ref.   33),   but choice mechanisms of this type have 

rarely been incorporated in the detailed design of theoretical brain 

models.    In purely logical models of behavior,  they play a considerably 

more prominent role  -- for example,   in Tolman's learning theory,   and 

in Newell and Simon's models for problem solving behavior (Refs .   6Z,   63), 

selective choice-mechanisms are specifically designated.    In a brain 

model,   it is clear that such phenomena must be closely related to the 

problem of "temporary memory",   since the set under which the brain 
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is currently operating must be represented by a temporarily stable, but 

nonetheless readily altered,   state of the system,   capable of modifying 

processes v/hich go on while it persists.    It seems likely (although un- 

supported by any direct evidence) that pools of neurons connected by 

reverberating circuits may be important set-maintaining devices in the 

nervous    system,  exerting their influence on the brain as a whole by 

means of a widely distributed barrage of sub-threshold excitation or 

inhibition.    The plausibility of such mechanisms will be considered in 

more detail in a later chapter. 

3,1.8       Complex Behavioral Sequences 

The discussion of psychological sets and choice mechanisms 

brings us to a consideration of even more highly organized behavior and 

thought patterns,   such as the steps taken in performing an arithmetic 

computation,   or driving to work,  or performing a piece of research. 

All of these activities represent orderly sequences of decisions and action, 

and can be considered,  as Newell and Simon have suggested,  as programs 

to be performed.    In some cases,   these programs are highly stereotyped, 

and determined by rigid rules; in other cases,  they employ chance 

mechanisms and heuristic procedures.    Much of the classical psychological 

literature on problem solving and insight is relevant to this second class 

of programs,  while a rat running a maze might be considered an example 

of the first type.    As in the case of selective attention and set,  these 

problems have not; been dealt with in detail by any brain models proposed 

to date,  but it seems likely that at this level the brain and the computer 

begin to approach a common meeting ground.    Problems of memory span. 
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storage,  and sequence control are present in both types of systems,  and 

many of the logical problems confronted in "heuristic programming" 

(Refs. 60,  62,  63 ) seem to be direct translations from human problem- 

solving experience to the language of computing machines.    This does 

not mean that the physical structure of a brain model must ultimately 

resemble that of digital devices, but rather that the same basic logical 

organization -- a memory for programs, a memory for data, and a 

mechanism for the sequential performance of a given program -- must be 

available.    The "programs" themselves presumably take the form of 

sequences of selective sets,  or bias states,  arranged in a heirarchical 

manner,   so that sub-operations are performed under the control of a 

"master set" or "master program" which determines the overall plan of 

activity.    While the detailed properties of such systems must necessarily 

remain speculative at the present time,  we shall see that such a concept 

is compatible with the organization of perceptrons not too far removed 

in complexity from those which we are now capable of analyzing. 

3 . 2       Current Issues 

While the discussion of the preceding section has attempted 

to stick to a relatively conservative and uncontroversial rendition of 

physiology and psychology as it applies to the brain model problem,   it 

is clear that in the last pages we have been drawn into increasingly 

speculative and uncertain areas of discourse.    In this'seclion,  an 

attempt will be made to highlight a number of issues which seem most 

salient in determining the fate of various brain models,  and which are 

not answerable at the present time outside the realm of speculation. 
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Of necessity,  a physical model will have to take a stand on most of these 

issues,  and it is possible that by investigating the logical consequences of 

such a stand,  a decision as to the plausibility of various alternatives might 

be made; the brain model approach lias a chance,  here,  of providing answers 

which empirical studies have so far been unable to discover.    In any event, 

the decision taken on these issues represent the points at which a brain 

model is most vulnerable to future attack,   as new evidence is uncovered. 

3.2.1       Elementary Memory Mechanisms: 

The status of current information on basic memory mechanisms 

in the nervous system has been reviewed recently by Burns (Ref.   13).    Most 

brain models employ some memory hypothesis,   but evidence as to the nature 

of actual physiological mechanisms which might be involved is almost 

totally lacking.    It is generally agreed,   simply on the basis of definition, 

that whatever we call "memory" involves a modification of neural activity 

in the central nervous system or its output signals,   as a function of 

exposure to previous events or "experience".    In some models,  this 

modification has been attributed to persistent activity in closed loops of 

neurons,   but most theorists are now agreed that,   while such a memory 

mechanism might account for "short term memory",  and might play a 

significant role in the establishment of more permanent memory traces, 

there must also exist a non-volatile memory mechanism (e.g.,   a 

structural or chemical change) which can outlast periods of neural   in- 

activity,   and is relatively insensitive to transient activity in the nervous 

system (see Hebb,   Ref.  33,  pp.   1Z-16).    The nature of this memory trace 

mechanism,   it is generally agreed,   must be such as to facilitate the use 
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or selection of neural pathways which have been active at the time of the 

"remembered" experience or behavior, and virtually all specific models 

assume that it takes the form of a facilitation of connections between sources 

of excitation and responding neurons in the motor system or CNS.    In 

making such an assumption, the influence of the conditioned reflex model, 

which suggests that sensory neurons become coupled to association neurons, 

by which they are connected to motor neurons,  is clearly evident.   An 

alternative position,  in which the preferred pathways "win out" by surviving 

deteriorative changes in unused pathways,  rather than by active facilitation, 

has not been explored to any significant degree,  but appears to be logically 

similar to its potentialities. 

Granting that the memory mechanism takes the form of some 

means of selecting particular patterns of activity in preference   to others, 

depending upon the input or current state of the nervous system,  particular 

physiological models include:    (1) mechanisms for reconstituting past activity 

states of the entire CNS or a major portion of it; (Z)   mechanisms for selecting 

particular output channels as a function of current activity or sensory inputs. 

The specific mechanisms proposed generally fall into one of the following 

four categories: 

(1)   Extracellular influences and modification of the neural medium: 

This has been proposed by Köhler (Ref.  45),   Bok (Ref.  8),  and others,  who 

assume that,   if a "structural trace" is present at all,   it is not laid down in 

specific neurons,  but in the surrounding medium,  where it is capable of 

modifying activity in nearby neural tracts.    The possible form that such 

a mechanism might take has never been specified in detail,  and the approach 

is generally discounted by current theorists.    The motivation for such a 
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hypothesis comes in part from attempts at preserving the isomorphism 

between a spatially distributed memory trace and spatially organized 

visual events,  as in Kbhler's system.    While it is not implausible to assume 

that the surrounding medium participates in the memory trace structure, 

it seems likely that such interaction between medium and neurons would 

be highly localized,  probably influencing only a single neuron or synaptic 

junction,   rather than forming a widespread organized structure independent 

of the neuruns themselves.    If such a position is accepted,  then whatever is 

left of this approach can be subsumed under one or another of the remaining 

neural modification mechanisms. 

(2) Threshold Modification:   The hypothesis that the threshold 

of an active neuron may be reduced as a consequence of the activity,  thus 

making it more likely that this cell will respond to future stimuli,  has 

frequently been proposed as a possible memory mechanism (c.f.,   Taylor, 

Ref.  99 ).    If we take the "threshold",  in its conventional sense,  to mean 

the degree of membrane depolarization or the level of input excitation 

which will cause the neuron to discharge,   regardless of the particular 

synapses involved in the transmission of excitation,  then this model 

meets two main objections:   first,  the sensitivity which is acquired is non- 

specific,  making it more likely that the cell will respond to any input,   rather 

than just those which were effective at the time that the memory trace was 

established; second,  after a long history of activity,   we would expect the 

thresholds of all neurons to be reduced to a minimum level,  unless some 

recovery mechanism exists.    If such a recovery mechanism does exist, 

memory will tend to be lost as a consequence,   and it, must be shown that 
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the rate of forgetting would not vitiate the value of the system.    Occasionally, 

the concept of "threshold reduction" seems to be used in the sense of an 

increase in specific sensitivity of a neuron to a particular afferent fiber. 

In this case, the threshold reduction mechanism becomes indistinguishable 

from a synaptic facilitation mechanism, which is considered below. 

(3)   Strengthening of active neurons: Eccles (Ref..   18),   Uttley 

(Ref.   102),  and Rosenblatt (Ref.  79) have proposed models in which the 

output signals of a frequently active neuron gain in strength or effectiveness, 

affecting all terminals alike.    This model retains the specificity of response 

of a neuron (unlike the threshold reduction model) but increases its power 

to activate the neurons which follow it in series.    If the output signal from 

a neuron goes to a single destination only,  this is equivalent to a model which 

strengthens particular synaptic connections.    If the output goes to a number 

of different locations,  however,  there is a lack of specificity in the channel- 

selection properties of this mechanism,   which must generally be offset by 

auxiliary hypotheses.    In Rosenblatt (Ref.  79) it is shown that by means of 

suitably organized feedback mechanism,  a particular output channel can b 

selected through a statistical bias.    The feedback guarantees that these cells 

which are reinforced all have at least one "desirable" output connection,  the 

other connections being distributed at random among a large number of 

alternative terminal neurons,  each of which consequently receives only a 

fraction of the total reinforcement applied.    While such a model is shown 

to be logically workable,  the specific feedback connections required make 

it physiologically implausible,  and it remains less efficient than a model 

in which specific synapses,   rather than total neurons,  are selected for 

modification. 

a 

e 
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(4)   Modification of selected synapses:   This model has been 

employed by Culbertson (Pv.ef.   17),   Hebb (Ref.  33),  and others,  and is 

employed in most current perceptron models.    The  mechanism takes account 

of the correlation of activity between an afferent synapse and the efferent 

neuron,  augmenting the strength of the synaptic ending (or,   equivalently, 

the sensitivity of the sub-synaptic membrane) if the correlation is positive, 

and,  in some cases, diminishing it if the correlation is negative.    The 

actual physiological process by which such a correlation might occur is 

obscure,  but the logical advantages of such a mechanism are clear.    Hebb 

has proposed that actual  synaptic growth might occur,   improving the contact 

between the transmitting and receiving neuron.    While Eccles has considered 

possible synaptic growth mechanisms in some detail (Ref.   18 ) there is little 

evidence to support this conjecture.    A possible biochemical mechanism has 

been proposed by this writer (Ref,  83),  which assumes that large molecules 

used as catalysts for the production of transmitter substances in the endbulb 

must originate from the nucleoplasm of the post-synaptic cell,   and that the 

exchange of these molecules is facilitated by membrane depolarization and 

periods of activity in both cells.    An alternative possibility,   in which the   mem- 

ory mechanism is entirely contained wilhin the post-synaptic cell,   is 

that a persistent sensitization of the subsynaptic membrane in the neigh- 

borhood of an active synapse occurs,  given the hyperrnetabolic state which 

follows activity.    The facilitation of a neuron's response to repeated sub- 

threshold signals which has been reported by Bullock (Ref.   11) indicates 

that a localized persistent effect of the sort hypothecated does exist; it 

remains to be shown that the subsequent firing of the neuron may serve 

to "stamp in",  or fix in a more permanent manner,  the temporary sensi- 

tivity which has been observed. 



The evaluation of a particular memory hypothesis must depend, 

at this stage,  upon its logical power when employed in specific brain models, 

as well as its physiological plausibility.    The mechanisms which are consi- 

dered in this report have been selected for their simplicity and their  demons- 

trated ability to yield interesting behavioral results.    They suggest plausible 

directions in which to look for a physiological mechanism, but it remains 

possible that the actual mechanisms employed by the brain may be of a drasti- 

cally different sort.    It is fundamental to this approach, that any lasting 

change in the system,  whatever its physical form,  may act functionally as a 

memory trace.    It seems likely that there is not a single memory mechanism, 

or even only two memory mechanisms at work in the brain,  but rather a 

great number of dynamic processes,   ranging from temporary facilitation 

and fatigue effects to permanent structural changes,  all of which contribute 

in some way to the observed psychological phenomena called "memory". 

Among these processes,  it is likely that one or two play an    outstanding role, 

but likely candidates have not yet been found,  and in the meantime,   it seems 

wise to retain an open mind on the entire question. 

3.Z.2     Memory Localization 

There is hardly any more agreement on the question of where 

memory traces are to be found (in the gross anatomy of the nervous 

system) than there is on the question of what they consist of.    Lashley 

(Ref.  49) was largely responsible for the emphasis on "distributed memory" 

among many theorists over the last few decades,   and Sperry (Ref.   95) has 

contributed a number of experiments which indicate that the residual 
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effects of learning must be widely dispersed throughout the brain.    On the 

other hand,  Penfield (Ref.  68) has shown that specific recall may be evoked 

by stimulation of specific selected points in the cerebral cortex.  E. R.  John, 

in a model which is supported by a certain amount of experimental evidence 

(Ref. 39),  proposes that the memory traces are distributed between the 

thalamus and cortex,  involving reverberating circuits and feedback loops 

between these two regions rather than being localized in one or the other of 

them. 

The question of localization is of less importance for a functional 

model of the brain than is the question of mechanism; as long as we assume 

that it is the network topology,   rather than the actual anatomical position of 

neurons,  which is important in determining the brain's logical properties, 

there is no reason for requiring that a brain model resemble the biological 

system in its  spatial organization.    The indirect implications of the different 

theories of localization  are of considerable importance,  however.    For one 

thing,  the view that the brain contains its memories in a widely dispersed, 

intermingled form,   suggests a mechanism in which the same cells parti- 

cipate in a great variety of different,   and perhaps totaly unrelated,   memory 

organizations. A model which can separate distinct memories from such a 

multiply overwritten system will be quite different in character from one in 

which each remembered event is stored in its own distinct location.    For 

another thing,  the apparent complexity of memory-sites which may interact 

in the recall of a single experience or association (as emphasized in John's 

work) impresses us with the possibility that human memory may be a 

product of a number of related processes and mechanisms,  perhaps 

acting in a complex sequence of cause-and-effect,   rather than a simple 

correlation of inputs and outputs. 
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Again, we are stuck with the necessity of simplifying for 

lack of detailed knowledge.    While it is likely that memory and recall in 

the human nervous system involves the coordinated activity of several parts 

of a complex structure, we will attempt, at the outset,  to see what psycho- 

logical properties can be duplicated by a system in which memory is located 

in a single set of connections,  with a minimum of structural differentiation. 

As perceptrons are elaborated into more highly structured models, the 

question of which connections should be allowed to participate in memory 

processes will be reconsidered,  and alternative systems will be investigated. 

3.2.3     Isomorphism and the Representation of Structured Information 

Lashley,   Köhler,   Greene,  MacKay,  and others (Refs.   Z8,   45,   50, 

55,   56,   iio) have dealt with various aspects of the problem of isomorphism 

between the representation of an event in the central nervous system and the 

physical structure of the event in the outside world.    In the naive isomorphism 

of Köhler,   it is required that the representation in the brain should actually 

have a spatial structure resembling the thing that it represents; in the more 

sophisticated form advocated by Greene,   it is  sufficient that the represen- 

tation should have a logical structure (not necessarily spatial in its physical 

manifestation) which permits it to be broken apart,  dissected,  and reassembled 

by suitable manipulations or attention-directing processes,   in a way which is 

related to the parts,   surfaces,  or aspects of the real-world phenomenon. 

While some such structural representation seems to be inescapable in 

human perception,  thinking,  and imagery,   the exact form that this might 

take is again almost totally unknown.    This is essentially the problem of 

-60- 



determining the code employed by the brain in its representation of 

perceptual phenomena.    We know that the code is one which enables us to 

recognize parts,  relations,   symmetries,  and other organizational features 

which might be lost in a completely arbitrary representational system (such 

as a code which assigns binary symbols,   in sequence,   to all stimuli,  and 

then lists all of those which are to be considered as   "similar").    We also 

know that there are parts of the brain (the sensory projection areas) in 

which actual spatial organization of stimulus patterns is retained.    We do 

not know,   however,  how far the representational code must go in the 

direction of spatial isomorphism in order to account for the organizational 

properties of experience.    As usual,   we shall begin with a simplification 

which assumes an unstructured coding,  but it seems likely that this will  have 

to be abandoned in order to deal with problems of figural representation, 

perception of relations,  and other "gestalt problems".    An attempt will be 

made in this report,  however,   to show that the required structuring for 

some of these problems may be acquired by adaptive processes and need 

not superficially resemble the phenomena which are represented. 

3.Z.4       Adaptive Processes in Perception 

Much of the theoretical work on brain models (Hebb,  Hayek, 

etc.) has been concerned with processes by which complex perceptual 

organizations can be "built up" out of sensory fragments,   by a process 

of learning or association.    Consequently,   the question of adaptability, 

or modifiability,  of perception is of paramount importance as a guide in 

model construction.    The history of this problem has recently been 

reviewed by Hochberg (Ref.  34). Studies of "perceptual learning" have 
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been concerned (1) with the organization of given perceptual elements 

into "concepts", or "kinds of objects", and (2) with the modification of the 

perceptual elements or "impressions" themselves. 

{l)The first type of experiment is concerned with the discrimi- 

nation,   rather than the "appearance" of stimuli.    It is clear that much 

recognition and discrimination,  as in the learning of speech sounds in a 

new language,  is highly dependent upon learning.    Such processes typically 

involve differentiation,  rather than synthesis of complex patterns out of 

readily identified parts.    Another,   important part of perceptual concept 

formation is concerned with associating,  or classifying readily discrimin- 

able patterns or symbols having the same significance (such as a Roman, 

italic,  and script form for the letter "A").    (2) On the other hand,  there 

are a number of studies concerned with attempts at modifying the seemingly 

■intrinsic "appearance" of the stimulus itself.    Such experiments are not 

concerned with refinements in discrimination or assignment of appropriate 

names to stimuli; they are concerned with re-structuring the sensory data 

at a considerably more "primitive" level.    Such experiments include 

studies of figural aftereffects (Ref.   25),  ambiguous figures (Ref.   107) 

the effect of memory upon color perception (Ref.   10),  and the various 

experiments performed with inverting prisms to determine whether a 

human subject could learn to perceive normally with an inverted retinal 

field.    Work with animals reared in darkness and exposed to the light 

for the first time in various test situations has been   reported by Riesen 

(Ref. 75 ) and Gibson and Walk (Ref.  24) have conducted experiments with 

infants and newborn animals to determine whether depth perception is 

possible prior to learning.    Other data have been collected by von Senden for 

congenitally blind human subjects to whom sight is restored by surgery 

(Ref.   106). 
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In general,  the conclusions of this work seem to indicate that 

while recognition,  in the sense of being able to discriminate and assign an 

appropriate name to an object,   is largely dependent upon experience,  the 

"subjective appearance" of a stimulus is relatively inflexible,  and in some 

species, at least, may be innately given by the structure of the nervous 

system.    Sperry's work with frogs, for example,,   in which the optic nerves 

are cut and then allowed to rejoin with the eyeballs inverted,   suggests that 

no amount of relearning can compensate for so drastic a change (Ref.   94) 

and the Gibson-Walk experiments support the assumption of a highly 

developed sense of depth perception in many mammals from birth.    To a 

much lesser degree,   modification of visual images by experience is 

possible; generally,  this takes the form of persistent field interactions 

(as in figural aftereffects) rather than a basic  reorganization of perceptual 

experience.    The extent to which perception might be organized by adaptive 

processes is currently unknown,   and this is one of the main areas in which 

theoretical brain models may prove helpful to psychology. 

3.Z.5     Influence of Motivation on Memory 

In psychological learning theories,  it is commonly assumed 

that a "drive" or "motive" must be present in order for an animal to 

learn.    Conditioned reflex experiments,  on the other hand,  frequently fail 

to show any relationship between the "motivation state" of the animal and 

the learning process.    Speculation about the role of motivation in perceptual 

learning has also been quite extensive,  and a number of experiments have 

been performed,  to test the learning of perceptual discriminations or 

related tasks on the basis of "mere repetition" as opposed to directed 

learning.    In these experiments,   it is often hard to distinguish between 
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"attention"  and "motivation",  and the results are generally inconclusive. 

It seems that a certain amount of "incidental learning" does indeed occur, 

which is not directly relevant to the goal or task of the subject at the time; 

the actual degree of motivation,   reward or punishment,  or "reinforcement" 

that may have been involved,  however,  is impossible to ascertain in any 

absolute way.    For the brain model problem,   it is important to note that 

there are some learning situations,  at least,   in which "reward and punish- 

ment" can be used to control the acquisition of new responses; whether or 

not this is universally the case,  and the actual physiological mechanisms 

involved,   remain open questions at this time.    It should be remembered, 

however, that any brain model which relies on the intervention   of an outside 

agent or experimenter to direct the learning process is implicitly taking a 

stand on this issue.    A possible compromise is found in the approach of 

Ashby (Ref.   3) where the brain is described as a complex homeostatic 

organization,   in which particular "crucial variables" are capable of 

triggering random changes in organization if they exceed critical limits; 

stabilization of behavior,   in such a system,   is not a result of learning 

from reward,  but is due to the cessation of disruptive changes which occur 

when the system makes a mistake.    The main difficulty in making use of 

this approach is in guaranteeing that changes are sufficiently specific and 

well-directed so that the organism achieves its new behavior pattern in an 

economical and relatively direct fashion,   rather than going on a random 

walk through all possible alternatives before arriving at the required 

solution. 
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3,2.6       The Nature of Awareness and Cognitive Systems 

While it has been relegated by many theorists of the realm of 

philosophy or semantics rather than science,  the question of the nature of 

consciousness or awareness keeps recurring in the literature.    Current 

physiologists and psychologists  represent the whole range of philosophical 

positions on this  subject.    For Eccles (Ref.   18 ) there is a conscious 

"mind" which controls the body by acting upon the nervous  system.    For 

Penfield and Jasper,  awareness is a state of the nervous system involving 

heightened sensitivity and improved coordination,  under the control of the 

centrencephalic system,  and particularly the reticular formation (Ref.  38 ). 

John (Ref.   39) suggests that "awareness may be a property arising from 

the process of 'cortico-reticular resonance' ". For Cuibertson (Ref.   17), 

consciousness is a property of trees of causal relations which tie together 

the events of the external physical world and the neural events in the 

brain.    Lotka (Ref.   53) has suggested that we look to the world of molecular 

events for   an explanation,  and that consciousness involves particular 

unstable states of molecular or atomic particles. 

To this writer,   it seems likely that the question of the "nature 

of awareness" can be bypassed,   in much the same way that we bypass the 

question of the "nature of perception",   by concentrating on the experimental 

and psychological criteria which may be used to distinguish the actual 

phenomena in question.    When a subject reports that he is "conscious" or 

that he was recently "unconscious",  we are led to believe him or dis- 

believe him on the basis of his behavior,  and what he is able to report 

about the content of his "experience" at the time in question.    From an 
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operational point of view,  the fact of "consciousness" is closely connected 

with the accessibility of information and its ability to influence overt 

behavior; it is,   in fact,  meaningless to say that an individual is "conscious" 

unless there is something that he is conscious of.      The questions which can 

be asked concerning this phenomenon in a theoretical brain model (where we 

are not free to assume any intrinsic similarity of processes to those in the 

human brain) are questions of what can be discriminated,   "seen",   "attended 

to",  or "remembered" under specified conditions.   All that we can say, 

in the last analysis,  is that the system acts as if it were conscious,  leaving 

the question of the actual existence of consciousness in the system for 

metaphysicists to consider. 

Systems which represent information internally,   in such a way 

that it can be utilized for the control of certain kinds of responses (such as 

running,   thinking,  or talking) will be called cognitive with respect to the 

realm of information which is represented and the class of responses which 

this information controls.    Note that this term is used in a relative,   rather 

than an absolute sense.    Thus the representation of information in the form 

of an image on the retina is not sufficient to permit us to say whether or 

not the organism is cognitive with respect to its visual environment; we 

must also demonstrate that this information is accessible to the organism 

for the control of some specified set of responses.    We might say,  for 

example,   that a man who automatically stops for a red light,   but is 

unable to state afterwards why    he stopped is cognitive with respect to 

red signals at the level of overt motor-responses,  but not at the level 

of verbal recall.    Conversely,  an unskilled pianist may be cognitive with 
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respect to errors in his performance at the verbal level, but not at 

the motor control level.    We use the term cognitive, then, to indicate 

that knowledge of some realm of information is accessible for the control 

of some specified class of responses.    This usage permits us to reserve 

judgement on the definition of such phenomena as perception and awareness, 

and still to recognize a class of psychological phenomena    involving the 

accessibility of information,  with which we shall be concerned. 

3.3.     Experimental Tests of Performance 

The purpose of a theoretical brain model is to demonstrate 

how  p s y c h o 1 o gical    phenomena can arise from a physical system of 

known structure and functional properties.    In the preceding sections of 

this chapter, we have reviewed the physiological data which suggest the 

general form of the model,  and the psychological data against which its 

performance must be measured.    We now turn to a more specific consi- 

deration of the psychological tests which might be applied to a brain model 

in order to evaluate its performance,  and to compare alternative systems 

with one another. 

3.3.1     Discrimination Experiments 

In the simplest type of experiment which can yield psycholo- 

gically significant information about a system,  two distinct stimuli are 

presented to the model,  which is required to respond differentially to 

them.    In the general case,   it is not necessary to limit this experiment 

to two specific stimuli or sensory patterns; two or more classes of 
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patterns may be employed,  each class consisting of "similar" patterns, 

such as squares,  or triangles,  or various sizes and styles of the letter "A". 

This experiment may be performed either to look for spontaneous discrimi- 

nation by the system,  in the absence of intervention or guidance by the 

experimenter,  or to study forced discrimination in which the experimenter 

attempts to teach the system to make the required distinctions.    In a 

learning experiment,  a perceptron is typically exposed to a sequence of 

patterns containing representatives of each type or class which is to be 

distinguished,  and the appropriate choice of response is "reinforced" 

according to some rule for memory modification.    The perceptron is then 

presented with a test stimulus,  and the probability of giving the appropriate 

response for the class of the stimulus is ascertained.    Different results will 

be obtained,   depending on whether or not the test stimulus is chosen to 

correspond identically to one of the patterns which were used in the 

training sequence.    If the test stimulus is not identical to any of the training 

stimuli,   the experiment is not testing "pure discrimination",  but involves 

generalization as well.    If the test stimulus activates a set of sensory 

elements which are entirely distinct from those which were activated in 

previous exposures to stimuli of the same class,  the experiment is a test 

of "pure generalization".    The simplest of perceptrons, which will be 

considered initially,   have no capability for pure generalization,  but can 

be shown to perform quite respectably in discrimination experiments 

particularly if the test stimulus is nearly identical to one of the patterns 

previously experienced. 
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3.3.2     Generalization Experiments 

As indicated above,  a pure generalization experiment is one 

in which the brain model,   or perceptron,  is required to transfer a selective 

response from one stimulus (say,  a square on the left side of the retina) 

to a "similar" stimulus which activates none of the same sensory points 

(a square on the right side of the retina).    Generalization of a weaker sort 

may be demonstrated if we simply require the system to transfer a 

response to members of a class of similar stimuli,  which are not necessarily 

disjoint from the one which has been seen (or heard or felt) before.    As in 

the case of discrimination experiments,   it is possible to study either 

spontaneous generalization,   in which the criteria for similarity are not 

supplied by an outside agency or experimenter,  or forced generalization, 

in which the experimenter's concept of similarity is "taught" by means of 

a suitable training procedure.    Some of the most significant problems in 

brain mechanisms concern generalization phenomena,  and particularly 

the meaning of "similarity" for a particular kind of system.    In common 

with a number of other theorists (e. g . ,  Pitts and McCulloch,   Ref.   71), 

this writer will assume that similarity is primarily determined by a 

group of transformations which stimuli may undergo in a particular 

physical environment.    In the normal physical environment,  for visual 

stimuli,   this would include rigid motions,   rotations,   size changes, 

projective transformations,   certain types of distortions or continuous 

deformations,  and changes in color or contrast.    A number of more 

subtle forms of similarity (as in styles of architecture,  gestures and 

mannerisms,  etc.) are presumably due to association of events into 

classes at a higher level of organization than we are concerned with at 

this point.    It should be noted,  however,  that a perceptron which is taught 
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to form arbitrary classes of stimuli might be expected to generalize 

along completely arbitrary or abstract dimensions,   "similarity of style" 

being as legitimate a candidate for a basis of classification as "similarity 

of shape".    In the simple perceptrons, we will find that "pure generalization" 

does not occur,  although an apparent generalization of responses to stimuli 

which share many sensory points with those previously experienced can be 

demonstrated.    In this report,  this weak form of generalization will be 

considered under "discrimination phenomena", the term "generalization" 

being reserved primarily for cases in which mechanism for recognizing 

actual similarity,   rather than a rough approximation to identity,   is involved. 

3.3.3     Figure Detection Experiments 

In the experiments considered above,  two or more kinds of 

stimuli are always employed,  in order to avoid the trivial case in which 

the desired response is automatically evoked by any stimulus that might 

occur.    Since it is assumed that at each moment of time exactly one 

stimulus is present,  these experiments represent a "forced choice" 

situation,   in which the brain model is obliged to give one of several 

positive identifications in response to whatever it "sees".    Such experi- 

ments have  their counterparts in animal and human experimentation, 

and permit the study of an important class of psychological problems, 

involving simply structured situations.    An alternative approach,  which 

has been less studied to date,   is to give the system the task of searching 

for a particular figure in a sensory field which may or may not contain it. 

In this case,  the system is asked to discriminate between "figure present" 

and "figure absent",  and is typically only instructed in the recognition of 
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one figure at a time.    If the figure appears as a solitary object in an 

otherwise  empty field,  the task is a relatively trivial one.    If the figure 

appears against a background,  or as part of a complex of other patterns, 

the problem takes on a new aspect of complexity.    In the most important 

case,  this experiment permits us to study figure-ground organizing 

tendencies in a perceptron,  by presenting it with embedded,   or ambiguous 

figures which can be recognized as representing one thing if the field is 

appropriately structured,  and a different thing if the field is structured 

differently.    The Gestalt properties of "good figure" are supposed to 

determine the preference of a human observer to perceive one or another 

of the possible figures in such a field.    Detection experiments permit us 

to compare the preferences and rules of  "good figure" in a perceptron 

with those of human subjects,   in controlled situations.    Perceptrons 

considered to date show little resemblance to human subjects in their 

figure-detection capabilities,  and gestalt-organizing tendencies.    In Part IV 

of this report,   some speculations concerning the development of such 

properties in more sophisticated perceptrons will be presented. 

3.3,4     Quantitative Judgement Experiments 

Another type of experiment with which little work has been 

done to date involves the estimation of quantitative properties of stimuli 

(size,  distance,  position, etc .) by perceptrons .    It will be seen that simple 

perceptrons are capable of learning to represent stimuli by a continuously 

variable "analog" type of response.    No work has been done to date,  however, 

to investigate such questions as the generalization of quantitative judgement 

to new stimuli,  or the accuracy which can be achieved in specific cases. 
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For more advanced systems, an important problem which must ultimately 

be faced is that of "perceptual constancies":   the tendency in human subjects 

to perceive size, color,  or other metric properties of a stimulus in terms 

of the "actual" physical properties of the object rather than its projection 

on the retina.   A man,  for example,  is perceived to be about six feet tall 

regardless of whether his retinal image subtends one degree or fifteen 

degrees,  and a dish appears to be circular in form regardless of whether 

its retinal image is a true circle or an elongated ellipse.    It has been 

demonstrated in many psychological experiments that such phenomena 

are not based simply on familiarity with the particular objects involved; 

a completely unfamiliar form,   seen in normal physical space,  is perceived 

correctly,  in terms of its "true" physical properties, except under 

exceptional circumstances (c.f. Gibson,  Ref.  26). 

3.3.5       Sequence Recognition Experiments 

In the above experiments,  it has been assumed that the stimuli 

are fixed,  temporally invariant patterns.   Analogous problems exist, 

involving discrimination,  generalization,  figure detection,  and metric 

estimation for time-varying,  or sequential patterns of all sorts.    While 

static organization problems reach their greatest degree of complexity 

in the visual modality,  temporal organization.becomes comparably 

complex in the auditory field.    Speech recognition is one particularly 

important case to be investigated.    Problems include not only the 

recognition of particular movements,  or sequences,  but the segmentation 

of movement and sound patterns into figural units,words,  or phrases as 

well.    The recognition of sequences in rudimentary form is well within the 

capability of suitably organized perceptrons,  but the problem of figural 

organization and segmentation presents problems which are just as serious 

here as in the case of static pattern perception. 
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3.3.6      Relation Recognition Experiments 

In a simple perceptron,  patterns are recognized before 

"relations"; indeed, abstract relations,  such as " A is above B" or "the 

triangle is inside the circle" are never abstracted as such, but can only 

be acquired by means of a sort of exhaustive rote-learning procedure,  in 

which every case in which the relation holds is taught to the perceptron 

individually.     At the present time,  the main hope for the abstraction of 

relations seems to Ue in systems which are capable of executing a 

sequence of observations,  according to a predetermined plan,  in which 

first one member of the related pair is observed and then the other,   the 

relationship between them being determined by the sequence of "experience" 

during the shift of attention from the first to the second.    The problem of 

relation recognition is,  at the outset,   more complex than those previously 

considered,   since it requires,  by its very nature,  the ability to recognize 

and attend selectively to at least two distinct "parts" of a total organization, 

specifying, for example,  which part is larger and which smaller,  or which 

part is "outside" and which "inside".    The hypothesis that relation recogni- 

tion involves a sequence,   or program,of observation means that it must 

make use not only of figure organization capabilities (to separate the 

"parts" referred to) but of sequence recognition and sequential control 

capabilities as well.    The actual experiments by which relation recognition 

can be detected must involve at least two components (such as square and 

triangle) which can be shown in such a way as to exemplify the relationship 

or not.    In an ideal experiment,  the system would be trained to recognize 

the relation by a number of examples with stimulus patterns or "parts" 

which do not resemble or intersect (in their retinal location) the test 
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patterns which are employed in evaluating the performance.    If the perceptron 

can then indicate correctly,  for entirely new stimuli, whether or not the 

relation holds,  it will be considered that the relation has been abstracted 

by the system. 

3.3.7       Program-Learning Experiments 

The learning of sequences of behavior is the counterpart on the 

response side of the problem of sequence recognition.    The problem has 

been discussed in detail by Lashley (Ref.  50).    It requires, as a starting 

point, the ability to form "selective sets",  which introduce a bias to give 

one of several alternative responses to a givem stimulus.    A capability of 

this sort has been shown to exist,  to some degree,   in relatively simple 

perceptrons,  provided there is a feedback path from the response units to 

the association system (Ref.   79).    To date,   little has been done to study this 

capability in a quantitative fashion,  but some of the heuristic arguments will 

be reviewed in Chapter 23.    One of the most important applications of such 

a capability is in the control of the sequential activity involved in recognition 

of relations,  and the "perceptual exploration" of a sensory field.    Related 

phenomena,  in which this capability plays a central part,  are the sequential 

control of speech,  thinking,  and complex behavior patterns.    The represen- 

tation of problem solving activity in the human by heuristic programs has 

been studied by Newell,  Shaw,  and Simon (Refs .  6Z,   63),  and it seems 

likely that many of their results might be transferred to a perceptron 

which is capable of program controlled activity. 
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3.3.8 Selective Recall Experiments 

While most of the experiments described above involve "memory" 

in the sense of a change in behavior as a consequence of experience, they do 

not,   in general,   require substantive recall,  of the sort which is displayed 

when we describe a person who we saw yesterday,  or the location of furni- 

ture in a house where we lived last year.    In selective recall experiments, 

the system is required to produce on demand information relevant to a 

particular time,  place,  or subject.    This involves a particular case of 

"selective set" mechanisms,  and can probably be demonstrated in most 

systems which are capable of program-controlled behavior. 

3.3.9 Other Types of Experiments 

In addition to the experiments considered above,  we might 

ultimately wish to consider experiments in abstract concept formation, 

the formation and properties of a "self concept",   creative imagery,  and 

other higher-order psychological phenomena.   At the present time,  these 

problems seem sufficiently remote from the capabilities of present 

perceptrons that we need not consider them further here.    Also relegated 

to the future is the consideration of such psychological phenomena as 

perceptual illusions,  figural aftereffects,  and related phenomena,  even 

though these have been considered primary in some of the brain models 

hitherto advanced.    It is this writer's belief that these phenomena are so 

likely to depend on inessential details of brain organization,  at almost any 

level of complexity,  that it would be a mistake to try to rest the case for 

or against a particular model on a demonstration that it can duplicate a 
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particular kinds of perceptual illusion.    It seems more important, at this 

stage,  to account for "veridical perception" than for its occasional failures, 

particularly since these are currently demonstrable in a single species only, 

and may lack any generality whatsoever. 

3.3. 10    Application of Experimental Designs to Perceptrons 

The designs considered above have been discussed as if they 

were actual "flesh and blood" experiments,  performed with real physical 

systems.    In the study of perceptrons,   it is not always practical or necessary 

to carry out such experiments in reality; the important thing is that an analysis 

of a given model should always be carried out in terms of an experimental 

design which is  specified in sufficient detail so that it could be carried out 

if the system were actually constructed. 

In practise,  three main methods are employed in the study of 

perceptrons: 

(1) Mathematical analysis,   in which a stimulus environment, 

the rules for stimulus presentation and for the modification of the perceptron's 

memory state are clearly specified.    The object of such analysis is,  in 

general,  to determine the probability of correct performance,   or the proba- 

bility of achieving a given performance criterion,   for a specified class of 

systems . 

(2) Digital simulation,   in which the perceptron,   its environment, 

and the memory modification rules are all represented in a digital computer 

program,  which carries out the required operations of an experiment in 
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step-by-step fashion,  calculating the response of every neuron and connection 

in the perceptron,  and measures the performance of the system.    Such a 

program,   repeated for a sufficient sample of perceptrons in a class, yields 

much the same type of information as is obtained from a mathematical 

analysis.    It has the advantage of being free from all approximations (which 

may be necessary in some analyses)     but is less likely to yield important 

insights into the lawful relations which characterize a class of systems. 

Simulation programs are most valuable as an exploratory device, and for 

the study of systems of such complexity that an exact mathematical analysis 

is impossible . 

(3)    Study of physical models,   involving the actual construction 

of a hardware device,  and the performance of the indicated experiments.    At 

present,  little is to be gained from the study of actual physical models which 

cannot be learned from the other two methods, but as successive models grow 

in size and complexity,  and as means are found for the inexpensive construction 

of electronic models,   this method becomes increasingly important.    Its main 

virtue is the flexibility and adaptability of a hardware perceptron to new types 

of learning experiments and procedures,   and the ability to use ordinary 

physical objects and environments as stimuli,  which would otherwise involve 

a great deal of time and expense in computer programming.    The physical 

model itself,   however,   is apt to be less flexible than a simulated system, 

and is best suited for "case studies" of a single representative system, 

rather than statistical studies of a class of systems. 

In most of the experiments considered in this  report,   (which 

are listed in Appendix D) human performance capabilities are sufficiently 

well known to permit us to draw conclusions about possible comparisons 
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between perceptrons and biological systems without further study.    In 

some of the proposed experiments,  however,  (e.g.,  the figure organization 

experiments described in 3,3.3) additional data may be required on human 

performance in order to obtain a base-line for the quantitative evaluation of 

perceptrons.    Thus it seems likely that in the near future,  a program in 

experimental psychology with human and animal subjects may be a necessary 

adjunct to the evaluation of our brain models.    When this occurs,  the models 

are,  in effect, being used as predictive devices,  capable of generating data 

(probably grossly inaccurate at the outset) which have not yet been actually 

observed in human subjects.    The ultimate test for a brain model,  from the 

standpoint of psychological validity,   is an experiment of this type,   in which 

the model correctly predicts phenomena which have yet to be discovered in 

biological systems. 
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4.       BASIC DEFINITIONS AND CONCEPTS 

This chapter is devoted to basic definitions of terms which will 

be used throughout the report.    It is recommended that the reader familiarize 

himself with this terminology in a general way, on first reading,  and refer 

back to this chapter when the terms are reintroduced in the subsequent text. 

A list of standard symbols will also be found in Appendix A. 

4.1     Signals and Signal Transmission Networks 

The following definitions,  which are not specific to perceptrons, 

are likely to be helpful: 

DEFINITION 1:   A signal may be any measurable variable,   such as a 

voltage,   current,   light intensity,   or chemical concentration. 

A signal is typically characterized by its amplitude,  time, 

and location . 

DEFINITION Z:  A signal generating unit is any physical element,  or device, 

capable of emitting a signal.    The output signal of the unit 
*■ 

L' •     will be represented by the symbol    ti.[ 

DEFINITION 3: A signal generating function is any function which defines 

the amplitude of the signal emitted by a signal generating 

unit. 
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DEFINITION 4:  A connection is any channel (e.g.,  a wire or nerve fiber) 

by which a signal emitted by one signal generating unit 

(the origin) may be transmitted to another (the terminus). 

A connection   £••    is characterized by its origin and 

terminal units ( a;   and    ix:    ,  respectively),    and by a 

transmission function        which determines the amplitude 

of the signal induced at the terminus as a function of the 

amplitude and time of the signal generated by the origin 

unit.      This signal will be symbolized by  JC^J (t) • * 

DEFINITION 5:  A signal transmission network is a system of signal generating 

units,  linked by connections. 

4.Z    Elementary Units, Signals,  and States in a Perceptron 

A perceptron (which will be defined in the next section) is a 

signal transmission network containing three types of signal generating 

units: sensory units,  association units,  and response units.    These units 

all have  signal generating functions which depend on signals originating 

elsewhere in the network,   or else externally,   in an outside environment. 

The signals upon which the generating function of a unit depends are called 

In previous reports,  the term "transfer function" has been used for 
this characteristic.    Since "transfer function" has a somewhat different 
meaning in control system theory and elsewhere,  it is avoided here,  and 
the term "transmission function" is preferred. 
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the input signals to that unit.    These units are defined here in a sufficiently- 

general manner as to include biological neurons as a special case.    We shall 

be chiefly concerned,  however,  with models which employ simplified versions 

of such neurons. 

DEFINITION 6:  A sensory unit (S-unit) is any transducer responding to 

physical energy (e.g.,  light,   sound,  pressure,  heat, 

radio signals,   etc.) by emitting a signal which is some 

function of the input energy.    The input signal at time   t 

to an S-unit    A.;     from the environment,   W,   is symbolized 

-C y- (t)     ■    The signal which is generated by A'L      at time 

t     is symbolized       A: ' t)    ■ 

DEFINITION 7: A simple S-unit is an S-unit which generates an output 

signal A;  =  ^ /      if its input signal,   ZV/t"     exceeds a 

given threshold,    (9/    ,   and    0    otherwise. 

DEFINITION 8:  An association unit (A-unit) is a signal generating unit 

(typically a logical decision element) having input and 

output connections.    An A-unit    ö •     responds to the 

sequence of previous  signals  £■:     received by way of 
f , 

input connections  c,'!    ,  by emitting a signal     & • (tj   . 

DEFINITION 9: A simple A-unit is a logical decision element,  which 

generates an output signal if the algebraic sum of its 

input signals,   ry_-L    ,    is equal or greater than a threshold 

quantity, f) > 0 .    The output signal    Ct£      is equal to   + 1 

if   ot ■ > 0    and   0    otherwise.    If    r? •   -   J- I   ,  the unit 

is said to be active. 



DEFINITION 10:  A response unit (R-unit) is a signal generating unit 

having input connections,  and emitting a signal which is 

transmitted outside the network (i.e. ,  to the environment, 

or external system).    The emitted signal from unit   Pi 
*■ 

will be symbolized  by   /"•   . 

DEFINITION 11 :A simple R-unit is an R-unit which emits the output 
it 

r   - V-/    if the sum of its input signals is strictly 

positive,  and    f = -I  if the sum of its input signals 

is strictly negative.    If the sum of the inputs is zero, 

the output can be considered to be equal to zero or 

indeterminate.    (A physical unit which oscillates in 

response to a zero signal would have the required 

properties. ) 

DEFINITION 12:Transmission functions of connections in a perceptron 

depend on two parameters: the transmission time of the 

connection,    T/ •      ,  and the coupling coefficient or value 

of the connection,   i^,■     .    The transmission function of 

a connection    CL'.    from   a/   to   u :    is of the form: 

irijitj, u-[ (t-Tij)     .     Values may be 

fixed or variable (depending on time).    In the latter 

case,  the value is a memory function. 

DEFINITION 13:The activity state of the network at time  t   is defined 
*■ 

by the set of signals,     //;     ,  emitted by all signal 

generating units at time   • t 
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ans 

DEFINITION 14:    The memory state of a network is the configuration of 

values associated with all (variable valued) connections 

at a specified time. 

DEFINITION 15:    The phase space of a network is the space of all possible 

memory states,  for a given network.    In general,  if there 

are N variable-valued connections in the network,  the phase 

space may be represented by a region in Euclidean N-space, 

each coordinate corresponding to the value of one connection. 

The memory state of the system at any specified time can 

be characterized by a point in this phase space,   and the 

history of the system by a directed line,   or path,  followed 

by this point. 

DEFINITION  16:    The interaction matrix for a network of S,  A,   and R units 

is the matrix of coupling coefficients,     "/'••    ,   for all pairs 

of units ,    ■/ ■    and If there is no connection from 

/■    to    ■. ;   ,    '?•,■•     is defined as zero.    Specifying an 

interaction matrix is equivalent to specifying a point in 

the phase space . 

4.3        Definition and Classification of Perceptrons 

DEFINITION 17:   A perccptron is a network of S,  A,  and R units with a 

variable interaction matrix   /   which depends on the 

sequence of past activity states of the network. 
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DEFINITION 18:   The logical distance from unit  u;   to   LIJ    is equal to the 

number of connections in the shortest path by which a 

signal can be transmitted from   a;    to   u. j   . 

DEFINITION 19:   A series-coupled perceptron is a system in which all 

connections originating from units at logical distance   d 

from the closest   S   -unit terminate on units at logical 

distance   d+l    from the closest    S  -unit. 

DEFINITION 20:   A cross-coupleTd perceptron is a system in which some 

connections join units of the same type (S   ,    A   or     R     ) 

which are at the same logical distance from    S -units, 

all other connections being of the series-coupled type. 

DEFINITION 2 1:   A back-coupled perceptron is a system in which at least 

one   A    or   R    unit at a distance   r//    from the closest 

S   -unit   is the origin of a connection back to an S -unit 

or to an   A   -unit at a distance    c/-, < d,  from the closest 

S   -unit;   i.e. ,   this is a system with feedback paths from 

units located near the output end of the system to units 

closer to the sensory end. 

It should be noted that the above definitions are not exhaustive; 

they are intended to designate certain generic classes of perceptrons with 

which we shall be concerned.    The initial models to be considered are of the 

type specified by the following definitions: 
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DEFINITION 22:   A simple perceptron    is any perceptron satisfying the 

following five conditions: 

1 . There is only one    R -unit,  with a connection 

from every   A   -unit. 

2. The perceptron is series-coupled,   with connections 

only from    S   -units to    A    -units,  and from     A    -units 

to the  R    -unit. 

3. The values of all sensory to   A     -unit    connections 

are fixed (do not change with time). 

4. The transmission time of every connection is 

either zero or equal to a fixed constant,    T 

5. All signal generating functions of     S     ,    A   ,   and  R 

units are of the form     at- (t.)  ~ Jt'oci (tl)      ,  where 

ry-ff-/    is the algebraic sum of all input signals 

arriving simultaneously at the unit    u^ 

DEFINITION 23:   An elementary perceptron is a simple perceptron with 

simple   R-    and  A- units,  and with transmission functions 

of the form    /•- (tj - u ■ (f. -T)v[j(t). 

Perceptrons can be represented graphically in several different 

ways.    In particular,  frequent use is made of three types of diagrams,   which 

will be called network diagrams,   set diagrams,  and symbolic diagrams. 

Depending upon the level of specificity required,   any one of these diagrams 

may be used to represent the same system.    The three types of diagrams 
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are illustrated in Figure 2.    The network diagram shows each connection 

and signal unit individually; the arrows indicate the direction of signal 

transmission through the connections.    The set diagram represents all 

S-units as a single set, connected to the set of A-units {or association 

system) which is represented by a Venn diagram, the subsets of which 

are connected to different R-units.    Set diagrams of this general type are 

found to be particularly useful as an aid to analysis.    The symbolic diagram 

for this same perceptron merely indicates the kinds of connections which 

exist, namely, S to   A,   A   to   R,  andStoS.    The perceptron illustrated 

would be called a three-layer perceptron,  cross-coupled at the sensory 

layer. 

NETWORK DIAGRAM 

SET DIAGRAM 

SYMBOLIC DIAGRAM n -*-   A 

O R, 

O R, 

-O Ri 

O R. 

>■   DIAGRAMS OF SAME SYSTEM 

Figure 2 PERCEPTRON DIAGRAMS 
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4.4 Stimuli and Environments 

DEFINITION 24:   A stimulus is any non-zero set of input signals,   £Wl'(tJ   , 

to the S -units   at time    t    .   If   there   are   A/^   sensory- 

units in the retina,  then a stimulus can be characterized by 

a vector of   A/A   elements,   representing the signal to each 

S     -unit as an element of the vector.    The condition in 

which all input signals are equal to zero is not considered 

a stimulus unless otherwise specified. 

DEFINITION 25:   A stimulus world (or environment ) is any set of stimuli, 

defined for a specified    S-unit    set.    The stimulus world 

will be symbolized by W.    The number of different stimuli 

will usually be denoted by    n 

DEFINITION 26:   A stimulus-sequence world (or stimulus-sequence 

environment) is any set of stimulus sequences,  each 

consisting of an ordered series of stimuli from the set   14/   . 

(For example,   if the image of a printed word is a stimulus, 

and  14/    consists of all words in a dictionary,  then the 

set of all English sentences would comprise a stimulus- 

sequence world. ) 

4.5 Response Functions and Solutions 

DEFINITIONS?:   A response function is any assignment of    R -unit output 

signals to stimuli in   14/    .    For a simple perceptron, the 

response function   R{W)  is a vector of   n   elements, 
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(   Rf, Rj r " ' ■> $n     ) indicating the value of the 

response for each of the stimuli,    5/; 5? ; ■••> 5„    in 

the environment. 

DEFINITION 28:      A classification is an equivalence class of response 

functions.    Two response functions are considered 

equivalent if their corresponding elements agree in 

sign.    For any perceptron with one simple    R -unit, a 

classification,  C.(W) ,  divides W   into two classes: 

a positive class consisting of all stimuli for which    r = +1    , 

and a negative class,  consisting of those stimuli for which 

r I 

DEFINITION 29: A response-sequence function is an assignment of sequences 

of   R -unit output signals to stimulus sequences in a 

stimulus-sequence world.    This is a generalization of the 

concept of a response function to include a time dimension. 

DEFINITION 30:      A solution to a response function (or classification) is said 

to exist for a given perceptron if there is a point in the 

phase space of the perceptron such that the response   /<■ 

(specified by the function) will occur if the stimulus   Si 

is shown,  for all    5^        in   1// 

4.6       Reinforcement Systems 

DEFINITION 31:      A reinforcement system is any set of rules by which 

the interaction matrix (or memory state) of a per- 

ceptron may be altered through time. 
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DEFINITION 32: A reinforcement control system is any system or 

mechanism external to a perceptron which is capable 

of altering the interaction matrix of the perceptron in 

accordance with the rules of a specified reinforcement 

system. 

DEFINITION 33:      Positive reinforcement is a reinforcement process in 

which a connection from an active unit    U-i    which 

terminates on a unit   u. •    has its value changed by a 

quantity  Av; : (t)   (or at a rate   duij /dt       ) which 

agrees in sign with the signal uj (t) 

DEFINITION 34: Negative reinforcement is a reinforcement process in 

which a connection from an active unit    (/ •    which 

terminates on a unit    u;    has its value changed by a 

quantity     Alr[: (t;      (or at a rate     dvij/dt   ) which 

is opposite in sign from,     u :(t) 

'■J/ 

DEFINITION 35:      A monopolar reinforcement system is a reinforcement 

system in which the values of all connections terminating 

on a unit   «■ •     remain unchanged at time    t    unless    U'{t; 

is strictly positive. 

DEFINITION 36:      A bipolar reinforcement system is a reinforcement 

system in which the values of connections are subject 

to change regardless of whether   the output of the 

terminal unit is positive or negative. 
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DEFINITION 37:      Alpha system reinforcement is a reinforcanent system 

in which all active connections   /?• •    which terminate on 
'■J 

some unit   a;    (i.e. ,  connections for which    IL; (t-T) + 0) 

are changed by an equal quantity    Air- ■ (t) =10       or 

at a constant rate while reinforcement is applied, and 

inactive connections    (u ■ (t-r)  = 0)      are unchanged at 

time   f:   .   A perceptron in which     ot -system reinforce- 

ment is employed will be called an     Qd -perceptron.    The 

reinforcement will be called quantized if the change is a 

fixed quantity    [\A7r\ =1^1^ or non-quantized if the value may 

change by an arbitrary magnitude. 

DEFINITION 38: Gamma system reinforcement is a rule for changing the 

values of the input connections to some unit,  whereby all 

active connections are first changed by an equal quantity, 

and the total quantity added to the values of the active 

connections is then subtracted from the entire set of 

input connections,  being divided equally among them. 

Such a system is said to be conservative in the values, 

since the total of all values can neither increase nor 

decre^lse.    The change in    y--■       is equal to 

if      u-(t-V) f 0,  0 otherwise; 

number of connections terminating on  u- 

ff    =    reinforcement quantity (typically + 1 or 0). 

where      (*)■ ■ ft) •   I 
'j 

N 
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Additional reinforcement rules, and variations of the above, 

will be presented as required.    The above terminology has been standardized 

in previous work on perceptrons,  and represents the systems on which most 

analysis has been done.    In most of the cases to be considered, the reinforce- 

ment control system employs one of three training procedures,  defined as 

follows: 

DEFINITION 39: A response-controlled reinforcement system ( R   -controlled 

system) is a training procedure in which the magnitude of 

Iff       is constant,  and the sign of    'f?     is entirely deter- 

mined by the current response,    f*     ,  regardless of the 

current stimulus,    5   .    In general,  unless otherwise 

specified,  this term implies that the reinforcement is 

always positive (i.e.,  the sign of     /f      agrees with the 

sign of    /"     ,  in a simple perceptron). 

DEFINITION 40:      A stimulus-controlled reinforcement, system ( S   -controlled 

system) is a training procedure in which the magnitude of 

f     is constant,  and the sign of   /?     is determined 

entirely by the current stimulus,    2     ,  and a pre- 

determined classification,   C(W)   ; the current response 

of the perceptron does not influence either the sign or 

magnitude of     /? 

DEFINITION 41:      An error-corrective reinforcement system (error 

correction system) is a training procedure in which 

the magnitude of    Yf      is   0   unless the current response 
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of the perceptron is wrong,  in which case, the sign of 

>p    is determined by the sign of the error.    In this 

system,  reinforcement is   0    for a correct response, 

and negative (see Definition 34) for an incorrect response, 

or,  more generally,     Yf = f(R -r )    where    R      is the 

required response,   r*  is the obtained response, and  f 

is a sign-preserving monotonic function,   such that 

f{0)   = 0 • 

In previous reports (Refs, 41,   8Z ) the    R -controlled system 

has been referred to as a "spontaneous learning system",   since the 

perceptron evolves in an autonomous fashion,  uninfluenced by the "correct- 

ness" of its outputs.    The reinforcement control system requires no 

information from the environment in order to control the changes in the 

memory state of the perceptron.    The     S   - controlled system has also been 

referred to as a "forced learning system",   since the r. c. s .  imposes a 

predetermined classification on the perceptron's responses,  without taking 

the actual responses of the system into account at any time. 

4.7       Experimental Systems 

DEFINITION 42: An experimental system is a system consisting of a 

perceptron,  a stimulus world,   W      ,  and a reinforce- 

ment control system.    The reinforcement control 

system maybe an automatic regulating device (e.g., 

a thermostat) or a human operator,  capable of respond- 

ing to the responses of the perceptron and the stimuli in 

the environment by applying the appropriate reinforcement 

rules,  altering the memory state of the perceptron. 
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Figure 1  GENERAL EXPERIMENTAL SYSTEM 
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The basic organization of an experimental system with a simple 

perceptron is shown in Figure 3.   A more general system,  in which the 

perceptron may be of any variety,  and where the output of the perceptron 

is capable of modifying its stimulus environment, is illustrated in Figure 4. 

A comparison with Figure 1 should indicate the basic similarity between the 

perceptron,  in a general experimental system,  and the biological nervous 

system.   Analyses of perceptron performance always postulate an experi- 

mental system,  involving,  as a minimum,  the components shown in Figure 3. 

The reinforcement control system can be considered a specialized part of 

the environment,  in its relation to the perceptron,   although it might actually 

be built into the same physical mechanism as the perceptron itself.    In an 

R-   controlled system,  the information channel shown from W    to the r.c.s. 

is non-functional,  while in an    S     -controlled system the information channel 

from W    to the r.c.s.  is non-functional,  and in an error-correction system, 

both channels are essential for reinforcement control.    In digital simulation 

programs,  the r.c.s.  is the part of the program concerned with reinforcing 

the simulated perceptron,  while in experiments with hardware systems it is 

generally a human operator. 

An experiment involves an experimental system,  a training 

procedure,  and a procedure for testing the perceptron,  or measuring its 

performance.    A number of typical psychological experiments, which are 

of interest for perceptrons,  were outlined in Chapter   3,.  and some of 

these will be analyzed in the following chapters. 
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THREE-LAYER   SERIES-COUPLED   PERCEPTRONS 



5.        THE EXISTENCE AND ATTAINABILITY OF SOLUTIONS IN 

ELEMENTARY PERCEPTRONS 

The perceptrons to be considered in Part II ali consist of 

three layers of units connected in series, with the topology S -*" A—>" R. 

In the following chapters,   it will be seen that these    perceptrons are 

capable of learning any set of responses which we might care to have them 

make to a universe of stimuli.    Their main deficiencies are a lack of ability 

to generalize their performance to new stimuli or new situations where they 

have not been explicitly taught and a lack of ability to analyze complex 

environmental situations into simpler parts. 

The first perceptron model to be considered in detail is the 

elementary   ry. -perceptron.    In this chapter,  we shall examine the intrinsic 

ability of such systems to realize solutions to classification problems, 

including several theorems concerning the relationship of the size of the -. 

system to the existence of solutions,   and the possibility of attaining such 

solutions by different training procedures.    The term ''solution" is used in 

the sense of Def.  30, in Chapter 4.    Most of these results were first presented 

in Ref.  86. 

5.1     Description of Elementary   c^ -Perceptrons 

Elementary   ^-perceptrons were defined in Chapter 4,  as a 

subclass of simple perceptrons,  in which S-units send connections to 

A-units, and the A-units all send connections to a single R-unit, no 

other connections being permitted,  and all connections having equal trans- 
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mission times,     T   .   Without loss of generality,   T    can be taken to be 

zero, and this assumption of instantaneous transmission will be made 

whenever we deal with simple perceptrons, unless otherwise stated.    The 

A-units and  R -unit in all elementary perceptrons are of the simple type, 

i.e. , they have a threshold,   0    ,  (equal to zero in the case of the     R  -unit) 

and emit a signal only if the input signal,   oc    ,  is equal or greater than     0 

The connections from   S    to    A -units have fixed values, and the connections 

from the A-units to the  R  -unit have variable values, which depend on the 

history of reinforcements applied to the perceptron.    The connections, in an 

elementary perceptron,  all have the transfer function (assuming   V   to be 

zero). 

%'(*) - ul(t)vc](t} 

In the    0£ -system,  which is to be considered initially,  the reinforcement 

rule takes the form 

'j <■ i        \ o  otherwise 

In an elementary perceptron,  where the only variable connections occur 

from     A  -units to the    R   -unit,  the simplified notation  ?/;■    will generally 

be taken to mean the value of the connection from unit   a;    to the    R    -unit. 

The basic parameters with which we shall be concerned in this chapter  are 

the number of     S   -units,    //,     ,  and the number of    A   -units,     /Va 

Without loss of generality,  we can assume the   /V^    sensory units to be 

situated at points in a two-dimensional field,  or "retina",  and regard the 

input stimuli as patterns of illumination on the retina.   A typical system 

of this type is illustrated in Figure 5. 
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Figure 5 NETWORK ORGANIZATION OF A TYPICAL ELEMENTARY PERCEPTRON 

5,2       The Existence of Universal Perceptrons 

Most of the theoretical results obtained to date for elementary 

perceptrons are concerned with experiments in which a classification of an 

environment,    C{yV/     ,  is taught to the perceptron by some training proce- 
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dure.    The first theorems to be considered deal with the question of whether 

a solution to such a classification problem exists, or might exist, for a 

given perceptron.    To begin with, the following theorem shows that the 

organization of an elementary perceptron is sufficient to permit the 

construction of a "universal system", for which a solution exists for every 

possible classification,    CiW)  .   Perceptrons constructed in this manner 

are generally not very interesting as brain models,  but the theorem indicates 

the wide range of possible behavior which might be obtained from such 

systems. 

THEOREM 1: Given a retina with two-state (on or off) input signals, 

the class of elementary perceptrons for which a 

solution exists to every classification,  CfWj   ,  of 

possible environments    14/       ,  is non-empty. 

PROOF:        Since it is sufficient to show the existence of such a perceptron, 

we proceed by construction.    Let there be one   A -unit for every possible 

stimulus configuration on the retina.    Consider stimulus   5/     and its 

corresponding    A -unit,    a-    .    Let   (2;     have an excitatory connection 

(value equal to + 1    ) originating from every "on" point in   5/      ,  and an 

inhibitory connection from every "off" point in   5"    ,  and let its threshold 

be equal to the number of excitatory connections.    Then there will be one 

and only one   A   -unit responding to every possible stimulus,  and no 

A-unit   responds to more than one stimulus.    (We say that   (7 ■   "responds" 
it 

to   S^     if    i/(-  i  O .)   Now consider any, stimulus world,   W   ,   defined on 

the retina,  and a corresponding classification, C(W) ,    which associates 

a positive or negative classification with each stimulus,    5;     ,  in   W    . 
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In order to realize the classification,   it is only necessary to set the 

value of the connection from    a.;    equal to + 1 if the class of   5/   is positive, 

or - 1 if the class of   5;   is negative.    Q.E.D. 

While this solution is clearly uneconomical and of little practical 

interest, it is sufficient to show that there are no "special cases" of 

classifications which have no solution,  at least for a retina of binary elements. 

If the inputs to the S-units are capable of taking on more than two values, 

then a more elaborate construction (e.g. ,  one which separates each combination 

of input values to a different set of A-units) would be required.    It is left to 

the reader to satisfy himself that a system with less "depth" than an elementary 

perceptron (i.e. ,  one- in which S-units are connected directly to the R-unit, 

with no intervening A-units) is incapable of representing a solution to every 

C(W)   ,  no matter how the values of the connections are distributed. 

5.3       The G-matrix of an Elementary     o<£ -Perceptron 

In practice,  the cases of interest are those in which each 

stimulus activates some set of A-units,  and each A-unit is likely to 

respond to a great many different stimuli in    W .    In order to deal with 

such systems, the concept of a G-matrix has been found to be particularly 

helpful,   and this will now be defined.    The definition given here is suffi- 

cient for elementary perceptrons,  and will be generalized in a later 

chapter to permit us to deal with more complex systems. 
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DEFINITION: Consider a (simple) perceptron,  and a stimulus world,   W 

consisting of    n     stimuli.    Then the matrix 

/ 9ff 912 

I   9ZI 9,1 
G - 

\   9ni  9n2 

consists of elements    y  •    called generalization coefficients.   Each 

element,    g- •      ,  is equal to the total change in value (   £ A nr^       ) over 

all A-units in the set responding to   5/     if the set of units    responding to 

5 •     are each reinforced with   r;    equal to   I/Na   (where    Ma    is equal to 

the number of A-units in the system).      For simple perceptrons and a 

given environment,    G    is fixed for all time. 

If we are dealing with a particular   (y  -perceptron, where 

Air.   =   :i^(t)-)-7 ,  we have 

where      Q- 

and     5; 

ivy = Q
;J 

the proportion of A-units which respond both to   S'L 

If we are dealing with a randomly selected member of a class of perceptrons; 

^ is a random variable,  and we have the   equation for the expected 

value of      o; ■ 

where Q; the probability that an A-unit in a given class of 

perceptrons responds to both stimuli,    3;      and   S:    • 

With    ^ -  //Na   we have a "normalized G-matrix".    For some purposes 
it is convenient to take    y9 = f   .in which case the  "unormalized G-matrix" 
is equal to    Na    times the normalized matrix defined above. 
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For the     rv -system,    n ■ ■    is simply a  measure of the inter- 

section of the sets of A-units responding to   5;     and to    5;     ,  and is 

equivalent to a "set intersection matrix".    G is always symmetric for 

an alpha system.    In any elementary perceptron (at a given time    t    ) 

the net input signal to the R-unit from the set of A-units responding to 

stimulus    $■     will be called   cc'   and is given by 

/ / Q.f r, + .Vj  Z2 + -h n-     X 
J L ri      r 

(5.1) 

where    7 ■   - the amount of reinforcement applied to the system,  over all 

appearances of   5-     prior to time     '     ,    In matrix form,  the vector   u 

of signals   "/   from all stimuli   1;    in .v   is given by 

/ /   =   (^ r (5.2) 

where    7    is a vector of elements    > ■   ,  defined as above. 

5.4       Conditions for the Existence of Solutions 

In general,  if we are given the rules of organization of a 

perceptron and some classification,  c.'( tt'j ,   it is by no means easy to 

say whether or not a solution to     C  //J   exists for the perceptron in question. 

The following  theorems deal with the existence of such solutions from 

several different points of view.    We first define the bias ratio of an A-unit 

as follows: 

DEFINITION: Given a classification,   C{W} ,  the bias ratio of an A-unit, 

> (-   ,  is defined for any set of stimuli in   14/   as    n- n- ,  where      /?■    = 

number of stimuli in the set which are members of the positive class C "^ and 

which activate   o-    ;     n-~   - number of stimuli in the set which are members 

of the negative class   r   "    and which activate      n • 

*   It is assumed here that all initial f 
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THEOREM 2; Given an elementary perceptron and a classification 

C(W)   , the following conditions are necessary 

but not sufficient for a solution to CfWj to exist: 

i)    Every stimulus must activate at least one    A -unit; 

ii)   There should be no subset of stimuli containing at 

least one member of each class,  such that in the 

union of the responding    A -unit sets,  every A-unit 

has the same bias ratio (with respect to the stimuli 

of the subset). 

PROOF:        We first prove that the conditions are necessary.    Condition   i) 

is obvious.    The proof that condition ii) is necessary is as follows: 

Assume there is a subset violating this condition.    Let    u. ■   - 

input signal to  R   generated by stimulus    5 Then summing the values of 

all such signals from stimuli of the positive class in this subset,  we have 

(since violation of ii) requires that    n-^/n- 

responding to stimuli in this  subset) 

is constant for     A   -units 

L U-J = L V 77 
/"// L'v-- ^ 

s-.ec: 
L 

Thus the sum of the     R   -unit input signals for stimuli of the positive 

class must have the same sign as the sum of the    R -unit input signals 

for stimuli of the second class.    But then one of the sums must disagree 

in sign with the sign of the class,  and therefore,  one of its components 

(i.e. ,  one of the    u.-    ) must disagree in sign with the class,  indicating 

that at least one stimulus must be classified incorrectly. 
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To show that these conditions are not generally sufficient, 

consider the following example: Let there be five stimuli,  and four   A   -units 

The     A -units activated by each stimulus are: 

Sj activates a, 

5^ activates a^ 

5, activates Q, and av 

5„ activates an Q.?  ,  and   Q-J 

S5   activates    Q-i, Oz  ■, and   a v 

Let the positive class consist of   5,    ,    5^    ,  and    5j   ,   and the negative 

class consist of  5^   and   Sr   •    Then the bias ratios for   a/   and    a.^   are 

not the same as for   a3    and   a^   .    Also,  there exists no subset with 

stimuli from each class,  with equal bias ratios for all   A   -units.    The 

values of  (Xj   and   «^    must  be positive,  and the sum of the values of dj 

and   öy    must also be positive, to obtain the required the required classifi- 

cation for the members of the first class.    But then it is clear that either 

5^     or   Sr     must be classified incorrectly,  which proves that conditions i) 

and ii) are not sufficient. 

In the next theorem we make use of the symbol      u.        to denote 

a signal vector,  such   that   the    element   IJL-    agrees in sign with the 

classficiation of   ,5^    in   C(W)   .    Such a signal vector will evoke the 

correct response for each stimulus in    IV    .    Two such vectors which 

agree in the signs of their elements are said to be in the same orthant 

(generalized quadrant,   in   n   dimensions). 

In Theorem 9,  a necessary and sufficient condition,  closely related 
to the above, will be presented. 
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THEOREM 3: Given an elementary    <y. -perceptron,  a stimulus world W  , 

and any classification C(W) ; then in order for a solution 

to  C(W)   to exist,   it is necessary and sufficient that there 

exist some vector     u     in the same orthant as   C(W)  , and 

some vector   X   such that    G X = u. . 

PROOF:        The proof would follow trivially from Equation (5. 2) and the 

definition of      u       , were it not for the possibility that a solution might 

exist involving some unique assignment of values to the A-R    connections, 

which could not be attained by any reinforcement vector,   Z    ,  defined as in 

Equation (5. 1).    It will be shown, therefore,  that if a solution exists,  in the 

form of any assignment of values to A-R  connections, an equivalent solution 

must exist corresponding to the reinforcement of each stimulus,   S-    , by an > 

amount  Z; .    For brevity,  throughout the following discussion,  we will speak 

of "the value of an   A -unit" in place of "the value of the connection from an 

A    -unit to the    R    -unit".    The following definitions and notation will be used: 

^■(S:) 

1   if the   A   -unit a- responds to   5/ 

0 otherwise 

A      is an ^  by   /V      matrix,   in which the element   a- >   ~ a- (S[) 

A solution to a classification problem is said to exist if there is some 

distribution of values over the    A  -units which enables the perceptron to 

perform the discrimination; i.e.,  there exist vectors'?/-   and      u.       such 

that 

Air  -   a 
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Consider the matrix    AA ' .    The     L}J      element of this matrix (ßay   A[ :   ) is 

L H (s'-' «A (^) = AiJ 
A 

But the (un-normalized)    G -matrix for an   06 -system, expressed in 

terms of the above functions,  has elements 

9[j = L01(S^ o^( r     \ 5;> 

so that the matrix     G   = AA    .    Note that this shows that    6     is either 

positive definite or positive semidefinite . 

We then have,  for any vector    Z   ,   such that    x. A  = O 

1) z'A   =0   => z'AA'=   x's  =0 

2) x'G   = 0   -=> x'Gx =   S'AA'X   = (Z'A, z'A) =0   =^> z'A = 0 

Hence,  the rank of     G  ~   rank of   A      ,  since any vector   Z   which is in 

the left null space of    (?    is also in the left null space of   A     ; therefore the 

left null spaces of    G   and   A    are identical.    Since the rank plus the 

dimension of the null space is equal to the dimension of the domain,    G    and 

A     must be of the same rank. 

But the columns of  G  are linear combinations of the columns of 

A    ,  hence the space spanned by the columns of    G   is identical with the 

space spanned by the columns of   A 

-107 



Since Av is a linear combination of the columns of   A     , the 

existence of TA  and   u    such that A-u- = u. implies the existence of a vector 

X   such that    Gx ~ u   .    Thus, if a solution exists, there is a solution to 

the equation    Gx = u    ,  so that the condition of the theorem is necessary. 

But it is also sufficient,  since   u    by definition represents a solution 

vector.    Q.E.D. 

COROLLARY 1:       Given an elementary perceptron and a stimulus world   W   , 

Then if   6    is singular,   some   CfW)  exists for which 

there is no solution . 

PROOF:        Each  Cfwj  requires a solution vector in a different orthant,  and 

the set of all    C(W)    , for a given   W    ,  requires solutions in every possible 

orthant.    But if   0    is singular,  it maps the entire   space into a hyperplane, 

and this plane must fail to intersect certain orthants.    Consequently, the 

classifications    C(W)   which are represented by vectors in these orthants 

have no' solution. 

COROLLARY Z:       Given an elementary perceptron,  if the number of stimuli 

in    kV      is    n  > NQ , there is some   C(W)   for which no 

solution exists. 

PROOF:        From Theorem 3 and Corollary 1,  it is clear that there will 

be some    CfW)  which has no solution if and only if   G     is singular.   G 

has the same rank as the matrix     A     ; but /i  is an rj   by A/a   matrix, 

implying that A ,  and therefore   G   has rank    <  n   . 
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COROLLARY 3: For any elementary perceptron,  as the number n   of 

stimuli in   W   increases, the probability that a randomly 

selected classification,  C{W) , has a solution approaches 

zero (where   C(W)  is chosen from a uniform distribution 

over the possible classifications of  W    ). 

PROOF:        From Corollary Z,  ;'>   n   increases beyond the number of A-units 

in the perceptron,  there must be some    C(W)   without a solution.    At the same 

time,  increasing   n   increases the set of possible classifications in proportion 

to    2 '     .    But, owing to  a theorem by R. D.  Joseph and Louise Hay (Ref. 41, 

Appendix    ),  the number   n(r)   of classifications which have solutions is no 

greater than 2 

G-matrix.    Therefore, the upper bound of the probability of selecting at random 

one of the classifications which has a solution diminishes with   r)(f)f2n  which 

goes to zero as   n    goes to infinity. 

n'   ' + * ' i   )*'"'*[ r-,! I where   r ^ Na   is the rank of the 

Several additional tests for the existence of solutions, which are 

of practical utility in diagnosing small systems, will be found in Theorems 9 

and 10,  at the end of this chapter. 

5.5       The Principal Convergence Theorem 

In the preceding section,   the existence of solutions to classification 

problems in an elementary perceptron was considered,  but nothing has been 

said about the ability to achieve such a solution by a training procedure.    In 

this section,  we consider the ability of an elementary     ry -perceptron to learn 

the solution to a classification   C(W) under an error correction procedure. 

The following theorem is fundamental to the theory of perceptrons. 
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A general definition of an error correction procedure was given 

in Definition 41,  in Chapter 4.    We now define in detail two specific forms of 

this procedure,  as they apply to the  elementary     oc -perceptron. 

Consider some classification,   C{W) .    Let 

where 

A- 

/,...,   n  . 

+ 1       if stimulus   Si   is to be in the positive class 

- 1       if stimulus S£"   is to be in the negative class 

In order to obtain the most general conditions for the following theorem,  a 

non-quantized error correction procedure is defined as follows:   No response 

will be considered correct unless the magnitude of the input signal to the 

R~unit   (i.t-i)     is greater than    6'    ,  and the sign of    u;    agrees with   /J; 

for the current stimulus.    (This corresponds to an R-unit with a threshold 

of   (f    ,  or for the special case where     cf  =   0,  it corresponds to a simple 

R-unit.)   If no error occurs for stimulus     S-     (i.e.,    /^ u;   >   rf     ) no 

reinforcement occurs; but if an error does occur a quantity    r/  -   /)• A * [ 

is added to the value of each active A-unit,    A r;      (the number of units of 

reinforcement) being just sufficient to bring the magnitude of the signal   u- 

past the threshold level,     rf     ,  to the level       6  > <f      .    In a quantized 

correction procedure,  the identical rules apply, except that   )f =   o-Ax-i   - t l} 

A r ■     representing a single unit of reinforcement. 
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THEOREM 4: Given an elementary     ry -perceptron,  a stimulus 

world   1/1/   ,  and any classification  C(W/   for which a 

solution exists; let all stimuli in IA/    occur in any 

sequence,  provided that each stimulus must reoccur 

in finite time; then beginning from an arbitrary initial 

state,  an error correction procedure (quantized or 

non-quantized)will always yield a solution to   C'ii/Vj    in 

finite time,  with all signals to the R-unit having magni- 

tudes at least equal to an arbitrary quantity     c/'   ^     0. 

PROOF:        The matrix A is defined as in Theorem 3,   so that     o;-   -   O- 

We recall that   / 

such that -/■ 

t i LJ 

3  .    We also define the matrix 5 such that 

the matrix     / :-'' ; and the diagonal matrix  Ü 

•; .    Note that   / :J   -   1,   DA    -- B,  and H   - DG D. 

We first consider the non-quantized error correction procedure, 

In this case,  no reinforcement is applied unless an error occurs; if an error 

does occur (when     ,-; /;   -      '       ) the quantity      a;  Ax.'L     /-' ;   > Q)   is added 

to the value of each active A-unit,    / ' ■      being chosen so that the input to 

the response unit is exactly       Of { •-    '  \ • .    It will be shown below that 

such a    Zs / ■     exists, 

The proof of this theorem (which was first published by Rosenblatt in 
Ref.  86) has undergone a number of modifications.    The original treat- 
ment was insufficient to prove the theorem in a rigorous fashion; 
subsequent forms have been due to Block,   Joseph,   Kesten,  and others; 
and the present proof owes much to each of these.    An interesting 
alternative approach,  with a slightly modified reinforcement procedure, 
has recently been proposed by Papert (Ref.  67) who attempts to shorten 
the demonstration and avoids use of the G-matrix.    Unfortunately, there 
are several logical errors in Papert's argument,   the correction of which 
would tend to lengthen his demonstration. 
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It has been noted previously that the space spanned by the columns 

of   G   is the same as the space spanned by the columns of   A    (the rank of 

G being equal to the rank oi   A     ).    Consequently, for any   Na -vector    V     , 

there is an     n -vector   Z    such that  AV-GZ- 

An arbitrary initial state for the perceptron is represented by an 

A/a -vector    1/°   of values for the A-units.    Let   7°   be a corresponding 
th 

n -vector.    Let   Z   be the    n -vector whose        i      component,    q-   ,  is 

equal to the total quantity of reinforcement given in all previous corrections 

for stimulus    S-     <  i.e., 

o • = /^Pi Ax-     (summing over all previous corrections). 

Let       U  =   GZ0 +   GZ   -   G{Z0 + Z) = GD{)(0+K)    where   /0-P/Oand 
. th 

X   =   DZ     .    The      i.       component of    (7    ,    to-    ,  would be the input to the 

R-unit if    5/     were to occur at the present time.    Let     'A/ = DU    .    This 

equation can be written 

W H(X°+ X, 

where a negative   ^y-   (or more precisely,   ^jy- ^   (f   ) represents an error. 

The   Z-   are always non-negative,   and this will be understood for the 

remainder of the proof.    We now define  M    as the maximum diagonal element, 

h;;     ,  oi   H   .    We also define the function of the    n -vector    Z 

K(Z) Z   HZ ZL ?< 
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We then obtain the following results: 

1)     The existence of a solution means that there is an   Na    vector    V      such 

that   for all  / 

Z o] (s: j  = A lLri 

where   xi/-- > 0 .    In matrix form    ßV    =  W 

2)    Consider   X'HX     for all   X    such that  || /1| = /      (and of course    X; ^ 0     )■ 

X'HX - (X'6)(X'B)'    so that   X'HX  > 0 ■    Suppose   X'HX = 0    ; then   X'ß = 0 

Clearly   X'W*>  0    , but      X 'W * =  X 'BV * = 0 .    This contradiction shows 

that   X'HX > 0   on this closed,  bounded set,   so that there exists a minimum 

Dd   >  0   such that   X'HX >  cy.\\X\\2     for all  /     for which   X; ^ 0    for all    i 

Note that   A4 > r^ > O as a consequence.    Note also that    <?••  = h^-  > 06 > 0■ 

3)      £?;    <   fF>     \\X\\ 

and  l/'/y/0!  ^   H/V^ll • ||/i| 

(Schwarz's inequality) 

(Schwarz's inequality) 

4)      K{X0i-X)   - K(X0)   =   K(X) -h JX'HX0 

\2. 
ä  oc \X\   - 26fn\\X\ 

(A+ 6 Ü) J 

2A \X\ 

a 

5         :    =   2^- - 26 
d X; l 

and      =/?••>   0 
dxi 

.  This latter relation proves the contention at 
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the beginning of the proof that   Ax-   >   0      exists.   Specifically, we have 

AX: 
6 - xwi 

11 

6)    A correction is made for   S-    only if    ^u-- <  cf    .    Denote the change in K 

when this is done hy   AK   , and by subscript     0    the conditions before the 

correction. 

,X.i0 + Axi .€ 

AK(X0+X0)  =2     (>ur--e)c/xi =2      -r~: (^-e) dwi 
LL 

^{ur-^ey 
jUr- 

(^■n   - t) 

h: 

z. (e-ö-y 
AI 

7)    From 4) and 6) we conclude that the maximum number of corrections 

is 

/V    ^ 

/ 
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V   0 8)    In particular,  if    X   =0    and    ö'= 0   (corresponding to a perceptron with 

a simple R-unit and no initial reinforcement) then      ^  =   || HX 

the bound becomes    nM/iy. . 

0 and 

This proves the theorem for the case of the non-quantized 

correction procedure,   since   A/    is finite,   implying that the process arrives 

at a solution in finite time.    For the quantized case,  we have the condition 

that    A i •     is always 1 when a correction occurs (the vector  /     representing 

the numbers of unit corrections for each of the    n   stimuli).    For convenience, 

we take the case where     rf = 0    and        f   = M   = icr,[)rnaX   •    Then in step 6) 

we have: 

6a) .'\is(<
r)+   ,-■    i y   ;      ■',,.,   -A',1./-     -   ? \ „r-    f h;: (' ■ - X-   ) - M I r/r, ■ 

' to I L  \      i ii., ■        / 

L 0 i 
/ ■ - M /: -> i y ■ - x 

lO / 

*:^+ ' 

- M 

7a)     From 4) and 6a) we have that the maximum number of corrections    is 

V 
{ 4.  <- M fn   ) 

An alternative bound,  found by H.  Kesten,  is      _,   ?*,_,, [- 2 oi   •■,/-; v- hi[)   . 
This under some circumstances represents a sharper bound; nonetheless, 
both bounds are generally quite poor,  as estimates of the actual number 
of steps. 
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8a)    This upper bound is again minimized when     X0 = 0      so that   A = |j//X  || = 0. 

The bound is then      nM/OC 

This completes the proof of the theorem for the quantized case. 

Q.E.D. 

COROLLARY :   Given an elementary perceptron,  a stimulus world   W    , 

and any classification   C(W) ; then if a solution to   C(W) 

exists, the set of possible solutions to C(W)  has positive 

measure over the phase space of the perceptron. 

PROOF:        From the proof of the theorem,  we know that if a solution exists, 

there is a strictly positive vector   X    such that   HX = P   (where   P    is a 

strictly positive vector).    Let    Y    be any   n -vector; then   \HY\  -  b   ||/|| 

where    b    is the absolute value of the maximum eigenvalue of   //     ,  or the 

norm of     H   .    Let     ju   -  fnin  p-   >   0      , and let      €  = /j./{b + i) .    Let   U 

be in the      € -sphere around   X   ,   i.e.,     U = P+Y where      ||K|| ^   € .    Let 

Z   = //K    ,  and let      £   =    "V ?•   ^   ||z|l   = \\HY\\ ^   ~T   < y^.    Then 

A- ^ h - ^ %  > o 

HU = H(U-hy)  =  P + z 

Therefore,   HU    is strictly po  itive,   and   (J    is an alternative solution. 

This means that there is a cone of vectors including  X    which maps 

into the region which contains    P    ,  any such vector representing an equiva- 

lent solution.    Since the volume of this cone has positive measure over the 

phase space,  the corollary follows. 
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5.6       Additional Convergence Theorems 

The theorem in the previous section deals with convergence to a 

solution state in an      ty. -perceptron,  trained by the error correction procedure, 

In this section,  it will be shown, first,  that a weaker form of correction 

procedure can also be guaranteed to yield    a solution; secondly,  that 

reinforcement procedures in which the magnitude of   )f    does not depend on 

whether or not the current response is correct cannot,   in general,  be relied 

on to converge to a solution.    If a solution state does occur in .such a system, 

it will be shown that it is apt to be unstable except under special conditions. 

DEFINITION:   A random-sign correction procedure is one in which some 

quantity of reinforcement is applied to the perceptron when an error occurs, 

and zero reinforcement is applied when the response is correct.    The sign 

of   P    is chosen at random,  with an equal probability of being positive or 

negative,   regardless of the response of the perceptron. 

THEOREM 5: Given an elementary     fV-   -perceptron,   with a finite 

number of memory states,  a random-sequence stimulus 

world  M/  ,  and any classification   CiWj for which a 

solution can be reached from the starting point by some 

reinforcement sequence, then a solution will be obtained 

in finite time with probability  I  by means of a random- 

sign correction procedure. 

PROOF:        The random-sign correction procedure consists of a random 

walk in which each step corresponds either to a step of the required 

correction process,  or a step in the reverse direction.    In the course of 

this process, the vector    tx-   (defined in connection with Theorem 4) will 
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eventually reach some attainable trapping state with probability 1.    But the 

only trapping states are in the solution space.    Consequently, a solution 

will be obtained in finite time. 

In Chapter 4,  {Definition 40) an S-controlled reinforcement 

system was defined as a training procedure in which the magnitude of   Y?    is 

constant,  regardless of the current response of the system,  the sign of    Y) 

being chosen to agree with the sign of the classification of the current stimulus, 

S;      ,  in   C(W) .    Unlike the methods considered previously in this chapter, 

this is not a correction procedure; i.e. ,  the magnitude of reinforcement does 

not depend on the occurrence of an error,  and only the sign of the required 

response is taken into consideration in determining what reinforcement 

should be applied.    In the following analysis, a solution will be called stable 

if,   in a given experimental system,  all future memory states will also 

satisfy the conditions of a solution,  no matter how long the experiment 

continues.   A system employing a correction procedure,  since it receives 

no further reinforcement once a solution state is achieved,   is inherently 

stable.    The following theorem shows that this is not the case for an 

S    -controlled system. 

-THEOREM 6: Given an elementary   Od -perceptron,  a stimulus world   W   , 

— and some   classification   ((W) for which a solution exists, 

a solution can sometimes be achieved by an S -controlled 

reinforcement procedure.    However,   such a solution cannot 

be guaranteed for an arbitrary stimulus sequentej   and may be 

unstable if it occurs. 

PROOF:        We will first consider a case in which a stable solution does occur, 

for the type of experimental system specified by the theorem.    Let M/   consist 

of two stimuli,     7,     and    S',   .    Let    S.     activate some set of A-units,     A,     , 
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and let   5^  activate a disjoint set of A-units,    /I,   .    Let   C(W) assign   $. 

to the positive class and  5^   to the negative class.    Regardless of the 

sequence and relative frequency of  S.    and Sz   ,  it is clear that each 

occurrence of   S/    will augment    u,    in a positive direction,  while each 

occurrence of  5^   will make  u?   increasingly negative.    Since the intersection 

Ai2     is assumed to have zero measure,   there will be no interference between 

the two stimuli,   so that the acquired solution will remain stable no matter how 

long the process continues.    This example proves the first part of the theorem. 

Let us now consider the case of intersecting A-unit sets.    Suppose   5/    activates 

two units,   a/   and    a£  ,  while   5^    activates units   a2    and    CL£     (the unit  o.^. 

responding to both stimuli).    If the frequencies of   S/    and   S?   are equal,  their 

effect on   a     will tend to cancel,  and a solution with iq   positive, -v,   negative, 

and nr   equal to zero will tend to occur.    As the sequence continues,  the magni- 

tudes of T/^   and z/:    will tend to increase without bound,   so that the solution 

will become increasingly stable as time goes on.    Suppose,   on the other hand, 

that  5/   occurs with ten times the frequency of   Sy   ■    In this case,   a    will 

gain ten units of positive value for every unit of negative value received from 

5;    ,   so that Zr    will tend to increase in a positive direction at nine times 

the rate that  ir   progresses in a negative direction.    Thus the net signal, u 

transmitted to the R-unit in response to    5,   >  which is equal to    7/^, -h  ->/-      , 

will clearly become strongly positive as time goes on,  resulting in an 

erroneous classification of    Sy    ■    Even if the initial state of the perceptron 

was a solution state (e . g . ,       ?.//        + I,    •    .       - /,   ij-   = 0  ) it is clear that 

the   S-controlled procedure will quickly destroy the existing solution,   which 

is therefore unstable.    Q.E.D. 

H.  D.  Block has pointed out that, while a solution to  C(w) can not be guaran- 
teed with a random stimulus sequence,  nonetheless if a solution exists then 
there exists some S-sequence which will guarantee a solution with S-controlled 
reinforcement.    In particular,  if    Sr   -  a     is a solution, then the occurrence of 
5'     with frequency      f-   -   \z\      (for all   i    ) will guarantee a solution. 
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In the example considered above, it is clear that a frequency bias, 

in which the stimuli of one class are much more frequent than members of the 

other class,   can strongly prejudice the perceptron to always give the response 

associated with the more frequent class, in an S-controlled system.    Such a 

problem would exist, for example,   in trying to teach a perceptron to distinguish 

the letters "E" and "X" occuring with their normal frequency in English text. 

Even if all stimuli occur with equal frequency,  however,  a similar effect 

exists if there is a size bias,   in which the stimuli in one class activate 

more S-points (or illuminate a larger area of the retina) than the other class. 

As will be seen in the following chapter,   larger stimuli generally tend to 

activate more A-units than smaller stimuli,  and in the limiting case, the set 

of A-units responding to a smaller stimulus may be entirely contained within 

the set responding to a larger stimulus.    Suppose fur example,   that    5, 

activates units    o     and   n     ,  while   5-    only  activates    ^     .    A solution which 

classifies   5;    positively and   5,   negatively clearly exists (e.g.,  let    7--    -   -/-S 

and    7^  - ~t   ) but if the stimuli occur alternately,    u,     will tend to become 

increasingly positive,  while   up    tends to oscillate about zero.    The reader 

can satisfy himself that (starting with   61   values) a quantized error correction 

procedure yields a stable solution to this problem after five stimuli. 

In the case of R-controlled reinforcement procedures (Definition 39 

in Chapter 4) it makes no sense to talk about the probability of convergence to 

solution for an arbitrary classification,      C(Wj   ,   since the required classi- 

fication plays    no part whatever in determining either the sign or the 

magnitude of the reinforcement.    As will be shown later,   it may happen 

that an R-controlled reinforcement system leads to the acquisition of an 

interesting stable response function by a perceptron,  but this cannot 

generally be guaranteed,  and any classification which is achieved is necessa- 

120- 



rily one which is selected by the perceptron,   rather than by the experi- 

menter.    The interesting questions concerning such systems deal with the 

types of classifications to which they converge, for different kinds of 

environments.    In particular,   we will be interested in any systems which 

tend to form classifications on the basis of some concept of stimulus 

"similarity".    It will be shown in later chapters that elementary perceptrons 

do not,   in general,   tend to form classes on this basis except under special, 

and highly restrictive,   environmental conditions,  but that cross-coupled 

perceptrons appear to have a striking capability for such "spontaneous 

organization". 

In the preceding theorems,  only perceptrons employing alpha 

system reinforcement have been considered.    The remaining two theorems 

consider two departures from this model.    The first demonstrates that an 

even weaker form of reinforcement than that in     the random-sign correction 

procedure can guarantee a solution in finite time,  provided it is employed in 

a correction procedure,   in which the application of reinforcement depends 

upon the occurrence of response errors.    We define a random perturbation 

correction procedure as a reinforcement process in which,   if an error occurs, 

reinforcement is applied to the active A-units,  as in the     o/_   -system,   except 

that the magnitude and sign of    f?    are both chosen independently and 

separately for each reinforced connection in the system,   according to some 

probability distribution. 

THEOREM 7: Given an elementary perceptron with a finite number 

of memory states,  a stimulus world W,  and a classi- 

fication    C(W)   for which a solution can be reached 

from the starting point by some reinforcement sequence, 

then a solution can always be obtained in finite time by 

means of a random perturbation correction procedure. 
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PROOF:        The reinforcement process is a random walk,  which (for the 

given conditions) will eventually take the representative   point of the system 

to every attainable point in phase space.    Since the number of points is assumed 

to be finite,  a solution must be reached in finite time. 

Of the three reinforcement procedures which have been shown 

to guarantee solutions in elementary perceptrons (error correction,  random- 

sign correction,  and random perturbation correction procedures) the first 

is clearly the strongest, and can be expected to converge most rapidly.    The 

random perturbation procedure will converge most slowly,   since it must 

hunt through a large domain of the phase space of the system, before achieving 

a satisfactory terminal state,  and is not guided during this process by any 

directional constraints.    In this respect,  it shares many of the difficulties 

of Ashby's homeostat (Ref.  3); but it shares the virtue of the homeostat as 

well, that if the solution space is attainable,  it will utlimately arrive at a 

solution no matter how complicated its functional representation maybe. 

The random sign and random disturbance procedures may prove to be of 

interest in biological models,   since the only information required for the 

control of reinforcement is whether or not an error has occurred. 

In practice,   it will be seen that a gamma system (Definition 38, 

Chapter 4) generally works at least as well and sometimes better than an 

alpha system.    Nonetheless,  the following theorem indicates that this 

system lacks the true universality of the alpha system. 
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THEOREM 8: Given an elementary     f -perceptron,  a stimulus 

world   W ,  and a classification   C(W)  ,  it is possible 

that a solution to    C(W)   exists which cannot be 

achieved by the perceptron. 

PROOF: Let each A-unit be activated for at least one stimulus in   W 

and let each stimulus activate a disjoint set of A-units.    Let the classification 

function  C[Wj   be one which assigns every stimulus to the same class,   either 

positive or negative.    A solution clearly exists,   if the values of all connections 

are positive (or negative,  as required by the classification).    But if the initial 

state of the system is one in which all values are zero,  or of the wrong sign,   a 

solution can never be achieved by the gamma system,   since a solution requires 

that the total value of each set      -■ •       of units responding to    j-       ,  and 

consequently the total value over the entire    A    -set,   should agree in sign 

with the classification.    In the gamma system this is impossible,   since the 

initial sum of the values is constant.    The conservative property of the gamma 

system gives it one degree of freedom less than the alpha system,   making it 

impossible to achieve a solution to such problems unless at least one surplus 

A-unit (which does not respond to any stimuli) exists. 

The two remaining theorems were proposed by Joseph (Ref.  42), 

and establish useful diagnostic procedures for determining the existence of 

solutions in both alpha and gamma system perceptrons.    As in Theorem 3, 

the activity function of the     A   -unit   o ■   is defined as 

;7; 
'    J 

1      \i    a ■     is active for   5 

0     otherwise 
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For any      n   -vector,   X    ,  with components   z«   , the bias number of   a; 

with respect to   /      is defined as 

n 

This quantity is clearly related to the bias ratio (defined in 5.4) if    X     is 

taken to be the class-assignment vector for the   n   stimuli.    We will denote 

by    X*  any  n -vector X whose components   x-   do not disagree in sign with 

the required classification,    C(w) ,   i.e.,    X •  t 0    ii  S'    is in the positive 

class,  and     X; ^ 0       if 5;   is in the negative class.    /       will denote a 

vector in which the inequalities are strict (no zero components). 

THEOREM 9: Given an    O^ -perceptron,  and a classification    C(W)    ,  a 

necessary and sufficient condition that the error correction 

procedure reach a solution (in finite time,  with arbitrary 

starting point) is that there exists no non-zero   / such 

that      A;/ ^ 0 for all   6   . 

PROOF: For conveneince,  an un-normalized G-matrix will be assumed. 

For such a matrix, 

9J4 r ;4 - L ai(5ß 0US4) J * L—J I     y  ~ J ■ 
L 

where   n-^     is the number of A-units in the set responding to both   5"    and   5^ 

Hence, for any   n  -vector   A'    , 

t'Gx  - ^ *j Xi gjt   - L /; ^ a*(sJ- a*(s* ) 

J>* hj,ß. 

But 

i i J ''j** 
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Hence        X'GX n b:(X)\ 

If the condition of the theorem holds,  then        X GX i=- 0     for 

/ = X x -+- C But from the proof of Theorem 4,  it can be shown 

that    X.'C?X>n\\x\\   for       X   =/#       ,   where    a > 0 .    Then the proof of the 

correction procedure in Theorem  4 applies,   and a solution exists,   so that 

the stated condition must be sufficient. 

If the condition does not hold,  then there is a non-zero    / 

such that       X  -, K ~  0    .    Since    G    is positive semidefinite,  this implies that 

X   G   -  O      .    Thus,   X,     is orthogonal to all the columns of   G   ,  and hence 

to any linear combination of the columns of   £   .    Since for an arbitrary 

vector    Z    ,    6Z  is a linear combination of the columns of   G   ,   OZ    is 
ft 

orthogonal to   X     .        / cannot be orthogonal to any vector    /J     in which 

the signs of all   'J.-    agree with    C( W) ,   and hence it follows that there cannot 

exist vectors    Z    and       //       such that     GX       U   .    This mean s that there 

exists no solution to the classification problem,   so the condition given must 

be necessary.    Q.E.D. 

COROLLARY For an    o'.-system,  the condition that there exist no 

non-zero vector     X       such that       b; X 0     for all  l 

is equivalent to the condition that there exist   Z     and 

U       such that     -Z     U   (where   'J   is in the same orthant 

as   C (V/i ) .    Alternatively,   this condition is equivalent 

to    X GX '  0    for all non-zero     X # 
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THEOREM 10: Given a    /• -perceptron,  and a classification   C(W) ,  a 

necessary and sufficient condition that the error correction 

procedure reach a solution (in finite time) is that there 

exists no non-zero 

for all   c    . 

X#     such that     b; X* =  £ 

PROOF: For the    'f -system,  the normalized   6   matrix consists of 

elements 

Q ■ Q   "   n • e   -     .; '    n ■ n r 
JJA J £ Na       J     k 

l i ,h 

It is readily seen that   6   is symmetric.    For any    n  -vector   X   ,  X GX 

is given by 

X ■GX . £ / ■    X /   9J4 

J,* 

;^j)o.-(s,}--~ YZ^^^(-'J)^(5A) 
h)i,J, & 

We now define    A  IX)      as 

//.7   -       f     T^(X) 
1 

From this,  we see that 

L h-r^-^^/f   L[b; (x )\   - N Lh;(x' 
-, 2 
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Hence X'GX   = J^ \h:(x) - h*(X) 

From this it follows,  first of all,  that   G   is positive definite or positive 

semidefinite,   as was the case for the    o^-system.    Secondly,  it is seen 

that     X 'OX - Ü       if and only if     6; (X) -  c      for all    i   .    The proof now 

proceeds exactly as in Theorem 9. 

COROLLARY: For a       /"-system,  the condition that there exists no 

non-zero vector       /        such that       k>i X      =  .c for 

all    c    is equivalent to the condition that there exist Z 

and      U      such that     GZ - U   (where   II   is in the same 

orthant as     Z   vV)   ) . 

In practice,   it is often possible to show that a given perceptron 

does not permit a solution to a given classification problem by substituting 

the classification vector itself,     f { W)    ,  for the vector      X in the above 

theorems,  and computing the    b-   .    If these turn out to be zero for all 

A-units,   then no solution exists for either the alpha or gamma system.    If 

they are a constant other than zero,  a solution, may exist for the alpha 

system,  but not for the gamma system.    If they are not all identical,   then 

a solution may exist for either system.    While it is sufficient to take the 

components of     X        to be integers,   the vector with all components   X- - t / 
if. 

is not always sufficient.    For example,  if the     Or 'Z- '     matrix is   ,1      1      1 
h    i    i 

the    bi   will all be anihilated by     X  =   (1,   -2,   1),  but not by    X  =   (l,-/.l). 

The condition for the    rv -system is equivalent to the requirement that there 

should be no vector in the same orthant as   C.(w) which is orthogonal to the 

linear manifold spanned by the activity vectors of the A-units. 
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6.     Q-FUNCTIONS AND BIAS RATIOS IN ELEMENTARY PERCEPTRONS 

Thus far,   we have been mainly concerned with the general 

"qualitative" properties of elementary perceptrons.    In the present chapter, 

the groundwork for a quantitative analysis of their performance will be 

presented.    In the theorems of Chapter 5,   it was shown that the existence 

and attainability of solutions,   in an elementary perceptron,  depends strongly 

on the properties of the    G -matrix.    Each element of this matrix,     g- •     , 

is a measure of the generalization of reinforcement from stimulus   5;     to    5^ 

This generalization coefficient,    a- ■    ,  varies with the measure of the set of 

A-units which respond jointly to   5-     and    5-     .    Until now,  the actual 

quantitative measures of these sets have not been taken into consideration, 

and only the formal properties of the matrix    G    have been considered.    The 

Q -functions,   which are introduced in this chapter,   represent the probabili- 

ties that an A-unit in a specified class of perceptrons will respond to a 

particular stimulus,  or will respond jointly to a designated set of stimuli. 

These    Q  -functions not only determine the expected values of the generali- 

zation coefficients,      g- ■     ,  but enter into the analysis of variability of 

perceptron performance as well,   as will be seen in the following chapter. 

6. 1     Definitions and Notation 

The     Q -functions,   defined below,  are always specific to a 

particular class of perceptrons in which the origin point configurations of 

the A-units have been selected according to some designated set of rules 

from a specified S-set or retina.    The functions   Q   are defined only for 

simple A-umts,    a-    ,   which are said to be active if the algebraic sums 

of their input signals,   oc-     ,  are equal to or greater than their thresholds, 
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Gi    .   For such A-units,   0   represents the probability of drawing an 

A-unit at random from the specified distribution which responds to each of 

a specified set of stimuli.    The notation employed is as follows: 

Q-L    -     probability that an A-unit in a specified class of 

perceptrons responds to stimulus   S; • 

Q^ •  -     probability that an A-unit in a specified class of 
J 

perceptrons responds to stimulus   5;    and also to 

stimulus    5; • 

Q- •      „   =     probability that an A-unit in a specified class of 

perceptrons responds to each of the stimuli  S- > 5,')•••; S 

6.Z     Models to be Analyzed 

Three types of models will be considered which differ in the 

rules by which connections are made between S-units and A-units.    It turns 

out that for the three cases,  the distribution of input signals to the A-units 

is expressed in terms of binomial, Poisson,  and normal random variables, 

respectively.    These models are therefore named binomial,Poisson ,   and 

Gaussian models. 

6.2.1    Binomial Models 

In a binomial model the input signal,   CY •    ,   received by 

unit     o ■   ,  is distributed as the difference of two binomially distributed 

random variables.    This model characterizes a type of perceptron in which 

each A-unit receives a fixed number of connections from the "retina", 
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(a) BINOMIAL MODEL, WITH X = 3,     y - 1 

5 INPUT CONNECTIONS 
» TO EACH A-UNIT, WITH 

RANDOM ORIGINS 

S-UNITS 

(b) POISSON MODEL, WITH .CONSTRAINED ORIGINS 

5 OUTPUTS FROM 
EACH S-UNIT, 
WITH RANDOM 
TERMINATIONS 

S-UNITS UNITS 

(c) POISSON MODEL, WITH RANDOM ORIGINS 

oil*' 
o O O o 

o o o o 
o o o 
o o 
o 

S-UNITS 

+ 1 
-1       ^ 
+1 

■^ 

-1 
-1 
+1 w 

-1 
+ 1 
-! 

•<— -1 —^ 

o 
o 
o 
o 
o 
o 
o 

Ä-UNITS 

ORIGIN AND TERMINAL POINTS 
CHOSEN AT RANDOM FOR EACH 
CONNECTION 

Figure 6  ILLUSTRATION OF TYPICAL S TO A-UNIT CONNECTIONS (ARROWHEADS 

INDICATE RANDOMLY SELECTED TERMINATIONS).  IN GAUSSIAN MODELS, 

THE VALUES OF THE CONNECTIONS (SHOWN HERE AS ± /) ARE NORMAL 
RANDOM VARIABLES. 
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consisting of exactly    X.    "excitatory" and   u   "inhibitory" connections.    Each 

of the excitatory connections has the value   +1,  and each inhibitory connection 

has the value  -1.    The threshold,   Q    ,  is assumed to be fixed for all A-units. 

The origins of the connections to an A-unit are selected independently,  with 

uniform probability,   from the entire set of S-units (or retinal points). 

Specifically,  a set of equiprobable origin configurations can be constructed 

as follows:    Let there be   V   connections,   numbered from 1 to    7^     .    Let the 

S-units be numbered from 1 to     NA   ■    Then the set of all possible sequences 

of  >>    integers,  each having a value in the range      / ^   n   ^  NA       corresponds 

to the complete set of A-units.    In this model,   the number of distinguishable 

A-units possible for a retina of   NA   points is     i , /( 
* 

In the binomial model,   Q      functions do not depend on the number 

of sensory units,  but on the fraction of them which are illuminated.    A variation 

of this model has been analyzed in Ref.  79,  where the additional constraint is 

introduced that no two connections to a single A-unit can originate from the 

same S-unit.    It has been shown that for moderately large numbers of S-units, 

this model is practically indistinguishable from the true binomial model 

described above. 

6.2.Z     Poisson Models 

In a Poisson model,   (X.-     is distributed as the difference of 

two Poisson-distributed random variables.    In this model,   it is assumed 

that the number of   input connections to an A-unit is not fixed,  but is a 

random variable.    The model corresponds to one of two situations,   the 

equations for the    Q   -functions being identical for both: 

The derivation of this formula can be found in Feller,  Ref.  21,  page 52. 
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(1) In the constrained origin model,  each S-unit emits a fixed number of 

output connections,  consisting of   ^    excitatory,  and   v^    inhibitory connections 

(with values +1 and -1,   respectively).    Terminal points are selected at random 

from a set of    Na   A-units.    For the model to hold exactly,    NA    and    N^ 

should both be infinite, the ratio   A/^ /Na    being a parameter of the system. 

For finite /V, and     A/    .,  the model remains a close approximation. 

(2) In the random origin model,  a set of / r,   excitatory and   N i   inhibitory 

connections are each independently assigned an origin and a terminus at 

random,  from a set of S-units and A-units,   with uniform probabilities.    In 

this case,  for the model to hold exactly,   the numbers    N x  ,   N,   and    N 

should all be infinite,   with 
A/, 

J a 

being a parameter of the system; 

as in the previous case,  however,  the model is a close approximation for 

finite systems. 

In the Poisson model,  for Case (1),   the number of possible A- 
\ i A' , 

units is       ( -■ ,   .'  / '   '   i i\   /   / .    For Case (2),  the number of 
. .V,     , N. 

possible A-units is (Nt '   <)   "   (V,, /   ij    '    .    The binomial model,   the 

constrained-origin Poisson model,   and the random-origin Poisson model 

yield increasingly large sets of possible A-units,  for the same numbers of 

S-units,  A-units.  and connections. 

6.2.3     Gaussian Models 

In the Gaussian case,     -v ■       is distributed as the difference 

of two normally distributed random variables,   i.e.,    ry •      is normally 

distributed.    While both of the above cases converge to a Gaussian model 

as the number of input connections to an A-unit becomes large,  we shall 

be concerned here with a model in which the number of connections rera^'ns 

finite,  but the values of the connections are normally distributed. 
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6 . 3       Analysis of Qj 

For both the binomial and Poisson models,    Q-      , the probability 

that an A-unit is activated by stimulus   5;    ,  is given by the probability   that 

the total input signal   cV.    is equal to or greater than the threshold,    0 

Specifically, 
(6.1) 

E-I>9 E=e 1=0 

where r 

E mo r 
y for binomial model 

cO for Poisson model 

Pz (Ej 

P ii)   - 

probability that exactly E of the excitatory connections 

to an A-unit originate from active S-points. 

probability that exactly I of the inhibitory connections 

to an A-unit originate from active S-points. 

For the binomial model, 

7 \ 
Px (?) 

■Dy (1) 

k>-     [l-P- 
y -F 

t / (6.2) 

^R-'U-R:)'-1 

where    P-   =    fraction of retinal points (S-units) activated by stimulus    5/ 

For the Poisson model, 

F 
:   •■        ,-   1 

P,(f) F! 

R: y 

(6.3) 

P^D Hf--e 
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where X   -  Nr / '   -     expected number of excitatory input connections 

to an A-unit. 

u   = N   /Na  -     expected number of inhibitory input connections 

to an A-unit. 

P((y.)    for the Poisson model can be expressed alternatively by 

the following   identity (pointed out by Prof.  H.  D.  Block): 

.«, 
P(oc)   --   pUe-i) = rv;.   -  o     'l '   ■    ' [fj       ^{2Ql{TJ) 

Where    f^fx)     is a Bessel function of an imaginary argument,  given by 

2 ii J  ii 
oc        12L\   J    f 

T   , rj       / -    
P i'P Jp (lx) 

•J n 

The use of this equation makes it possible to compute   l;   -functions 

for the Poisson model by hand,   with the aid of tables of Bessel functions (c.f. , 

Ref.  37,  pp.  224-233). 

For the Gaussain model,   equation (6. 1) requires an additional 

factor representing the distribution of value for each of the connections. 

Specifically,   if the absolute values of both excitatory and inhibitory connections 

are distributed with mean    n     and standard deviation    cf    ,  we have 

nia X   ■'■mux 

'P=9 

(6.4) 
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where 

<t>(l>£ll)   - {2 7T (T. 

I 
e   " V <fD   J 

Mn   =   Eu.- t. M        M 

cTn     = (P +■ T.) 6' 

Px(£) and P (I) , in equation (6.4) are given either by (6.2) or (6.3), 

depending on whether the number of input connections to an A-unit is fixed 

(as in the binomial model) or random (as in the Poisson model). 

Figures 7 and 8 show representative families of curves for   Q- 

as a function of    X? ■      ,  for the binomial and Poisson models,   respectively, 

Note that both models are very similar in their basic characteristics. 

Specifically: 

1 . In all cases ,  for    / 

with    /' 

J   and increases monotonically 

2. For purely excitatory models      y      ■ ) 

approaches  1.0.     (Figures 7a and 8a). 

mes to 1 . 0 as    £'; 

For models with   & > >'-'/,   Q-   goes to zero as   /',•    approaches 1.0. 

(Figures 7b and 8b). 

For     r " y     .  W;   tends to remain invariant except for very small or 

very large values of      ^-    .    The range over which Q-    tends to 

remain constant is increased if the number of connections becomes 

large (Figs.  7c and 8c).    In the limit,  with small    9    and large   r 

and    y  ,   Q-   approaches  .5 for all values of   hC^   except 0 and 1. 
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Keeping x  fixed, then for small    0   ,   Q-     is generally great er 

for the binomial model than for the Poisson model.    For large  S1,   Q- 

is greater for the Poisson model. 

For the binomial model.,  Q- ~ 0   for   x < 0  while for the Poisson 

model,    Q; - 0    only if     X -   0   . 

6.4    Analysis of Qij 

Q- ■     is the probability that an A-unit is activated by each of 

two stimuli,   5/     and   5-    .    For both the binomial and Poisson models,  (?• • 

can be expressed by the equation: 

where 

Q: 

e 

£■ 
L 

T- 
i 

I: 

I 
£ 

1 px(ti>Ej,tc)  Pv(tl>h'h) 
(6.5) 

E; f E. -I- -I. k 9 
f- + Er-I- -Ir>9 

threshold of A-units 

number of excitatory connections originating from points 

illuminated by 5;-   but not by   5; 

number of excitatory connections originating from points 

illuminated by 5;    but not by  J; 

number of excitatory connections originating from points 

common to   S[    and    5" 

number of inhibitory connections originating from points 

illuminated by 5'     but not by   5' 

number of inhibitory connections originating from points 

illuminated by i<-   but not by   5; 

number of inhibitory connections originating from points 

common to   3-    and    5 " 
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The point sets involved in the analysis of Q-- are illustrated in Figure 9. 

For the binomial model, the required probabilities are given by the multi- 

nomial equations: 

Pr (E;, £■ ,Er) = —  A-^A-^C ^ (l-A --A-- C)X'Ei' ^ "^ 

VK   L'    j >     c/ T.I T- I T  t 

EliE-lEc!,X-ErErEc)i 

y! 
I;fl;!rc!{v-Trlj-Ic) 

.(6.6) 

- A.'1 A- ij Cic (l-A--A.-C)y~Ti'rJ~I£ 
T:     I:   I. 

where proportion of retinal points illuminated both by   5;    and 

A-   = P- where   ,<'■   is the proportion of retinal points illuminated 

by   5 •     ; 

A-  - k- - C   where  #■  is the proportion of retinal points illuminated 

by    5;     . 

For the Poisson model (where    /     and   7   are the expected numbers of 

excitatory and inhibitory connections to an A-unit), 

R-iE-, I'- . E   I ~  (E-! E-! J    ,. 
I    - r4- -xA-        r •    -7r._   . £; 

■ e '   rA      '-r       J(rA ■) J-r        ( n ■   r- 
■   (6.7) 

j 
l-ll !) 

7jA. 
J J[uA-) ■' 

As in the case of   C, •   ,  the Gaussian model for   (,1-;      requires 

an additional factor representing the normal distribution of connection values 

The components of the input signal,    rv    ,  which originate from the unique 

S-units in     ;; •     ,  the unique points in     5 •      ,  and from the common retinal 

set are designated    Ay     ,     P-     ,  and     />     ,   respectively.    By analogy to 

(6.4), 
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»I 

D: 

D„ 

^D, 

^Dv     = (F^+ IrOC 'p 

OfDp) ^ tDC^,I o) ?    defined as in (6.4), 

Then, 

TL '■■ (f. ^■^I^'rh) 
r-, ■• 

DO 

u 

L J 

(6.8) 

C [ :i.) D 'Di) ([:(!);) JL\. d D;   cIDj 

For some purposes,   the distribution of the input signals,   -v •    ,   and    v-      ,  is 

of interest.    The  joint probability,.     P (ry ■ . .y ; )     ,   is given by 

i 
J .-' :/ -,' ■,/    •/■(/. J-r ] I   i( ] Cfv ■^■-e.},jp i6-9' 

i ■ .F-, i~ , / , y ■,/' ■ 

T*; should be noted that 

/.v =   - ' >' 

which Tables of 

is a special case of these equations,  for 

for binomial and Poisson models 

have been published in Ref.  87. 

Figures 10 and 11 illustrate the quantitative properties of    (?• 

as a function of   ■      ,  the measure of the intersection of stimuli    ' ■      and 
~ j 

on the "retina".    For convenience of representation,    '/, ;      is actually plotted 
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mm 

as a function of the relative intersection (or proportional intersection),   C /£ , 

{?■    and  ,(?•   being equal for all cases shown.    Note that for   C/£ = /     < 

Q- ■   =    <":■■    =   Q-    .    The main features of these curves are; 

1. In all cases,   i^,- •      increases monotonically with    C 

2. For large   Q   ,     Q--      tends to remain close to zero,  except for 

stimuli which approach perfect identity ( C/P    close to 1.0). 

3. For large values of    ^    ,    Q--     tends to accelerate more rapidly 

as   C    approaches  1 . 

4. For the binomial model,    O• ■      for disjoint or well separated stimuli 

(   C   "'  O      ) may have a maximum with respect to    ß     .    This effect 

is not found in the Poisson model. (Figs .   10c and I) c . ) 

5. For equivalent parameters,    Q- ■    tends to show a sharper "shoulder" 

in the binomial model than the Poisson model. 

The second of these properties is an important factor in 

determining the discriminative capabilitv of a perceptron.    It is shown best 

in terms of the conditional probability,     Q-  ■       , that an A-unit which responds 

to   5-     also responds to   5-      •     Q-  ;     is equal to   Q-;/ Q-     ,  and is shown for 

several typical cases in Fig.   12.    Note that for large values of   0   , the 

probability that an A-unit veaponding to   5;     responds to a second stimulus, 

5 •    ,  is virtually zero,  unless the stimuli approach perfect identity.    The 

difference between the binomial and Poisson models is shown most clearly 

in Figures  12(a) and 12(b).    Figure 12(c) demonstrates that the conditional 

probability depends only slightly on stimulus size.    Additional curves for 
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these functions can be found in Refs .   79 and 80 

In analyzing the gamma system,  it will be seen that the 

conditions under which    G- ■      (\- iV;     are of particular interest,   since    for 

the gamma system the expected value of   q- ■     is zero for such conditions. 

In the binomial model, if £. This condition 

will tend to be met if the stimuli are randomly chosen sets of    S   -points, 

the expected intersection of any two such sets being equal to the product of 

the measures of the sets.    It can readily be seen that under these conditions, 

the probability that an origin point which is in  5'    is also in   $•      is the same 

as the probability that an origin point which is not in   5'      happens to be in   5'     '> 

in other words,  the probability that the origin of a connection is in    i'■     does not 

depend on whether or not it is in    5 -      >   and consequently the response to    5 ■ 

is independent of the response to   5-     >  yielding    Q- •  = Q-i,- .    In the Poisson 

model,   however,    (,>■■      v; V '    only if   C -  O    (i.e.,  for disjoint stimuli) since 

the connections received from any disjoint subset of S-units are independent 

of connections (or signals) from any other subset. 

6 . 5       Analysis of '.■;]& 

In the following chapter,   it will be seen that the expected responses 

of a simple perceptron can generally be determined from the functions   Qt 

and    0; ■      .    The variability of performance in a class of perceptrons,  how- 

ever,  will be seen ro depend on the joint probability,    Q- •*      ,   that an A-unit 

responds to each of three stimuli,     '_", ■   ,       ■    ,  and    \ *   .    The equations are a 

straightforward generalization of those employed in the last section for   ',, ■   . 

Specifically,  there are now seven excitatory and seven inhibitory signal 

components to be considered: 
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Excitatory signal from S-units responding to   v 

but not to   S •      or    5.« 

E-    -     excitatory signal from S-units responding to   5 

but not to    S-     or    5^ 

f/    -     excitatory signal from S-units responding to   5^ 

but not to     S-     or    5 ■ 

f; •   =     excitatory signal from S-units responding to   S- 

and   5•   but not   5^ 

t;^   -     excitatory signal from S-points responding to   S- 

and    : /     but not   5' 

JL 
excitatory signal from S-points responding to   S 

and   5^     but not    5; 

F^-£  -     excitatory signal from S-points responding to all 

three stimuli, 

Inhibitory components are defined analogously.    This yields the equation: 

U-   ' L r--' '/■■/.-^'^j^u^rk ■ f'-A■ l.'1*>f'-:l'
Iu>I;^Iiii) 

(6.10) 

fry;   >   «- 

}  y ■   .-   (- 

where 

(V ■ r.• -/• f - /•■/ 

ry   .        =      /--.      /-      f.  .      f    f. -■ K - '■ -/"•■- / .-;■■/ t.j£ j ij        j&     ■ ij L 

,& i   £■,■   v :; 'i 'r Tu-hi~h]i 
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The multinomial and Poisson probabilities employed in (6. 10) for the 

binomial and Poisson models,  respectively,  are obtained by extension 

of (6.6) and (6.7),  with appropriate measures for the various double and 

triple intersections among the stimuli. 

6.6       Bias Ratios of A-units 

Bias ratios were defined in Section 5.4 as the ratio of the 

number of stimuli in the positive class to the number of stimuli in the 

negative class,  which activate an A-unit.    In Theorem Z,   it was shown 

that there must be some variation in the bias ratios of the A-units in a 

perceptron,   if a solution to a given classification is to exist,  and Theorems 9 

and 10 showed that the closely related "bias numbers" yield necessary and 

sufficient conditions for solutions.    Clearly,  the distribution of bias ratios 

depends on the probabilities      i,'; ■.. m     ,   that the A-units will respond to 

various possible sets of stimuli,      c-    ,   c •...., s    .    Rather than undertake 

a detailed analysis of bias ratios,   empirical data are presented for a typical 

case,  to illustrate how we might expect the "responsiveness" of A-units to 

different classes of stimuli to be distributed.    These data were obtained by 

a Monte Carlo procedure,   in which 10,000 A-units were tested on a digital 

computer to determine to how many stimuli of each class they responded.* 

The program was written by A.  Geoffrion,  for the Burroughs ZZ0 
computer at Cornell University. 
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The "retina" consists of a 20 by 20 mosaic of S-units ,  and the stimuli con- 

sist of 4 by 20 bars, placed vertically or horizontally on the retina,  in all 

possible positions.    The retina is assumed to be toroidally connected,   so 

that bars placed near one edge of the field may re-enter at the opposite 

edge.    Thus, there are twenty possible horizontal bars (the positive class) 

and twenty possible vertical bars (the negative class).    This universe will 

be used as a standai-d one in a number of learning experiments . to be 

analyzed in the following chapters. Table 1  shows the number of A-units 

out of 10,000 responding to each possible combination of N    horizontal bars 

and N    vertical bars.    An A-unit which responds to 4 horizontal and 6 vertical 

bars,  for example,   is tallied in the 5th row and 7th column of the table.    Each 

A-unit had five excitatory and five inhibitory connections,  and a threshold of 2. 

For stimuli which are more similar to one another (in terms of 

possible intersection of S-sets) than horizontal and vertical bars,  we would 

expect to find the A-units less well distributed, and a greater concentration 

around the diagonal.    One would also expect that in a universe in which the 

stimulus classes are less symmetric in their properties,  the distribution 

of A-units would be less symmetric than that shown in Table 1.    Table 2 

illustrates both of these features.    In this case,  the "positive" class 

consists of 4 by 20 horizontal bars,   just as before; the "negative" class, 

however,  consists of a set of 6 by 20 horizontal bars.    Again, there are 

twenty members of each class,  but the maximum intersection possible between 

stimuli of the positive and negative class is much greater than before,  and the 

size difference introduces an asymmetry which was not previously present. 

* =!-- 
The toroidal retina has the convenient property of being unbounded and 
Isotropie,  with a finite surface.    Any relations which hold for a set of 
stimuli projected onto the retina hold equally well if all stimuli are 
displayed by any combination of horizontal and vertical translations. 
This model (with Born-von Karmin boundary conditions) is easier to 
analyze than a spherical retina which has similar properties. 
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JOINT DISTRIBUTION 
HORIZONTAL BARS AND 

TABLE I 

OF 10,000 A-UNITS, WITH RESPECT lO HÜMBERS OF 
NUMBERS OF VERTICAL BARS TO W^.CH THEY RESPOND 

(HORIZOKTAL BARS! 

joir 

0 

I 

2 

N+ 3 

(14 x 20 BARS) ^ 
5 

6 

7 

0 

I 
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3 
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5 

6 
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287 

315 

325 
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330 

68 

32 
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2 

326 
392 
117 
382 
351 

87 
36 
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378 
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?99 

353 
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-ARS) 
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TABLE 2 

r<ESPECT TO NUMBERS OF D'STRiSUTION OF 10,000 A-UN ITS, WiTH/^ 
ij x 20 AND 6 x 20 HORIZONTAL BARS Fiö WHICH THEY RESP0N[) 
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17 

67 

59 

21 
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5 
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22 

21 

10 
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0 
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0 

II 

0 
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0 

0 

0 
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While itif   jint distributions il ustrated here are not of great 

utility ir. analyzir.g perceptron perform'  ice,  they provide considerable 

insight into w!u..i: takes place vyilh.in *'J! association system when a perceptron 

learn;   a c u-.,s sil'i cation of stimuli      Units situated on the diagonal (i.e.,  units 

which respf nd equally U- both .   asses of stimuli) are essentially "duds"; they 

■"on.ribute little to h ■»iscr:-   mation,  and are as likely to be reinforced 

oositively as nega^Vely.    A-units which have a strong bias towards one class 

or the other,   h  weve1 ,   (those situated in the upper right or lower left corners 

of the tab3ec] arc u ..eful "discriminators".    In learning a classification,  the 

perceptror. relir J on combinations of such units,  transmitting large-valued 

.signais    to e;Lablish a bias towards the proper class when a stimulus appears. 
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7.       PERFORMANCE OF ELEMENTARY   (X -PERCEPTRONS IN 

PSYCHOLOGICAL EXPERIMENTS 

So far,  only the formal properties of elementary perceptrons 

have been analyzed,  without regard to particular experimental situations 

or procedures.    We are now ready to begin a quantitative analysis of the 

performance of these systems in "psychologica.1" experiments,  i.e., 

experiments in which the procedures and observations are analogous to 

those which might be performed on a biological organism.    A number of 

such experiments were defined in Part I.  Section 3.3.    In this chapter,  we 

shall be chiefly concerned with discrimination experiments (c .f. ,  Section 3.3. 1), 

since the capabilities of elementary perceptrons are largely limited to this 

category.    Before going on to other types of systems,   however,  we will 

consider what kinds of behavior might be expected of an elementary 

system in generalization experiments,  figure detection experiments,  and 

other problems which were discussed in Chapter 3.    The analysis of 

discrimination experiments which is reported here is basically similar to 

that which was originally presented in Ref.   79.    The former models have 

been substantially simplified,   however,   and the analysis has been made 

more rigorous,  thanks largely to the work of R.   D.   Joseph,   (Ref.   41). 

7.1     Discrimination Experiments with S -controlled Reinforcement 

The first problem to be analyzed is that of a discrimination 

experiment in which the perceptron is presented with a sequence of stimuli 

from an environment,   W  ,   and is reinforced for each stimulus in the 

sequence in accordance with a predetermined classification,   C{ W)    ,  with 

the reinforcement control constant,     )f       ,   taking the sign of the required 
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response.    The perceptron is then shown a test stimulus (Sz)    and the 

response to this stimulus is determined.    The measure of performance for 

a class of perceptrons (characterized by the parameters /VQ   ,   9   ,    X     > and 

y    for a binomial model or by NA Na,   9   ,     '/    ,  and   y    for a Poisson model) 

is the probability that a perceptron from the specified class will give the 

correct response to    5y   after having been "trained" with the specified 

sequence of stimuli. 

7.1.1       Notation and Symbols 

the 
th 

stimulus in the environment 

j   +1 if   5 •    is in the positive class 

■   -1 if   5;     is in the negative class 

<-     . . th 
1 if the   I      A-unit is active for  5;; Sc,---,  and 3-^ 

J 

0 otherwise 

V;^..y £a;(,]i..x)       probability that   a-(ji..z) - I 

(as defined in Chapter 6) 

r duration (number of stimuli) of the training sequence 

-■JD ■      r ,       • th A        .      , value of the connection from the   (       A-unit after the 

training sequence 

r-    (r) C;r(x, T) a*{z)7rt>(T) signal received by the 

R-unit on connection /r-^ 

when test stimulus Sz   is 

shown after the training 

sequence.    The time   T   will 

be understood unless other- 

wise specified. 
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ULy = C^/. (T) = / j c-f,(z) =    total input to the response unit when   S^   is shown 

after the training sequence.    For present purposes, 

the symbol   U t   will be used,  as in Chapter 5.    Time 

T    is understood unless otherwise specified. 

In terms of these symbols,  the reinforcement rule for a quantized 

06 -system,   with    S -controlled reinforcement,  can be represented by the 

following expression for the change in    Is^'f       when stimulus 5/    is shown: 

A7y--r   = /?•(*• ov; 

7.1.2   Fixed Sequence Experiments: Analysis 

The first case to be considered is that of a fixed training sequence, 

in which a definite sequence of stimuli (',,   ^ ,,•■•)   5r      ) is  shown to the 

perceptron.    In a later section,   random training sequences will be considered. 

The fixed sequence consists of a fixed (though not necessarily equal) number 

of showings of each stimulus.    For    ry-perceptrons ,  the order of occurrence 

of these stimuli does not affect the results.    All values    '^,>  are assumed to 

be zero initially.    The following analysis and theorem follow the treatment 

of Joseph (Ref.  41). 

If a given perceptron is shown a training sequence,   it will place 

a test stimulus   ^x   in the positive class if   u      is greater than zero,  and in 

the negative class if      a ~      if less than zero.    For the given perceptron, 

training sequence,  and test stimulus,    a y      is a determinate number. 
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Over the class of perceptrons,  however,    u^       is a random variable , 

In order to determine the probability that a perceptron from the specified 

class will classify   Sy    correctly,  we must know the probability that   u.^ 

has the correct sign.    In order to obtain a conservative bound on the 

probability of correct response to   5v   >  without making any assumptions 

about the distribution of    u      ,   Joseph makes use of the Tchebysheff 

inequality,   which states that for any random variable  <J.   with mean   /x. 

and variance     f        , 

Prob    { 3 a 
1 r ? /  ? if > C 

1 / 
Prob    ^   •■   '^r  -  /- ""_~—~      lf '■<- < C 

Consequently,  if the ratio  ^ (ax)/rr~{ux)ca.r\ be made arbitrarily large, 

the probability that ;/x for a randomly selected perceptron will agree in 

sign with its expected value over the class of perceptrons can be made 

arbitrarily close to 1   .    It thus becomes important,  first of all,  to know 

whether or not the expected value of     IL .       has the proper sign. 

Joseph,  has pointed out that if the one-sided inequality   Pf]] it. ^ 11 

is used in place of the two-sided inequality   Pn ! \j- u \ > /1 ^ 
slightly sharper bounds maybe achieved,   i.e., 

rrr?" -     if   / 

rr ■ 

P'.-'+Oi^l if 

>   0 

<   0 

In the range of interest,   this additional sharpness is insignificant, 

I + (T ■ 
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DEFINITION: 5 3.   will be called a positive stimulus (with respect, to a 

class of perceptrons,  an environmentj  classification,  and training sequence) 

if the expected value of X agrees in sign with the assigned class of   5 x 

In terms of the symbols introduced above,   5      is a positive stimulus if 

or ■ E(ux) > C 

the number of tim.es stimulus   5;   occurs in the 

The expected value of    u?,       for an     o^ -perceptron (assuming 

that all A-R unit connections start  out with zero value) is obtained as 

follows.    Let     A- 

training sequence,   divided by   T   ,  the total number of stimuli in the 

sequence (i.e.,   the proportion of the training sequence which is   5;      ). 

Then the value of the connection from unit    $;     at the end of the training 

sequence will be (since the magnitude of    )f      is taken to be   I) 

( r TT   c F-  a-   ' ■ (7.1) 

where the sum is over all stimuli in   W    .    Consequently,   summing over all 

A-units,  the input signal to the response unit when the test stimulus    5 

occurs will be 

'UL-r. L.,:.. (7.2; 

The expected value of      / /,       is therefore given by 

Fu. 
L-i L—( ' j   j      '   - ■     'I 

TNn  T   /)■ / • f,'-, 
a  L—( ■ j    j    \j ' 

(7.3) 
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From the above  definition,   it follows that  Sx   is a positive stimulus   (and 

will tend to be correctly classified) if 

T 

From Equation (7. 3) it is clear that £1/ . increases linearly 

with A . Let us now consider the variance of Uy . This is obtained 

from the equation: 

*  ("-x) L-2--ir(X'^ll 
VL CO 1/. r..r(y); rrr(: (7.4) 

For the conditions currently being considered (an     <v.  -system with a 

predetermined training sequence) the only source of   variability in    C ■ r (x) 

is in the selection of the ofigin point configuration of the unit   o/   ■    But if 

we assume (as in all models thus far considered) that the A-units are all 

chosen independently from a distribution of admissible origin configurations, 

the covariances will all be zero,   and      0'"{r-    (X.))       does not depend on     i. 

Therefore,   the general equation (7. 4) reduces to 

o V / ., )   - N  rr"(r-„''\)   -   N.  \ t r-r i >') - f .-■ r{y . 
• ■ 1 if      / ij ■       1 / -1 r y 

(See Rosenblatt,   Ref.  7 9   ,   pp.   82-83,   for a more detailed algebraic 

discussion of this equality).    Now,  for an     v. -system, 

(7.5) 

L ■1   1 ■, j 

and 

. r (y)   -   T 'LL-':    ^PJ'C^ (.!*') 

This yields ,   for the required expected values in (7.5), 
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and J    /; 

Substituting in (7.5) and simplifying,  this yields 

V2iur)   -   K^^J^A^ PP^Ojj!; -QjxQtz) 
(7.6) 

Note that the variance depends on   C ,7 r   .  while the expected value depends 

only on      0:r     .    This variance,   like the expected value,  is of the order of 

A/      .    We are now in a position to prove the following theorem (due to 

Joseph): 

THEOREM: Given a class of elementary      (X -perceptrons,  a finite 

stimulus world   W   ,  a classification    C(W)  ,  and a 

training sequence; then for every   € > 0 ,  there exists 

an     N0(
f )     such that if    /A  > '^^(i)   ,  the probability 

of selecting a perceptron which will correctly identify 

the class of every positive stimulus will be greater 

than      I - £ 

PROOF: From the Tchebyscheff inequality,  we have seen that if 

/'   f /, )/^   '.''/) can be made arbitrarily large,  the probability 

that        ' ,        will agree in sign with its expected value over 

the class of perceptrons will approach unity. 
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It has also been demonstrated (Equations 7.3 and 7.6) that both jif^^j 

and    ö    ( i * are of the order of    A/    ; therefore,     t^'iiLyj/rfiu-j) 

will be of the order of    A/    .    Thus, for each positive stimulus,    Sx     , 

the probability that    a  .   agrees in sign with     Fu y   can be made arbitrarily 

clost to 1 by choosing    A/^   sufficiently large.    Suppose there are   n   stimuli 

in   .'      .    Then,  for the        ,'      positive stimulus there exists a quantity   N: it) 

such that if      NCl >  N ■ (t) ,  the probability of selecting a perceptron 

which fails to correctly identify    S'-    will be less than    t/n    .    If we let 

A/- :• ;   =   "'r.i/- H: (f) ,  the condition required by the theorem is satis- 

fied.  Q.E.D. 

From Equations (7,3) and (7.6),   it is seen that for a given set 

of stimulus frequencies    -. •     ,   the  ratio      ./ ' does not depend on 

Thus any number of repetitions of the same training sequence can occur 

without affecting the performance of the system.    Since   /J."   6"      varies 

linearly with    N       ,   the normalized ratio    tJ     /JL    (f'      forms a convenient 

measure for the comparison of different perceptron models.    Some numerical 

values for typical cases will be considered in the following section. 

While the above analysis permits us to obtain a rigorous lower 

bound for the probability of correct identification of   5      by a randomly 

selected perceptron,   it does not actually yield an estimate of this probability. 

In order to estimate the probability of correct identification of   S ,    ,   it will 

be assumed that     f/ .     is normallv distributed.    The justification for this 

assumption was discussed in Rosenblatt,  Ref.  79,  and subsequent analysis 

has shown that the approximation is very close,   even for perceptrons with a 
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small number of A-units.   Assuming a normal distribution,  we have for 

the probability of a positive response to    $x     '■ 

P-^   n,,..,^)   .-(■;.-,; (7.7) 

where        §{Z) = -Jff^ I   c    z   dx 

Note that the above equations do not depend on whether the 

perceptron is constructed according to the binomial model,   Poisson model, 

or any other other model,  so long as the A-units are selected independently 

of one another.    The performance does depend on the     0 -functions,  however, 

which will be different for different models.    From equation 7.3 it is clear 

that any stimulus    5>'.,      will tend to be classified correctly if the average value 

of   Q;y    for   5'-     in the same class as   s       is greater than the average value 

of   -?  -,      for   c;      in the opposite class from     s ,    .    (If the frequencies    P- 

are not all equal,  each   i,1 •       must be multiplied by its appropriate frequency 

in obtaining these averages.)   From the analysis of     Q   -functions in the 

preceding chapter,  it is clear that this condition will generally be met if 

the stimuli of each class have large intersections with one another (on 

the retina) while stimuli from opposite classes have small intersections 

with one another.    The ideal  situation would consist of two disjoint clusters 

of stimuli,   located in different parts of the retinal field,  each cluster 

representing one class.    In order to discriminate two stimuli reliably 

(i.e.,  to assign them to opposite classes) it is desirable that    Q--       for 

the two stimuli should be small, and particularly that the conditional 

probabilities    C-,(l,'      and    Q-\-      should be as small as possible.    Figure 10, 
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in the last chapter,   shows that this condition can readily be met if the 

stimuli have a small intersection with one another,  but becomes increasingly- 

difficult to meet as the intersection increases.    This figure also shows that 

a binomial model is better suited to the discrimination of similar stimuli 

than a Poisson model,  where -i ;       is apt to be relatively large even 

for disjoint stimuli. 

7.1.3     Fixed Sequence Experiments: Examples 

The environment which was considered in the last section of 

Chapter 6,   involving twenty horizontal bars and twenty vertical bars on a 

ZO by ZO toroidally connected retina is a convenient one to use for a 

"calibration experiment",  by which different classes of perceptrons can 

be compared.    In particular,   consider the following discrimination 

experiment: 

EXPERIMENT  1:     Given a perceptron with 400 sensory points arranged in 

a ZO by ZO    toroidally connected array,  or "retina",   let   iV    consist of the 

twenty possible 4 by ZO horizontal bars,   and the twenty possible 4 by ZO 

horizontal bars.    Let    L'f'/V .    be a classification which assigns every 

horizontal bar to the positive class,  and every vertical bar to the negative 

class.    Show every bar in  ,V     to the perceptron exactly once (or in a 

sequence with    ■' •      equal for all stimuli).    During this training sequence, 

the perceptron is reinforced with  S    -controlled reinforcement.    Then 

select one of the bars,     :' r      ,  and determine whether the response is 

correct,  according   to   ,        !  . 
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P  .7 

10 100 

NUMBER OF ASSOCIATION UNITS (Na) 

Figure 13 PROBABILITY OF CORRECT INDENTIFICATION OF A TEST STIMULUS BY AN 
ELEMENTARY ^-PERCEPTRON, IN EXPERIMENT I (CURVES ALSO APPLY TO 
^•'-PERCEPTRONS; SEE CHAPT. 8) 

P   -7 

10 100 

NUMBER OF ASSOCIATION UNITS { NA 

Figure 14 PROBABILITY OF CORRECT INDENTIFICATION OF A TEST STIMULUS BY AN 
ELEMENTARY c^-PERCEPTRON, IN EXPERIMENT 2 (FOR TWO BINOMIAL MODELS). 
CURVES ALSO APPLY TO ^'-PERCEPTRONS (SEE CHAPT. 8) 
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Table 3 shows the performance ratios,    /t /rf     , for a 100 

A-unit binomial model      'V -perceptrou,  with various combinations of the 

parameters   7   and     /   ( 0 - .?  in all cases ) .    The parameters  / - J , 

■ - /    ,   0 = -7 .  appear to be optimum for this experiment,  as can be 

seen from the table.    (Increasing the threshold results in a definite drop 

in performance.)     Figure 13 shows the performance of several binomial 

and Poisson model perceptrons as a function of   /V      ,   computed from 

Equation (7.7).    The top curve shows the performance of the optimum 

(binomial) system.    A comparison of the other two curves illustrates the 

relatively poor performance of the Poisson model on this particular problem. 

It should be emphasized that the parameters found to be optimum 

in this experiment will not necessarily turn out to be optimum in other 

environments,  or other classifications.    In general,  it appears that as the 

classes of patterns to be discriminated become more "similar",   (i.e. ,  as 

the maximum possible overlap between stimuli from opposite classes 

increases) the optimum number of connections to an A-unit and the optimum 

value of    ••     tend    to increase. 

A more difficult classification of the same dichotomy has been 

studied in the following experiment: 

EXPERIMENT 2:     With the same environment as in Experiment 1,  number 

the horizontal and vertical bars consecutively according to their position on 

the retina.    Let the classification    C'.'V-   place all even numbered bars in 

the positive class,  and all odd numbered bars in the negative class.    The 

training and testing procedures are identical to Experiment 1 . 
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PERFORMANCE RATIOS 

TABLE 3 

FOR lOO-A-UNIT ELEMENTARY ö^-PERCEPTRONS 

(BINOMIAL MODEL) FOR EXPERIMENT I (HORIZONTAL/VERTICAL BAR DISCRIMINATION, 

FIXED SEQUENCE).  0 = 2 IN ALL CASES. 

y 
(NUMBER OF 
INHIBITORY 
CONNECTIONS 
PER A-UNIT) 

X (NUMBER OF EXICUATORY CONNECTIONS PER A-UNIT) 

2 3^5 

0 2.471* 2.831 l.5'»0 .931 

1 2.063 2.912 2.104 1.349 

2 1.708 2.805 2.479 1.773 
3 1.106 2.592 2.670 2.140 

4 1.153 2.329 2.708 2.414 
5 .941 2.006 2.630 2.579 
6 .767 1.777 2.473 2.638 
7 .623 1.523 2.271 2.605 

PERFORMANCE RATIOS FOR 
(BINOMIAL MODEL) FOR 

TABLE 1 

IOO-A-UNIT ELEMENTARY 
EXPERIMENT 2.  0=2 

cv-PERCEPTRONS 
IN ALL CASES. 

X  (NUMBER OF EXCITATORY CONNECTIONS) 

2 3 4 5 

0 .358 .426 .328 .274 

1 .365 .502 .436 .363 

y 2 .362 .551 .526 .451 
(NUMBER OF 3 .350 .578 .596 .533 
INHIBITORY 4 .333 .585 .646 .605 
CONNECTIONS) 5 .310 .578 .677 .664 

6 ,285 .558 .690 .707 

7 .268 .529 .688 .736 
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In this case, the two most similar bars to any test bar (those 

which overlap it by 3/4 of its area on either side) are invariably in the 

opposite class.    Nonetheless,  all stimuli may be positive stimuli under 

these conditions, with a suitable choice of parameters.    Table 4 shows the 

ratio  /J-/(f     for a  100 unit system in this experiment.    Figure 14 shows the 

performance of a perceptron with the same parameters as before   {% =3;   tj = I, 

6 = /)   on this experiment,  and also with the best parameters found to date 

^  K and (x --5,  u'-'7.  Q=2).    These parameters are the best set for X 

but are probably not optimum,  as it seems likely that a further increase in 

both    X    and   u   would yield a further improvement in performance. 

7.1.4     Random Sequence Experiments:   Analysis 

7 , 

For the analysis of the performance of perceptrons trained 

with random stimulus sequences,   it is convenient to make use of an 

unnormalized G-matrix (see footnote,  page 75),  where   // - /    instead of 

/     Nf    .    For such a matrix,   in the    'V -system,     y-   =  the number of 

units active for both and or 

L (7.8) 

The mathematical properties of the unnormalized G-matrix are no different 

from those discovered for the normalized matrix,   in Ghapter 5. 

In a random sequence experiment, the training sequence is 

assumed to consist of a series of 1 stimuli, in which each stimulus in 

the series is selected independently of the others.    The probability of 
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selecting stimulus   $■   for the      t      position in the sequence is    ^ ■     , 

for all    t   .    We will let   m ■ = the number of times stimulus   5 •    occurs 

in the training sequence.    The random vector    sr?   = (m,, rn2..rr,n) will have 

a multinomial distribution with    T    trials and probability vector 

p   ~(pnp2,'">P   ^ '    The training sequence selected is assumed to be 

independent of the particular perceptron selected for a given experiment. 

At the end of the training sequence,  the input to the R-unit in response to 

a test stimulus    5r   will be 

u Z ^ mj i'j 

LL ,7 V ,>) 

Therefore, the expected value over perceptrons and training sequences is 

tft'y)    -    T \'.    Y    P- p- ()■.. 
' "    ■    ' ■'    ■'    J ■' (7.9) 

w hich is of the order of     r//v    .    Note that this is identical to equation (7.3). 

given by 

The variance over both perceptrons and training sequences is 

i 

" L Z   /).J/JA'\ E("; ™fi ) r(:JxJ 9*i)- t("'P t'fr-^ £(<?l i) Eig, t) 
a * 

(7.10) 
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For the components of the multinomially distributed vector    m       we have 

Eim;)   =   Tp: 

E{m--)   --  T(T-I)pf   f  Tpj 

£   'n^ n^)   -   T(T-I) pj  p^ 

Let    n   ■      ^   -   number of A-units active for stimuli ->    > >■■■>  5, 

The symbol   ^    over a subscript will be used to denote negation (e.g.. 

n the number of A-units active for stimulus but not for 

a 
a ■ 9;; 

n ■ %    ).    From equation 7.8,  it is clear that for the       fV -system, 

.    Now,  any set of   n's   which is exhaustive (every A-unit counted 

in at least one    n;       r    ),  and such that each A-unit is counted in no more 

than one     n- ■     v    ,  will have a multinomial distribution.    From this it 
i j .. x 

follows that 

£[ 'JxJ NoMxt 

t^?:2) -  N0{Na-nQ:/ >   NXU._ 

: [/ L'l-9xJ 9xl) = ~ ^"JAt ■  '['ex yri:<. - nJtx '] 

'{''■■     '' +■:"■/!■ .     n-r    ]-   tin-,      ,' * ,    )   >  F(n-}     n~. 

' ^     *j&.x 

■f-      y 
(I ) -     ■') x      ,     (      ■ -    /- , ^ -.JJ 

'',
(

J:,A:. ■' VA/,; 'JC^Q^ 
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Substituting in (7.10),  this yields 

^"W   =   r"aLpjQJt[
(No.-')Qjx  ^ 

" ;r/vvZL ^-^ p.;?* rlQj4r'(r^a-l)C^Qtx 
(7.11) 

The variance of   c r   is therefore on the order of    TNa ■/-  f   hf ,  at 

maximum.    Since the square of the mean is on the order of      T 'Ai'a       , the 
2 2 

ratio    a     n'       becomes indefinitely large as    NfJ    and   T   both increase, 

and the Theorem stated in Section 7.1.2 is seen to hold for random training 

sequences of sufficient length,  as well as fixed sequences.   As the length of 

the training sequence,     /      ,   increases,  the relative frequencies   /n- / T    will 

approach the probabilities     /,      ,  and the performance of the system will 

approach the performance in a fixed sequence experiment.    As    N,L    goes to 

infinity,  the ratio    //     ö        approaches 

y L ■■:-:. 

7.1.5     Random. Sequence Experiments :   Examples 

As a "calibration experiment" for comparing different 

systems,  the horizontal vs.  vertical bar discrimination problem is parti- 

cularly convenient.    The random sequence version of the experiment is as 

follows: 
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EXPERIMENT 3:    For the same conditions and classification as Experi- 

ment 1,   show the perceptron a random sequence of horizontal and vertical 

bars, each bar occurring with equal frequency (  p- =   >. /i-IO    for all bars). 

During this training sequence,  S-controlled reinforcement is used,  and the 

performance of the perceptron for an arbitrary bar,     S ,.     ,   is then deter- 

mined as before. 

Figure 15 shows the performance of binomial model    A   -perceptrons of 

three different sizes on this problem,  as a function of the length of the 

training sequence (  T   ).    The parameters     '     ,      /     ,  and ''' are the optimum 

values (3,   1,   2.) found in Section 7.1.3.    Further increases in   N^    will not 

appreciably improve performance in this experiment. 

The effect of a "frequency bias" on 

is   illustrated in the following experiment: 

■system  perceptrons 

EXPERIMENT 4: The conditions and classifications are the same as in 

Experiment 3, but the horizontal bars occur four times as frequently as 

the vertical bars; i.e.,    p- V    for horizontal bars and  .    '     for vertical 

bars . 

Figure  16 shows the performance of a 100 A-unit system on this experiment, 

The upper curve shows the probability of correctly identifying a horizontal 

bar,  and the lower curve shows the probability of correctly identifying a 

vertical bar.    The correct response to vertical bars is actually suppressed 

as training increases,  due to the greater frequency of horizontal bars.    The 
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10 100 

NO. OF TRAINING STIMULI (7") 

1000 

Figure 15 PROBABILITY OF CORRECT INOENTIFICÄTION OF TEST STIMULUS BY BINOMIAL 
(V-PERCEPTRONS IN EXPT. 3 (RANDOM SEQUENCES) 
( *= 3, y= I, 0= 2) 

P     -6 

TEST WITH HORIZONTAL BAR ( ^> = .04) 

MEAN PERFORMANCE 

^r-TEST WITH VERTICAL BAR ( ^ = .01) 

10 100 

NO. OF TRAINING STIMULI (D 

1000 

Figure 16 PROBABILITY OF CORRECT IDENTIFICATION OF TEST STIMULI IN EXPT. 1. 
BINOMIAL a-PERCEPTRON WITH ^a= 100, * = 3, y = I, ^ = 2. 
P; =  .01 FOR HORIZONTAL BARS; .01 FOR VERTICAL BARS 
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broken curve shows the mean performance on both classes,  with test 

stimuli drawn from each class with their appropriate frequencies.    In the 

following chapter,  it will be seen that this performance can be considerably- 

improved in a       d' -system perceptron.    It would also be improved for an 

ry -perceptron if error correction training were employed instead of 

S-controlled reinforcement. 

7.2       Discrimination Experiments with Error Correction Procedures 

The analysis and experiments in the preceding section deal with 

S-controlled reinforcement experiments.    In Chapter 5,   Theorem 6,   it was 

shown that this procedure cannot be guaranteed to yield a solution to a 

classification problem,  even though a solution may exist,  whereas an error 

correction procedure will always yield a solution if any solutions exist.    The 

error correction procedure would therefore seem to be the method of choice 

in training a perceptron to discriminate between two classes of stimuli. 

Unfortunately,   the type of analysis which was carried out for S-controlled 

experiments is not readily performed with error-correction experiments. 

Consequently,   all data on learning curves for error correction procedures 

come from one of two sources: simulation on a digital computer   ,  and 

performance of actual, experiments on the Mark I perceptron at the Cornell 

Aeronautical Laboratory (Refs.   29,   30,   31). 

Experiments performed by Carl Kesler on the Burroughs 220 computer 
at Cornell University. 
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UM 

Two main sets of experiments will be described here,  the first 

with binomial model      , / -perceptrons,  and the second with perceptrons 

having additional constraints imposed on their S to A-unit connections. 

7.2.1     Experiments with Binomial Models 

The following four experiments have been performed with 

binomial model perceptrons (having fixed numbers of sensory connections 

to each A-unit, with origins located at random in the sensory mosaic): 

EXPERIMENT 5:     The environment of horizontal and vertical bars used 

in Experiment 1 is employed,  and the stimuli occur in fixed sequence, first 

showing all horizontal bars in fixed sequence,   then all vertical bars,  and 

repeating the sequence until perfect performance is achieved.    The error 

correction procedure is employed,  and the performance is tested at the 

end of each sequence. 

EXPERIMENT 6:     The same environment and training procedure is 

employed as above,   but the stimuli occur in a randoni sequence,  with 

'      for each stimulus (as in Experiment 3). 

EXPERIMENT 7:     The environment consists of a set of triangles in all 

possible positions on a toroidally connected 20 by 20 retina,  and a set of 

squares in all possible positions on the retina.    The triangles and squares 

each cover 80 of the 400 retinal points.    The sequence is random,   as in 

Experiment 6,   with    - • for each stimulus.    (The set of possible 

stimuli is generated by translations of a standard image; rotations are not 

permitted. ) 
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40 80 

NO. OF TRAINING STIMULI (7) 

120 

Figure 17 PERFORMANCE OF BINOMIAL o^-PERCEPTRONS IN EXPERIMENTS 5 AND 6 

(HORIZONTAL / VERTICAL BAR DISCRIMINATION WITH ERROR CORRECTION 

PROCEDURE). SOLID CURVES SHOW MEAN PERFORMANCE OF 25 PERCEPTRONS, 
WITH N^ = 300, *= 3, y= I, 0= 2 
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EXPERIMENT 8:     The horizontal/vertical bar environment is employed, as 

in Experiment 6,    with stimuli occurring in random sequence,   A random 

sign correction procedure is employed for training the perceptron (see 

Definition,  Section 5.6). 

Figure 17 shows the results of Experiments 5 and 6,  and includes 

a theoretical learning curve for an S-controlled experiment for comparison. 

The experimental curves show the mean performance for a set of 25 binomial 

perceptrons with 300 A-units, and the optimum parameters (  r ■ :> ,    n  ~   ' ■ 

h  ^   '<.     ) found in the preceding section.    The same 25 perceptrons were 

employed in Experiments 5 and 6.    It appears to be characteristic    that a 

random training sequence leads to a more rapid learning rate initially, but 

is overtaken by the fixed sequence performance as the duration of training 

increases.    Note that in both cases,  the error   correction method yields 

considerably better performance than the S-controlled method. 

Figure  18 shows the mean performance of a set of 15 perceptrons 

on Experiment 7.    The parameters are     'V/      j, ,   .>      h    ,    ./      ■/    , 

G =  3     .    These were the best parameters tested, but are probably not 

optimum.    The learning curve for the horizontal/vertical bar experiment 

(Experiment 6) is shown as a broken line for comparison.    The slow learning 

rate in this experiment is largely due to the large number of distinct stimuli 

in the environment (800) compared to the number in the horizontal/vertical 

bar environment (40). The increased number of stimuli means that a much 

longer training sequence is required to guarantee a representative sample 

of all stimuli, with a reasonably uniform coverage of the retinal field.    A 

further difficulty is introduced by the fact that the maximum overlap of a 

square and triangle is much greater than the maximum overlap of a horizontal 

and vertical bar,   making the discrimination intrinsically more difficult. 
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Figure 19 shows a comparison of the performance of 10 

perceptrons on Experiment 8 with the performance of the same 10 perceptrons 

on Experiment 6.    In Experiment 8,  the learning is not only much slower, but 

the variability between perceptrons is greatly increased.    Of the ten per- 

ceptrons tested,  two achieved perfect performance during the period of the 

experiment, which was discontinued after Z000 training stimuli,    Nonetheless, 

each of the ten perceptrons would ultimately achieve perfect performance if 

the experiment were continued (due to Theorem 5, Section 5,6),    With the 

directed error correction procedure,  all ten perceptrons achieved perfect 

performance within 300  training stimuli. 

While the performance of an elementary perceptron with the 

random sign procedure is clearly unsatisfactory for practical systems,  it 

should be noted that the existence of a consistent bias in the proper direction 

still makes this a plausible component of a more reliable mechanism.    If a 

"majority mechanism" is employed (e,g, ,  a threshold device which responds 

to the difference of positive and negative signals from R-units) 

to determine the "majority vote" of    n     such elementary perceptrons, 

connected independently to the same retina,  a highly reliable system would 

result.    The error probability of this system would be: 

[n/A 

L i -1. 
n- it 

when    P     is the probability of correct response for a single perceptron 

(as shown in Figure  19), 
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While the actual learning curve for error correction experiments 

cannot at present be stated analytically,  R.  D. Joseph has obtained an upper 

bound for the number of corrective reinforcements that must be applied, 

where a solution exists.    In the proof of Theorem 4,  Chapter 5,   it was noted 

that an upper bound for the number of corrective reinforcements can be 

expressed in terms of the quantity     rv       ,  as follows: 

( ß -t M i n   ) 
(7.12) 

where 

<• 

maximum diagonal element of the G-matrix, 

minimum of the function    fftl .-   r ,'i,<     || / !|     (as defined for 

Theorem 4,  Chapter 5). 

!j •''' (as in Theorem 4,  Chapter 5). 

For the case which is of primary interest here,  the process 

starts from the origin,   so that       < ■" ■    .: •    In this case,  (7.12) 

simplifies to 

l.' r    r. 

7.2.2       Experiments with Constrained Sensory Connections 

In all perceptrons considered thus far,  connections from S-units 

to A-units have had their origins randomly chosen from the set of all  sensory 

points, with equal probability.    Such models will be called uniform input 

distribution models (u.i.d.  models).    It has occasionally been proposed that 

the performance of a perceptron might be considerably improved by the 
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introduction of special constraints on the admissible origin point connections. 

For example,   the retinal connections   could be made to resemble biological 

systems more closely by assigning a "retinal field" to each A-unit, and 

limiting its choice of origin points to S-units within this field.    A similar 

procedure would be to construct a network of connections by assigning a 

center at random to each A-unit,  somewhere on the retina,  and selecting 

connections from a circular normal distribution about this center.    Such 

systems will be called normal input distribution models (n.i.d.  models). 

Further constraints might lead ultimately to specialized A-units, whose 

input configurations are specially designed to make them responsive to 

stimuli of particular shapes,  or configuration properties.    We will consider 

one further constraint in this section: the case in which the excitatory and 

inhibitory connections to an A-unit are assigned distinct centers on the 

retina,  with origins selected from a circular normal distribution about 

these centers.    This will be called the divided input distribution (d.i.d.) 

model.    The n.i.d.  model can be considered a special case of the d.i.d. 

model in which the excitatory and inhibitory centers and dispersions are 

identical. 

In the general d.i.d.  model,  A-units are characterized by 

seven parameters:    /     ,   tj    and    O    as before,  the expected distance 

between excitatory and inhibitory centers [LD], the standard deviation 

of this distance (   fi'D    ),  and the standard deviations of the normal proba- 

bility distributions about the excitatory and inhibitory centers [rrx  and   cTy    ). 

A number of experiments have been performed with such models in an 

attempt to discover what sort of improvement might be achieved by an 

optimum set of constraints on the sensory connections. 
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Experiments 6 and 7 have been used for the study of constrained 

input distributions.    In the square/triangle discrimination experiment 

(Experiment 7) the performance of the d.i.d. models never showed any 

improvement over the original u.i.d.  model.   A large number of combi- 

nations of   x    ,   (/   ,  and   ')   were tested with various distribution    para- 

meters,  in an attempt to find the optimum system for    /  >  ij   ^   IQ 

The best performance was obtained for a set of 15 perceptrons with     X = fy     , 

i  ~-  ^ t    H - :    ,    E:D -    'I     ,      c U      0 ,     o'y   ----   '/      ,  and     ^ -  J    . 

This is equivalent to an n.i.d.  model with the same centers for excitatory 

and inhibitory distributions,  and     a"   - 7     .    The performance of this system 

did not differ from that of the equivalent u.i.d.  model by more than 1% at 

any point on the learning curve,  and was within 1/4% of the u.i.d. performance 

at most of the points tested.    The same stimulus sequences were used for 

both models in order to make conditions as closely comparable as possible. 

These results suggest that for large but spatially concentrated stimulus 

patterns,   little advantage is to be gained in an elementary perceptron by 

imposing radial constraints on the origin point configurations. 

In the case of the horizontal/vertical bar discrimination 

(Experiment 6) a slight advantage was found for the d.i.d.   model for the 

parameters    /      ■'   ,    /        / ,      •      /   ,   /' ..'■'      O   ,     o"L      .7       ,   o~x = 2    ,   cry = V, 

On the basis of a number of simulation experiments,  this appears to be 

close to an optimum configuration for the d.i.d.  model for this experi- 

ment.    Figure ZO shows the results obtained from Z5 runs with these 

parameters,   compared with Z5 u.i.d.  models with optimum parameters 

'  ■' ■   'i .    7      /. - using the identical training sequences.    The 

difference, although slight, appears to be statistically significant. 
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NO. OF TRAINING STIMULI {T) 

Figure 20 COMPARISON OF OPTIMUM ct.i.d. mu.i.ct. MODELS IN HORIZONTAL / VERTICAL 

BAR DISCRIMINATION (EXPT. 6). CURVES SHOW MEANS OF 25 RUNS 
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The general conclusion from these experiments seems to be 

that (for large stimuli) little is to be gained from special constraints which 

affect only the dispersion,  rather than the geometric form, of origin point 

patterns in elementary perceptrons,    A further variation of the model, in 

which elliptical rather than circular distributions of origin points are employed 

might be more sensitive to contours and directions of elongation in the stimuli. 

No quantitative results are available on such a model at this time. 

7.3       Discrimination Experiments with R-controlled Reinforcement 

In an experimental system with R-controlled reinforcement 

(Definition 39) the reinforcement control system receives information about 

the outputs of the perceptron,  but receives no information directly from the 

environment.    Such experiments are of interest in determining the "spon- 

taneous organization" tendencies of perceptrons.    It is readily seen,  from 

theoretical considerations,  that the performance of an elementary      oc - 

perceptron in such experiments is unlikely to be of psychological interest. 

In an    oc -perceptron,  all    0- •     are generally greater than zero,   so that 

whatever response is associated to the first stimulus in a training sequence 

will tend to generalize to all other stimuli in the environment.    Conse- 

quently,  the perceptron,  left to its own devices without any attempt to 

change its responses,   will tend to form a classification    C {W)     in which 

all stimuli in    W     are either in the positive class or else all in the negative 

class,   with equal probability. 

See Section Z 3 . 1 .2 for a reconsideration of this problem from the 
standpoint of sensory analyzing mechanisms. 

**In Ref.  82,  such systems have been called "Class C perceptrons". 
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Two special cases are of interest,  in which it is possible for 

a dichotomy to be formed with both classes non-empty.    In the first case, 

some of the    0- -     coefficients are zero.    This might occur in a system 

with high thresholds on the A-units,   so that some pairs of stimuli activate 

no A-units in common,    If    5'      and    S'     are two such stimuli,   then if   ZL 

is the first stimulus and   5;     is the second stimulus in the training 

sequence,  it is perfectly possible that one will become associated to a 

positive response,  and the other to a negative response.    If these are the 

only two stimuli,  or if there is no positive generalization from any of the 

stimuli which become associated to one class to the stimuld of the second 

class,  this dichotomy may be stable.    In general, however,  one class is 

apt to become dominant,  eventually pulling all stimuli into a single class 

as before.    The second case in which a dichotomy might be formed is that 

in which the values are not initially all zero, but are distributed with some 

connections negative and some positive.    In this case,  the generalization 

from the first stimulus will not necessarily wipe out an initial bias in the 

opposite direction,   and it is possible that a dichotomy will be formed. 

While it is possible for dichotomies to be formed in the special 

cases mentioned above,  there is little reason to suppose that such dicho- 

tomies would ever be of interest to a human observer.    If the stimuli are 

uniformly distributed on the retina,  or uniformly clustered about the 

center of the field,     the     g- ■   coefficients which happen to be zero will 

generally be .unrelated to possible "meaningful" classifications of the 

stimuli,   so that any division into two classes will tend to be random, 

and unrelated to any concept of "intrinsic similarity" of the stimuli.    Thus 

it is clear that in an elementary   Oi -perceptron,  psychologically meaning- 
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ful discriminations can be achieved only under the control of an experi- 

menter, or r.c.s. which is capable of evaluating the correctness of the 

perceptron's responses according to some predetermined scheme.    In the 

f -systems, which are considered in the following chapter, somewhat 

more interesting performances.'inR-controlled experiments are likely to 

occur. 

7.4       Detection Experiments 

In discrimination experiments,   such as those considered in 

the previous sections,   the perceptron is  required to give one of two responses 

to designate which of two well-defined classes of patterns is present.    It is 

assumed that one of the two is always present,   and that nothing else is 

present which might confuse the picture.    In detection experiments, a 

single pattern,   or class of patterns,   is taught the perceptron as the "positive 

class",   and anything else (such as noisy fields,  arbitrary patterns,  etc. ) is 

considered to belong to the "negative class".    Moreover,  the positive pattern 

may appear with an admixture of background noise,   irrelevant lines,  or 

other sensory material.    While such detection experiments differ considerably 

in their "psychological" character from discrimination experiments,  from a 

theoretical standpoint    they represent a  special case of discrimination experi- 

ments in which the training and the two classes of stimuli are highly asymme- 

tric,   the positive class generally being smaller but more thoroughly trained 

than the negative class.    Two cases are of interest: detection in noisy 

environments,  and detection in organized environments.    These are 

considered separately in the following sections. 
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7.4.1     Detection in Noisy Environments 

A noisy environment will be defined as the product set of a 

set of well-defined stimulus patterns (including an empty field as a stimulus) 

and a set of "random noise patterns" superimposed on the members of the 

first set.    The random noise patterns are generated by applying signals of 

random polarity (positive or negative with  . 5 probability) to a randomly 

selected set of S-units,   chosen independentlv with probability    P     .    P      will 

be called the noise density of the environment,  and represents the expected 

value of the proportion of S-points which emit random signals at any given 

moment of time. 

Note that a noisy environment is,   in its entirety,  a well defined 

set of stimuli,  with a probability   r ■    associated with each stimulus       i   . 

Such an environment consists of two classes: a positive class,  in which one 

of the "positive stimuli" (e.g. ,   a geometric form) is present in combination 

with one of the noise patterns,  and a negative class,   consisting of the noise 

patterns alone,   or the "empty field" stimulus with a noise pattern super- 

imposed.    The task of the perceptron is to distinguish between positive and 

negative stimuli. 

Let     .  ,     represent a test stimulus,   selected from the positive 

class.    Then the probability of correctly identifying        ,     as a positive 

stimulus in a random sequence experiment,  with S-controlled reinforce- 

ment,   is given by equation (7.7),  with   Flu    '    defined by equation (7.9) 

and    -       i ,. ,     defined by equation (7. 1 1),   just as in an ordinary discri - 
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mination experiment,    Similary,  if    5       is a noise-stimulus, from the 

negative class,  the probability of obtaining the correct (negative) response 

is given by the complement of the probability obtained from equation (7.7). 

Some special analytic features of this problem are worth noting. 

For a binomial model,  with a large retina and large association 

system (so that all    Q -functions and retinal intersections of noise patterns 

can be assumed equal to their expected value) the intersection of a noise 

pattern with any other stimulus will be equal to the expected value of this 

intersection.       If we designate the noise patterns by     5,, ,   Zn', ■■-, 

and positive stimuli by        _', .   ''       then (as explained on page 146), 

and 

Cm 

Let .y and _ , ' represent the same positive stimulus pattern with 

different noise patterns superimposed. Then, if the noise density is 

low,      -. , / ..-,-. .    But      . ,.    ■>   ,r ,,        .    Therefore, 

0s ,'>'■'y „ ,   which means that the perceptron can be taught quite 

readily to give the proper positive response to a test stimulus,    :: 

Actually,   as noise patterns have been defined,   the intersection of a 
pure noise pattern    with a positive stimulus pattern will be slightly 
less than the expected value,   since some of the points which normally 
are "on" for the positive stimulus will be turned "off" for the noise 
pattern.    The conclusions above hold rigorously if the noise patterns 
are sets of positive signals only. 
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The same conclusion does not hold for the identification of a negative 

(noise) stimulus,  however.    In this case,  the generalization from a previously- 

trained noise stimulus,       >   '        to      r     is equal to     ^,,'n ■   Qn      (assuming 

all noise stimuli to be equal in area to their expected value).    But the 

generalization from a positive stimulus is     0  n   
;    ,',     r,     which is generally 

greater than     .}n      ,   since the area covered by the positive stimulus with 

noise superimposed is generally greater than the area of the noise stimulus 

alone.    Consequently,  we would expect the positive response to tend to 

generalize to the negative class as vvell,   if both classes are represented 

with equal frequency in the training sequence. 

A slight modification of the perceptron should improve its 

capability of distinguishing negative stimuli from positive ones.    If the 

R-unit is given a threshold greater than zero,   it will tend to remain "off" 

for the relatively weak signals coming from noise stimuli,  but will go "on" 

(to its positive state) for the stronger signals coming from positive stimuli. 

With this modification,   however,   the system is no longer an elementary 

perceptron.    An alternative procedure,   which will improve the performance 

of an elementary perceptron,   is to "overtrain" the negative stimuli, 

composing a stimulus sequence in which negative stimuli occur more 

frequently than positive ones.    In an error correction experiment,   it 

should be noted,   this bias will be introduced automatically,   regardless of 

the  stimulus sequence,   so that a detection problem should be solved much 

more readily than with an S-controlled system. 

188- 



7.4.2       Detection in Organized Environments 

In an "organized environment",  where the background material 

may closely resemble the stimulus pattern in its characteristics,  detection 

experiments take on some characteristics of special interest, psychologi- 

cally.    First of all,   it should be noted that in attempting to distinguish a 

pattern such as the letter "X" against a background of lines occurring in 

random configurations,  the environment may include stimuli which are 

fundamentally ambiguous in character,   since patterns closely resembling 

the letter "X",   or even identical to it,   might arise by a chance super- 

imposition of straight lines.    In such a case,  the only reasonable test of 

whether or not a pattern should be identified as an "X" would seem to be 

the human criterion of whether it looks more like an X or more like a 

random assemblage of line segments.    While a similar problem might 

arise,   in principle,   in the case of detection experiments in noisy fields,   it 

is less common there,   except under extreme noise conditions.    In the case 

of organized fields,   ambiguous organizations are more the rule of the day, 

and the problem requires a different approach.    In human perception,     the 

properties of "good figure"are generally used to determine whether a 

particular set of line segments is seen as a letter,  or some other known 

pattern,  or simply as a random collection of unrelated components.    Such 

judgements are not possible,  however,  for elementary perceptrons.    We 

will return to the problem of figural organization in Part IV. 

Treating the detection experiment simply as a special case of 

a discrimination experiment,   the same conclusions apply as in the case 

of the noisy environment problem: it is possible,  by exhaustively training 
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the perceptron with the product set of positive stimuli and irrelevant 

patterns to teach it to identify positive stimuli amidst extraneous material. 

The learning is apt to be slow,  however,  and will generally fall considerably 

short of what might be expected in a simpler discrimination experiment. 

Most of the experimental work done to date on detection 

experiments has been carried out with the Mark 1 perceptron using a gamma 

system for the memory dynamics.    This work will be reviewed in the follow- 

ing chapter,  which deals with      "'' -perceptrons,  but similar results might 

be expected with alpha systems. 

7.5       Generalization Experiments 

In the preceding experiments,   it has been required that   : . 

should necessarily occur as one of the stimuli   in the training sequence. 

When the perceptron is tested with a stimulus which has not been previously 

seen,   a weak form of generalization is possible with elementary       '/ -systems. 

Clearly,   if the intersection of   5,    with some other stimulus in the same class, 

',.■     ,  which did occur in the training sequence,   is large enough,   5-,    will 

tend to evoke the same response as ■    .    In this case,   l /     is correctly 

recognized only because,  within the limits of tolerance of the perceptron, 

it appears to be identical,   rather than merely similar to,  the previously 

seen training stimulus.    Thus,  generalization,   for an elementary    •.   -perceptron, 

is based on an approximation to identity,   rather than on similarity.    In a 

"pure generalization" experiment,  as defined in Chapter 3,  the perceptron 

would be asked to recognize a pattern in a position where it does not 

overlap any previously seen patterns of the same class.    If such an 
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experiment is performed with an      0/ -system, with a single class of 

stimuli,  the generalization will tend to be positive, due to the fact that (?• ■ 

is never zero, for most systems,   regardless of the relative positions of 

the stimuli.    This result is trivial,  however,  and of no psychological interest, 

since any stimulus,  whether it resembles the trained stimuli or not,  will also 

tend to evoke the same response.    To prevent such a tribial result,  it is 

necessary to employ a discrimination test,   training the system with two 

kinds of stimuli,   and then testing it with similar stimuli in a disjoint portion 

of the retina to find out whether the appropriate responses have generalized 

for both kinds of stimuli.    In this case,   if the stimuli are of equal area,  and 

equally trained,   no generalization will be found,  since the positive generali- 

zation from one class is exactly balanced by the negative generalization 

from the other class.    Thus it is clear that an elementary     0/-system (and, 

in fact,  any elementary perceptron) is incapable of abstracting similarity 

(in either the geometric or the psychological sense) but discriminates only 

by measuring a function of the overlaps of a test stimulus with representatives 

of both classes. 

7.6       Summary of Capabilities of Elementary      c/ -perceptrons 

The elementary     ol -perceptrons,  being the simplest class 

of perceptrons,   provide a baseline of performance against which other 

systems can be compared.    It has been demonstrated that the      06 -system, 

with both S-controIled and error correction reinforcement,   is capable of 

discrimination learning,  provided it sees a large representative sample of 

the stimuli which it is required to discriminate.    It does not generalize 

well,  to similar forms occurring in new positions in the retinal field,  and 
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its performance in detection experiments,  where a familiar figure appears 

against an unfamiliar background,  is apt to be weak.    More sophisticated 

psychological capabilities,  which depend on the recognition of topological 

properties of the stimulus field,  or on abstract relations between the 

components of a complex image,  are lacking.    The elementary perception 

has no capability of recognizing time sequences,   since its responses are 

based on the momentary state of the system due to the current stimulus 

pattern alone,  and are not influenced by the preceding sequence of events. 

Quantitative judgement might possibly be learned by an exhaustive training 

procedure,   in which the system is  required to give one response for 

stimuli above a certain area,  or over a certain length,  for example,  and 

an opposite response if they fall short of the criterion.    This is a rather 

crude approximation to quantitative estimation,  however,   and the problem 

can be handled much more satisfactorily with perceptrons with linearly 

responding R-units,  as will be seen in Chapter  10.    In R-controlled 

experiments,   where the perceptron is required to form its own classification 

of stimuli,   we have seen that the elementary       ry-perceptron   tends either 

to classify everything identically (its most general tendency) or else to 

form a random dichotomy,  which is of no psychological interest.    It will 

be found that most of the weaknesses of elementary       cv -perceptrons are 

true of all simple perceptrons,   and that it is necessary to go to topologically 

more complicated systems to find performances which are basically more 

satisfactory.    In special cases,  however,   other types of simple perceptrons 

have advantages,   as will be seen in the following chapters. 
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7.7       Functionally Equivalent Systems 

It may be disturbing to some biologically oriented readers to 

think of an association unit that changes the sign of its output signal from 

excitatory to inhibitory as a function of its training.    This is a conceptual 

simplification which makes analysis easier,  but can be shown to be logically 

equivalent to an alternative model in which particular neurons,  or A-units, 

are designated as excitatory,   and others as inhibitory,   with no change 

permitted in the sign of their outputs .    The alternative model (which is 

analogous to the models originally presented in Refs .   79 and 80) is as 

follows: 

Let the number of A-units be twice the number in the equivalent 

"^ -perceptron.    Let half of the A-units be designated as excitatory units, 

and the other half  be inhibitory units.    All r     are   initially assumed to be 

zero,   or else to have positive signs if     i;     is excitatory,  negative signs if 

o-     is inhibitory.    Each excitatory unit is paired with one of the inhibitory 

units,   and the same origin point configuration is assigned to both members 

of the pair.    Thus the responses of the inhibitory units exactly duplicate 

the responses of the excitatory units.    The reinforcement rule is that a 

positive      ^       from the r.c.s.   affects only the excitatory units,   while a 

negative       •■ affects only the inhibitory units.    With this rule,  the signal 

;/;       which goes to the R-unit in response to       •      is the sum of an 

excitatory component and an inhibitory component,  the total being exactly 

equal to what it would be in the equivalent       :-   -perceptron. 
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The exact pairing of the excitatory and inhibitory units is,  of 

course,  an inessential artifact,  introduced only to guarantee that the two 

types of systems are truly identical in performance.    If the origin confi- 

gurations of all units are selected independently of one another,  the 

expected values of the signals will be unaffected,  but the variability will be 

somewhat   increased,  due to the greater number of independent A-units 

contributing to the signal.    Such a system has been previously described as 

a "differentiated A-system" (Ref.   79). 
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PERFORMANCE OF ELEMENTARY f -PERCEPTRONS IN 

PSYCHOLOGICAL EXPERIMENTS 

It will be recalled that the reinforcement rule for a gamma 

system (defined in Chapter 4,  Def.  38) is one which guarantees that the 

sum total of the value of all connections to any unit remains constant,   even 

though the values of individual connections may change with time.    In the 

notation of the last chapter,  the change in the value of the connection   /Ty 

due to the reinforcement of stimulus was given by 

y:    J J for an    ry -system. (8. 1' 

For a gamma system,   the corresponding expression is 

i\->, ViJj N 
' T .la 

(8.2) 

A variation of the gamma system,   which will be designated the       /"-system, 

is of interest chiefly because it is considerably easier to analyze.    For this 

model. 

0 ■ ' a • !  : i - r; 

(8.3) 

This is equal to the expected value of    Av^    for the     /71-system,   and 

with large values of   //;     the      /"-system and / -system become indis- 

tinguishable . 
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The organization of this chapter will follow closely that 

of Chapter 7.    The first section deals with the analysis of discrimination 

experiments with S-controlled reinforcement,  and presents results of a 

number of experiments,   including comparisons with the    o/-systems 

considered in the last chapter.    Discrimination experiments with error 

correction,  and discrimination experiments with R-controlled reinforce- 

ment are then presented,   and the final sections deal with detection 

experiments,  and other performances of     /"'-perceptrons . 

8.1       Discrimination Experiments with S-controlled Reinforcement 

8.1.1   Fixed Sequence Experiments: Analysis 

As in the case of the alpha-system analysis,  our object is to 

compute the ratio        //   'ur)   ?'  i •'r       ■  for the class of perceptrons,   test 

stimulus,  and training sequence under consideration.    The notation and 

definitions correspond to those employed in Chapter 7.    The analysis again 

follows that of Joseph (Ref.  41).    For the     /'-system,   the expected value 

of    //. .      is obtained as follows:    The value of the connection from the A-unit 

at the end of the training sequence is given by: 

'—' '  J p., 

L PJ P.! Mr. 
L J 

Y (■' 
K * ( 
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Consequently,  if the test stimulus    5y     is now shown,  the input to the 

response unit will be 

rLLsjPj 
n a tit I 

yielding,  for the expected value of the signal 

'LL -. i  ß__.    n . (<t L Qj J   I      .V *J *      N        *x f—1   ''J 

T: N (jL   "-■,•/V^M  -MVU, 

(8.4) 

For a      '' -system,   the analysis is considerably simplified.    In this case, 

the value   of the connection from unit      ;   at the end of the training sequence 

is 

L.- (ji 

Collecting the signals from all active connections when    3 .     occurs yields 

the input to the R-unit, 

",    r LLA-P: ■■:<■ 

and the expected value of this signal is 

^'       rN6 L 0;p:   J:<-CjOr 

(8.5) 
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The variance of   u    is again computed from the general 

equation (7.4),  given in the last chapter.    For a    ^'-system,  the same 

considerations apply as in the    n^ -system,  namely,  that the only source 

of variability in the signals    r(r (x)     is due to the origin point configurations 

of the A-units,  which are selected independently for    the different A-units. 

Consequently,  the equation (7.5) holds identically for a      /' -system.    In a 

true       'f -system,   however,  the signals    r-r{/)    are not independent.    The 

value   ir-^,    upon which   r-r     depends is the result of a series of  increments, 

/H^y       ,  each of which depends upon the particular set of A-units which are 

active at the time of reinforcement (as shown in Equation 8.Z).    Consequently, 

for a gamma system,  the variance is 

'(a .) Na rr
2 j r,> fx)\ + Nai N0- I) cot/. c-r(x), c--r(x) 

.    2 
;U -Vr (') ' t   flr(7  \ ' ^,(^,-1) \Fr;rfy) rrr (■/) 

'     F r ■'„< t ) (8.6) 

The reader who is interested in the detailed analysis of this expression 

will find a full algebraic expansion of its components in Ref.  41 .    The 

final equation which results is as follows: 

a      u 

^/^-■■v^v^^'r^ 

^/V;. s r 

(8.7) 
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An analogous treatment for the     /"-system,  based on Equation (7.5) ,  yields 

the expression: 

V V ^   ".- PjF/\iQJ^-0]nl,Qx)-?0A(Q;t-QjQx) '■>LL^ 

■/'-/v 

(8.8) 

For both the      '' -perceptron and the       /''-perceptron, the expectation of ux 

and the variance of     , i    are both on the order of     N0    .    Consequently, 

the ratio     /.        ' can be inade arbitrarily large by increasing      N 

This means that the theorem stated in the last chapter (Page  159) holds for 

and ' -perceptrons as well as for       -   -systems.    Equation (7.7) 

can again be used for a close approximation to the actual probability of 

correct response for a  ,'    or      /   -perceptron,   substituting the appropriate 

expressions for the mean and variance in each case. 

It is interesting to note that if the expected values of the 

generalization coefficients,       ■•      ,  are substituted into equations (7.3), 

(8.4),   and (8.5),   identical expressions are obtained for the expectation 

of    u /     for the     o/     ,     ''"     ,  and       ,//   -systems.    The expected value of 

the un-normalized coefficient, 

rl-(0 n. d for a 

for an       -.   -perceptron it is 

obtain,  for all three systems, 

for a 

-perceptron it is 

-perceptron is 

ij Q- 0 ■,' . while 

Substituting these quantities,  we 

! L -P; Jxi (8.9) 

Z, n; !■; /v, (8.10) 
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The special properties of the   /     and      ,?' -perceptrons are due to the 

fact that their generalization coefficients for a binomial model tend to be 

negative for sufficiently well separated,   or disjoint,   stimuli,  whereas in 

the case of an     cv -system,  the generalization coefficients are all non- 

negative.    In a Poisson model,  while it is possible for negative generali- 

zation coefficients to occur due to random variability of individual per- 

ceptrons,  the expected values of    (j • ■     are always non-negative,  since 

■,;;        Q; ', " only if the stimuli are disjoint.    These features are of 

interest for R-controlled experiments,  as will be seen presently. 

8.1.Z      Fixed Sequence Experiments:   Examples 

Numerical analyses have been carried out mainly for the 

/' -perceptrons,   since the equations are considerably simpler.    For 

large values of   fJ0    ,   the    'f    and        'f -systems will have identical perform- 

ances.    Tables 3 and 4 (in Chapter 7) apply identically to the      /  -system, 

for Experiments   1 and 2.    The performance curves shown in Figures  13 and 

14 are also applicable.    Figure Zl  shows a comparison of the    7'     and ■l' - 

systems on Experiment 1  (horizontal vs.  vertical bar discrimination), for 

the optimum parameters with a binomial model {   s. - J,  </     .1,9- 2      )■ 

Figure 2Z shows a similar comparison for the same parameters,  with Experi- 

ment 2. 

It is clear that under the conditions of Experiments  1 and 2,  the 

/ -systems have no advantage over the      oi -perceptrons.    The equivalence 

of the curves is due to the fact that in these experiments,  all stimuli are 

equal in area (yielding equal   (?;    for all stimuli), the number of stimuli in 

each class is equal,  and all stimuli occur with equal frequency. . If the sizes 

or frequencies are unequal,  the     /'    -system may have a marked advantage, 

as will be seen in the analysis of Experiment 4,  in Section 8. 1.4. 
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8.1,3       Random Sequence Experiments:   Analysis 

The un-normalized generalization coefficients for a     'f    and 

f '-system are given by 

a • ■ n ■ ■  ~     n-  n ■ 
■>' J 'J       A/ .       '     J 

for a      / -system (8.11) 

where 

0- •    -   n- ■  - Q ■ n ■ for a       /   -system (8.12) 

=   the number of A-units  responding both to   5"    and to    5 

As in the       o^ -system analysis (Section 7.1.4) the training 

sequence is assumed to consist of    7      stimuli,  where each stimulus,    5-      > 

has a probability fi-     of being selected at any step of the training sequence. 

The analysis has been carried out only for the      'f  -perceptron,   since the 

true       T -system leads to excessively cumbersome expressions for the 

variance.    For large   llQ   ,  as observed in the preceding section,  the two 

systems should be virtually indistinguishable in performance. 

For the       V  -system,   the input to the response unit when   5y 

occurs after the training sequence is 

'iv    -    /    /J- m ■ ( nv ■ - O • n    : K I—i ' j      j Xj <j      / 
J 

where   m-   ,  as before,  is the number of times that   I •    occurs in the 

training sequence.    Taking the expected value of this expression, we 

obtain 

(8.13) 
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The variance of    ux    over both perceptrons and training sequences is 

again given by equation (7. 10).    In the present case,  this yields: 

"-W   ■  TN..LpAClj*-10jQj/ + Q2
JQx+iNo-l)(Qj,~Q;Qyr 

+ TN*LL^'0A* (r-1)(Q-AX- 
0J0tx - Q* Qjt + Qj O4 Q*) 

^^a-O^jt-QjQ^iQtx-OtQt) 

(8.14) 

The detailed derivation of this expression can be found in Ref. 41.    It can 

readily be seen that the theorem of Section 7. 1..2 continues to hold for this 

system.    Actual performances can again be calculated by using Equation (7.7] 

8.1.4     Random Sequence Experiments:   Examples 

A comparison of binomial    :/    and        ^'-perceptrons on the 

random sequence version of the horizontal/vertical bar experiment 

(Experiment 3)  is shown in Figure 23.    A curve obtained from the simulation 

of a true       ^ -system with the same parameters is included for comparison. 

The simulation curve shows the average of 100 runs.    Figure 24 compares 

the performance of the binomial model with that of a Poisson model,  on the 

same experiment. 

In Figure 25,  the performance of a        3" -system in the 

"frequency bias" experiment (Experiment 4) is shown,   with the mean 

performance curve of the equivalent     cy- -system,  from Figure 14, 

included for comparison.    A comparison with Figure 16 shows that under 
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conditions of unequal frequency for the two classes to be discriminated, 

the       f -system may have a marked advantage.    The effect of frequency 

bias on a     'f -system is also shown in a number of simulation experiments 

with the IBM 704 computer, which have been described previously (Ref.  84). 

The horizontal/vertical bar discrimination problem happens to show up the 

J -system to its best advantage,  since, with a binomial perceptron, the 

expected value of the generalization coefficient,    9-•      ,  where S;  and   5* 

are in opposite classes,   is zero for this particular problem.    A Poisson 

model, where the interaction between the horizontal and vertical bar classes 

is non-zero, would not perform as well in this experiment, and the binomial 

model would also perform less well in experiments with classes of stimuli 

which could achieve   greater intersections. 

Figures 26,   Z7 and 28 show some typical experiments performed 

with a digital  simulation program,   for binomial    'f -perceptrons of sizes up 

to     /V?       ' ,  and a 72 by 72 retina.    The stimuli are kept within the 

retinal field in these experiments by requiring that their centers remain 

within a  13 by 13 field,   so that there are  169 possible positions for each 

stimulus.    In Figure 26(b), the effect of allowing rotations up to 30 degrees 

and up to 359 degrees  (inclusive),  in addition to displacements within the 

retinal field,  is illustrated.    Figure 28 shows the effect of size bias where 

one class of stimuli (the letter "F") can be considered as subsets (on the 

retina) of stimuli of the other class (the letter "E").    With purely excitatory 

connections from the retina,  the situation is clearly much worse than with 

both excitatory and inhibitory connections,  as shown in Figures 28(a) and  (b). 

From the equations for the expected value of the signal 

(Equation 8. 13,  for example) it can be seen that a bias in the correct 

direction may exist even when the perceptron is occasionally reinforced 
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in the wrong direction.    Several experiments have been carried out by 

Hay using the Mark I perceptron at CAL,  to study the effect of "random 

errors" by the experimenter training the machine (Ref.  30).    In an 

experiment on the discrimination of the letters "E" and "X" with a      /- 

perceptron employing S-controlled learning,   it was found that the perceptron 

learned to discriminate the letters with 100% accuracy despite the introduction 

of 30% misidentifications by the experimenter (i.e.,  by the r . c . s . ).    This 

experiment emphasizes the fact that the perceptron can exceed the level 

of performance of its "teacher" or reinforcement control system. 

8.2       Discrimination Experiments with Error-Corrective Reinforcement 

While it has been demonstrated in Chapter 5 (Theorem 8) that 

the error correction procedure will not always lead to a solution with the 

'f -system,  practical systems seem to work about as well as    o^ -systems, 

and may actually learn somewhat faster in some cases.    Figures Z9 and 30 

illustrate two sets of experiments on        \   -perceptrons ,   using the 

Burroughs  220 computer at Cornell University,  in which performance is 

compared with perceptrons having the same topological organizations, but 

employing an      ryL -system memory rule.    Since the error correction 

procedure will lead to a solution regardless of sequence or relative 

frequency of stimuli in the classes being discriminated,  and regardless 

of relative sizes of stimuli,  the special advantages of the      ,?'-system in 

overcoming frequency bias and size bias are relatively unimportant here. 

In most experiments with error-corrective reinforcement, therefore,  the 

simpler     o/ -rule is generally employed. 
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8.3       Discrimination Experiments with R-controlled Reinforcement 

The performance of a      / -perceptron in R-controlled 

experiments (where the r.c.s.  is entirely isolated from the environment 

and reinforces the perceptron positively at all times,   regardless of what 

its current response happens to be) is somewhat more interesting than that 

of the    '/ -perceptron.    Since it is possible to have negative generalization 

coefficients for the    T -model,  two distinct possibilities suggest themselves 

which were not present before:    (1) The system may form an unstable 

classification of the environment,   with individual stimuli continually shifting 

membership from one class to the other,  due to negative interaction between 

successive reinforcements;  (Z) the system may form a stable dichotomy with 

some stimuli in the positive class and some in the negative class.    The third 

possibility corresponds to the expected situation with an    o/. -system, namely: 

(3) The system may form a stable classification with every stimulus in the 

same class,   the alternative class being empty, 

An unpublished theorem by H.  Kesten proves that (for a       Tf - 

system in which the values are allowed to grow without bound) the first 

alternative is impossible.    Every perceptron will ultimately form a "stable" 

classification,   in which every stimulus is assigned to one of the two classes 

and will remain in.the same class with probability 1 at any future time.   The 

remaining two alternatives both remain possible,   however. 

At the present time,  a fully satisfactory analysis of the classi- 

fication tendencies of     /"-perceptrons which are "left on their own" in an 

R-controlled experiment is not available.    A number of special cases can 

Personal communication. 
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be analyzed heuristicaily, however,  and some of these are illuminating. 

Moreover,  a series of simulation experiments has been completed which 

illustrates performance on some typical problems . 

The basic feature of this system in an R-controlled experiment 

is a tendency to classify stimuli on the basis of retinal location,   rather than 

geometrical similarity.    If two stimuli occur in the same location on the 

retina,   covering largely the same set of sensory points,   cj ■ ■     will tend to 

be positive,   so that the reinforcement of one stimulus will tend to generalize 

automatically to the other.    A "cluster" of such stimuli,  projected onto a 

limited region of the field,   will tend to be classified the same way,  either all 

positive or all negative.    On the other hand,  two stimuli which cover disjoint 

sensory sets will (in a binomial model) tend to have a negative In 

this case,   reinforcing    j •     with   ^   positive will automatically assign    5 "      > 

to the negative class,   if its value was previously zero.    Thus,   clusters of 

stimuli which arc "well separated" will tend to go into opposite classes,   with 

a binomial      /f -perceptron.    The following experiment illustrates this 

tendency quite clearly: 

EXPERIMENT 9:    For the same  retina  and environment of horizontal and 

vertical bars described in Experiment 1,   let the stimuli occur in a random 

sequence,   as in Experiment 3.    During the training sequence,  R-controlled 

reinforcement is employed.    The response to each of the 40 bars is then 

determined,   to establish the classification which has been developed by the 

perceptron. 

In a Poisson model,   the expectation of    rj^ :     for disjoint stimuli is zero, 
in the     /'-system,  and all stimuli will tend to go into the same class 
unless they form completely disjoint clusters,  in which case the class 
assignment will be random for each cluster. 
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In a number of repetitions of this experiment (which was 

simulated with a 704 computer for a very large,  or infinite   A/     , binomial 

perceptron,  it was found in every case that the perceptron placed ten 

adjacently located horizontal bars and ten adjacent vertical bars in the 

positive class,  and the other ten bars of e a c h   type    in the negative class . 

The dynamics of the process can be readily followed in a heuristic fashion. 

The first bar to be seen  -- say a vertical bar -- may evoke a positive or 

negative response at random.    If      /•   =•■/-/       ,  then the connections from the 

responding A-units will each gain a positive increment of value,  and connections 

from inactive A-units will become slightly negative,   so that the total  value is 

conserved.    For two disjoint bars in the "same" class (i.e. ,  both horizontal 

or both vertical)    n--    will be negative,   but for the two closest neighbors on 

either side will be positive.    The generalization. ,  to members 

of the "opposite" class (i.e. ,  one horizontal and one vertical) will be zero, 

since the intersection between any horizontal and vertical bar,   in this 

environment,   is equal to its expected value,  yielding zero generalization for 

a binomial      /'-system (see Page   146).    Consequently,   the horizontal and 

vertical bars will never interact,   regardless of the sequence in which they 

occur,   and each of these two sets of stimuli will organize independently. 

Consider,   therefore,   the development of a classification for the vertical bars, 

after the first has been associated to      ■•       -/ .    If the second vertical bar 

in the training sequence should happen to be one of the two close neighbors 

on either side of the original bar,   this will immediately evoke the response 

r /- /  ,  and will be reinforced in the same direction as the previous bar, 

extending the net positive generalization to at least one additional member of 

the vertical set.    At the same time,   vertical bars which are more than two 

positions removed from both of the bars already seen will now have twice 

the negative reinforcement that they received before,  due to the summation 
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of the negative     Q- ■     .    If one of these bars should occur,  the response will 

be -1 and     V       will be negative.    This will not only spread negative value to 

the adjacent stimuli, but will add to the positive value of the stimuli which 

were previously placed in the positive class.    Thus two mutually supporting 

"nuclei" of stimuli are formed,  one in the positive class and one in the 

negative class,  which tend to spread their domain to neighboring stimuli, 

but tend to "repel" remote stimuli,   supporting their adhesion to the opposite 

class.    Under these conditions,  it is plausible that the most stable balance 

between classes will be found when the classes are evenly divided,   each 

tending to attract marginal stimuli from the other to the same degree. 

Simulation experiments with this procedure show that a stable 

dichotomy tends to be formed after the first few hundred stimuli of the 

training sequence, the probability of a change in class membership being 

very small thereafter.    The terminal condition is of the type indicated above, 

with 10 horizontal and 10 vertical bars in each class of the dichotomy. 

8.4       Detection Experiments 

In detection experiments,   the same general conclusions hold 

true as in the case of   c■   -systems (Section 7.4).    In the case of noisy 

environments with a large retina,   it was noted that the intersection of a 

noise pattern with any other stimulus will be equal to the expected value 

of the intersection,   i.e.,   to the product of the measures of the a ctive 

S-sets.    For the binomial     -"   -system,   this implies zero generalization 

from a reinforced "positive" stimulus to a noise pattern,   and zero 

generalization from one noise pattern to another.    This means that a 

class of positive stimuli can be learned without any generalization to noise 
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patterns,  but that negative training on a limited sample of noise patterns 

does not generalize effectively to new noise patterns.    As in the case of 

the       v -system,   the use of a threshold greater than zero on the R-units 

should effectively separate positive stimuli from noise patterns.    It is 

worth noting that for discriminating a single class of positive stimuli 

from noise,  a monopolar reinforcement system (Defintion 35,  Chapter4) 

will work as effectively as a bipolar system,   since reinforcement given for 

negative responses has little or no effect on future performance (except for 

those noise patterns actually seen,  or nearly identical to those seen). 

Several experiments have been performed with the Mark I 

perceptron at CAL to evaluate the performance of       ^-pe rceptrons in noisy 

environments,   and in problems in which positive  stimuli such as letters of 

the alphabet have been mixed with extraneous,   but similarly organized 

stimuli (geometric patterns,   other letters,   etc.).    Performance on the 

discrimination of the letters "E" and "X" with various amounts of noise 

present has been reported by Hay in Ref.   30.    Two 240 A-unit perceptrons 

were tested,  both learning to perfection in the absence of noise.    With noise 

present,  one perceptron learned as well as before,  the second falling to 

about 75% accuracy.    The amount of noise introduced was not carefully 

quantified in these experiments,   but it is clear that the perceptron can 

perform appreciably better than chance as long as a human observer can 

still detect the original letters embedded in the image      In the experiments 

with superimposed images of irrelevant patterns,   a poorer level of 

performance is obtained.    A perceptron trained to respond positively to 

the letter X,   with monopolar     ^'-reinforcement,   will generally give the 

proper response whenever an "X" is present,   but tends to give the 
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positive   response quite frequently to triangles,   squares,  or other letters as 

well.    The introduction of a high response threshold improves performance 

considerably,  but a system capable of responding in terms of figure-ground 

organization would clearly have a great advantage in such experiments.    As 

the quantity of background material is increased,  the performance of an 

elementary perceptron in detection experiments deteriorates rapidly. 

A striking difference between an elementary perceptron and a 

human observer in detection experiments is that the human will show vast 

differences in performance depending upon organizational properties of the 

background and its relationship to the figure. For example, the human 

observer will readily recognize the letter "E" in Figure (a), but will find 

it hard to segregate the "E" from the extraneous lines in Figure (b). An 

elementary perceptron would show little or no difference between these two 

situations . 

(n ) (b) 

Typical test patterns for detection experiments 
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8 . 5       Generalization and Other CapabiliLies 

In "pure" generalization experiments,  v/here the test stimuli 

are disjoint from the training stimuli,  the       ■' -system has no advantages 

over the      -.- -system.    In fact,   the binomial     ,'  -system,  due to its 

negative      <• •       for disjoint stimuli,   will actually tend to place a disjoint 

stimulus in the opposite class from the reinforced stimulus,   unless members 

of the opposite class have also been reinforced,   in which case the effects tend 

to cancel. 

Where the training stimuli cover the retina in a representative 

sample of locations,   the gamma system has the possible advantage of low 

or negative generalization to patterns which have small intersections with 

the trained patterns.    This shows best in such experiments as the horizontal/ 

vertical bar discrimination experiment,   where generalization from horizontal 

to vertical bars is zero.    As was noted in the case of R-controlled discrimina- 

tion experiments,  genera hzation in      / -systems,  as with all elementary 

perceptrons,   tends to be based on the location rather than the similarity of 

the stimuli,   in any more fundamental sense.    Ideally,   we would hope to find 

a system in which    g- •     is large for all pairs of stimuli,   5;    and   j-    ,   which 

are "similar" or "equivalent" under some group of spatial transformations, 

such as rigid motions,   dilatations,   or projective transformations,   and small 

or negative otherwise.    Except in exceptional and highly restrictive 

environmental conditions,   this condition    is not to be found in elementary 

perceptrons .    Highly artifactual organizations which have the required 

property can be designed in the case of four-layer series coupled perceptrons, 
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as will be seen in Chapter 15 ,      Systems which spontaneously acquire the 

required organizational properties are found chiefly among the cross- 

coupled perceptrons,   however,  and will be discussed in Part III of this 

volume. 

In general,   it is seen that      /"-perceptrons have much the same 

properties   as     rv -systems.    In S-controlled experiments,  especially with 

frequency and size bias present,  they perform somewhat better,  but in 

error correction experiments there is little to be gained from the gamma 

rule,  and there is the possibility that the       ;' -system may fail to work where 

an       ry -system would have succeeded,   as proven in Chapter 5.    The 

performance in R-controlled experiments is somewhat more interesting 

than that of     o/ -systems,  but the classifications which are formed spon- 

taneously tend to form on a basis of classification related to position of 

stimuli on the retina,   rather than similarity,   and are consequently of 

minimum psychological interest. 

The      /' -system may be somewhat more plausible as a biological 

memory mechanism,  due to its fundamental conservative property.    If 

biological memory is due to a physical process which maintains some over- 

all equilibrium,   such as a chemical substance the total amount of which 

remains invariant,   or a competition among afferent processes for "Lebensraum" 

in the neighborhood of an efferent neuron,   this property would certainly be 

indicated.    It should be emphasized,   however,   that the conservation of the 

total value,   as in the systems considered in this chapter,   is insufficient to 

keep individual coupling coefficients,     T.r-■      ,  from becoming indefinitely 

great,   since they may be balanced by negative values of equal magnitude. 

Such a condition is quite implausible in any real physical system.    In the 

next chapter,   elementary perceptrons with memory dynamics which limit 

the growth of the values are considered. 
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9.      "ELEMENTARY PERCEPTRONS WITH LIMITED VALUES 

Two basically different mechanisms for limiting the growth of 

values,      </y •      ,  will be considered in this chapter.    The first mechanism 

is a simple upper and lower bound,   such that the value may grow up to the 

designated limit but no further.    Systems employing this mechanism show 

"saturation properties" as the connections attain their limits.    The second 

mechanism is an exponential decay,   which determines an equilibrium point 

for each       "• •       depending upon the frequency with which it is reinforced. 

If the decay rate is very small,   such systems tend to approach a terminal 

state resembling the performance characteristics of a perceptron with un- 

limited values after a long training sequence.    Systems with strictly bounded 

values will be considered first. 

9. 1     Analysis of Systems with Bounded Values 

Two types of analysis have been carried out for systems 

having upper and lower bounds for        r-_       .    The first deals with the 

terminal distribution of the values after a long period of exposure to a 

random sequence of stimuli,   with S-controlled reinforcement.    The second 

deals with the actual performance of a bounded-value perceptron.    In both 

cases,   we will follow the method of analysis originally employed by 

Joseph,   in connection with bounded -^-pcrceptrons (Ref.  41)   .    All of 

these analytic results apply to experimental systems using S-controlled 

reinforcement procedures. 

Bounded ■systems have been called •systems in Ref.  41 
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9.1.1    Terminal Value Distribution in a Bounded      c^-system 

Suppose an     cv. -perceptron has upper and lower limits   L   and   JL 

for the values     Ir.-f*   ■    Suppose a particular connection,    c-„   ,  receives 

a reinforcement of   +1 with probability   p   ,   -1 with probability   o    ,  and   0 

with probability     \ - p - n .    If all stimuli are equiprobable,  and the 

perceptron is trained by an S-controlled procedure,  this would correspond 

to a connection from an A-unit with bias ratio   p/Q    (see Definition,  Page 77), 

It is assumed in the following analysis that the reinforcements occurring at 

different times are statistically independent. ' For convenience,     L      and    £ 

are taken to be integers.    Then the value,     'r--      ,   may assume any one of 

/_-■// /   distinct states (  /   , / r- /, . . . ,    L        ).    Clearly,   if unit     a; 

responds more often to stimuli of the positive class than to stimuli of the 

negative class,     v-r     will tend to grow in a positive direction.    Eventually 

it will arrive at the limit    L    ■    At this point,   a run of "negative" stimuli 

may bring it down again,   but it can never exceed    L     .    If the unit has a 

negative bias,     //;>   will similarly tend to remain in the neighborhood of 

the lower limit,     L The problem is to find the terminal probability- 

distribution (if one exists) for the value    V-r   ,  as the duration    T    of the 

training sequence goes to infinity. 

In the following analysis,   it will fir. L be assumed that a stable 

terminal probability distribution for i r exists,  which will not be 

altered by the addition of more stimuli to the training sequence.    On the 

basis of this assumption,   an equation for the distribution can be found.    It 

will then be proven by induction that the proposed distribution is,   in fact, 

a stable probability distribution. 

■ 222- 



Let      Tf(x) probability that     irl-r=X    ,  in the terminal 

probability distribution.    Let      7Tf£) = ,c This will be equal to the 

probability of   -TA-^   arriving at £   from above,  plus the probability that 

(/;,,    remains in state   /     if it is already there.    Thus, 

rrfs) =  r   .-. ?   TT(/.) + rr(£+ I)   ■>- d-p -y.) nii) 

Hence 

■v;> v- / 
r, ■>',. 

(9.1) 

For any integer     ? 6 

(J A ,- - /.;   ■-   y 77 (£+ i) r   ,/, n {£ +1 -2) + (l- p - r;; IT (£ f I - Ij 

Hence, 

(St.:) (I -; : i    y + t 

(9.2) 

Thus,  all values of      FT'x)     can be computed if the probability xT   of    /y-f 

being at the lower liinit is known.    Since the sum of    //     for all possible 

values of   'i^;r  must be 1 ,  the value of   /:    can be obtained from the 

equation: 

/ ■ /■ 

L -■-■■; 
(9.3) 
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For the distribution to be stable,  it is sufficient that the proba- 

bility of ^/:■r    being at its upper limit satisfies the equation. 

^(Lj   -   pTftl -I)   + (I -n) JT{L) 

By induction on     '     ,   it will be shown that 

777V t- i }   -    /; I IT ■ [ > i - lj\   t [i -q)TT (f+ l) 

(9.4) 

7 
f.il-l) 

(9.5) 

for        ! <   i     ':.    L  - y .    (9.4) is only a special case of (9-5). 

To begin with,  for      I -   I     .  we have     TT(P.) -   r     and from (9. 1), 

ff (£ + I)   -,   -—    .    This clearly agrees with (9.5).    Now assume (9.5) is 

true for /  < 

V.   r v  / 

/- / I   .    That is 

f f .  r   r 

But by (9.2),   letting r t I   ,  we then obtain 

77 (7; f- r t I i f^l P   rr/ 

/       L? 

J U + r 

I   ^  II (i+r- l) 
v 

TT[^r-l) 

Thus,  having assumed (9.5) to be true for     /       r    ,  we find that it is 

also true for       (        r /- /     ; consequently it is true for all     /     ,  and (9.5) 

must be true.    From (9.5) it is also clear that the quantities    7T    will 

all be non-negative,   so that the function    T/fx)   meets the requirements for 

a probability distribution. 
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Equation (9.5) can be used to compute     Tf(y)     by assuming an 

arbitrary value for    .c    ,and then normalizing the distribution as in (9.3). 

The equation can be simplified by taking the lower limit,   ^    ,  equal to 

zero,  and setting   c - t      for the unnormalized distribution.    Then 

JT(x) = f-#-; 

bution,        c   'r | 2L   ( * 

prior to normalization.    For the normalized distri- 

') / 
This completes the proof of the following theorem: 

THEOREM: In a bounded       v -perceptron,   with S-controlled reinforce- 

ment,   the probability distirubtion     TT'-;r''   (for the value of 

a particular connection) approaches a stable terminal 

distribution of the form   U(■ - c (-t ■ where  -c 

is a normalization constant equal to   —/TJ y;-/'•;. / 

Figure 3 1  shovi/s the probability distribution for    ?/;r      for 

several values of / and for 40 increments between the upper and lower 

limits.    (The distributions are symmetric for equivalent values of '7 

with upper and lower limits reversed. )   Note that with even a slight bias 

'    '      ) there is a very low probability that       '-,• .      will have a sign 

opposite to the bias.    For . '.■    ,  for example (and taking      /.' -■-■   -20 

I >■ }fj     ,   as in the figure) the probability of a positive     ''■r;^      in the 

terminal distribution is only  .0097.    If the  range were half   as great (20 

increments instead of 40) the probability of positive     ?/'-r      for the same 

conditions would be increased to  .ZZ95. 
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The frequency of possible ratios for A-units responding 

to horizontal and vertical bars can be determined from Table 1.    From this, 

it is clear that the majority of units have a pronounced bias towards one 

class or the other,   so that one might expect fo find the majority of active 

connections having values in the neighborhood of the appropriate limit,  L 

or   i   .    This heuristic argument supports the conjecture that the bounded 

system should still be capable of learning discrimination tasks in S-controlled 

experiments,   even though the system tends to "saturate",  with all values in 

the neighborhood of the upper or lower limit.    The quantitative performance 

of such systems will be taken up in Section 9. 1.3. 

9.1-2     Terminal Value Distribution in Bounded      /"-systems 

In a bounded     '-'"-percept ron ,  the analysis of the terminal 

distribution for   "/•■„   is complicated by two considerations.    First,   there 

are at least four possible values of   A'ir ,  namely      / - 6/     ,     - / + Q-        , 

- ',>;   ,  and    v- ,/.    ,   each with its own probability.      If    0-     is not equal for 

all stimuli,  the number of possible values for   .'.   -   is increased in 

proportion to the number of different values for   (?;    .    The second 

consideration is that the conservation rule,   which requires the sum of all 

values to remain constant,   makes the admissible increment for one 

connection dependent on how many of the other connections are currently 

free to move.    For example,  if all of the "active" connections have values 

equal to    /       ,  the expected decrement, -   j-     ,  for the inactive connections 

due to the application of a positive    '' \-   cannot occur. 
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Due to these complications,  an analysis for a true    /'-system 

has never been carried out.    An analysis has been completed by     Joseph 

for a       /' -system with monopolar reinforcement (i.e. ,   reinforcement 

is applied only for stimuli of the positive class,  and     f/ = 0    for stimuli 

of the negative class).    In this case there are only two non-zero changes 

which might occur,     / - ,,'•     for active connections and  -(}■   for inactive 

connections,  and the reinforcement of a given connection does not depend 

on the state of any other parallel connections-,  as it does in the       ') -system, 

The analysis is a somewhat more complicated form of that presented in the 

preceding section (due to the inequality of positive and negative changes in 

''■-■r     ).    Since the equations are of limited interest aside from the specific 

model considered,  they will not be repeated here,   but they can be found, 

together with typical distribution curves,   in Ref.   41. 

9.1.3     Performance of Bounded     ce -systems in S-controlled Experiments 

From the preceding analysis,   ii is clear that with a large 

number of increments between the upper and lower limits of     -■, r     ,  the 

value will ultimately tend to remain in the neighborhood of the upper or 

lower bound,  depending upon the bias   ratio of    u-    .    In the following 

analysis,   the problem is simplified by assuming that the limits are 

actually trapping,   so that once a connection has arrived at value    L    or 

■t      ,  it remains there permanently,   regardless of future reinforcement. 

Consider a basic training sequence of  m   stimuli,     _'   ....  5m   , 

which is then repeated a sufficient number of times to "saturate" the 

system,   i.e. ,  to drive all biased values to their limits .    If the value of a 

connection is   7/    after the first    "'    stimuli,  then after   r   repetitions 

of the training sequence,  the value will be 
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min   ( L ,  r-rj       if   zr > 0 

min  {-P ,  r ir)       ii ir < Q 

0 if    7r   -   0 

for a bounded    r-/-system.     An unbounded     n/. -system will have the same 

performance after   r   repetitions of the training sequence as after a single 

repetition.    The following analysis compares the performance of the 

"saturated" bounded       .   -system with that of the unbounded      '-'' -system 

at the end of the training sequence.    The analysis will be accurate for the 

assumption of a large range between    L    and    £   ,   so that after the first .m 

stimuli none of the values have reached their limits. 

Let     ■'       be the probability that   A  -  f /   for test stimulus      5(    , 

for the unbounded      -v' -system,  and      •'-        be the corresponding probability 

for the bounded       .   -system.    Then the conditional probability   (,^x\ 
L'x ) 

gives the performance of the bounded system as a function of the performance 

of the unbounded system (which is known from Chapter 7). 

Suppose     /v       A-units are activated by the test stimulus,     Sx 

Then for the unbounded system,    ' ''/i'v  '   " $'■ 3 '    where   g)   is the cumulative 

distribution function defined by equation (7.7) and 

/Ao  A-f-v.; 

where     F{'>.-■ r)   -    expected value of   a connection activated by    5*     .   and 

^('v;r)        standard deviation of such a connection.    The bounded      c/ -system, 
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on the other hand,  will give response +1 if the proportion of the   Na 

active connections having value   L    is greater than     - A/(L-£) .    If 

£ =   - L      , then this reduces to a requirement that the number of active 

cor^nections having value   L     should be greater than the number having value A 

The connections having value 0 may be ignored.    As with the unbounded 

system,  it is assumed that after the first m   stimuli, 'ir; L r is normally 

distributed with expected value    Fits]-..)    and variance      cr   {ir-^^   .    This 

assumption is reasonable if the range of  i'':r   ,   (L-/)   is greater than  2m 

and m   is fairly large.    If the range of (r is less than   2m    ,  the analysis 

can be considered only an approximation,  which becomes increasingly poor 

as the range diminishes. 

Under these conditions,  in the bounded system,  the probability 

that the terminal value of a connection is   L    is equal to the probability that 
z    ^ 

lr:r   is positive after the first m   stimuli.    This is equal to     $ { JA < 

Since    0   is a cumulative probability distribution it is a one-to-one function 

from its domain to its range,  and is therefore invertible.    Thus,  given   P. 

and     No    ,  the probability    PL      that a connection activated by   5      goes to 

value    L     will be: 

P    Pv . N F, 
■ -i 

//v,; 
(9.6) 

and this yields 

fp:\ 

N., 

L N '' \ 
/','  f 1- P. 

No -7 

(9.7) 
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where r = 

greater than or equal to 

,  the notation [/?]    indicating the least integer 

r;   .      To obtain    ( A^ | Px )    ,  the expectation of 

(9-V) with respect to    A/,      is required.    For  reasonably large values of    /VQ   , 

(pr' \P<) ^ (px\ pt' r (No)) ■   Substituting      Qx Na       for   E(N^)    this 

finally yields: 

where P * 

v„ 
/v. py n-p 

L L 
O: ^a 

(9.8) 

i-^i r  -   \C±*N*\L 
l^,Nc L   i-   U 

In Figure 3Z,   the conditional probability of error in a bounded 

-perceptron is shown as a function of the error probability   f / - Px) 

for the unbounded system,  for several values of        N . -—7-77-       is 

taken to be  1/2.    Curves of this function for cases where upper and lower 

limits are not symmetric can be found in Joseph,   Ref.  41  (Figures  10-14). 

9.1-4     Performance of Bounded     /-systems in S-controlled Experiments 

The analysis in the preceding section,  and the curves shown 

in Fig.   3Z,   can be applied without modification to bounded     /'-perceptrons 

The true      ^-system,   however,  may perform somewhat better than the 

^-system,   since not all values can "saturate" independently.    If more 

than half of the connections have a positive bias,  for example,  not all of 

the positively biased connections can go to the limit    L    ,   since this would 

'I1 

It is assumed here that    /   > 0 ,   / <; 0  • 
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require that the remaining connections take on values less than    t    , 

in order to satisfy the conservation rule.    In the    y -system, therefore, 

we would expect a greater number of connections to remain at inter- 

mediate values,  rather than going to the limits,  and this should result in 

a "compromise" between the performance of an unbounded and a bounded 

value system.    An exact analysis of the       ./'-system has not been carried out. 

9.2    Analysis of Systems with Decaying Values 

The bounded value systems have two disadvantages relative to 

the "ideal" unbounded systems.    First,  they permit a smaller number of 

memory states,  and second,  in S-controlled experiments they tend to 

arrive at a saturation condition in which their performance is actually 

poorer than that obtained during the transient learning phase; that is, 

their performance curve first increases to a maximum,  and then declines 

to a terminal asymptote as the system saturates.    The first disadvantage is 

not serious,   if the range of   -;-■ t,   is reasonably large.    The second may be 

more critical,   since it means that units with a low "utility" for a given 

discrimination are pulling as much weight in the saturated system as units 

with high utility (as measured by their bias  ratios).    In the cross-coupled 

perceptrons considered in Part III,  this latter consideration is more 

salient than in elementary perceptrons. 

An alternative value-limiting mechanism,  which is also of 

interest due to its apparent biological plausibility,  is obtained by allowing 

the values to decay exponentially towards a resting state (generally taken 

to be zero).    This mechanism is relatively free from the difficulties 
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encountered in the bounded value system.    In this model,   v^,    will 

continue to grow in the direction determined by the bias ratio of  at-   ,   until 

the expected rate of reinforcement is exactly balanced by the rate of decay. 

At this point a dynamic equilibrium will occur,  with  %-■     tending to fluctuate 

about the equilibrium level.    This means that connections which are frequently 

reinforced, in a consistent direction, will attain higher values,  in the limit, 

than infrequently reinforced connections, or connections with low bias. 

Consider an    rx. -system with decaying values.    Let the decay 

rate be equal to    * 'o< < t)     .    Let the probabilities of positive and negative 

increments to  ir-^   be p   and   a    ,  as in the analysis of bounded    c^-systems. 

As long as    n"    is small,   vr   will tend to approach an expected asymptotic 

value equal to     n ~ o      o    .   At this point, the expected rate of gain, per unit 

time, is   p-q.   ,  and the expected rate of loss is    dV;-r ~ /' -7 •    If the value 

of   6'   is very small, and the relaxation time correspondingly long relative to 

the expected recurrence rate of stimuli from the environment, this system 

should approach as a limit the same performance as the unbounded       ry - 

system,  where  ->r-r   tends to grow in proportion to   p - q   .    If   d      is some- 

what larger,  however,  we find that the most recent stimuli in the training 

sequence will have the most pronounced effect, progressively earlier stimuli 

exerting a progressively dimishing effect due to the decay of    i-r;r   -    Such a 

perceptron tends to forget its remote experience in favor of more recent 

experience. 

The dependence of these systems on the sequence as well as 

the identity of training stimuli makes them difficult to analyze when the 

relaxation time,  or "half-life" of lr-r,     is on the same order as, or 
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shorter than,   the training sequence.    If   (f    is sufficiently small,  per- 

formance can be assumed identical to the unbounded system.    An absolute 

bound on the maximum attainable magnitude of    v-_   for a decaying value 

perceptron will be    I / (f ,  corresponding to a situation   in which   x:-r    is 

reinforced continuously in the same direction. 

9.3       Experiments with Decaying Value Perceptrons 

9.3.1     S-controlled Discrimination Experiments 

The assential features of S-controlled discrimination experi- 

ments with decaying value perceptrons have already been noted in the 

preceding section.    If the decay rate is small,   the decaying value system 

approaches the performance of the corresponding "ideal" or unbounded 

system.    If the decay rate is relatively large,  forgetting occurs,  which is 

greatest for temporally remote events and negligible for recent events in 

the training sequence. 

9.3.Z       Error-correction Experiments 

In discrimination experiments with error corrective rein- 

forcement,   a more complicated situation exists than in the case of S- 

. controlled experiments.    In the error correction system,   once the 

perceptron has  learned a task,   reinforcement ceases,  and the values 

of a decaying system would be expected to decay back towards zero. 

In a perfectly noise-free system,  the values would all decay in proportion 
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to their magnitudes,  however,  and consequently their ratios would never 

change as long as no further reinforcement was applied.    Thus once per- 

fect performance is achieved,   it will not be lost as long as the values 

remain above the noise-level of the system,  despite the decay effect. 

This also means that if a "run" of correct responses occurs during 

training,  the ratios of vy,,   for different connections will be unaltered,  so that 

the next error to occur will be no different in the decaying value model than 

in the unbounded model.    Consequently,   the application of reinforcement just 

sufficient to correct this error will bring the ratios of the values to precisely 

the state that they would have in the unbounded model,  and ability to achieve 

a solution to a classification problem should be unaffected,  in principle..    In 

actuality,  however,  the continuously decaying values clearly present a 

problem.,   since any physical system will ultimately forget ,  when the values 

become small enough to be undetectable. 

A variation of the decaying value model is capable of eliminating 

the problem caused by the diminution of the values in an unreinforced system.. 

If     l^//.      is held constant so long'as no reinforcement signal is received 

from the reinforcement control system,   but decays exponentially in the 

presence of such a signal,  the learning ability of the perceptron will still be 

unaltered (by the same argument as above),  and no change will occur once the 

task has been properly learned.    This means that the increment to the value 

of     ''/■ r     at time   /    will be 

&nrlr (t) \<^ (f) - rf'i-r (t)\  ■  Yf it) 
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where    tf(t)       maybe  +6   , -£    , orO. 

It should be noted that in the error-correction procedure, the 

loss of temporally remote experience with large values of   rf    does not 

occur,  in an ideally functioning (noise-free) system.    Unlike the S-controlled 

system, where the magnitude of new reinforcements remains unchanged as 

the values decay, the error correction procedure will require smaller or 

less frequent increments in order to correct ah error,  and earlier experience 

tends to be retained about as well as in the unbounded,  or non-decaying 

system.   A loss of early experience does occur,  in such systems,  but it is 

due to "writing over" earlier memory traces with more recent reinforcement, 

rather than to a passive decay,  as in the case of the S-controlled system. 

This observation would seem to indicate a closer correspondence of the 

error-corrective system with what is known of forgetting in biological 

systems , 

The mean performance curves for eight simulated perceptrons 

with    d      0    ,    a - •    . I    ,  and    d - -Oi    are shown in Fig.   33.     Note that 

for these actual systems,   there is a progressive deterioration of performance 

as the decay rate is increased. 
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9-3.3     R-controlled Experiments 

The most interesting experimental results obtained to date 

with decaying value perceptrons deal with the performance of decaying 

^T-systems in R-controlled experiments.       Experiment 9 has been 

studied most extensively,  by means of simulation experiments repre- 

senting a very large,  or infinite   N    ,  perceptron.    Unlike the previous 

experiments (discussed in Section 8.3) monopolar reinforcement was 

employed,   i.e. ,   the perceptron was reinforced positively for    f   =- + I   , 

and was not reinforced at all for      r    - - I   .    The system was further 

modified by assuming a slight negative quantity to be added to   Air;r (t) 

for all    ('    ; that is,  an invariant negative reinforcement component was 

added uniformly to all connections, regardless of what stimulus occurred, 

and regardless of the activity state of the connection.    In the absence of 

any other components,  this would cause a progressive downward drift of 

all   IS;r   until they achieved an equilibrium with the decay rate.    It was 

assumed that this negative component was sufficient to add a quantity 

equal to -0.0001 to the set of connections activated by a single stimulus. 

Thus,   apart from the decay,   the change in values for each reinforcement 

could be expressed by the equation: 

The effect of the fixed negative component in these experiments 

is to create a negative generalization from the first stimulus to occur 

(say a horizontal bar) to all members of the opposite class (vertical bars) 

in place of the zero generalization which would otherwise occur with a 
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j' -system.    The result is that after having seen a single stimulus 

which activates a positive response,  all members of the opposite class 

are thenceforth permanently classified in the negative class,  as no 

further events can occur which will make one of them positive.    If the 

initial stimulus is a horizontal bar,  then,  with monopolar reinforcement, 

no vertical bar will be reinforced,   since all vertical bars evoke a -1 

response.    The next stimulus which can possibly be reinforced is,   in fact, 

another horizontal bar which happens to be close enough to the previous 

one to have received positive generalization from the first reinforcement, 

i.e. ,  the first or second neighbor on either side.    The result is a gradual 

growth of the positive stimulus set,  by accretion of near neighbors which 

have received positive generalization from those bars already classified 

as "positive".    Thus,   having started out by randomly placing a horizontal 

bar in the positive class,  the system has no choice but to include only 

horizontal bars in the positive class,   and,  with sufficient time,  all 

horizontal bars are so classified. 

While this phenomenon occurs even if the decay rate is zero, 

it is markedly accelerated by a non-zero decay rate.    With    if  -   ''     ,   the 

perceptron shows a high degree of "rigidity" in its early classification,   in 

which some horizontal bars are positive,  and the remainder still negative 

(as in Section 8.3).    This is due to the continually increasing magnitude of 

the negative values evoked by the "incorrectly" classified stimuli,  which 

must be overcome in order to change their classification.    Thus,  as time 

progresses,   it becomes harder and harder to switch each additional hori- 

zontal bar into the positive class,   since an increasingly large number of 

■ 240- 



"marginal" positive stimuli must be reinforced in order to obtain the 

required amount of positive generalization.    Moreover, as the positive 

class expands, the stimuli which are centrally located within the "positive 

band" all contribute further negative generalization to the remaining 

stimuli, rather than helping to make them positive.    These combined effects 

lead to a convex,  negatively accelerating learning curve,  as illustrated in 

Figure 33.    The addition of a non-zero decay rate limits the negative value 

which must be overcome in order to change the classification of an 

"incorrect" stimulus,  and thus makes the system more flexible. 

If the decay rate is increased progressively,  it is found that 

there is an optimum at about     rf 0.01 .    If the decay rate is increased 

further,  instability occurs,   due to the loss of stimuli which were previously 

classified correctly,  but whose positive values have decayed to such an 

extent as to be overcome by negative generalization from other stimuli. 

These effects are shown both in the learning curves of Fig.   34(a) and in 

Fig.   34(b),   which shows the expected learning time to perfect performance 

(i.e.,  perfect dichotomization of horizontal and vertical bars),  obtained 

from a sample of 10 runs. 

It might seem,  from these results,that perceptrons organized 

in the manner indicated could be expected to form "meaningful" classi- 

fications of stimuli,   on some basis other than  retinal position.    Unfortu- 

nately,  the results,  while illuminating,  are highly restricted in generality. 

The proposed dynamics are too contrived to be biologically plausible,  and 

it is   found that in any environment in which classes of stimuli to be 
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differentiated permit positive generalization between members of different 

classes (a much more usual situation) the mechanism which yields good 

separation in the above example breaks "down. If   g- ■      between a single 

horizontal bar and any of the vertical bars were positive,  for example, 

the spread of generalization would not stop with the members of the 

horizontal class,   in the above case, but would invade the opposite class 

as well.    If,  instead of 4 by 20 horzontal and vertical bars,  the perceptron 

is confronted with an environment consisting of the twenty horizontal bars 

and a set of twenty pairs of parallel Z by ZO horizontal bars,   separated by 

a space of 3 units on the retina,   the perceptron will not spontaneously learn 

to distinguish single bars from double bars (although this task presents no 

difficulty in an S-controlled experiment). 

Another shortcoming of the spontaneous organization phenomenon 

which has been demonstrated here is the basically unbiological character of 

the learning curves.    It has already been noted that'these curves are convex, 

or decelerating.    A human subject,   or even an animal subject,   confronted 

with the problem of distinguishing horizontal from vertical bars might make 

many mistakes initially,   but would soon accelerate his learning as he began 

to generalize to new stimuli.    If he had a hundred bars,  in different retinal 

positions,  to classify,  the hundredth bar would certainly not present the 

almost insurmountable obstacle that it represents for the elementary per- 

ceptron.    Thus it is clear that the most sophisticated generalization phe- 

nomena which have yet been found in elementary perceptrons are still far 

short of what one should expect from an adequate brain model,   if biological 

standards are employed.      This problem will be re-examined at greater 

length in Part III,  where it v/ill be seen that multi-layer and cross-coupled 

perceptrons perform such tasks in a much more suitable fashion than those 

systems which have been considered thus far. 
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This completes the presentation of elementary perceptrons.    In 

the following chapters,  some other types of minimal (S-A-R) perceptrons 

will be considered, but it will be seen that none of these have capabilities 

for generalization appreciably beyond those discovered in the elementary 

systems , 
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10. SIMPLE PERCEPTRONS WITH NON-SIMPLE A AND R-UNITS 

In Chapter 4,  a simple perceptron was defined as one which 

satisfies the following five conditions: 

1.    There is a single R-unit,  with a connection from every A-unit. 

Z.    The perceptron is series coupled,  with an S-A-R topology. 

3. The values of all S-A connections are invariant. 

4. Transmission times of all connections are equal (   T   generally 

taken as 0). 

5. All signals generated by S, A,  and R-units are functions of 

the algebraic  sum of input signals arriving simultaneously 

at the unit. 

In the preceding chapters,   we have considered elementary 

perceptrons,  which are characterized by the additional constraints that all 

A and R-units are "simple11 units,   and that the transmission function of the 

connection      c; •     takes the form:      C--\t)       a ■ (t-T) ir-' (t)     .    A 

simple A-unit is a signal generating unit which emits an output signal 

O-   ~   -h I if the algebraic sum of the input signals,    o£;    ,  is equal 

or greater than the threshold   9   ,  and    0   otherwise.   A simple R-unit 

emits a +1  signal if the sum of its input signals is strictly positive,  and -1 

if the sum of its inputs is  strictly negative.    In this chapter,   we shall 

consider the properties of simple perceptrons in which these contraints 

are dropped.    This will include a brief consideration of linear networks 
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in which all signals are transmitted in proportion to their value; the 

properties of perceptrons with linear R-units but non-linear A-units will 

then be considered, and finally the question of optimum transmission func- 

tions will be discussed.    In later chapters, the remaining constraints of 

simple perceptrons will be modified,  and a number of non-simple systems 

will be analyzed. 

10.1     Completely Linear Perceptrons 

A completely linear perceptron is one in which all signal functions 

and transmission functions are linear,  i.e. ,  the output of unit   u;    is of the 

form      /./.;   =   r ■ cy;     t and the signal transmitted by a connection     C'       is 
.   * J 

of the form       <f ■ ■        u ■  ?•■■ ■   .    We will consider linear perceptrons in 

environments such that the inputs to an S-unit are either 1 or 0 (so that the 

conclusions apply equally well to perceptrons which are linear everywhere 

except in the S-units).    By analogy to Section 5.4,  we define the bias ratio 

of an S-unit as   n *   "~ ,  where   n ^    is the number of positive stimuli,  and 

n~ the number or negative stimuli which activate the S-unit.    For such 

systems,  the following theorem holds: 

THEOREM 1: Given a completely linear perceptron, a stimulus world, 

M/    ,  and a classification !~(W) such that the bias ratio of 

every S-unit is equal (and non-zero),  no solution to  C(W) 

can exist. 

PROOF:        Let    6 /        index of any stimulus in positive class (Si+) ■ 

i~ =    index of any stimulus in negative class (5^-J . 

A-    - 

r-Al 

index of   A      sensory unit 
th 

:)    =      signal transmitted from the   A.      sensory unit 
th A        .    . .       , 

to the    i      A-unit in response to stimulus   $/ 
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When stimulus   Si   occurs,  unit   a;    transmits a signal equal 

to    c^; (4)'>y-t-r     to the R-unit, where 

The total signal, u^   ,   received by the R-unit from   5j    is therefore: 

- Z>,-w ly; L La  C*Ai   (^   Vlr 

Since every signal  UA   rnust agree in sign with the classification of 5^ 

for a solution to exist,   we require that the following inequalities be satisfied: 

LLLCl^^^ir   > o 
(10.1) 

(10.2) 

But it has been stipulated that the bias ratio of each S-point is equal to a 

constant,      r  >   0     .    This means that,  for any    /     and    A-    , 

or,summing over S-units, 

A.    A- *■    k~ 

Substituting in the expressions (10 . 1) and (1 0. 2) we get the contradiction 

Z.': lr;r > o 
r 

■L r /   /: ^r-r < 0 
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which proves that a solution cannot exist. 

This means that if two stimulus patterns are placed in all 

possible positions on a retina,  the resulting classes of stimuli cannot 

be correctly discriminated by a linear perceptron.    As a consequence, 

such systems are relatively uninteresting,   even though they may successfully 

discriminate a moderate number of patterns which are restricted to limited 

positions on the retina.    In all systems considered from here on, there will 

be at least one set of non-linear components subsequent to the S-units in 

the perceptron network. 

10.2    Perceptrons with Continuous R-units 

The next type of perceptron    to be considered has simple A-units, 
* but continuous R-units,  such that the response    f-   - ßfi.'ij   ,  with  £   an 

arbitrary monotonic function of   u..-    .    This includes the case of linear 

R-units,  where       ^(u-)      /_ u;  ■     An important theorem which is 

analogous to Theorem 4 of Chapter 5 deals with the ability of such systems 

to learn arbitrary response functions (Definition 27,   Chapter 4) under the 

error correction procedure.    A response function assigns an arbitrary 

output signal (rather than just + 1) to every stimulus in   W   ■    We first 

prove the following Lemma: 

LEMMA 1:   Given a symmetric positive definite or positive semidefinite 

matrix, H ,  and any vector ?   ,  then    ("j ; Mj)= 0    only if 

A/ ,? 0 
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PROOF:       Since    H    is positive definite or semidefinite, there exists a 

matrix B such that     A/ = B'B   ■ 

=> B^ = 0   => 0  - ß'ßj.  - Hj. 

THEOREM 2: Given a simple     c/. -perceptron with simple A-units,  an 

R-unit with a continuous monotonic sign-preserving 

signal generating function,  a stimulus world   W   (in which 

each stimulus ultimately reoccurs) and any response 

function     P{w)    for which a solution exists,  then by 

means of the error-corrective reinforcement procedure, 

the given response function can always be approximated in 

finite time by an output vector     R{W) + e     , where   f 

is a vector of elements   (e (, € 2 , ■ ■ ■ , e n) ,   \£-\ <   e', 

where    f     may be an arbitrarily small quantity greater 

than zero. 

PROOF:        The following proof was suggested by R.  D.  Joseph.    From 

Theorem 3 of Chapter 5,   we know that under the conditions of the theorem, 

a solution  v   to the equation     Gir      u     exists.    Suppose the system is 

currently in the state   x.   ,   represented by     Gu   -  X    ■    From the definition 

of the G-matrix,  and the fact that every stimulus must activate at least 

one A-unit for a solution to exist,   we have 

i >   Q.-    >   (rr-)    ■     > 0 
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The difference between the solution vector  u    and the present state  X. 

is given by 

II  - 7 

Let and 

Then ;-;   - /.•     . 

We wish to show that by applying an error correction method to one 

component at a time of the vector   •?   ,    /^  must ultimately go to a point 

within the   £"'  cube about 0.    (The method will apply a correction of the 

proper size until a response     /"' = ß      is obtained.)   We know that a(- =2^ 9;; ^ 

Therefore, for the difference, >->--  ,  we have 
J 

L 9. 

:■ F 
Since   '5 is non-negative definite,   we know that    I' ■  ■ G ■> I   '- : ' ■ "-   " JJS-, 

■        ■' "'Jl 
and from Lemma 1 we know that if       //      ■■    ' ,   F > . .    Therefore,   if 

./--■ > 0    decreases as a result of decreasing    v •    ,   F    decreases; also, 

if    //-  ■   0  increases by increasing    •.       ,   F   decreases (see Proof of 

Theorem 4,  Chapter 5).      To prove the theorem,   it is sufficient to show 

that this implies that /.v    must ultimately enter the    f"   cube about zero. 

Let       '/       =   initial value of   '> i   at start   of   a correction step 

v       =   initial value of   ? •    at start of a correction step 
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Then   for the correction, we have 

A ur-    =     - /^cr- 

Mr; 

r*1 9ii 
dF 
   dl ■ 

9; 

911 

2 sLcr- ^:'+ 9ii ill'}■) 

'. ■iv'' 

• 7L    Q- ■ 

■7    \^i + 911 (>; -}i)\^'}i 

AF   = 
9 il 

"■7'^ 9:1(1,1-1,1) 
in 

Z; 

, * 
■^1 

911 

Therefore,    &F  <   - JV;'     <   - e" 

Hence, there can be only a finite number of corrections,  since      F > 0       , 

and the vector   //y- = u. ~ x    must converge to a point within the   £    cube 

about zero.    But   u.    is the input to the R-unit.    Since   K (a)   is continuous , 

there exists an    e"   suchthat    \r* (LI. +d) - r {u}\<-f.    if   \(f\  ^   f"   .    There- 

fore the response function coverges together   with the vector   sts-   .    Q.E.D. 
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The following Lemma and Corollaries establish that the various 

weaker forms of correction procedures are also capable of yielding a 

solution to   R(W)   . 

LEMMA 2: For the same conditions as Theorem 2,  given that a 

solution exists,  the set of all solutions forms a hyperplane 

of dimension equal to the nullity of G • 

PROOF:        Let    Gx. =u    be a solution.    Of necessity     u;   =  r-    •    Let 

y  = u,    be another solution.    Then    G(X-L/) = 0    .   consequently   z - u G 

is in the null space of   G   .    Conversely,  if   ? - ^    is in the null space of   G } 

then    Gi2~x)-0.    Therefore,     Go   =  u        ,  so that   3.   is a solution.  Q.E.D. 

COR^O LLARY 1 For the conditions of Theorem 2,  and a phase space which 

is unbounded in all dimensions,    the probability of conver- 

gence to an arbitrarily close approximation to    RiW)     by 

means of a random-sign correction procedure or a random- 

perturbation correction procedure may be less than 1. 

PROOF:        The random-sign and random-perturbation procedures were 

defined in Section 5.6.    R[W)     is taken to be any response function, 

obtainable by an R-unit with a monotonic signal generating function.    For 

convergence to occur,  it would be necessary that a series of steps by 

increments of fixed magnitude,  |r?|   ,  but of random   sign,   should carry 

the system from its initial state to an arbitrarily small distance,   6'      > 

from its required state.    From Lemma 2,  the solution states form a hyper' 
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plane of dimension equal to the nullity of G,  which has zero measure over 

the phase space of the system.    But a random walk of the type described 

may carry the system arbitrarily far from its starting point,  in a random 

direction,  and the probability that a vertex of this path will fall within a 

distance     £     of the solution hyperplane may be less than unity. 

COROLLARY Z:    Given the conditions of Theorem 2,  and a phase space 

bounded in all dimensions,  then (given that a solution to 

Q{W) exists in this bounded space) the response function 

can always be approximated by means of the random-sign 

correction procedure,  the system converging in finite time 

to an approximation   K [W) '■ f   ,     t     a vector, where 

\fl\   <   f-.      for arbitrarily small     f    > 0 

PROOF:        Since the phase space is finite,   the set of solution points within 

the bounds defined above has positive measure.    The random-sign correction 

procedure cannot carry any of the A-unit outputs beyond the limit set for its 

value; therefore,   if the values approach their limit in any direction,   a ran- 

dom walk in the opposite direction will follow.    This procedure will 

ultimately take the representative point of the system into every'set with 

positive measure,  provided    /?     is sufficiently small.    Consequently,    a 

solution within the bounds stated by the theorem will  be obtained in finite 

time . 

COROLLARY 3: Given the same conditions as Corollary Z,  the 

response function can always be approximated by 

the random-perturbation correction procedure,  the 
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system converging in finite time to an approximation 

R{W) f 6    ,   S   having elements of magnitude   \ei\  £  Itf 

if the reinforcement is quantized,  or    \€i\ £ e' > 0        , 

if   r?    is chosen from a continuous distribution around 

zero. 

PROOF:     The proof follows the same line as that of Corollary 2.    Since 

each connection can be set to an independent value,  in the quantized case 

the total error over the set of all connections need not be greater than    y?     , 

while in the continuous case it may be made arbitrarily small. 

Theorem 2 and its corollaries indicate that it is possible to 

teach a simple    perceptron to produce responses which are proportional to 

some metric feature of the input stimuli,   such as their size,  or coordinates 

of their center of gravity on the retina.    In the latter case,  the output of 

such an R-unit can be fed back to the optical system to control the centering 

of a stimulus in the field. 

10.3     Perceptrons with Non-linear Transmission Functions 

In all perceptrons considered thus far, the transmission 

functions of connections from A-units to the R-unit have been of the form 

t;r  ^ 0: ^r 
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We will now consider functions of the more general form: 

< ■ r - / [a; , virj 

Where time is not specified,  this is understood to mean 

r-r(t) -   f(a;(t-r),  V-r(i)) 

Since    a-     is   a  function   of the   input   signal,   cy. ■   ,  the transmission 

function can be written in a still more general form (allowing for various types 

of signal-generating functions in the A-units), 

^     //-;      r^ 

This form will be employed in the following theorems 

THEOREM 3: Given a simple perceptron with a simple R-unit,   and with 

transmission functions for all A-R connections of the form 

'   '. -j -■■■t.   ,   where    ■■     is any function,  and given the 

existence of a solution to a classification function    i  ( ■/■■/' 

for this perceptron,  then if   p{^')   is any polynomial of 

odd degree in   7     ,   there also exists a solution if the 

transmission function   is changed to    f (•* 1)   /   '.ir:r)    ■ 

PROOF:        A polynomial of odd degree can assume all possible values. 

Therefore if    1 i ,.     is the original value of the connection   C1 r     , there 

exists a solution to      /'(*)       /y-r    yielding  a new value,   /    ,  for the 

connection   r ^ r  which v/ill cause it to transmit an identical signal under 

the new transmission function. 
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THEOREM 4: Given the perceptron of Theorem 3,  if a solution exists 

for some transmission function     f (oci) T/';r       .  a solution 

does not necessarily exist for the transmission function 

g(<x.;) v-r ,   g   1  f   ■ 

PROOF:        Suppose the number of A-units is equal to the number of stimuli 

in   W    .    Let      H  -     matrix of elements   b- ■     representing the value of the 

function     ffa; (J))     which is the coefficient of  ?/;■,,     for stimulus   S :   • 

Then for a solution to exist,  there must be some vector    V    and some 

vector   U    in the orthant required by   C(W)  ,   such that    B  V = U  .    But if ß 

is singular,   there must be some    ( [W)    for which no solution exists.    This 

can be demonstrated by noting that each   C-A/>   requires a solution vector in 

a different orthant,  the set of all    r''.W)   requiring solutions in every possible 

orthant.    But if  B    is singular,   it maps the entire space into a hyperplane, 

and this plane must fail to intersect certain orthants .    Consequently,  the 

functions    C(W)  which are represented by vectors in those orthants have no 

solution.    Now consider the following cases: 

CASE  1:        For the transmission function    o/i^   ,  let the matrix 

/I        1        1N 

1 2       3 

2 3       4 

/ 
B 

This is singular,  and consequently there are some insoluble classifications 

Now change the transmission function to     v   T-    ,  yielding / 1        1 i 

ß  - 1       4       9 

\4       9     16 
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This matrix is non-singular,   so that with the non-linear transfer function, 

all classifications are soluble. 

CASE 2:        In this case it is shown,   conversely,   that there may be situations 

in which a linear transmission function will yield solutions which are un- 

obtainable with a particular non-linear function.    Let the transmission 
/ 3       5       8 \ 

function be ,   with the matrix    h 
'4     12       15 i 
\5     13      17/ 

This matrix is non- 

singular,   so there is a solution for every    C(W) .    But now let the transmig 
/ 9 25 64\ 

sion function be    v"--  .    Then   ä   --   I , ,        , , .        _.,,- \ which is singular, 
16        144       225 b 

\25       169       289/ 
implying that there is some    ,\.'i '   with no solution. 

THEOREM 5: Given a simple perceptron with A-R connections which 

differ in their transmission functions   (or with uniform 

transmission functions but non-simple A-units)  a response 

function   k'i W) may have a solution which is unattainable by 

either the error correction procedure or the random-sign 

correction procedure. 

PROOF:        Consider a perceptron with a single sensory unit and two A-units. 

Let the R-unit be a linear amplifier with gain of 1 .    Let the sensory unit 

emit signals 0,   1,   or 2 depending upon the intensity of the stimulus.    The 

required response function is    PiW)    -   (    ,+l,-l)    corresponding to a null 

Stimulus,   a low-intensity stimulus,   and a high-intensity stimulus,   respectively. 

Let the transmission function of  /:tr   be   i rn j ?/-    ,  and the transmission function 

of   /■, _    be    r/    i/- .    The response function    PiW)    then has a solution if we 
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set    'Vif, = 2.F and    t/^,. =  - /-5   .    But this is the only possible solution, 

and is unattainable by the error correction or random-sign procedures,   since 

both connections are always activated together and consequently must always 

be equal in value under these procedures (assuming that their initial values 

are equal).    This example is sufficient to prove the theorem for the case of 

non-uniform transmission functions. 

For the second case, in which all transmission functions are 

uniform,  but the perceptron has non-simple A-units, consider the following 

perceptron: 

The values of all S-A connections are +1,  and the A-units are both linear, 

with transmission function   rv. TS  .    Let the environment consist of the two 

stimuli      5/   -    -i i and        ~.',    = (.4., ,  A2)   .    Then a solution exists to 

the response function      f        {•■:.-?      ,  namely    vy,. '   ^ 3 ,   lr^r = - 2 . 

However,  the error-correction or random-sign correction procedures will 

not work,   since both A-units are always active (where "active"means that 

they emit a non-zero signal).    Note that a solution also exists to the 

classification     ■ + 1 > ~ I)     for this perceptron,  and that this is also 

unattainable by the methods indicated. 
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The sixth theorem was proposed by R. D.  Joseph. 

THEOREM 6: Given a simple perceptron with any mixture of transmission 

functions    f- (ot: , f.r-r)      for the connections    g1-       ,  and 

a response function   P(WJ for which a solution exists; then 

there exists some transmission function      g (ocrir)     which 

is uniform for all connections,   such that a solution to   k'yW) 

exists. 

PROOF:    Let     /• ^v •, ?/■•    )    =     signal from unit   o. ■    when stimulus   5* 

occurs.    Then we can fit a polynomial 

n - / 

for each stimulus   5'    •    The coefficients,   -C• ^    ,  (which depend on the 

A-unit,   o       ) can be replaced by polynomials 

A/ft-/ 

£ -0 

ß 

Thus  we have,  for all values of  J ) 

n -1   N0-1 
/    A 

which satisfies the conditions required by the theorem for   a (ry., if) 

if we set    ?•■ • ; . 
i r       J 
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It should be noted that this theorem applies only to a given response 

function for which a solution exists; if a different response function also has 

a solution,  then there will again be a uniform transmission function for all 

A-units which will solve the problem,  but this transmission function may 

differ from the one obtained for the original response function. 

We have seen in Theorem 5 that if the connections   differ in 

transmission functions,  or the A-units differ in signal generating functions, 

response functions may have solutions which cannot be obtained by the more 

systematic correction procedures.    The following theorem proves that in 

this case the weakest of the correction procedures (the random perturbation 

method) can still be used successfully. 

THEOREM 7: Given a simple perceptron with an R-unit which is either 

simple or has a continuous signal generating function, 

and with any combination of transmission functions from 

its A-units (all continuous functions of   7/"-        ,   equal to 

zero if    ns.-   - 0      ), and given a bounded phase space 

within which a solution exists for  P (w)    ; then,    if each 

stimulus in  W    ultimately reoccurs,  an approximate 

solution    P(W) 7- C     is always attainable in finite time 

by the random-perturbation correction procedure. 

PROOF:     For an R-unit of the specified type,  and a bounded phase space, 

the solution set has positive measure,  over the region defined by   P(w) ■)- e 

(where    £    consists of arbitrarily small elements,      6[  ^   €        ) .    To achieve 

an approximate solution within this set,  it is only necessary to adjust the 

values of the active A-units for each stimulus.    Since, under the random 
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perturbation procedure,  each active connection will independently tend to 

assume a value in every admissible range with positive measure, the active 

set of connections as a whole will ultimately attain a value configuration 

within the solution set. 

10.4     Optimum Transmission Functions 

The general conclusions of the preceding pages are that while a 

completely linear perceptron does not work satisfactorily, there are many 

possible transmission functions which seem to work quite well.    For many 

of these,  there is no choice to be made from the standpoint of ability   to 

achieve a solution, for they all seem to be capable of solving the same 

problems equally well.    From the standpoint of efficiency of discrimination 

and speed of learning,  however,  the various transmission functions might 

differ considerably from one another.    In this section,  making use of an 

analysis due to Joseph,  it will be shown that with some fairly weak constraints 

on the system under consideration,  an optimum transmission function exists, 

and that this takes the form of a quadratic function of   7/7,,.     rather than a 

linear function. 

The constraints on the system to be analyzed are as follows: 

1.    The analysis   deals with S-controlled discrimination 

experiments,  with a fixed training sequence. 

Z. The conditional distribution of ir;r for connections activated 

by a test stimulus of the positive class, 5r . is assumed to be independent 

of the choice of    ^      .    Similarly,  the distribution of   if-        for active 
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connections is assumed to be independent of the exact choice of   5^   when the 

test stimulus is selected from the negative class. 

3.    It is assumed that the conditional distribution of  -ir-r   for 

the connections activated by 5^   is a normal distribution, and that either 

the distributions are different or the probabilities    Q-     are different, for 

test stimuli in the positive and negative classes.    These constraints will 

generally be met satisfactorily if the positive class consits of all possible 

positions on the retina of   a large stimulus, and the negative class consists 

of all possible positions of a small stimulus.    The main requirement    is one 

of equivalence of stimuli within each class, and dissimilarity between classes, 

with respect to the distribution or number of signals transmitted from A-units 

to the R-unit. 

The discrimination problem can be stated as one of testing a 

hypothesis about the test stimulus,    '_. 
/ 

The response unit is required 

to test the hypothesis that   5       is a member of the positive class against 

the possibility that it is a member of the negative class.    If the test  stimulus 

is a member of the positive class,  the output of an A-unit (subject to the 

above assumptions about the system being analyzed) will have the distribution 

0     with probability    / - Q   (+) 

rr    with density function     —X^ e;<P-\ -j-iv'M,^)    \ 
(10.3) 
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where    Cy('t.')   ^(f)     > an^     -^(t)     are the parameters characterizing 

stimuli of the positive class.   Similarly, if the test stimulus is a member of 

the negative class, the output of an A-unit will have the distribution 

0       with probability     l-Q?c(-) 

?/-      with density function   -- ■ * ex p. 
fP-TT ^ (     2ö7.; 

(10.4) 

where    Q . [~),    V'-)       ,  and u are the parameters characterizing 

stimuli of the negative class.    Thus,  the problem can be restated as one of 

testing whether the output of an A-unit has the distribution (10.3) or the 

distribution (10.4). 

There is thus a simple hypothesis (dealing with a single distribution) 

and a simple alternative.    As Joseph has observed, under these conditions, 

for any significance level,  the likelihood ratio test is most powerful.    In 

performing this test,  we would make N    independent observations of   ir 

(corresponding to a sample of N    A-units with independent origin point 

configurations),   and obtain the likelihood ratio: 

/ = 

N ~N  . ^ N 

PKD ■ y 
2.1 

(*-> 1 

(V; V^J   ^  -TjZ ^ --"'(-/ I 
2    I 
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where N is the number of active A-units, and the summation on   t    is over 

active units only.    If   L     is greater than a preassigned constant   L0   , we 

accept the hypothesis that   Sx  is a member of the positive class; if   L 

is less than    L0     , we accept the alternative, that   5X    is a member of 

the negative class.    The constant     L0    ,  corresponding to the threshold 

of the R-unit in a perceptron employing this procedure, determines the 

power and significance of the test.    (The  "significance" is measured by 

the probability of erroneously rejecting a positive stimulus,  and the "power" 

is the probability of correctly classifying a negative stimulus.)   In logarithmic 

form,  the condition     L   ~   i-n     becomes 

,''■ (-) M-. 

(' - Qx (-)) 

{-) 

N 

'I- G, 
N 

Thus, the required test is effectively performed If the perceptron is designed 

with R-units having a threshold      £^i L0 -h N 

functions from A to R-units are of the f 

and the transmission 

orm 

r 

/ (Qi , ->/-) 

0 :f ^ < e 

f  I I 

AT 
\ir    - ^(-)     'U<+> 

'-) XT'CT. (+) cr r-; ■T. [+)/ 

ir f- —j  
<+) . f     QxM(t-0x(-))crh)   . 
— -     r-  XTU ; T      I f ac > G 

The actual savings that might be obtained by the use of such a 

quadratic form have not been investigated numerically.    In practise, they 

are probably slight.    A further discussion of the optimization problem,  inclu- 

ding the optimization of the upper and lower bounds in a bounded value per- 

ceptron,  can be found in Joseph,  Ref. 41. 

Prof. A.  Gamba,  in a related paper,  has observed that not only the trans- 
mission functions but the reinforcement rule might be profitably modified 
in order to optimize the overall decision function of the system (Ref.  23). 
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11 PERCEPTRONS WITH DISTRIBUTED TRANSMISSION TIMES 

One of the requirements for a simple perceptron is that the 

transmission time,     T- ■ ,  should be equal for all connections,   /: ■ ■ 

In this chapter,  we consider the consequences of allowing a distribution 

of transmission times.    It is obvious that under these conditions the set of 

A-units active at time   t   will depend not on the single momentary stimulus 

occurring at time    t - T ,  but  rather on the entire sequence of stimuli 

occurring between   t-T        and    t-T        .    We shall first consider the cases 
mm max 

of binomial and Poisson models where    T; ■    is distributed with a discrete 

spectrum,     T- •       always being an integer equal to or greater than I.    We 

shall then consider the case of a continuous Gaussian distribution for    V LJ 

11.1     Binomial Models with Discrete  Spectrum of L: : 

For the binomial case, we shall consider only the case where 

each A-unit receives a fixed number of connections of each type (excitatory 

and inhibitory) with      T •     =    1,   and a fixed number with     T- ■    =2. 

Specifically,  the parameters of an A-unit are: 

6    -     threshold (defined as usual) 

<l   = number of excitatory connections with  V: •  - I 

ii    -     number of inhibitory connections with   T; 

X.  ~     number of excitatoryconnections with    T: ■ - 2 

tj    -     number of inhibitory connections with   ?'• • = 2 
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Models with a greater number of possible values for    T- ■     can be analyzed lJ 

by extensions of the method applied here.    The object of the analysis is to find 

Q-    and   Q. ■ at time   f   ,  as functions of the two-step sequences of stimuli: 

^    =   S;'(t-2) ,     S-Jt-I) 

Sj'it-J) ,    Sj(t-I) 

The notation    5,"   will be used consistently to denote the stimulus preceding 

the terminal stimulus in sequence    J;     .    Similarly,  in sequences of more 

than two stimuli,     5-"    will be used to denote the third stimulus from the 

end,  etc.    In the present model,  sequences of length greater than Z need not 

be considered.    If it is assumed that A to R-unit connections all have equal 

transmission times, the analysis of performance in terms of the Q-functions 

will be identical   with the analysis for simple perceptrons, the important 

difference being that the perceptron is now learning to recognize sequences 

of stimuli,   rather than isolated momentary events. 

The total input signal to an A-unit at time   t    ,    oi(t)    ,   is now 

a sum of four components,  namely, 

oi (t)       £t + E2 - I j I. 

where       /r/    = number of excitatory connections with     T  =  1,  having origins 

active at   t - I 

1.   =   number of inhibitory connections with     T   - 1,  having origins 

active at   /- - / 

£P  =   number of excitatory connections with   T   = 2, having origins 

active a.t   t    2 
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I     -      number of inhibitory connections with    T   - 2, 

having origins active at    t - 2 . 

As usual,     n ■ (t) --- I    if     Of-; (t) ^ 9   , and 0 otherwise.    Q-     is then 

given by the following equation,  which is analogous to (6.1): 

0- 

where the probabilities 

ZL -.' it, 
f/^r-V^-^ 

iS   fJh'    p^ > 

(11.1) 

and    P..      are defined as in (6.2), with 

the substitution of the appropriate parameters, and the stimulus measures P; 

in the expressions for 

and     /-- 

and    P        and   A'-'    in the expressions for    I-'. 

In a similar manner.the expression for     ,'        can be obtained by 

the extension of the treatment employed in Equations 6.5 and 6.6.    However, 

there are now eight components to be considered for    oc    for each stimulus 

sequence.    Specifically, 

'■   i . -/■ -/--/--i. 

: ■' f  t'' -I-   ~ I .-£■'- I ., 
■J r        J        ■'■       J '- 

where   I ■   and   ./■    are defined,   as before,  as the excitatory and inhibitory 

components originating from the set of retinal points situated in    S-     3-nd 

not in    3;      .      f--'    and    I-'    are the corresponding components originating 

from the set of retinal points situated in   5;'    but not in    S;'    >  and f 

and are similarly defined.     Likewise,    t „    and  1 ,   are the 
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excitatory and inhibitory components coming from the retinal set common 

to    5/    and    5-   , and    £   /   and    I *   , are the components from the set 

common to    5;'    and    S;'    .    Thus we have the equation 

0- H ^l
(F;'Fj'^P,l(riJj>tJPtJt:'>tj',^')^Cir,ij',r,')       (.11.2) 

The required multinomial probabilities being computed from equations (6.6] 

with an obvious extension of the above notation to the quantities     A-    »A: 

C   ,   A-*   ,     A ■*   ,  and    C 
1 j 

Since the Poisson model is much easier to compute,  and has 

properties which are similar in all essentials to the binomial model, no 

numerical examples are given for the binomial model,  but examples for the 

Poisson model can be found in the following section. 

11.2     Poisson Models with Discrete Spectrum of 2';j 

The Poisson model to be considered    again has two values of  V, 

namely     r =    1 and     T  -      Z,  the parameters      Xf ,   x2 ,    i]. ,      and     y, 

being defined analogously to  x   and   u    in the Poisson model considered in 

Chapter 6.    The equations for   ()•   and    Q-•   can,  of course,  be developed 

by extension of the equations of Chapter 6,  as has just been done for the 

binomial model.   A considerably simpler approach is possible in the Poisson 

model,  however,  if the corresponding stimulus areas at times  t-i    and   t~Z 

are also equal,  i.e.,      /I ■   -   /I •'        ,      A • - A •'     , and    C = C   •    In this 
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case, the previous equations (6.1,  6.3, 6,5, and 6.7) hold v/ithout modification, 

except that      x - X. + %2  and    n - [/i + y?-   More generally, the previous 

equations can always be employed by making the appropriate substitutions: 

>  (. 

/l     '    x.. A 

x.A ■  f   'y. A-' 
i   j +   j 

,..    +   <2. 

and similarly, for the inhibitory components.    If    ^/ -   xz        and    y     -   i]2   , 

the equations for   Q-   and    Q- ■    again become identical with the equations 

of Chapter 6 where   k'-        '  (k'■ i- (?■>) ,     A-   =       - (A- + A--) ,  etc. 

By an obvious extension to a spectrum with three or more values of   T    , 

where       . /        >■ ...        >^     , and      '7/   -    "^        ... •■■■ ^7   ,  we can apply 

the same equations,   substituting the parameters 

.  ( /   *-■'•■•/■  . . . / 

and similarly for    /.       and 

,'   . . 
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As an example of the performance of such a system,  consider 

a Poisson model perceptron with an expected value of 6 excitatory and 6 

inhibitory connections to each A-unit and     Q    =2,    Let the environment 

consits of a set of 4 by ZO vertical bars,   such as were employed in the 

experiments of the preceding chapters.    The object will be to discriminate 

a bar arriving at a certain fixed location by movement from the left from a 

bar which arrives at the same location by movements from the right.    Clearly, 

if a single value of   T- ■       is permitted, this task is impossible.    Consider 

first the case in which half of the excitatory and half of the inhibitory connections 

have    T = 1    and the remaining half have     T - Z,   so that    z/ - x   - ^i = ^? ~ ^  • 

(t-21,   S.(t-I))      and   J-      denote 

represent successive 

Let sequence   J-   denote    { Sa(t-3J,   5^ i c   -^ / , 

here 

adjacent positions of the vertical bar on the retina.    Then    Q-   =    Q--   -     .153, 

and Q- ■ .094.    Next,   suppose one third of the excitatory connections 

and one third of the inhibitory connections have delays     t = 3     ,  one third 

have     T - 2     ,  and one third have    r = /   ,   so that     Fy  r   F,   =  r, = ^ •   y     ^   y? 

In this case,     (/••   -   .153,  as before,  but   Qy     is reduced to  .063.    Further 

increasing the spread of the   -'    distributuion will have the effect of further 

reducing     Q"    (for correspondingly lengthened stimulus sequences) while 

keeping    Q--   constant.    Thus,  the greater the spread of the    7r    distribution, 

the more readily can such "divergent" time sequences be distinguished. 

Conversely,  two sequences which are identical save for a momentary 

divergence in recent time (say at   / - / ) can be distinguished most readily 

by a perceptron with    T- •      concentrated  at small    values,   and increasing 

the spread of the   T   distribution will only increase the difficulty of 

discrimination. 

2 
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It should be emphasized that the set of active A-units depends 

on the order and not merely on the constituents of a stimulus sequence.    Thus 

the sequence (5,  >    5,   ,  5-,   ) will generally activate a different set of A-units 

from the sequence (  5/   ,    5,   ,   5?   ) in which the first two members have been 

inverted.    In principle, a perceptron of this type which receives sequences of 

sound spectra from a set of audio-filters (instead of visual patterns) should be 

capable of distinguishing spoken words,  or other characteristic sound sequences, 

such as progressions of chords or melodic fragments, 

11.3     Models with Normal Distribution of ^•; 

A somewhat more "natural" model than the discrete spectrum 

models considered above is one where the transmission time of each connection 

is an independent random variable drawn from a normal distribution, with 

parameters      /i.T)     and      rr(T)      .    If an A-unit is to have a non-zero proba- 

bility of being active at time   t   in such a model,  the dynamics must be 

modified by the introduction of an "integration period",   At     ,   such that 

t 

^ (t)        2L   E:(r) ~ Il-ir) 
T-t-M (11.3) 

summing over all values of   T  for which   E    or   I    (the numbers of excitatory 

or inhibitory impulses arriving at the A-unit) are non-zero. 

The qualitative properties of such a system are clear without 

further analysis.    If  At    is short compared to   cr(r)  , the presentation of 

" " a    momentary or transient stimulus will lead to a gradual increase in the 
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proportion of responding A-units (or the value oi   Q-   ) followed by a gradual 

decrease.    If   At    is greater than   cr(r) , the system will respond with a 

momentary burst of activity,  maintained for a period equal to   At     , and 

will then immediately relapse to inactivity.    We are chiefly concerned with 

the case where   At   is less than     rr-(v) .    In this case, the performance of 

the system in discriminating sequences will be close to that of the Poisson 

or binomial models, with an appropriate discrete spectrum of    t- ■       , to 

approximate the normal distribution.    There will be a maximum sensitivity 

to differences between the two sequences    fcy;      and    JJ ■      occurring at 

time     t - u(T)   > with less sensitivity to more recent or more remote 

differences between the sequences. 
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12, PERCEPTRONS WITH MULTIPLE R-UNITS 

Up to now, the simple "three-layer" topology (S-A-R) with a 

single R-unit has been the only one considered.    In this chapter, we will 

still consider only three-layer perceptrons, but more than one R-unit will 

be permitted.    The   performance of such systems,   it will be seen,  does not 

differ significantly from that of perceptrons which have been considered in 

previous chapters,  except for the fact that it is now possible to form classi- 

fications with more than two classes, with simple R-units,  or to have 

perceptrons respond simultaneously to several different attributes of a 

stimulus pattern.    The most interesting analytic problems for such systems 

are concerned with the optimum coding of the classes of patterns to be 

recognized,   in order to optimize performance. 

1Z.1     Performance Analysis for Multiple R-unit Perceptrons 

Several types of topological organization which are possible for 

networks with more than one R-unit are illustrated in Figure 35.    The set of 

A-units which are connected to a given R-unit will be called the source-set 

of that R-unit.    The organization which is most economical in the number of 

A-units employed is that shown in Fig.  35(a), where every A-unit is connected 

to every R-unit.    This is logically equivalent to the disjoint source-set model 

shown in Fig.  35(b),  if every source set is required to have the same compo- 

sition of origin point configurations for its A-units.    Unless otherwise specified, 

it will be assumed that each R-unit receives the same number of input 

connections; however,   if the R-set is large,  and the terminus of each connection 

from an A-unit is selected at random, the total number of inputs to each R-unit 
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(a)  EVERY A-UNIT CONNECTED TO A R-UNITS.   (IN FULLY COUPLED CASE, A = NR) 

M        A-SET 

(b) DISJOINT SOURCE-SET FOR EACH R-UNIT. (SPECIAL CASE OF (a) WHERE 4=1) 

■*■ R. 

(c) EACH R-UNIT HAS SOURCE SET OF N RANDOMLY SELECTED A-UNITS. (EQUIVALENT TO (a) IF N ^ N. 

Figure 35 TYPES OF TOPOLOGICAL ORGANIZATION FOR PERCEPTRONS WITH MULTIPLE R-UNITS 
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(i.e., the size of its source set) will be a binomially distributed random 

variable.    An inversion of this connection procedure is shown in Fig.  3 5(c). 

In this case,  each R-unit receives exactly N connections,  but the origins 

are assigned at random among the A-units.    Here the number of output 

connections from an A-unit will be a Poisson distributed random variable. 

It can be readily seen that as    N       becomes large,  the various 

topological connection schemes illustrated in Fig.   3 5   all   become logically 

equivalent in their performance characteristics,   since it does not matter to 

the performance of the perceptron whether two R-units are connected to the 

identical A-unit or to two different A-units with equivalent origin point 

configurations.    For the sake of specificity,  the following discussion will 

assume the organization illustrated in Fig.   35(b),  with a disjoint source-set 

for each R-unit. 

In S-controlled discrimination experiments,   it is obvious that 

performance of such a system in equivalent to that of    Np     simple perceptrons 

(where   N'     is the number of R-units) each of which is exposed to the same 

training sequence,  but trained on its own independent dichotomy of the environ- 

ment.    For example,   if      'vV    = Z,  one R-unit might be trained to discriminate 

between stimuli in the upper and lower halves of the field,  while the second 

R-unit is taught to discriminate between right and left halves.    The proba- 

bility that both responses are correct,   at the end of the training sequence, 

will be the product of the probability that     P.      is correct on its dichotomy, 

and the probability that   P      is correct on its dichotomy.    In the present case, 

assuming that stimuli occur with equal frequency in all parts of the field,  we 

would expect the two dichotomies to be equally difficult,  so that the probabi- 

lity of correct performance on the joint response would be the square of the 

probability of correct response for either dichotomy considered separately. 
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In an error correction procedure,  a more interesting problem 

arises.    Clearly, if each R-unit and its set of input connections are corrected 

on an assigned binary classification or response function independently of the 

other R-units, the same situation exists as in S-controlled experiments,  and 

the probability of correct response on the entire set of    Np    R-units after a 

given training sequence will be the product of the probabilities for each of the 

response functions considered separately.    More generally,  if we let 

Pj [ 'V; :'.>',  V;  ' = probability of correct response on test stimulus    5/ 

for the    I       response function, given a source-set with N-   members 

connected to the R-unit,   we have 

u 
r   \      I '       n ' ■ X K     L '        I  ' (12.1) 

for the probability that the joint response to   ,-..-    is correct on all R-units. 

Suppose,   however,   the  reinforcement control  system is only 

capable of recognizing that the total response (on all R-units jointly) is right 

or wrong,   and cannot tell which individual R-units are contributing to the 

error.    In this case,  it might be supposed that the system would eventually 

learn the correct joint response by assuming that every R-unit is wrong 

whenever an error in the composite response occurs, and correcting the 

perceptron accordingly.      This supposition,   unfortunately,   is not true, 

as proven by the following theorem. 

THEOREM: Given a perceptron with more than one R-unit, and a 

response function   k'(W)   or a classification  C(W) for which 

a solution exists,   it may be impossible to achieve 
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this solution by an error correction procedure which 

applies negative reinforcement jointly to all R-units 

based on errors in the joint response. 

PROOF:        The theorem can be proven by a simple example.    Consider the 

perceptron illustrated below,    which  has two sensory units, two A-units, 

and two R-units.    (The topology corresponds,  in this case,  to Fig.  3 5(a). 

■; o 

c Assume all    '>■"■,•     initially = + 1,    Let W   consist of two stimuli: 

illuminates sensory point .j-     alone,  and  _v      illuminates A2    alone.    Let 

the required Joint classification function be: 

r  .  r (, - t I for 

(>),  r*}   -  (-1, r I)        for    52 

A solution clearly exists,  e.g., by making   v '        and    j-,,^   positive,  and   ?/", 

and    / - negative.    Since all   ?^-/,   are initially positive,  whichever 

stimulus occurs first (say   _>,    ) will elicit a positive output from both R-units, 

which is wrong.    The error correction procedure would then apply negative 

reinforcement to both R-units,  having the effect (if   5,   is the stimulus) of 

making both connections from   o     negative.    But this now makes both 
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R-units negative, which is still wrong.    Clearly, the error cannot be 

corrected by reinforcement in the presence of    5,      *  since the signals to 

both R-units are coupled,  and must rise or fall together.    If the second 

stimulus should occur, the situation is not improved, and the same oscil- 

latory behavior will continue,  with the perceptron switching from 

(r   ,   r., )   =   (-h I , + 1)        to    (-/,-/)     alternately.    Thus a solution will 

never be achieved, which proves the theorem. 

Note that if,  instead of administering negative reinforcement 

to all R-units (which assumes that each one is currently wrong) the error 

correction procedure were to be modified to apply a correction to each 

response unit according to the rule 

?/ f A-- ^ (12.2) 

where     /?•        value of    >p      employed in reinforcement of the   /?•    connections, 

and     K;      and    f;    are the required and-obtained responses,  respectively, 

for     I        R-unit, we then have the same conditions as in the case of 

independent correction of each R-unit (see Definition 41,  Chapter 5).    Thus, 
-"       -*; '- th 

if we let    Yf -  R    - r*   be a vector of   N^ components,  the     l      component 

being given by (12. Z),  the system will always converge if a solution exists. 

This implies,  however,  that the r. c . s.  must not only be able to recognize 

the existence of an error in some R-component,  but must be able to deter- 

mine the magnitude (or at least the sign) of the error for each R-unit 

independently,  and control an appropriate value of    >p-       for each section 

of the network.   A logically similar procedure, which also yields a 

solution, is to allow the r.c.s.  to scan the R-units sequentially,  checking 

-278- 



the correctness of each one in turn,  and applying a correction only to the 

R-unit   currently being examined by applying negative reinforcement when 

it is wrong.    This requires a longer training process, but requires the r.c.s. 

to act on only one component at a time, just as in a simple perceptron. 

12.2       Coding and Code-Optimization in Multiple Response Perceptrons 

A perceptron with a large number of R-units can clearly be 

used to identify many more than two alternative kinds of stimuli.    A number 

of possible schemes for the representation of information in such systems 

have been suggested.    As a first possibility,   each response may be used to 

identify an independent trait, or property of the stimulus,  such as left/right 

location,  size,  horizontal or vertical elongation,  etc.    The combination of 

responses occurring when a test stimulus is presented should then serve as 

a description of the stimulus in terms of its traits.    An alternative scheme 

is to assign a distinct response unit to each kind of stimulus,   and train the 

perceptron to emit a +1  response only if that type of stimulus is present. 

In this case, only one R-unit at a time would be active,  the active unit 

identifying the stimulus class.    Unlike the first scheme,  where some response 

must be made for every binary trait whether applicable or not,  the second 

scheme has the possibility of rejecting a stimulus altogether as "unknown", 

in which case all R-unit outputs would be negative.    On the other hand,  the 

second scheme lacks the economy of which the first is capable,  and requires 

that every combination of traits which is to be distinguished must be assigned 

a special category and taught to the perceptron before it can be recognized. 

In the "trait discrimination" approach,   a new configuration may still be 

correctly described,  in terms of the characteristics present,  even though it 
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has  not been seen before.    (This last feature is only weakly present in 

the perceptrons considered thus far,  since it depends strongly on generali- 

zation.   Some of the perceptrons to be considered in later chapters, which 

generalize more effectively, can make optimum use of "descriptive codes".) 

The above examples illustrate two types of response-codes, which 

will be called configuiation codes and position codes,  respectively.    A 

configuration code employs the R-units independently of one another, assigning 

an arbitrary dichotomy to each.    This results in the assignment of a binary 

number (if the R-units are two-state devices) to each stimulus.    The total num- 

ber of stimulus types which can be encoded in this fashion, for a perceptron 

with  A/„   R-units,  is    2   ^   .   A. position code,   on the other hand, permits 

only one R-unit to be "on" (or in the positive state) for any one stimulus; the 

code takes the form of a binary number of   /V„    bits all but one of which are 

zeros.    The position of the non-zero bit indicates the class of the stimulus 

identified.    With this system,  only   NfJ    types of stimuli can be recognized. 

The position code can be considered a special case of a configuration code in 

which the positive classes of all dichotomies are disjoint,  and the negative 

classes are almost completely intersecting.    A compromise between the two 

approaches (which permits a descriptive statement to be obtained about a 

stimulus without forcing a decision on inapplicable characteristics) would 

assign  n   response units to each set of  n    mutually exclusive traits (for 

example,   2 R-units   would be assigned to left/right description,  3 to hori- 

zontal,  vertical,  or diagonal specification,  etc.).    Each R-unit would then 

be made to discriminate between "trait present" and "trait absent", 

permitting any combination to occur.    Such a system will be classed under 

configuration codes. 
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The problem of finding an optimum code for a particular task can 

be specified for a given value of   N       , an environment, W   ,  and a classifi- 

cation,   (Ti'H/V   ,  into N types of stimuli.    Clearly,  if N   is greater than   N     , 

a configuration code must be used,  or the problem is insoluble.    If   N     is 

commensurate with   /V,, ,  however,    we have a choice of either assigning 

a position code,  in which each R-unit identifies the presence or absence of 

a single type of stimulus,  or assigning a configuration code,  in which each 

R-unit is assigned an arbitrary dichotomy.    In general,  the problem is to 

find the optimum set of dichotomies to be assigned to the R-units,   so as to 

obtain the greatest probability of correct identification for an arbitrarily 

selected test stimulus.    Let us assume all stimuli equally likely to occur, 

and all classes of equal size (i.e. ,  an equal number of stimuli in each).    The 

number of A-units connected to each R-unit is also assumed to be constant. 

Let the vector       .     - f'/-. r  ,...,/•., _.   = the correct response 

vector for a given lest stimulus.    Then,   from equation (1Z.1)  we are 

required to maximize 

-' '    "       ,        '        ■ 

Since we further assume that    ' r    is chosen arbitrarily,  and that every 

stimulus is equally likely to be chosen as a stimulus,  we require the 

expected value 

(12.3) 

to be maximal.    The choice of dichotomies which maximizes (12.3) would be 

considered an optimum code for the environment and perceptron in question. 
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At present, no general solution to this problem has been found.   Several 

heuristic cues as to the organization of optimal codes are worth noting, 

however, 

(1) If a given stimulus class has members which are 

disjoint from the stimuli of all other classes, while the remaining classes 

have large retinal intersections,  it will clearly be advantageous to employ 

a single R-unit for the recognition of the stimulus class in question, with a 

highly assymmetric dichotomy which does not attempt to divide 

the remaining stimuli    into    two sub-sets, but takes advantage of the 

"natural" dichotomy formed on the basis of location. 

(Z) If the relationships of all stimulus classes are symmetric, 

so that no two classes tend to "stick together" more than any other two 

classes,  and no pair of classes are easier to discriminate than any others, 

and if S-controlled reinforcement is to be used,   it will probably be best to 

use equal dichotomies for all R-units,  ( ^/^    stimuli in each positive set) so 

as to avoid asymmetric generalizations from the larger set to the smaller 

one.    The results of the frequency bias experiments,  illustrated in Figs.   16 

and 25,  appear to support this conjecture.    Where an error correction 

method is used, however,  empirical results suggest that asymmetric 

dichotomies are preferable. 

(3) There exist classifications which cannot be achieved by 

means of a position code, which can be achieved with a configuration code. 

For example,  consider the following case:    Let there be three stimuli in 

W   ,  such that i.   activates   a. '      activates   a2    and   5-,    activates 
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both  O,   and    a ,   .    Let there be three simple R-units,  each connected to 

both O.    and   rt „   .    It is required to assign a unique code number to each 

of the three stimuli.    With a position code,  the R-unit assigned to identify 

^ .,    must give a positive response when both  o.]   and   a^   are active, but a 

negative response when either   o,   or   ■'     alone is active.    This is clearly- 

impossible, with simple R-units.    However,  if a configuration code is 

employed,  we can assign the R-function [r. ,  r.   ,   /', y 

(+1, -I, -i)for ;•,, 

(-1,   +1,   -1) for    •j2 

(+1,   +1,   -1) for   53 

which is readily soluble,  by an error correction procedure.    /?     is 

obviously redundant here,  and is arbitrarily set to -1 for all stimuli. 

(4) A general rule,  proposed by Joseph,  is the following: 

The smallest possible number of R-units should be required to distinguish 

between very similar stimuli.    The more dissimilar two stimuli are, the 

more R-units may be allowed to place the two in opposite classes. 

Note that in this example,  it is possible to assign an arbitrary classi- 
fication to an environment of 3  stimuli with only Z A-units,    This could not 
be done with a simple perceptron (as proven in Corollary Z of Theorem 3, 
Chapter 5).    The addition of a second R-unit in this model substitutes for 
the missing A-unit which would otherwise be required. 
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In empirical tests with the Mark I perceptron (such as the 

experiments described in the following section) it has been found that the 

choice of a code,  even with binary numbers of a fixed length,  can easily 

determine whether or not a particular task is within the perceptron's 

capability. 

12.3      Experiments with Multiple Response Systems 

The Mark I perceptron at C.A.L.  is equipped with eight binary 

R-units,  and 51 Z A-units,  which can be employed in any combination.    The 

network topology is of the type shown in Fig. 3 5(b).   A number of experiments 

have been performed (Ref.  30) dealing with the recognition of letters of the 

alphabet and sets of geometrical patterns where multiple classifications are 

required.    Two such experiments are illustrated in Figures 36 and 37., 

In Fig.  36,  learning curves are shown for an S-controlled 

experiment on the left,  and for an error-correction experiment on the right. 

In each case, the perceptron was taught to identify eight letters of the alpha- 

bet, presented in the form of large block letters in random locations, over a 

considerable part of the retinal field.    In the error correction procedure, 

each of the erroneous R-units is correctad simultaneously. 

Figure 37 shows the learning curve for the entire alphabet, 

presented in fixed position.    A partially optimized binary code employing 

five R-units was used here.    This represents about the limit of the capacity 

of the Mark I system.    Attempts at teaching the Mark I to recognize all 

26 letters in two type faces simultaneously have been unsuccessful, the 
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maximum performance being about 85% on the combined alphabets,    With a 

discrimination task of this difficulty,  any displacement of the patterns from 

the position where they have been learned is likely to abolish the correct 

response. 

On easier problems,   such as a four-letter discrimination task, 

the choice of code is found to make little difference in system performance. 

The code becomes critical only when the discrimination capability is marginal, 

as in the 26 letter identification task.    Given the choice between a position 

code and a configuration code with the number of A-units in a source-set held 

constant, the position code generally seems preferable with the kinds of 

stimulus material employed in these experiments.    If the same total number 

of A-units must be divided among the source sets of the additional R-units 

used for the position code, however, better performance is obtained with 

the more economical configuration code, which uses binary numbers for 

identification,  with larger source sets. 
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13.       THREE-LAYER SYSTEMS WITH VARIABLE S-A CONNECTIONS 

In the foregoing chapters, we have almost exhausted the 

possible ramifications of minimal three-layer perceptrons,  having an 

S »-A-i-R topology.    Only one constraint remains to be dropped,   in order 

to obtain the most general system of this class: this is the requirement that 

S to A-unit connections must have fixed values, only the A to R connections 

being time-dependent.    In this chapter,  variable S-A connections will be 

introduced, and the application of an error-correction procedure to these 

connections will be analyzed.    It would seem that considerable improvement 

in performance might be obtained if the values   of the S to A connections 

could somehow be optimized by a learning process,   rather than accepting 

the arbitrary or pre-designed network with which the perceptron starts out. 

It will be seen that this is indeed the case,  provided certain pitfalls in the 

design of a reinforcement procedure are avoided. 

13.1     Assigned Error,  and the Local Information Rule 

In order to apply an error correction procedure to all connections 

of a perceptron,   including the S-A connections,  we must first re-examine 

the concept of "error" which has been employed so far as a criterion for 

reinforcement.    In the theorem of Section  12.1,  it was shown that it will 

not do to assume that all units of the perceptron are equally in error when 

a mistake in the total response occurs.    It was seen that if all connections 

are corrected, on the assumption that both R-units are wrong (in the two 

R-unit case employed for demonstration) a solution may never be achieved. 
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The alternative was to assign an error independently to each R-unit, by a 

suitable criterion, and correct the connections leading to each R-unit in 

accordance with the corresponding error indication.    In the present case, 

where A-units as well as R-units are to have their input-connections modified, 

it becomes necessary to assign an error indication to each A-unit, as well 

as to each R-unit. 

In preceding chapters, the assigned error for an R-unit,   E.r    , 

was taken to be equal to    (p*  - r*) > where p *   is the desired response,  and 

r  is the obtained response.   A positive error meant that the R-unit was to 

be turned to its positive state, and a negative error meant that it was to  be 

turned to its negative   state, in the case of simple R-units.   Similarly, for an 

A-unit   a-   , we might use a positive assigned error,   £"•   , to indicate that the 

unit is to be turned "on",  and a negative   £"•   to indicate that it is to be turned 

"off", or made inactive,  in response to the current stimulus.    The difficulty is 

that whereas /? *, the desired response,  is postulated at the outset, the desired 

state of the A-unit is unknown.    We can only say that we desire the A-unit to 

assume some state in which its activity will aid,  rather than hinder, the 

perceptron in learning the assigned classification or response function. 

One possible way of obtaining the required activity states of the 

A-units would be to examine each possible state of the system, with its 

corresponding G-matrix,  and determine whether or not a solution to the 

assigned problem exists.    If a state is found in which a solution does exist, 

then the appropriate responses can be taught to each A-unit, by means of a 

standard error-correction procedure, operating on the A-units in the same 
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manner as on the R-units.    Such an approach,   however,  evades the real 

issue of finding a procedure which will guarantee convergence to a solution 

without requiring that the reinforcement control system know the solution 

state ahead of time.    Specifically,  in assigning an error-indication to an 

A-unit,  we wish to base the assignment only on the state of the network at 

the time and locality where the error occurs.    The following rule will 

therefore be accepted as a working premise for all models  to be considered: 

LOCAL INFORMATION RULE:      For any A-unit,   a^    , the assignment of an 

error   t -(i)    can depend only on information concerning the 

activity or signals received by   o. ■    ,  the value of its output 

connections,  and the error assignment at their terminal points 

at time    t   . 

In other words,  only     / ■     itself and the points to which it is directly 

connected can determine the error assignment. 

13.2       Necessity of     Non-deterministic Correction Procedures 

By a "deterministic reinforcement procedure" we mean that if 

the same state of the system should occur repeatedly with all signals and 

values unchanged,  an identical reinforcement will be applied; and that if 

two similar subnetworks are in the same   state of activity,  value,  and error 

assignment,  they will be modified identically.    Up to this point,  no problem 

has been found for which a solution exists, where a suitably defined 

deterministic reinforcement procedure could not find a solution.    The first 

exception to this is stated in the following theorem. 
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THEOREM 1; Given  a three-layer series-coupled perceptron with 

simple A and R-units,  and variable-valued S-A connections, 

and a classification   C(W)   for which a solution exists, 

it may be impossible to achieve a solution by any determi- 

nistic correction procedure which obeys the local inform- 

ation rule. 

PROOF:        The proqf is by example.    Consider the following network: 

Let   a.   and   n     have thresholds of 1, and let the stimuli of l/V consists of 

-Ay    alone (stimulus   5,  ) or A^   alone (stimulus    5-,   )•    Let the required 

classification be     (. Pi , £'2 ) ~ (* ^ > ~ ^ )     ^or     C' 1     an^    (~ t> ^ 0    ^or     5? 

A solution clearly exists; for example, the following assignment of values 

would be satisfactory: ■ 
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In this problem ,   a solution clearly requires an asymmetric assignment of 

values for "parallel" and "crossed" connections from each sensory unit and 

from each A-unit.    If we assume that all values are initially equal,  then 

either    a,   and    Ci -■    are both on,  or else both are off.    In either case,  one 

of the R-units is wrong,  and whichever one is wrong will induce a symmetric 

correction of the values from both A-units.    Moreover,  since both   a,   and   Q.^ 

are in indistinguishable states (whichever R-unit    happens to be wrong) under 

the local information rule both units must receive an identical error indication. 

But then the connections from whichever S-unit is active will both be modified 

identically,  and the result is that the members of each value-pair (from each 

S-unit and from each A-unit) are still identical.    The required asymmetry 

between "parallel" and "crossed" connections can therefore never arise, and 

the same response must always occur for    ,S ,    and   j,    .  Q.E.D. 

While this theorem shows that a deterministic procedure cannot 

be guaranteed to work,   it remains to be shown that a non-deterministic 

procedure will work.    In the most extreme case,  we could employ a procedure 

which randomly varies the value of every connection,  independently of the others, 

as long as errors continue to occur.    In this case,  if the phase space of the 

system is bounded,  a solution will certainly occur in finite time, but we have 

already seen the devastating consequences of a much less drastic randomization 

of the reinforcement    process on learning time (c.f. ,  Figure 19).    In the 

following section,  a more systematically directed procedure is presented, 

which can be shown to lead to a solution with probability 1,  as in the case 

of error correction procedures considered for elementary perceptrons. 
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13.3       Back-Propagating Error Correction Procedures 

The procedure to be described here is called the "back- 

propagating error correction procedure" since it takes its cue from the 

error of the R-units,  propagating corrections back towards the sensory- 

end of the network if it fails to make a satisfactory correction quickly at 

the response end.    The actual correction procedure for the connections to 

a given unit,  regardless of whether it is an A-unit or an R-unit,  is perfectly 

identical to the correction procedure employed for an elementary perceptron, 

based on the error-indication assigned to the terminal unit.    Thus,   if the 

error    E-     is positive,  a correction is applied to the values of the active 

connections terminating on  a-  which would tend to increase the signal to   a- 

algebraically,  eventually turning it "on"; if   E-    is negative,   a correction, 

fi    ,  of the opposite sign is applied to all active connections terminating on 

a;    .    The essential feature of the method is a probabilistic procedure for 

assigning the errors,    E-    . 

The rules for the back-propagating correction procedure    are 

as follows: 

For each R-unit,   set      tr - P   - r   ,  where     f?    = 

required response and    f   -   obtained response. 

For each association unit,    Q, ■    ,   E■   is computed as 

follows, for each stimulus:   Begin with    E;   = 0. 

a   )      If   Q.i    is active, and the connection /:-r   terminates 

on an R-unit with a non-zero error   Er   which 

differs in sign from   ir-      ,  add -1 to    E;    with 

probability    P. 
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b) If   Qi     is inactive, and the connection Cir 

terminates on an R-unit with an error   Er   which 

agrees in sign with   irir   ,  add +1 to   £•     with 

probability   p      . 

c) If    a •    is inactive,  and the connection /:-r   terminates 

on an R-unit with an error   £"      which does not agree 

in sign with   v">     (or if V;r   ^s zero) add +1 to   £• 

with probability  p      . 

For all other conditions,   E■     is not changed. 

3 . U   £"•-*' 0   ,  add f?   to all active connections terminating 

on the A or R-unit   u ■   ,  taking the sign of   f/     to agree 

with the sign of   £■   .    In symbols, 

L =   a •>gn(t;)e 

where   6   is the magnitude of   /j?   . 

In general, p.    and  p     are taken large relative to   p      .    The effect of these 

rules   is to try to turn off any A-units (with probability p   ) whose output is 

currently contributing to an error in an R-unit,  and to try to turn on any 

A-units (with probability  pj   ) which are currently off,    but whose out- 

put signals would help correct an error in one or more R-units if they 

were on.    The purpose of the third probability,     p       ,  is twofold; first, 

if no A-units respond to a stimulus, and all of the values have the wrong 

sign or are zero (as in typical initial conditions) it guarantees that some 

A-units will come on; second,  it prevents the permanent loss of A-units 

which might be necessary for the proper response to some stimulus, 
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even though their values may have the wrong sign at some time during the 

training procedure.    If   A    and  p     are larger than  p      , the main changes 

in the network will clearly all tend to go in the direction of a solution.    The 

following theorem proves that the procedure is sufficient to guarantee a 

solution,  if a solution exists,  in the form of some assignment of values to the 

network. 

THEOREM 2: Given a three-layer series-coupled perceptron,   with 

simple A and R-units,variable-valued S-A connections, 

bounded A-R values,  and a classification   r('//:    for which 

a solution exists, then a solution to   CfwJ    can be obtained 

in finite time with probability 1 by means of a back- 

propagating error-correction procedure,  given that each 

stimulus in ; 1/   always reoccurs in finite time, and that 

probabilities    / , ,   p    ,    and   /;     are all greater than 0 

and less than  1 . 

PROOF:        The state of the S-A network can be characterized, for present 

purposes,  by an   '. .  by.-   matrix,    'i      ,  which consists of the   A/;    row vectors; 

!    "■, 

where      a ■■   -   1,0    -      signal generated by unit   a;    in response to 

stimulus     ';    .    Two assignments of values to S-A connections which yield 

the same A   -matrix will be called equivalent S-A states.    To each such 

matrix, A   ,   there corresponds a G-matrix for the perceptron.    We will say 

that a given S-A state permits a solution if the corresponding G-matrix is 

one for which a solution to    C\W)    exists. 
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First,  suppose the system is initially in a state which permits 

a solution.    Then if it remains in this state sufficiently long,  a solution must 

occur with probability 1,  due to Theorem 4, of Chapter 5.    Since S-A 

connections only change in value if the errors   E-   are assigned magnitudes 

other than zero, and since the probabilities   p     >   p7    t and   p     of assign- 

ing non-zero   F-    are all less than 1, there is a probability   p > 0   that the 

perceptron will remain in its initial state for any given finite time.    Thus, 

there is a probability greater than zero that a solution will be achieved 

before any change in the A -matrix occurs. 

* 
Next,  suppose the A -matrix changes to some different state 

before a solution is achieved,  or suppose that the system starts out in a 

state which does not permit a solution.    Then it is sufficient to show that 

the system will always return to a state which does permit a solution in 

finite time with probability 1,  and that the probability   P   of obtaining a 

solution for a given S-A state does not approach zero with successive 

returns to the same state.    If it does always return to such a state , then 

each time it arrives at such a state, there will be a probability greater 

than zero (and bounded away from zero) that it finds a solution before the 

state is destroyed.    Thus,  with sufficiently many returns to states which 

permit solutions,  a solution will be found with probability 1. 

It is now necessary tu show that from an arbitrary starting 

state,  the system will always achieve an A -matrix which permits a 

solution in finite time with probability 1 . 
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If the current A -matrix does not permit a solution, then 

either or both of the following conditions must be present: 

(a) Some   C;:     which should be 1 for a solution to be 
'j 

possible is actually 0; 

(b) For some   .c ■ ■      which should be 0 and is actually 1, 

there must be a    i/^    the sign of which disagrees with 

/?      for stimulus    5;   . 

The second condition follows from the fact that if every active connection 

from A to R-units has a   1r;r   with proper sign for every    5;      , and if 
L 7 ■-' J 

condition   (a) is not present,  then a solution already exists.    Now suppose, 

for an arbitrary A -matrix, Stimulus   5"    occurs.    Then condition  (a) may 

exist for some A-units, and condition (b) for others.    For each A-unit 

which is currently off (including all of those to which condition (a) applies) 

Rule Zb or Zc of the correction procedure becomes operative, and there is 

some probability that each such unit will receive an error indication.    Since 

we have assumed the activity of these units to be necessary for a solution, 

and have postulated that a solution exists, there must be some assignment 

of S-A values for each such unit which will turn  it "on" for   5*    •   Since   5; 

is postulated to reoccur infinitely many times, then it follows from 

Theorem 4 of Chapter 5 (treating the A-unit and its input connections as 

equivalent to an R-unit) that the required    /: • ■    will ultimately be obtained. 

Since each A-unit is corrected independently of the others,  a state will 

ultimately occur in which all of the A-units which were wrong by condition (a) 

have been corrected.    Next consider those A-units for which condition (b) 

applies.    For these units Rule Za of the error correction procedure is 
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applicable,  and by the same argument as above, the    r • •     will ultimately- 

all be corrected.    But in that case,  we have arrived in a state which permits 

a solution.    Since there is nothing in the above argument which depends on 

states prior to the arbitrary starting state, the system can arrive at states 

permitting solutions indefinitely often,  and a solution must therefore occur 

with probability 1, provided the probability P   of finding a solution while in 

such a state does not approach zero.    This last assumption,  though plausible, 

still remains to be rigorously proven for the general case. 

For the special case in which the values ^^ are bounded,  the 

remaining assumption can be proven without difficulty.    In the proof of 

Theorem 4,  in  Chapter 5,  it was shown that the number of corrections 

necessary to find a solution is at most equal to 

M{A+ efTr)2 

where  M    and   (V.    are constants depending only on the G-matrix (and 

therefore on A   ), and   i.   is the length of the vector    Hz     .     Thus the 

number of corrections required to find a solution can incrase only as ä 

result of an increase in the magnitude of some components of the starting 

vector,   9C     ,  upon successive returns to the same S-A state.    But if all 

values i/-     are bounded,  the components of   ;* " are also bounded,    Conse- 

quently,   «    has an upper bound for any given   //    (or for any given A   ). 

This means that there is a maximum number of corrections that might 

possibly be required (assuming that a solution exists) and that the proba- 

bility  p   of arriving at a solution before destruction of the A    state is not 

only greater than zero but must be bounded away from zero.    Q.E.D. 
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13.4       Simulation Experiments 

At the present time^ no quantitative theory of the performance 

of systems with variable S-A connections is available.    A number of simu- 

lation experiments have been carried out by Kesler,     however, which 

illustrate the performance of such systems in several typical cases,   shown 

in the accompanying figures.      In order to show the performance of the 

variable S-A system to its best advantage,  small perceptrons were used,   for 

which  the learning of a horizontal/vertical bar discrimination (Experiment 6) 

falls short of what might be obtained with an optimum S-A organization. 

Figure 38 illustrates the effect of various combinations of the 

probabilities I     ,  and /       (including the 0,0,0 case where all S-A 

connections remain fixed,  for comparison).    The curves show the mean 

performance for Z0 perceptrons,  with 50 A-units,  having 10 input connections 

to each.    The initial values of all S-A connections are    set equal to +10, and 

the threshold is 50.    The same set of 20 networks and training sequences 

was used for each probability combination. 

It is found that if the probabilities of changing the S-A 

connections are large,  and the threshold is sufficiently small,  the system 

becomes unstable,  and the rate of learning is hindered rather than helped 

by the variable S-A network.    Under such conditions,  the S-A connections 

are apt to change into some new configuration while the  system is still 

trying  to adjust its values to a solution which might be perfectly possible 

with the old configuration.    Better performance is obtained if the rate of 

change in the S-A network is sufficiently small to permit an attempt at 

solving the problem before drastic changes occur.    To improve the stability 

*       The experiments were carried out with the Burroughs 210 computer at 
Cornell    University,   and the IBM 704 at the A. E.G.  Applied Mathe- 
matics Center at New York University. 
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of the network,in all experiments shown here,  the A-R connections are 

reinforced,for each stimulus, before determining whether a correction should 

be propagated back to the S-A network.    Thus, S-A connections are changed 

only if the system fails to correct an error at the A-R level, 

In Figure 39,  mean performances of a number of 20 A-unit 

perceptrons are shown,  in one case with 4 connections, and in a second 

case with 50 connections to each A-unit.    These perceptrons are small enough 

so that in many cases we would expect no solution to exist to the horizontal/ 

vertical bar problem (which requires the classification of 40 stimuli with 

only ?,0 A-units) were it not for the modifiable S-A network.    Initial values 

of S-A connections are again equal to 10, and thresholds are 2 m     , where 

m   - number of connections to each A-unit.    Note that with 50 fixed connections 

to each A-unit the performance is poorer than with only 4 connections, but that 

with  cl " .9. P2  ' ■ '   and    /^ = . /   , the performance overtakes the 4-connection 

model.    This is because  with laxge numbers of S -A connections, the per- 

ceptron can effectively take its pick of whatever organization might be most 

helpful,    and can always reduce excess connections to zero value, while 

with only a small number of connections at its   disposal it is seriously limited 

in its potentialities.    With only 4 connections,   variable S-A connections have 

little effect on performance. 

These experiments suggest that the best performance will 

generally be obtained by taking  Pf > ^j > ^3 ' 
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An interesting application of the variable S-A system is in 

pre-conditioning a perceptron for stimuli of a particular type (such as line 

figures, or blob patterns) by giving it a number of discrimination tasks to 

perform on typical material of the given type, and then trying to teach it a 

new discrimination on the same kind of stimuli.    Due to the prior adaptation 

of the S-A system,  it is to be expected that the learniig   curve for the final 

discrimination task should show faster learning after the period of pre- 

conditioning than if the same discrimination task had been attempted with 

the original randomly organized S-A network.    In other words, the S-A 

network should become adapted to the stimuli of a particular kind of universe, 

performing better on typical discrimination tasks involving "familiar" kinds 

of stimuli than on tasks involving radically different or "unfamiliar" kinds 

of stimuli. 
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14.       SUMMARY OF THREE-LAYER SERIES-COUPLED SYSTEMS: 

CAPABILITIES AND DEFICIENCIES 

The three-layer series-coupled perceptron (S-»A.-»-R perceptron) 

is the least complicated topological organization which yields fully general 

response-capabilities.    The analysis presented in the preceding chapters 

leads,  in effect,to the following conclusion:    With a suitable design and 

training procedure,  a three-layer series-coupled perceptron can be taught 

to duplicate the performance of any finite automaton.    This means that if we 

have a finite universe of potential input sequences ( » , >    »->•■•»   Jn    ) and 

a finite set of possible response sequences [tft., R-, • ■ • ,   #/r7   ), then it is 

possible to construct a minimal perceptron such that any response sequence, 

^   ,  can be associated with each possible input sequence,   Je     .    In order 

to do this with full generality,   of course,  a suitable spectrum of time delays, 

r--      ,  must be present,  as indicated in Chapter 11. 

Both the generality and the practical limitations of the above 

statement should be emphasized.    It is perfectly possible,   in principle,  to 

teach a minimal perceptron to duplicte the performance of an arbitrary digital 

computer.    To do this,  every possible sequence of coded instructions and data 

must be represented as a stimulus sequence (one of the   Ji   ) and the set of 

output numbers generated by the computer as a response sequence (one of 

the    f. ■    ).    If the perceptron is large enough,  it can then be trained,  with 

an error correction procedure,  to make the appropriate association of input 

and output sequences.    But what the perceptron learns by this process   is to 

simulate the behavior of the digital computer; it does not acquire the 
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computer's logic.    If any one of the trillions of possible programs were 

omitted from the training sequence, the perceptron would probably fail to 

perform correctly if tested on the omitted sequence.    The failure to genera- 

lize,  or to learn logical rules,  in such a problem makes such an application 

of these minimal perceptrons totally impractical. 

For practical purposes,  we will limit our remarks to the 

performance of these perceptrons in recognizing and reporting environmental 

events.    In this connection, the following capabilities have been established: 

(1) A three-layer series-coupled perceptron can be 

taught to associate an arbitrary coded output,  or sequence of outputs,    ??;   , 

to each stimulus,   or stimulus sequence,   J•     ,   in a finite environment. 

(2) The perceptron need not be explicitly designed for the 

task which it is required to learn.    The same network may be taught a 

variety of alternative outputs,  or codifications, of the same environment. 

(3) The required training can be accomplished by means of 

an arbitrary sequence of events from the specified environment,   regardless 

of the order or frequency with which they occur,  provided each event 

ultimately reoccurs in finite time. 

(4) The training can be accomplished regardless of the 

initial state of the perceptron's memory,  and without specifying in detail 

the changes which must take place in the state of the system (i.e.,  general 

dynamic laws are sufficient to bring about the required adaptation). 
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(5) A perceptron wilJ tend to assign the same response to 

any two stimuli or stimulus sequences, t*/- and J- , which are close to 

identity under temporal translation. By means of discrimination training, 

however,  it can be made to associate a different response to each such 

stimulus, 

With this kind of universality in the performance of the system, 

we obviously cannot hope to find any new kinds of response capabilities in 

more complex or sophisticated networks,  which cannot be realized by 

minimal perceptrons after suitable training.    Nonetheless, the three-layer 

series-coupled perceptron clearly falls far short of biological systems in 

some respects.    The differences lie not in what the system can learn to do, 

but rather in the speed,  efficiency,  economy,  and reliability of learning or 

adaptation.    An S-^A-^R   perceptron can be taught to play a game,   such as 

checkers,   only by teaching it what response to make in every conceivable 

situation; a biological system can anticipate most of this training by 

learning the rules of the game.    Or,   similarly,  an S-*-A-*-R perceptron can 

distinguish a circle from a triangle in the lower half of its retina only if it 

has previously been trained with triangles and circles in the lower half of 

its retina; it will not generalize from experience with similar forms in the 

upper half of the field.    In Nature,  the enormous number of sensory situations 

which comprise the potential universe   (each situation,   individually, having 

exceedingly low probability of occurrence) makes the capabilities of 

generalization,  analysis,  and abstraction absolutely essential for an 

advanced organism,  or recognition device, to function properly.    Two main 

ingredients of such performance are recognition of similarity and recogni- 

tion of functional parts, or entities.    The first of these is basic to generali- 
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zation and induction, while the second is basic to analysis, the abstraction 

of relations,  and the reduction of complex situations to familiar terms. 

Seen in this light,  the principal deficiencies of these minimal-topology 

perceptrons are: 

(1) An excessively large system maybe required. 

(2) The learning time maybe excessive. 

(3) The system may be excessively dependent on external 

evaluation (by an independent r.c.s.) during learning. 

(4) The generalizing ability (inductive ability) is insuffi- 

cient . 

(5) Ability to separate essential parts in a complex 

sensory field (analytic ability) is insufficient. 

Point (1) is largely attributable to (5); the excessive size of 

the perceptrons necessary to deal with complex environmental situations 

is due largely to the necessity of having a characteristic set of A-units 

representing every possible sensory field or sequence in its entirety.    A 

preliminary coding of the field in terms of its parts and relations would 

greatly reduce the size of the system required to describe a given universe 

of situations.    To take an extreme case,   if a three-layer series-coupled 

perceptron is required to produce as an output the coded representation of 

the sum of a sequence of a million digits,  it must be capable of representing 

in its association system every possible sequence of a million digits 
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6 
(presented either serially or simultaneously): 10        possibilities in all. 

On the other hand, a perceptron which could attend selectively to each 
o 

digit, form a partial sum,  and then go on to the next digit,  requires only 10 
7 

possible states: 10    to represent the possible values of the partial sum, 

rr}ultiplied by a factor of ten to allow for each of the possible incoming digits. 

The second method is the one employed by a digital computer, or a man 

adding a sequence of numbers.    In the field of sensory pattern recognition, 

similar conditions occur.    The recognition of a sentence is made much 

easier by breaking it into words,  and the recognition of a scene is made 

easier by analyzing it into objects and relations. 

Similarly,  the excessive  learning time (point 2) can be largely 

attributed to (4),  the insufficient generalizing ability of the system.  With 

improved generalization,   several examples should be sufficient to teach 

the perceptron to recognize all members of a class of similar events, 

whereas at present an unduly large sample is required in order to extend 

the response over the class.    The insufficient generalizing capability has 

been frequently pointed out in the preceding chapters,  and is common to 

all of the S*-A-*-R perceptrons.    Thus points (3),   (4) and (5) appear to be 

the primary deficiencies. 

In connection with point (3), we note the failure of minimal 

perceptrons to reach "useful" terminal states under R-controlled 

reinforcement procedures,  except under exceptional environmental and 

organizational  ccnditions.    This means that the reinforcement control 

system must  itself have a great deal of information about the environment, 

and must generally know,  or have built into it,  the precise discrimination 
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or response functions which the perceptron is supposed to learn.    Thus the 

r. c. s.  must either be a free agent (e.g., a human trainer) or else some 

kind of homunculus within the same physical system as the perceptron.    It 

has been noted that a perceptron can improve over the performance  of the 

r. c . s .  in some cases (Section 8.1.4) but the functioning of the r. c . s .  still 

seems to be rather remote from what might be expected of a biological 

motivating system.    By using a random-sign correction procedure,  the 

information required from the r.c.s.  is minimized; with such a procedure, 

the possible outputs of the r.c.s.  can be interpreted to mean "hold steady" 

or "change",  while with a directed correction procedure the three alterna- 

tives "hold steady",  "increase values",  or "decrease values" are all 

required.    But the efficiency of a system employing the randomized 

procedure is greatly reduced (c.f.,   Figure  19) and the only hope for such 

systems seems to be in a "majority rule" procedure, which increases the 

size and complexity of the total organization. 

If a system could be contrived which would guarantee 

generalization of a response from one stimulus of a class to all other 

stimuli of that class,  an r.c.s.  which employs the "trial-and-error" 

process of the random-sign procedure might become practical,   and a 

simple motivation system which senses only the suitability or unsuitability 

of the present response or state of the organism might be substituted for 

the more complicated r.c.s.  assumed for most of the preceding experi- 

ments.    In Part III,  it will be shown that multi-layer and cross-coupled 

perceptrons are capable of providing just this sort of generalizing capability , 

and,  moreover,  that this capability may be "self-organizing" under 

reasonable environmental conditions.    That is to say,  R- controlled systems 
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can learn to form reasonable classes on the basis of a similarity   criterion, 

provided there is some support for this organization from the environment. 

The required support takes the form of a "continuity constraint", which says, 

in effect, that stimuli do not occur as momentary flashes, but are more 

likely to persist for a time,  during which they undergo a series of move- 

ments or transformations.    It will be seen that such a sequential organization 

provides sufficient information to enable a multi-layer or cross-coupled 

perceptron to abstract a concept of similarity which can then be employed 

to obtain immediate generalization in later situations . 

The improvements which have been demonstrated to date in 

multi-layer and cross-coupled perceptrons will be seen to be primarily 

in the field of generalization phenomena,   and their main virtue is in 

reducing the learning time of a perceptron.    Some reductions in size 

requirements have also been demonstrated,  and the dependence on 

external evaluation of performance is largely eliminated.    Thus points (1) 

through (4),   in the list of criticisms of minimal perceptrons can be largely 

or entirely eliminated with a multi-layer or  cross-coupled topology. 

Point (5),  however,  remains the least understood of the current problems. 

While there is some indication that perceptrons of the types to be consi- 

dered in Part III may have some analyzing ability (for example,  they can 

isolate contours from solid figures,  and may possibly learn to suppress 

the partial response of the association system to irrelevant aspects of the 

stimulus field) it is not yet possible to say whether such systems are really 

sufficient to meet the challenge of point (5),  or not.    The psychological 

problems of figure-ground organization,   recognition of relations,  and 
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"cognitive set" are all involved here.    It is likely that "back-coupled 

perceptrons",  in which R-units or deep association layers feed back to 

more superficial layers,  may be necessary to deal with these problems, 

Several possible approaches will be considered in Part IV, which deals 

with current problems, and attempts to establish directions for future 

study. 
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PART in 

MULTI-LAYER   AND   CROSS-COUPLED   PERCEPTRONS 



MULTI-LAYER PERCEPTRONS WITH FIXED PRETERMINAL 

NETWORKS 

The perceptrons considered in Part II have all consisted 

of three "layers" of signal generating elements: a sensory layer,  a single 

layer of association units, and a layer of R-units (containing only a single 

unit in the case of simple perceptrons).   A perceptron with additional layers 

of A-units between S and R-units will be called a multi-layer system.    Thus 

the network diagram: 

represents a four-layer series-coupled system,  whereas the diagram 

represents a three-layer cross coupled system,   since all A-units are at 

least the same logical distance from the sensory units (see Definition 18, 

Chapter 4).    The three-layer structure of the second diagram can be made 

clearer if it is drawn in the form: 
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which is topologically identical to the preceding network.    Cross- 

coupled systems will be considered in detail in the following chapters. 

It has been demonstrated that three-layer,   series coupled 

perceptrons are capable of learning any type of classification,  or 

associating any responses to stimuli or to sequences of stimuli,   that 

might possibly be required.    Therefore,  if a multi-layer topology is to 

offer any functional advantages,  it will not be in the form of new kinds of 

responses to stimuli (since any such response can be achieved with a 

three-layer system) but rather in increased efficiency in the acquisition 

of such responses.    It can,  in fact,   be demonstrated that the adaptability, 

or ease of acquisition of responses,   may be greatly improved with a 

suitable multi-layer topology.    The most striking improvements are to 

be found in the generalizing ability of such networks  -- an ability to give 

appropriate responses to stimuli for which they have not been taught.    It 

has been seen that this "inductive" or generalizing capability is present 

only in rudimentary form in three-layer series-coupled systems.    Some 

multi-layer systems also show improvements in sensitivity to differences 

between highly similar stimuli,   making such discriminations easier to 

learn,  as will be seen in Section 15.1. 
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In the following sections,  we will first consider systems in 

which all connections other than connections to R-units have fixed values, 

only the R-unit input connections being reinforced.    The connections to the 

R-units will be called terminal connections, all other connections (from S 

to A-units,  and A-units to other A-units) being called preterminal connections 

It will be seen in Section 15.2 that the most interesting effects which can be 

obtained by such systems depend on special constraints in the organization of 

the preterminal network.    The following chapter will therefore be devoted to 

the examination of dynamic rules by which the preterminal connections 

between layers of A-units can be modified,   so as to yield the required  organi- 

zations   as a result of the system's adaptive functioning,   in a suitably organized 

environment. 

The analysis of multi-layer systems is of interest not only in its 

own right,  but also because it introduces many of the problems and formal 

techniques of analysis which will be encountered in the following chapters on 

cross-coupled systems,  with feed-back loops within the network.    In fact,  it 

is found that with a suitable transformation,   many "closed-loop" cross- 

coupled systems can be represented by an equivalent "open-loop" multi- 

layer system. 
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15.1       Multi-layer Binomial and Poisson Models 

The most straightforward extension of our previous models to 

a multi-layer topology is to assume that each A-unit in the first association 

layer is assigned an origin point configuration in the retina,  or sensory 

layer,   chosen independently for each A-unit,  as before.    Each A-unit in the 
(2) 

second layer (designated A      ) is similarly assigned an origin point configu- 

ration in the A        layer,  independently for each such A-unit.    In general, 

(k) every A-unit in the A       layer is independently assigned an origin point 

configuration from an appropriate distribution (binomial or Poisson model), 

the connections originating from the A layer.   All connections from one 

A-layer to the next are assumed to be fixed in value, the final A-layer sending 

variable-valued connections to the R-units,    In order to analyze the perform- 

ance of such a perceptron,  it is sufficient to determine the Q-functions for 

the   A-units of the last layer before the R-unit,   since,  given these Q-functions, 

we can then apply the same equations and analysis which were employed 
(I) 

in Bkrt II,  for three-layer perceptrons.    The notation      ^;;. . will be 

used to denote the Q-functions for A-units in the first layer (which are 
(i) 

identical with the Q-functions discussed in Chapter 6),  and     ', (-; _n     to 

denote Q-functions for units in the 4      layer. 

Even in the simplest case,   of a four layer perceptron,  the 
(2) 

combinatorial analysis required for a rigorous statement of   Q        functions 

is awe-inspiring.   A special case,  in which all inter-layer connections are 
(2) 

inhibitory,  and the thresholds of all   A        units are zero,  has been 
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analyzed by Joseph (Ref. 41), and the reader is referred to his contri- 

bution for the detailed considerations.    The basic difficulty stems from 
(2) 

the fact that a second layer Q-function,  such as    Q- depends on the 

distribution of the numbers of A-units in the first layer which respond 

to   5;    alone,   5;    alone, and jointly to 5;     and   5'   .    The expected 

values of these numbers are obtainable from the    Q        functions in a 

straightforward manner, but the non-central moments of the distributions 

enter into the analysis in such a way that it becomes unduly complicated. 

A practical solution is obtained by assuming that the numbers 

of A-units in the 1st,   Znd,...i-1      layers (designated by 

'//;   N':I) " '"L'" )are all very large,  or infinite.    In this case, 

the proportion of active units in each layer in response to  S[   will be 

equal to    Q^   , and the expected values of all set-intersections can be 

employed in the analysis.    In this case,  the equations of Chapter 6 can 
il-i) 

be employed without modification to compute 0- ii  . .  r; by using   Q-L 

d-l) 
in place of the stimulus area,    k'-    ,      0- ■ in place of the intersection 

C    ,  etc.    The error introduced by assuming infinite   'V-    for the pre- 

terminal layers will be slight, as long as the actual   N,    is reasonably large 

The addition of extra A-unit layers can have one of several 

interesting effects, depending upon the parameters   x   ,   :j   , and   6 

(or   /   ,   u    , and    9    in a Poisson model) for each layer.    The special 

case of inhibitory connections and zero thresholds was investigated  by 

Joseph (Ref,  41),  who finds that by optimizing the number of input 

connections to each layer, so as to achieve highest probability of correct 

recognition,    Q-L     approaches a constant as the number of layers increases, 
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regardless of the size of the stimuli or the dichotomy which the perceptron 
2 

is required to learn.    At the same time,     Q-L-     approaches    Q-     ,   Q"j 
v J 

approaches   Q-    ,  etc.    In effect, this represents a condition in which,   in 

the terminal association layer, a statistically independent set of A-units 

responds to each stimulus in the environment.    The consequence is that 

all discriminations become equally easy.    Specifically,  it was found that 

the ratio       j- -I      for 100 A-units in the terminal layer approaches 

1.941 as the number of layers is increased, with an environment of 40 

stimuli.    A comparison with Table 3,   in Chapter 7,   shows that this 

performance is less than would be achieved with a three-layer perceptron 

for the task of discriminating horizontal from vertical bars, but it is 

considerably better than the performance of a three-layer perceptron 

on a more difficult task,   such as the odd-even bar discrimination illustrated 

in Table 4.    Thus the addition of extra association layers can be used to 

improve discrimination in difficult problems,  but only at the cost of   reduced 

generalizing ability,   since two adjacent stimuli with a large intersection are 
i 

now no more closely related (in the     -i layer) than two totally disjoint 

stimuli. 

In Joseph's model,  with all inhibitory connections,  the above 

results are-obtained only by optimizing the number of connections to each 

new layer of A-units.    If,  instead of carrying out this optimization,  a fixed 

number of connections is assumed for all A-units in the system,   the 

perceptron will be unstable,  and will tend to develop oscillations such that 

alternate A-layers are totally "on" or totally "off",  making all discrimi- 

nation-impossible.    Moreover,  it is to be expected that a model which has 
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been optimized for one environment,  with a given size of stimuli,   will be 

unstable in a different environment, with a slightly different size of stimuli. 

In more practical cases,  a mixture of excitatory and inhibitory connections 

must be used, with thresholds greater than zero, in order to guarantee 

stability and convergence of   (9;    for a range of environmental variations. 

Clearly,  if.    x <  ty   h (^    ,    Q-       will not go to 1 as ^   increases.    If    x = y 

a suitable choice of     Q>0   will generally guarantee,  as well, that   Qi 

will not go to zero.    From Figure 7(b), for example,  it is clear that if 

X =  u    ~  5 ,  and   6=1    , an equilibrium should occur at about   Q-  = .37 

since at this point     (?(-       -  Q-, .    If    Q- should rise above .37, 

we will have     Q-L      < Q1;' ,  while if      Q> falls below .37 we 

will have     Q-L 
<   >   V; •      ^ we increase the amount of inhibition by 

making    'A   -  i,    V -  7      >  then (from the same Figure) we find that the 

equilibrium value of   9;     is reduced to . 14.    If the inhibition is increased 

still further (e.g.,  to       »'-/,/      9        ,  as in the bottom curve of Fig.  7b) 

the equilibrium value of   O1;     is zero,  and no matter how large a stimulus 

is presented,  activity will die away entirely in the "deeper" association 

layers. 

*    This observation will generally not be valid for a small perceptron^ 
where the actual level of activity  may go to zero in one of the layers, 
due to random variations in the network.    In this case,    Q;       will be 

I A) zero for all subsequent layers.    Thus,  for a finite system,   Q;    ' *■ '_ 
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15.2       The Concept of Similarity-Generalization 

So far, the addition of extra association layers has had no 

important effect beyond the sharpening of the discriminative acuity of the 

perceptron, generally counterbalanced by a loss in the generalizing capa- 

bility of the system.    In the next section,  we will consider a four-layer 

perceptron with special constraints in the organization of the connections 

to the A-units,  such that the system tends,  spontaneously,  to generalize 

a response associated to a given stimulus pattern to all "similar" stimuli, 

regardless of their location in the retinal field.    In the following chapter,  it 

will be shown that such constraints need not be built into the system   ab initio, 

but can arise through a spontaneous adaptation process (without any inter- 

vention by the r.c.s.) if some simple dynamic laws are introduced.    In all 

of these systems,  the concept of "similarity" is of fundamental importance. 

The term "similarity" has been used in a number of different 

ways,   some of them well-defined,  as in "two triangles are similar",   some 

relatively vague and ambiguous,  as in "two faces are similar" or "two ideas 

are similar".    For present purposes,  we have need of a concept which will 

cover the range of relationships which might make two objects appear 

"similar" to a perceiving observer,  but which will still permit exact 

definition for purposes of analysis.    We must also distinguish between 

the "objective similarity" of objects in space,   the similarity of stimuli 

on the retina,   and the "subjective similarity" which the observer recognizes 

and reports.    While the concepts proposed here do not cover all of the 

possible meanings of "similarity" in psychology,  they are sufficient to 

permit the design of a number of perceptual experiments related to the 

similarity problem. 
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15.2.1       Similarity Classes 

We will first consider a definition of similarity which is 

applicable to the classification of stimuli.    From this point of view, two 

stimuli either are similar or they are not; there are no intermediate degrees 

of similarity.    In the following section,  a quantitative definition which per- 

mits a multidimensional ordering of objects or stimuli according to their 

similarity will be considered. 

For present purposes,  the only constraints which will be placed 

on the logical nature of the similarity relation    are that it  should be 

symmetric and reflexive; that is,   if A sim B,  then B sim A,  and A is 

always similar to itself.    It is not required that the relation of similarity 

should be transitive;    that is,  A sim B and B sim C does not imply A sim C, 

except under very special conditions,  as will be seen below.    There are 

clearly a large number of possible relations which meet the logical conditions 

for a similarity relation.    For example,  equality,  geometrical congruence, 

equality of area,   and topological equivalence are all admissible possibilities. 

Thus,   in specifying the similarity of two stimuli the notation A sim B  ^ 

will be used,   where   fi.     is a particular relation,   meeting the conditions 

of symmetry and reflexivity. 

The set of stimuli which are similar under a given relation 

will be said to form a similarity class under that relation.    For example, 

if  /t3   is defined as the relation of similarity under a rotation group,  then 

A sim B| A-      means that A is a rotated image of B,  and B is a rotated 

image of A . 

321- 



In perceptual problems,  a particular kind of similarity class 

is of particular importance.    This will be called a projective similarity- 

class,  and is defined as follows.    Let the sensory points of a perceptron 

be embedded in an r-dimensional sensory manifold,   J)     .    Let  tj    be 

embedded in an  r-t &   dimensional world manifold,   c)7l    .    An object in   97Z 

is defined as any set of points in   9?Z    .        Let   /I   be a set of admissible 

objects in   9?Z    .    Let   &   be any transformation group in   971    .    Let a 

projection    77    be defined as an operation which maps every point in   972 

into at most one point in   J     .    Then A  eim B\J7,  J,  fl , 7T       means 

that stimuli A and B are both       7T -projections onto the sensory points in 

jj    of transforms under   J^    of the same object in   fl 

A few moments reflection should show that this encompasses 

most of the cases in which we say that two stimuli are perceptually 

"equivalent"; for example,  any group of rigid movements of an object in 

3-space will yield a projective similarity class on a two-dimensional 

retina.    Note that this similarity relation is not generally transitive.    For 

example,   if we let   >£      be the group of rigid motions in 3-space,  and let 

r = 2     ,  then the similarity classes generated by a flat   cut-out of a 

square in   97z    ,   and by a cube in  V?Z   (with orthogonal projection onto the 

retina) are related by the Venn diagram: 

SQUARE f\     C'JBL 

Pkf'\i£CTlON->    \)     PPCJLCriONS 

*        The term "object" is used in much the same sense as "distal stimulus' 
in psychology.    Our use of the term . "stimulus" always signifies a 
"proximal stimulus" unless otherwise specified. 
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where the intersection includes all cases where the square and a face of 

the cube are both parallel to the retinal surface (assuming J    to be 

Euclidean,  which it is not in a vertebrate eye).    A tilted square will be 

projected as a parallelogram,  whereas a tilted cube is projected either 

as a rectangle,   pentagon,  or hexagon,   so that the classes,  although they 

intersect,   are not equivalent. 

For the special case in which the points of an object and all of 

its transforms in C)7I.   can be placed in one-to-one correspondence with the 

S-points in    J      ,  the relation of projective similarity will be transitive. 

This includes the case in which   9/:.    and   J    are of the same dimensionality 

and coextensive,  objects and transforms consisting only of sensory points in 

■7'J    .    Most stimulus classes consideaed in experiments up to this point have 

been interpretable in this fashion.    Alternatively,   97Z     might have a higher 

dimensionality than   *J      ,   but the group  J?    may be limited to motions 

parallel to the surface of    J    .    Here again,  with a suitable choice of   J^    , 

a transitive similarity relation can be obtained. 

The case of greatest psychological interest is that of a three- 

dimensional world-manifold,    '/     ,  and a two-dimensional sensory manifoldy 

a/    ,  where  s^7    is the group of rigid motions and dilatations in   9?l   .    A 

perceptron which generalizes strongly between any two members of a 

similarity class defined by such a relation,  and generalizes weakly between 

stimuli which are not in the same similarity class,  will duplicate a large 

fraction of the perceptual behavior of a biological organism,   in the visual 
'I* 

domain. 

*       A consideration of some of the projection operations which apply to 
this problem can be found in Gibson,  Olum,  and Rosenblatt,  Ref.   27. 
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15. Z. 2       Measurement of Similarity,  Objective and Subjective 

*• Let JS7    be a Lie-group      (of dimension   r   ) of transformations 

of the manifold *M.    .    Let B be a canonical system of coordinates defined in 

the Euclidean    f -space,    E    ,  such that every system of equations 

g-(t)   =   a;t      (where  g-    is the     I      coordinate of   g   in B) gives a one- 

pai'ameter subgroup    g (t)   .    Then the distance   d{0,cj)  for any    g£(st) 

(9= (di' 3* > •■ -' 9r))      is given by 

dCCg)*   JZ^ 

We then define the similarity measure    /x. (X, Yj\i/,B    for the objects 

and   Y   with respect to ^   and B as 

/yJX, /)\&,B inf d(0,g) (15.1) 

where     [n      | n : /  -   gY r ,   g €sb* (That is, P    is the set of all trans- 

formations in JV
/
  which will transform the object   Y   into the object    X     .) 

Note that this measure is applicable only to objects in  9n 

which are similar under   *&   ; it is  not applicable to stimuli unless   </ 

is coextensive with    9??    .    Consequently,  the measure   /u-    will be called 

the objective similarity measure with respect to  a^    and    B.    This 

measure represents the length of a sort of "shortest path" by which   Y 

*       Readers who are unfamiliar with the theory of   Lie-groups will find a 
useful discussion of this subject in Pontrjagin (Ref.   111). 
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can be continuously transformed into   X     ,  by means of transformations 

of the group   jx^    .    The choice of the basis,   ß    ,  determines   the relative 

weighting attached to various subgroups of   J^   .    For example,  if   J^    is 

the group of translations in   971   ,  then /x   can be made proportional to the 

length of the displacement vector which would carry   /     into   /   . 

Let us also define the subjective similarity measure with 

respect to a perceptron,   P  , a response    unit, ß    , and a projection 

operator  77  ,   by 

y* V, r- \'^ r, P -   V, /y (V) /   /"^r^ (P)   4.    I (15.2) 

where 1( ,{>?) is the value of ','• ■ for the stimuli corresponding to the 

objects / and f (under the projection 77 ) measured in the source set 

of the response unit ^ . For an <<. -system, and stimuli of fixed size, 

,. ' ' . / is proportional to the generalization coefficient ox , for the 

response   '     .    For two identical stimuli,       //.'i ■ . >■ /     .    If the value 

of     ./ ''/,/'     is a monotonic function of the objective similarity of the 

objects   /    and   Y   , we would expect the response   r    to generalize most 

strongly to highly "similar'1 objects,  and most weakly to dissimilar objects. 

Over any given subgroup of transformations of an object in   7/1    ,   this 

induces a "generalization gradient" equivalent to the use of the term in 

experimental psychology. 

A perceptron which is to simulate perceptual performance 

must have or acquire a close correlation between the subjective and 

objective similarities of objects in physical space,  under the group of 

325- 



rigid motions and some kinds of cintinuous deformation. A perceptron in 

which such a correlation exists is said to be capable of similarity generali- 

zation. Similarity generalization implies that the perceptron not only tends 

to generalize to similar objects, but retains its ability to respond differen- 

tially to dissimilar objects. The demonstration of such a capability will be 

our main concern for the remainder of this chapter and the following four 

chapters. 

15.3       Four-Layer Systems with Intrinsic Similarity Generalization 

15.3.1     Perceptron Organization 

The four-layer perceptrons to be analyzed have fixed connections 

except for the terminal A to R-unit connections,  and a topology which is 

illustrated in Figure 40 .      S,  A,   and R-units are all assumed to be of the 

simple variety,   resembling those of an elementary perceptron.    The 

special features of this system (which might be called a "similarity- 

constrained perceptron") are the following; 

fl) 
(1) Each    A        unit has a threshold   9   ,   X    excitatory and 

y     inhibitory input connections,  and a single output connection to one of the 

A(Z) > A units . 

(2) Each    A 
(y) 

mit receives connections from a source 
(i) 

set of   m A'      units,  and has a threshold equal to 1 . 
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• = EXCITATORY ORIGIN 

O =  INHIBITORY ORIGIN 

A121 UNITS 

t 
VALUES " + I      VALUES -  + VARIABLE 

VALUES 

Figure 40 ORGANIZATION OF A SIMILARITY-CONSTRAINED PERCEPTRON {x2,   y--   I, 
m = 3). «^ ^ TRANSLATION GROUP IN TOROIDAL RETINA. 
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(3) The values of all connections from   A        to /I 

units are equal to +1. 

(4) All    A units in the source set of a given A 

unit have origin point configurations which are members of a similarity- 

class,  under some similarity relation   ?2 

The subsequent discussion will be limited to the special case 

in which the similarity relation   <#     is equivalent to similarity under a 

transformation group,   £    ,  in the sensory space of the perceptron.      This 
(l) 

means that,  when an origin   configuration has been picked for one of the   A 
J2) (I) 

units connected to a   given     4 unit,  the rdmaining 972-/    A      units 

connected to the same     A unit must have origin configurations which 

are transforms under   J?    of the first configuration selected.    This is 

illustrated in Fig.  40 for a case in which    ' V2 = 3     , and the transformation 

group is the group of horizontal and vertical translations on the retina. 

In the model to be analyzed,   it is assumed that a single template configuration 

is chosen at random for each      4 unit,  and the m origin configurations 
(1) 

actually assigned to the     A units are obtained by selecting m     transform- 

ations at random, without replacement, from the group «^ . This yields 

the auxiliary condition that no two A units in the same source set have 

identical origin point configurations. 

*     In the case considered here, the world manifold "//Z   and the sensory 
space   */     are taken to be coextensive,   with a one-to-one correspondence 
between objects in   9?l     and stimuli in    J 
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15.3.Z        Analysis 

To begin with,  we will attempt to provide an intuitive basis 

for understanding the functioning of the similarity-constrained perceptron. 

At one extreme,  if    9n. ~ I    ,  note that the system becomes functionally 

equivalent to an elementary perceptron of the binomial variety,  with A-units 

having the same parameters as the     A        units in the 4-layer model.   At 

the other extreme,  where  m    is equal to the order of the transformation 
(1) 

group,  there is one     A       unit in each source set for every possible trans- 

form of the "template configuration".    Now if one of the    A units whose 

origin configuration    is cü   responds to a stimulus    Sx    ,  any transform 

/ ' 5 . ) will necessarily activate the    A''     unit whose origin  configuration 

is the transform    T(tjj)  .   Since both of these     A units are connected 

to the same    A unit, this unit will respond both to   Sx     and    T(SX)    , 

since its threshold is  1,  and the values of the connections from     / (I) to 
(2. 

A   '       units are fixed at 1.    Thus we have the rule that any     A unit 

which responds to a stimulus    Sy      will also respond to all transforms  T(5y) 

under the group   J/'    .    Alternatively,   we could state that if    ' r   sim 
'?.) 

y & 

and an      A        unit  O--   responds to   5y   , then this unit will also respond to 

J      .    Next suppose that in addition to making m   equal to the order  of the 

group,  the threshold of the     A units is    0 ^  number of excitatory 

origins    =    area of the stimuli,   and the number of inhibitory origins is 

equal to the complementary area,   so that an    A unit will respond to 
:'2} 

only one stimulus.    We then have an ideal situatiun,,   in which an    A unit 

responds to all the members of a given similarity class,  and only to 

members of that similarity class.    Under these conditions,   if we show the 
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perceptron a stimulus,  say a square,  and associate a response to that 

square, this response will immediately generalize perfectly to all 

transforms of the square under the group  &   , and will not generalize at 

all to any stimulus which is not a transform of the square under   2/   . 

The conditions considered above, where   m    is equal to the 

order of the group,  and each    A unit responds to only one possible 

stimulus,  are impractical in the extreme,  for a retina of reasonable 

size.    It should be clear from the above arguments,  however, that even 

with smaller values of   m    (so long as m > I ) and lower thresholds,   a bias 

will exist for an   A unit to respond to similar stimuli,   rather than 

dissimilar stimuli,  under the group   >¥   .    We now pass on to a quantitative 

analysis of the performance of this system, first for an environment of 

random ''salt-and-pepper" stimuli,   and then for an environment of square 

stimuli. 

The performance of a four-layer perceptron of the type under 

consideration can be obtained from preceding analyses of elementary per- 
(2) 

ceptrons if we know the G-matrix or the   Q-functions of the   A    --.units.    The 

expected performance of the system (or the actual performance of a very 
(2) 

large system) is entirely determined by the functions    Q-■    ,   i.e. ,   the 

probability that a second-layer A-unit will respond both to    5;      and to    5- 

We will consider the case of a perceptron with     A^      sensory points,  and 

a universe of random dot-stimuli,   each consisting of    ^A^ -  n^     sensory 

points chosen at random from a uniform distribution.    Let   T   be any 

transformation in    «?'    ,   such that the measure of the set of fixed points 
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under the transformation is zero.    We will use the notation   5(
-'     to 

denote the transform    T(Si)  ,  and   5,-*   to denote some other transform. 

T*(Si) ,    (T* ^  T)    .    With this notation,    (?-'        is the probability that 

an   A "      unit responds to   5;    and to   T(5[)  , and    (?•;'      is the probability 

that it responds to   5;     and to     T   (5;) 

First of all,  we have 

r(2) n(^ n
P) 

(15.3) 
(2) (2) 

where     Q:'\i ~ conditional probability that an   A        unit responds to 5(
-' 

given that it responds to   S;    •    For the first factor of this expression, we 

have the close approximation 

//I     n) 

Q.       *    /- (/-Q.     J 

(15.4) 

This approximation assum.es that the m A      units connected to an   A       unit 

all have an independent chance of responding to stimulus   5/     .    This will be 

approximately true if  9^< ^A    for the    A       units.    In this case,   since the 

stimuli consist of random point configurations,  the knowledge that an origin 

point of the first     A unit falls on an active S-point still leaves   nA- / 

possible S-points in the same stimulus,  any one of which might coincide 

with the transform of the origin point for one of the other    A units.    In 

the range of parametric conditions with which we are generally concerned, 

equation (15.4) approaches a perfect equality. 
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For the second factor in (15.3) we have the approximation 
(i) 

(which is accurate for small    Q- '     ) 

(2)            m- I         /       m - I P„   .    % +   [I  
'   ' ! u)- 1 \        <JO - I 

(D 

(15.5) 

where   UJ     is the order of the group     si?     .    The first term of this 

Expression, 
, o - / 

,  is the probability that one of the   m - I A      units, 

other than the one which is known to have responded to   5;    ,  has an origin 

configuration which is a      T  -transform of ''he configuration of the "known" 

A-unit.    There are  m-f   non-identical possibilities that this transform is 

present,  and (ej-l  transforms from which they are chosen.    If this condition 

is met,  then the    A unit must certainly respond to    T(S[)   ■    If this 
rn- i 

condition is not met,  with probability   / - ——  ,  it is still possible that one 
(I) 

f the   A units responds to   T(o-)   ,  and this probability is given by the 
'D last term of the above expression.    Here   C-'j/«1     is the probability that an 

A        unit,  which is known to respond to some transform   T (S:) will also 

respond to Since   T     may be any transformation (including the 
(I) identity) so long as it is not equal to     T     ,  all of the   m A'      units are 

equally good candidates for such a response.    Specifically,  for the case 

under consideration, 

(n 

L 
n£-0 

(15.6) 
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where   n    - the number of common sensory points in    5/'   and     5/"    , 

with probability 

P(nr)   -- "^ v £ ii-p)        c 

p 
NA-\ (15.7) 

Note that the probability  p    that a point in    5;*   is in the common area is 

based on   NA- I   possible locations,  since it cannot occupy the location of its 

transform in    ,  ■'    ; however,  there are   fi^-I   other points in    S;'     whose 

locations it might occupy.    The only quantity which we still lack is 
(I) 

C/'i;'   ^j/1      which is given by 

(i 

» i n. 

(i) 
I Hr ) ^ (c) 

where      ";-'Cj   is computed from Equation (6.5) with   C      nc/^yi 

Substituting,  we have 

f/'' /     v     In, \ ■ r. 
Q-'\-*   -       -     / 'Ml — 

^ '    n    --0 
^A-l 

n. n.-n,. 

i        N.- I Q- 
n 

\ n 

Lr    ^i\j (15.8) 
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Note that as    A/a    ,  the number of retinal points,   goes to infinity,   (with 

nA    NA   constant) this quantity approaches 

Qi 

which is equal to   Q-L    for the binomial model.    At the same time,  the first 

term of (15.5) goes to zero if  m    remains finite and the order of the group 

increases with the number of possible retinal locations of the stimulus. 

Thus, for an infinite retina and a transformation group of infinite order, 

we have 

[z] 
l-(l 

i) m 
15.9) 

and 

i 2 
n) 

/-(/-(?■ ; (15.10) 

(2) 
which is identical to the expression for    Q- ■      for a pair of random, 

unrelated stimuli.    Thus,  with an infinite retina,  no additional generalization 

is to be expected from a random stimulus to its transform under the conditions 

assumed above.    For a finite retina,   however,   (or for a finite group     ^      ) 

we have the inequality 

(?) (?) 
Q..'    >   Q.. 

due to the effect of the first term in equation (15.5), 
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Let us now turn to a modification of the above problem,  in 

which the environment   consists of square patterns with edges alligned 

in a square (toroidal) retina, and the group *t>   consists of all possible 

translations.    In particular,  we will take the transformation   T    to be 

a lateral translation by half the width of the   retina.    The notation   5;' 

will be used for     T{Si)  ,  and    r* will be taken to mean any transformation 

in .<&    not equal to   T    and not equal to the identify transformation.    For 

convenience,  we restrict the area of the stimuli so that    /? ^   .25.    This 

guarantees that   5-     and   5;'   are always disjoint patterns.       Q-   '     is 

again assumed to be small.    In this case we have,  in place of (15.5) 

(*)             m - I          ,        m - I 
Q.,,.    F* —    f   //  
''   I' OJ - i l 'V- I 

(I) \      /        (" \ / (I) 

m- / 

where the expectation is with respect to selections of transformations 

such that    T- (Z; i   -   3 ■. 

To avoid the computation of this expectation,  we make the 

further approximation that the expectation of the product of the above 

sequence of Q-functions is equal to the product of the expected values of 

the Q-functions.    Now it can be shown that for any distribution of ^r\i; ' 

TT '/ £ JTEJ-Q)   - rr(i-EQ) 

It follows from this that the approximation which we now propose to make 

will be a conservative one, yielding values of Q-'\i which are slightly 

smaller than they should be.    With this approximation,  we now have: 

-335- 



Q: 
(2) m ~ i 

to- I 
+    /" 

uJ-t 
i-ii-Q. 

(I) 
m- i (I) 

l-Q;'\;(0) 

(15.11) 

(D since the "known"     A        unit which responds to   5;     has the conditional 

probability 

(I) 
(0) 

Q-j(O) 

n- 

of responding to the disjoint transform The expression for 
fi) 

^■'   ■ * is again given by (15.6),   only the probability   P(n£) is different 

from the random stimulus case.    A general equation for    Pin^)   will not be 

developed here,  for a finite retina; in particular cases,  it is obtained by 

counting all of the possible ways in which a square and its translate can 

intersect to yield   n.     common points.    Some numerical examples will be 

considered in the following section.    Note that the modification from 

Equation (15.5) to (15.11) will have the effect of tending to diminish the 

value of    y-'     for small values of  m   ,   so that for    m = /      the generalization 

to a disjoint   square will always be less than the generalization from a 

square to a random stimulus of the same area,,  which is still given by 

L 
(15.12) 
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If we go to the limit of an infinite retina,  (and infinite  trans- 

formation group) with the environment of square stimuli just considered, 

the results differ considerably from the random stimulus case.    The 

difference is due to the distribution of the common area,   C    , which,   in 

the case of the random stimuli,   went to    P       with probability   1.    In the 

case of randomly placed square stimuli,   the probability of a zero inter- 

section in an infinite retina is given by 

PiC =0)   =   I 
4A 

(15.13) 

where    «  -    length of edge of square, 

r  =    width of retina (r k 2A' . 

The probability of   C < C ^ q    will be -/    r      times the area under the 

hyperbola  tj - .;   x.    from    u  - 0    to    ■&    .    Specifically, 

P' Z < C i qri 

4 
i J' * 'i 

V* 
•/ o 

U k - A 4<L    \ „       #    \\ 
r2   \ \ % 

Differentiating, 

fU'r   ^  o 
A (15.14) 
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Thus, for a square stimulus of area R     in a retina of area   t (R ^  -z~) 

we have 

(I) 
.,\ ■ *   = 

Q: 

lim 
e 

in. m
n      PiO Q-; (C) dC+(i-4R) Q ;'(0) 

4 

C J 
Q^cuc^-^o^o, 

■u 

(15.15) 

(2) 
Substituting this in (15.11) yields an expression for    ^'l;       for the infinite 

retina,   and     V,',-      can be computed by (15.3),  as usual. 

15.3.3      Examples 

Figure 41  illustrates the behavior of a similarity-constrained 

perceptron,  as a function of   /'      ,  for various combinations of retinal 

size and types of stimuli.    The transformation group,  in each case, 

consists of all horizontal and vertical translations in a square,  toroidally 

connected retina.    The stimuli considered are a pair of independent 

random-dot stimuli,    Ca     and   3b   , a square stimulus   i"     ,  and the trans 

forms    'Ja'     ,     -',-,'      ,   where the transformation employed is a shift of 
r 

half the width of the retina.    This guarantees that the square stimulus   S0 
r 

is disjoint from its transform     SQ'     .   All stimuli have an area   P    equal 

to one fourth of the retina.    The parameters of the    /I units are 

X -   y -- 4   ,     0     2    . 
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Q 
(2) 

m   -  NUMBER OF INPUTS TO A1" UNIT 

Figure 41 Qif   FOR 1-LAYER SIMILARITY-GENERALIZING PERCEPTRON. #'= t/^= 4, 

O01 =  2, ^ = .25. TRANSFORMATION GROUP OF HORIZONTAL AND VERTICAL 

TRANSLATIONS. S;'= 5; DISPLACED BY HALF-WIDTH OF RETINA. 
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The bottom solid curve provides a baseline, with which the 

other conditions can be compared.    This curve is identical for   Q   , 

(both stimuli random and independent),    Q     ,     (a random stimulus and its 

transform) where    Ny±     is infinite,  and    Q(ia    (a square stimulus vs. a 

random stimulus).    In a small,  finite retina however (specifically,  with 

/Vj   -     36) a random stimulus will generalize more strongly to its 

transform than to an independent random stimulus, for any    rn > I    . 

This is shown by the upper of the two solid curves.    The broken curves 

illustrate the generalization from a square to its (disjoint) transform,  both 

for the 6 by 6 retina,   and for the infinite retina.    In both cases,  we find 

that the system generalizes more strongly to a random stimulus if   m     is 

small,  but that as   rn    is increased,  the perceptron begins to generalize 

more strongly to the disjoint  transform than to a random,  unrelated 

stimulus.    For the infinite retina,  the cross-over occurs between  m = 4 

and   m  = jT  .    This means that for a     ^-system,   with   rn > 5 ,     q--      will 

be positive from a square to any other square,   and will be zero from a square 
(7) 

to a random dot stimulus.    Increasing the threshold of the      A units will 

reduce    Q--        for all curves,  but will increase the relative bias towards 

similar stimuli,   and will shift the cross-over point further to the left for 

the     (v'     /    curves. 

The difference in performance for squares as opposed to 

random stimuli will tend to be characteristics of any coherent stimulus 

patterns,   provided the transformation group is one which preserves the 

coherence,  or compactness,  of the stimuli.    This may be puzzling to 

some readers who recognize that under the connection rules employed 

• 340- 



in these perceptrons,  there is nothing unique about topologically connected,, 

or continuous regions,   which would affect the perceptron's ability to 

recognize them in any different way than disconnected regions.    It is, 

after all,  only the set of points to which connections happen to be made 

which determines the response of a perceptron,   and if every S-unit were 

randomly interchanged with some other S-unit,   a corresponding change 

being induced in the stimulus environment,   the performance of the 

perceptron should not be affected at all.    This will indeed be true, 

provided any transformation group employed in the first perceptron is 

replaced by a new transformation group corresponding to the rearranged 

retina.    The essential feature of coherent stimuli with a group of coherence- 

preserving transformations is that the probability distribution of stimulus- 

intersections does not concentrate at the expected value of the intersection, 

as    NL    and the order of the group become infinite.    This permits a 

similarity bias to be maintained for such stimuli which cannot be 

maintained for random stimuli.    Any group generated by a permutation 

operation on the points of the retina will have the same property,  provided 

the same   permutation operation is applied to the  stimuli.    Another way 

of looking at the problem is to note that with random stimuli,    a sensory origin 

point which is close to a stimulus point,   but does not coincide with it 

exactly,   has a probability of being activated no greater than that of any 

other origin-point.    With coherent   stimuli,   on the other hand,   an origin- 

point which is close to a stimulus point has a greater probability of being 

activated than one which is remote from the stimulus point.    Thus,   for 

random stimuli,   only a transformed origin configuration which corres- 

ponds exactly to the transformation   1     will help in generalizing from   j 
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to    T(S)    .    For coherent stimuli, it is sufficient that the transformed 

origin points should be in the neighborhood   of the required transform; 

proximity to the required transformation is sufficient to increase the 

probability of being activated by  T(S) ■ 

Note that as rn   increases,  the value of  Q;:   tends to approach 

unity for all curves in Fig.  41 .    This means that there will be a maximum 

similarity bias at some finite value of  m   ,   beyond which the advantage of 

similar over random stimuli will approach zero.    By increasing the value 

of   0    for the    A        units,  the location of the maximum bias can be shifted 

further to the  right,   until,   with     9        .>■ n,     ,  the maximum will occur at 

15.4       Laws of Similarity-Generalization in Perceptrons 

The results obtained in the previous section illustrate a 

number of effects which are found quite generally in perceptrons which 

show a capability for similarity-generalization,   regardless of whether this 

capability is learned or intrinsic,   and regardless of whether the perceptron 

is series-coupled or c ross-coupled.    Additional evidence for these general 

results will be found in subsequent chapters,  and they appear to take on 

the status of empirical laws,   which have now been substantiated for a 

rather wide variety of systems .    These laws can be tentatively stated as 

follows: 

*     The effects noted here are directly analogous to those originally 
predicted for cross-coupled systems in Ref.  85. 
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(1) As the size of the retina increases, it becomes increasingly- 

difficult to recognize the similarity of two random-pattern stimuli under a 

given transformation group,  with a finite perceptron.    With an infinite 

retina (and transformation group of infinite order) the similarity bias for 

random stimuli goes to zero. 

(2) The similarity-bias for coherent stimuli,  under a 

coherence-preserving transformation group,  will generally be stronger 

than for random stimuli,  and will not go to zero even for an infinite retina 

and transformation group of infinite order. 

(3) The similarity bias of a perceptron can be increased 

by raising the threshold of its A-units or by increasing the number of 

connections to terminal A-units (i.e. ,   generalization will be limited 

increasingly to the members of a similarity class,  as the threshold or 

number of pre-terminal units is increased). 

(4) Generalization to disjoint transforms of a stimulus 

may be less than generalization to independent random patterns,  for a 

perceptron with weak similarity bias; generalization to disjoint  transforms 

can be made to exceed generalization to random stimuli,  however,   by an 

increase in A-unit thresholds or by increasing the number of inputs to 

the terminal A-units of the network. 
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16.       FOUR-LAYER PERCEPTRONS WITH ADAPTIVE PRETERMINAL 
NETWORKS 

The physical universe,  at a macroscopic level,  is characterized 

by the continuity of its transformations through time .    Objects do not 

suddenly appear out of nowhere ,  persist for an instant,  and then vanish 

into nothingness.    Given an appropriate time-scale,  all changes appear to 

occur smoothly and progressively.    Consequently,   stimuli which are highly 

similar under a continuous transformation group are more likely to occur in 

close temporal succession than dissimilar stimuli.    In this chapter,   it will 

be shown that an initially unbiased perceptron can take advantage of this 

property of the physical environment to evolve a capability for similarity 

generalization,  without any intervention by an experimenter or reinforcement 

control system. 

The model which is presented here was developed jointly by 

Block,   Knight,  and Rosenblatt,   in the hopes that its analysis would assist 

in the understanding of closely related problems which occur in cross- 

coupled systems.    The similarity between the performance of this sytem 

and the performance of cross-coupled systems is most striking,    as will 

be seen in later chapters.    The main effects of cross-coupling will be to 

accelerate the adaptation process,   and to make the system inherently 

responsive to stimulus sequences,   rather than momentary stimuli.    The 

presentation in the first parts of this chapter is essentially the same as 

that of Block,   Knight,  and Rosenblatt (Ref.   7). 
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16.1      Description of the Model 

The perceptron to be analyzed is illustrated in Fig.  42.       It is 

a four-layer series coupled system,  with an equal number   (NQ )     oi   A 
(f) 

(2) 
units and    A       units.      Each   A unit receives a variable-valued 

connection from each of the     A units.    In addition,   each    A        unit 
(I) 

receives a fixed-value connection from one of the    A units.    For conve- 

nience,  the    A        and    A        units are placed in one-to-one correspondence, 
(2, 

with the fixed connection to each    A        unit originating from its "mate" in 

the     4 layer.    The threshold of the     A units is     9 ,  and the 
12) '2) 

threshold of the    A units is     (9 .    To simplify notation,  we will use 

the symbol   G   to designate      f)        ,  unless otherwise indicated.    The fixed 

connections from    A to     'I units all have values     ^   Q      .    For 

specificity,  we assume that all of these fixed values are exactly equal to   Q 

The variable-valued connection from an    A unit   a-    to an    A unit   a- 

has a value   u. 

values of 

1) 
at time    t    .    The symbol will be used to designate 

(2) 
to    A connections,  and v-^    to designate values of  A 

(l) 
to R-unit   conhections .    The input connections to the    A units may be 

organized according to any of the models (e.g. ,  binomial or Poisson) which 

were discussed in Part II.    Signal transmission times,     ?■'■■      ,   are assumed 

to be equal to zero,  for all connections.    It is assumed that stimuli occur at 

times    ,/' .    t +■ At .    ': -<- . At   , etc . 

The numbers of units need not be equal for systems of this type to 
work; the constraint is introduced in order to simplify the analysis.    It 
is equally satisfactory to organize the perceptron with  m    variable 
valued connections and  1 fixed value connection to each     A 
with origins chosen at random. 

2) unit, 
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The variable values   u--    are assumed to be initially equal to zero, 

and change with time as follows:   If unit    (lr       is active at time  t    and 

is active at    t + &t   ,  then   u...      receives an increment   (ff -At)     ,  and all 
(z 

connections    a-■    decay by a quantity   (ö'-At)u'-      .    The values of the  A 

to R-unit connections may be varied by any one of the usual reinforcement 

rules.    Note that under these rules,  the values   U'•   will always be non- 
(2) (2) 

negative,   so that if the "mate" of a given     / unit is active, the  A 

unit will  always be active.    In the subsequent analysis,   it will be shown 

that with a suitable sequential organization of the environment, these 

dynamic rules can lead to the development of a perceptron organization 

closely analogous to that of the similarity-constrained perceptrons of the 

previous chapter. 

16.Z       General Analysis 

16.2. 1    Development of the Steady-State Equation 

{2) 

As in the last chapter,   our main concern will be to find the 

values of      '. ■ •       ,   which will permit further analysis to proceed along the 

lines employed for   elementary perceptTons.    Unlike the perceptrons of 

Chapter  15,   however,  the values of     .•■      ,  and consequently the G-matrix 

of the perceptron,   are stochastic variables,  depending upon the prior 

history of the   system. 

The set of A-units  in the layer responding to    5;       will 
i} 

be denoted by     /I      ^ •■i)       ; the set responding to both   ji,      and   5"     if 

A^^isor ^is-) For  a perceptron with a known connection 
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layer (or for a sufficiently large perceptron) the scheme for the     ''! ,        . 
11 - (I) 

fraction of     4 units responding to both   5;    and   5.    will be    Q- 
'■j 

and is equal to the number of elements in     A     (S;) H A     (5:) divided 

by These quantities are fixed for all time. 

Let denote the total input signal to the unit    uyL 
< u) 

at time    t    ,   in response to stimulus Then 

r/.  , 

wnere 

/-.'-, 

Zw t i a r ' -t 

r-- I 

(16.1) 
iii 

1 if   _■     activates   QJ 

0 othe rwise 

This represents the sum  of the signal arriving at   a^   on its fixed 

connection,  and all of the signals arriving on the variable-valued connections 

at time    '    .    Let 

(16.2) 

L u 
(16.3) 

Then 

v. f  ■/\''l(f-' 
(16.4) 

The indices   -     ,   j    ,  and   A   will be used throughout this chapter to 
designate various stimuli,   and the indices   /'     and    I    will be used to 
designate particular A-units. 
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Note that    /3^    is   0  or   0   depending on whether   aA      is in   A     (S-J 

or not; it is invariant with time.    On the other hand,    jp     (t)      represents 

the effect of the variable    A to 
f.' i 

connections 

Now suppose that at time   tr   stimulus  5'    occurs,  and at 

time   t0 + At    stimulus 5^ occurs.    Then the consequent change in  ur^ 

will be 

(i). u rA(t0-h2At) - ijLrJt0 + l\t} = (V/'/.t. ar(5j)0(ocA  (tn + Atii-'(f-M)urA(t0!-At) 
(16.5) 

where 0 for 

1 for   / 

From (16.3) and (16,5) we get 

Z ' t, t. U.rAit0 f-AtJlo^i'j;) 

Hence 

N„ Nn 

"V^   Z, 0'/'   ] O*r(
rr)-{d-&t)J_jtLrA{t0+&t)ar(Si) 

• ■    I 

f \\- \ ■,J 
',?   ' (16,6) 

where,  for brevity,   the subscript J.   has been suppressed.    It must be 

remembered that  y   and   r/   ,   in these equations,   refer to any particular 

/i unit,      a. 
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Now suppose the sequence of stimuli   I 5;    ■.   5;  , ■•• ,   5;     > 
V   J u '      J t J M J 

occurs at the successive times      t,  t + At , .,. ,  t -t- MAt    .    In Equation (16.6) 

we take     t0 = t + mA t ,      m  =- 0, 1, 2 , . . . , (M - t) 

and obtain 

?   J Jrn ,   k J m + I > 

tii. 
T      [t + (m+2)A t)  - ^     ft + (m+i) A t) 

(16.7) 

fl-Afity oc , 
(-m^)l [t + i m i- \ ] At, />/    Q;-     - {6'Atjf     (t+(rnil)At 

"•        Jin 

I L 

Summing on m    from   0   to M- I    we get the change in   y due to the 

entire sequence of stimuli: 

M - I 

,->■  ^(t f {M+ I) At)- -/Ü(t * A ̂  -Z   U^ V^) ^ 'Jtr)'"(tfim^)At)\Q-iJ 
m = ■) 

'd'ADf ' (t + im-f I)At, 
) 

(16.8) 

We now divide by MAt    and let  At   approach zero    to obtain 

(l> ■■1-1 

Jmn\t)'Q::   -ST   it)      (i6.9) 
:l :  i (7 ; ry 

M 
in - 0 

An alternative treatment is possible in which difference equations are 
carried throughout,   rather than converting to a differential equation. 
The true solution for    f    ' obtained from such an approach is a 
fluctuating function,  the local time-average of which corresponds to the 
solution of the differential equation,  which is obtained here.    As long as 

Y)    and    rl    are sufficiently small,  the differential equation, which is 
somewhat easier to manage-yi elds a close approximation to the true 
solution of the finite difference equation. 
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Let    f-;ji     be the number of times the stimulus pair   S:Si     occurs 

in the given sequence >  -;,   > 
■^M 

; also, let     f- r-g/M  be the 

average frequency of the pair    S- Si    •    Then from (16.9) we get 

-i -k'-l 
(16.10) 

where   / '   , as usual,   represents the number of distinct stimulus patterns in 

the environment.    Defining the matrix    C ~ Qr      , with elements 

we have from (16. 10) 

2> 

/ r 
i' L , •■ n/    it) (16.11) 

This gives us a non-linear system of differential equations for  /    (t),..., f     (t) 

with initial conditions 
(i) 

If the frequencies     / „- .    vary with   t    ,  then the coefficients 
.j 

C- ■       are time-dependent,  but in any case they are non-negative and 

bounded;   0     is non-negative,  monotone increasing in   //'    ,  bounded and 

continuous on the right.     It will be assumed here that the    c • •      are 

constants (corresponding to fixed frequencies,     '/. •       ). 
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In preparation for discussing the solution of (16. 11),  consider 

the equilibrium equation 

d) NgYf 
L'■:;*( ., (j) 

/S     J 
(J) 

(16.12) 

This corresponds to a solution of (16. 11) for the steady-state condition in 

which the rate of gain (represented by the first term of 16. 11) is exactly 

counterbalanced by the rate of decay.    But the system of equations (16. 12) 

may have more than one solution.    However,  we shall show that there is a 

unique minimal solution (by which we mean a solution none of whose compo- 

nents     /)' exceed the corresponding components of another solution); and 

this minimal solution is obtained in a finite number (at most   n    ) of iterations 

of (16.12),   starting with all      /* 
.i) 

on the right-hand   side of the 

. :'0 equation,  finding the new values of     'f from   (16. 12), putting these back 

„/''' 
into the right-hand side,  and so on.    That is,   we take      'f. C) and 

No, >' 
' l L 0 

fj)       .J) 

(16.13) 

We shall prove first that this process terminates in at most   n 

iterations.    This can be seen from the following considerations.    Since 

the right-hand side of (16. 13) is non-negative and      '/ ,  it follows 
(i i 

that        ^    '  £■    /'        .    Now since the right side of (16.13) is a non- 

decreasing function of the     / 's,  it follows that    '/       >   f.    ,.... 

/'![',   ^   /■/''       •    Therefore,  also   0^^   ^ ^ -  Vfa"^ f^> 

that is,  successive   (j)    's cannot decrease.    If, at a particular step,  no  (h 
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increases, then we are at a solution.    The     0   's have only the values zero 

or 1,  so even if only a single   (/'    changes at each step, the process terminates 

in at most   n   steps. 

The solution thus obtained will be denoted by 
'if 

We 

{H 
shall now prove that this solution is minimal.    Let    "f        be any solution of 

the equilibrium equation (16. 12).    Then for the iteration process (16. 13), 

we have    /.''   £    f , for all   c    .    Since the right-hand side of (16. 13) 

is a monotone function   of     / , we have 

((i Nr.    /'■ 

L Q; ^ NaA ' 7 

Similarly,     /        ^   'f 

minimal. 

,   hence      '/    ' ^   /'  '     •    Hence    p '        is 

To avoid consideration of a special pathological case,  we now 

''■'a '    v make a mild assumption.    Consider the sum / ^ ( •; taken over a 

subset R of the possible values of     J      I , 2 , ).    We assume that no 

such sum is equal to   ^    .    This is not a serious assumption,   since by a 

small change in   -——     this requirement can always be satisfied. 

Now suppose that the    ,)'  * {t]      satisfy the system of 

differential equations (16. 11) and the initial conditions      ,'''    i J'   - 

Then we assert that the are non-decreasing and 

lim $      tr --   r 0 
.    That is,  the solution obtained by the iterative 

process (16. 13) is indeed the solution of the differential equation (16. 11) , 

with initial conditions zero in each case. 
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First we shall show that 

>-  0.     Moreover,  if      /    (t)  > 0        ,  then 
olt 

dt o. ioc) 

As a preliminary step,  consider the nature of the solution of 

the equation     ——   - M - ax      , where M   and   fj    are positive constants, 

M M -at / M and     7 { '))   =   7 

has the appearance of the following curve 

,  where     C  ^   <J < —.-   .    The solution,   '/  = -— ~ e     f-z—a) , 

At 

i 

CO.) 

The solution approaches  M    "'     monotonely from below, and    , I ■<    Jt    • 

for all     *  ^ 0      .    If at time    t  - tj       we replace M   by    Mj  > M      the 

solution appears as 

, M 
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as   t     goes from  0    to   ^     the solution approaches/W/V monotonely from 

below; as   t    increases beyond    t,     the solution approaches M. /rf   monotonely 

from   below.    The solution is continuous; so is its derivative, except at     tj        , 

where the left and right hand derivatives are not equal, but both are positive. 

If instead of   -y > a   h 0   , we take   M = Q ^ 0 

is     x  t) - 0       for     0 <   t   £.   t.     . 

, the solution 

We now proceed to the proof of   (otj    .    Let 

A-/. ^'/ L ■   O^i       fi I.) Then (16 . 1 1) can be written 

dt 
:) a) 

M    r  -ri'f    {t. 
(16.14) 

where here and in the following paragraph,   I     is a generic index of the set 

{ 1, 2 , .. ■ , f ;     ,  while  J    and   --c   will refer to specific indices to be 

defined below. 

Each equation      A can take on at most   2       possible 

values.    Let   <•-    be a specific value of   /    and suppose first that M 

The only times at   which can change its value are when one of the 

(indeed one whose corresponding 
111 

Suppose the first time at which this happens is      /, 

reaches the value 

.    Suppose   then 

that 

we have 

Since in the interval 

'//   >  M   "   /- Thus the solution 

all 
</ r 

(t)    appears 

^1, as in Figure (b) above; in particular,  for all   &    such that   M1    (0) > 

we have     /      (tj 
M A}(0) 

(f 

M'^fhl 
0 

; and for the others 
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r(n(tt) < ^lil 
0 
y, (J) 

.    Furthermore,   since both the left and right 

derivatives of      if     ft.)       are positive we have, for    t > tf   and sufficiently 

(J) 
close to    tf    ,    f      (t) > 0     ,so that it will not be until   12    , with    t2 > t. 

il) 
that there will again be a      f     (t)       having the value   &   .    In the interval 

t. < t   <  tz   we have the same pertinent conditions as we had in the interval 

(J   C  t   < tf \ namely, 
(0. 

dj_ 
di 

(iJ 
M     (tf) ~öt     it)      ,  with initial values 

Mu' (t    )                                                           ?£)                 M (^J(t ) 
r^'itJ   6    -———L—      and in particular       /"     'tl)<    ^r-^1-    Thus in 

the interval      tj < t <  t2  we again have      —■-—-> j     i and    —— ■-  >   Q 

The same argument applies to successive intervals     ( t'^ , - ,; , '^? ;  ^4)     > 

and so on.    Since the      /'   \t) are monotone there are at most  n    such 

intervals, 

'if   MfA)iO} ,  then     /       [t (j      for     £  <£<£,.    If 
I A) , 

M        {tf j   >  ')  ,  then we use the previous argument starting at    t  = t.    ; 
r 

0 
otherwise       ^" remains zero at least until    t-.      ,  and so on.    In any 

case,  the statement    (o/.)    has been proven. 

Next we shall show that 

lim 
t -*- ry) 

r •■', /, i', . . . ,  n {/-\ 

Since,  from the proof of   (jv.)     it is clear that each    'f     (t) 

is monotone and bounded. 

it is a sum of the form 
/V, 

<•(''■/   1 Ji)# Urn J    ,ti       exists; call it      '/) 

'a 7 L   C-: 
.ifU 

outset to be unequal to    Ö   , and thus if 
(i}H- 

is continuous when 

,  which was assumed at the 

-■^   0    .    Therefore, 

(J)        „(J^r 
=   $ Letting    / ■■*- on 
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(i) # 
in equation   (16. 11) we see that     f is a solution of the equilibrium 

(/;# (D* /-jit 
equation (16.12).    Hence     / >   }f ,    since     '/ is minimal.    We 

next show that for all    t^O    ,      J(L}
 (t) £   f(i)*    ■ 

Note that initially       f     (0)   <    t{i> 

is the first time at which some        'f      (t) =   / 

.   Suppose that    t. 

From (16.11) and 

the fact that   0    is non-decreasing we see that at    t.      , 

d 
{A) 

■it 

m, 
■\'?L'^'i\<  >*  ^)-'fr '«,> 

■j 

- (fr     - o d   it,) = o 

i.e. , 
d/ ^   r, 
dt 

at 

if r 0    ,  we have from  (ty)      that       -' >   ' at     L 
.It ' 

contradiction.    Suppose that     (
v 

which is a 

0       ,   so that also     t    = 0     ■    Then, 

as long as no      '/I      it1 reaches a non-zero       / ,  we have 

M 

n 

tl ' ^r/'L:;l <t(d'''> /'(tlJ^N^/^Qj 0(j'J''* r^'j-fl *w'-o. 
j - I 
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w (ü* 
Hence over this period       ^"l    (t)   = 0        ■    But no non-zero     / ' can 

fi' 
ever be attained by      ^' "(t) ,  since,  by the above argument,  we 

would have   ——  ^  0      at the first time this occurs,  in contradiction 

to     (V 
dt 

Hence if       '/*' ,  then       d'     (t)    s   ,/'' 

?" '     -  0        ,  then       / ' (t.l -   'f    '    .    In general,      /  ' (t) ^    '/' 

; and if 

Hence      /' li' (t) 4   /' and [ß]   follows 

From this point on,   we shall be concerned with the steady-state 

values      /'"    '     ,  and for brevity we shall drop the .    In the terminal 

condition,  the A-unit      /, ,  whose history we have been following up 
';; '2) 

to this point,   is activated by if     ,.).',';      i   ''      .    The set of  A' 

units which are activated by stimulus are denoted by      / ■,      .   Tn 

the initial state,  the set 

terminal state by      ■• , 

is denoted by    A, ,  and in the 

C) 
I      .    The expected fraction of    A''      units which 

(:> 
are activated by both    '/,■    and   ^ •    will be    fj--'     and is equal to the expected 

i?}. 
number of units in     A '    fj-) f] A divided by    N- 

Once the    ', ■ ■      are   known,  the behavior of the perceptron in its 

terminal (steady state) condition can be predicted.    To determine these 

terminal values of     Q-■        ,  we can proceed as follows.    First,  the set of 

A units is broken into the smallest possible cells of the Venn diagram 

which represents the sets of units responding to different stimuli (c.f., 

Fig.  43).    For the units in each of these cells,  there is a characteristic 

/3 -vector.    For each such     /3 -vector, we solve equation (16. 12) for 

the terminal values of      '/) 
(!i 

Here wc assume   l\ .   to be given,  and 
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Q-£       can be obtained from previous equations (as in Chapter 6).    Initially, 

Q;;     -   Q; ■    .    Knowing    /5 and      T        ,  we can determine the 

region of the    A Venn diagram to which each cell of     A    '     units moves. 

Thus we obtain the complete terminal distribution of A-units in the Venn 
(2) (2) 

diagram of    A ,  and hence in particular the     Q- ■        .It can be seen 

that the motion will be for A-units to tend to go into higher-order intersections, 
(2) . 

but that points which are initially outside all the     A      (5;)      will stay outside 

all the      A '    ''■ > 

16. Z. 2    A Numerical Example 

To clarify the above description,   an illustrative example is 

worked out here numerically.    Suppose there are three stimuli,    S, c 
J • 

and 
(2) (I) 

- ? ,   which initially activate sets of    A units (or sets of     A units 

which will be equivalent under starting conditions) shown in the Venn diagram 

of   Figure 43(a).    Here the    Q-j     matrix,  and the initial value of the    (?■■ 

matrix is 

.3 

. 1 

. 1 

1 

4 

3 

. 1 

.3 

.6 

Suppose the sequence 

/   -v    '2 

■    .    _. ■     ,  from the above analysis,   is 

This is  repeated over and over 

during the training,   or "preconditioning" of the perceptron.    Then the   /'•• 

matrix    is 
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Figure 13 (a) VENN DIAGRAM OF INITIAL A(2) SETS, FOR ILLUSTRATIVE EXAMPLE. 

10 A-UNITS, DISTRIBUTED AS SHOWN. 

Figure 13 (b) TERMINAL VENN DIAGRAM, FOR q/d   =6=1 
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0 

.2 

.3 
/    ./ 

0     0 

Consequently, we have the matrix 

''j 100 
/    L 

.04 

. 14 

16 

The equilibrium equations (16. IZ) then become 

I r. f 

i        / .  ■■'! 

\ /.. 
1 ^:ri 

10 

07 

. c 

.04 

(16.15) 

Now we begin to trace the destinations of cells of the Venn diagram of 

Fig.   43(a).    Start with the two A-units which are activated only by    S 

Here      .J       ~ '  '.    . ,    ' /' .    The first iteration of (1 6 . 1 5) then gives 

.4 

o       I 
\ I. - 

If    Yf rf <   9//.(?   ,  then these     'f s   are zero,  and the points in question 

stay   in   the    same    resion   of   the    Venn diagram,    To be specific, 

let us take    //    U        ■"        I   .    Then we get for the first approximation 

V 

I 4 

1.4 
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and for the second iteration, 

which is the fixed point.    The two associators in question have consequently- 

moved into the triple intersection of the Venn diagram in Fig.  43. 

Continuing in this fashion with each of the eight cells of the 

Venn diagram,  we finally arrive at the terminal distribution shown in 

Fig.   43(b).    For this   we have the terminal Q-matrix; 

The stimuli   ;     and   S,   have become indistinguishable.    The G-matrix for 

an   ry -system is the same as   w •   ,  while for   a    "f -system,  it would be 

\ 
■y / 

The "coagulation" of   j.   and     .,  corresponds to the fact that in the training 

sequence (which is reflected in the   /■■     matrix)   5,    and   5-    follow one 

another quite frequently,  whereas they are very rarely followed by    5-v 

Consequently,    %      tends to remain distinct,   in the terminal G-matrix. 

In the following section,   it will be seen that such behavior is quite character' 

istic of this system. 

*   Another numerical example will be found in Section 17. Z,  where the 
four-layer system is compared with an open-loop cross-coupled model. 
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16.3       Organization of Dichotomies 

The general analysis of the preceding section can be applied 

to a large variety of particular experimental designs.    To begin with,    we 

will show that with a suitable choice of parameters for the perceptron,  and 

a suitable sequence of stimuli,  a perceptron can spontaneously dichotomize 

an environment into any two classes,  without any control of the reinforcement 

process by an external agency or experimenter.    The organization of the 

stimulus sequence will determine the particular dichotomy which is formed. 

Let the sequence of stimuli to which the perceptron is exposed 

be       5-    .      ;....,    J' In the following discussion,   such a sequence 

will be called a "preconditioning sequence".    Let    P-      denote the fraction 

of occurrences of        •       in the given sequence,  and let   P-£      denote the 

number of times    [.c    immediately follows      •    divided by the number of 

times occurs.    Then 
M f- I 

.    With a sufficiently long 

sequence,       '■/ •  '       '•'      /     ,   and the equilibrium equation takes the form: 

-'-'-Z L (ti 
r'. ■   / • p. 

■J ■'       J 

d) 
+ d 

(i) 

(16.16) 

where    /-•     corresponds to the probability of 5; ,  and    P-£      corresponds to 

the transition probability     ',-'■. ,   '■ ■ —*■   ^ .■   = Pr^b- ■ J- i:A '.; r  ■ 

This can be interpreted as an R-controlled reinforcement system, 
although it does not actually depend on the outputs of the R-units in 
any essential way. 
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EXPERIMENT 10:       Take an environment,   //    ,   consisting of  n    stimuli, 

such that there is no appreciable difference in the retinal 

overlap of different pairs of stimuli.    (With a large retina,  a 

set a random dot stimuli will generally satisfy this condition. ) 

Divide the stimuli arbitrarily into two classes,   so that 

S,,   ,:,,,...,    'jy       are in Class   A'    ,  while     5,.,,.•■•,5      are in 

Class    \    .   All members of a given class are equally likely to 

occur.    Let the probability of transition to a member of the 

same class be   p    ,  nearly unity,  and to a member of the 

opposite class be    / ■-sj  ,  nearly zero.    Let the perceptron be 

exposed to an extended preconditioning sequence composed 

according to these probabilities,  without any control by the 

r.c.s.    At the end of the preconditioning sequence,  the perceptron 

is exposed to a short additional sequence composed in the same 

manner,   during which R-controIled reinforcement is administered, 

according to the rules of the       '   -system,  for A-unit to R-unit 

connections.    The values of all connections are then "frozen", 

and the response of the perceptron to each stimulus in   iV 

is ascertained. 

It can be seen that this experiment is  closely analogous to 

Experiment 9,   in which the effects of R-controlled reinforcement were 

determined for an environment of horizontal and vertical bars,  except for 

the preconditioning sequence (which would have no effect at all in a simple 

perceptron),  and the additional condition that there is no way of determining 
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whether two stimuli belong in the same or opposite classes on the basis of 

their retinal overlap.    The only thing which characterizes two members of the 

same class differently from stimuli of opposite classes   is  the difference in 

transition probabilities in the preconditioning sequence. 

We assume    u •     -=    '.,-,.•■■)/ \ . 

Thus the diagonal elements of the    vt- • 

, where 

matrix are all   ( o -r ^.JI ,^CL 

other elements are 9 Nr. 

>   y -  ■ 

; / Nn     and all 
(f) (Note that by raising thresholds of the    A 

units, with a sufficient number cf connections, the ratio   Q/^    can be made 

as small as desired.)   For the probabilities of stimulus-occurrence indicated 

in the experiment, we have 

': i / 

for 

for 

in 

in   v 

where       /. 

P:t 

1 for in .1 
j< in 

'-! -   for     - in A. -i in Y 

r ' for 

fnr 

in 
j 

■i n 

y, 

i 

'S in Y 

Then we obtain from (16. 16), 
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r 
l<      K K n K n n 

LL + L L - Z Z +Z   Z 
J = l    4*1        J = l   /i^Kil       J = K+t    i = l      J = K+I    l = K-hl 

(v + ^jPjPjiH^+f^ 

(16.17) 

cf 2<   t—'  ' 
< = / A=K-t-t A --/ 

Then 

Let us now assume that    5r     is one of the stimuli of class   / 

v xi-c 

7^"- Z Q^^/M> AU'2
PKL^ 1. ti^^ 

s   I A=K+I 

(16.18) 

We now observe the following: 

i)   U 
//{Af-I-JK}       . 
 L i,     > 

2rSK2 l) 
(2) 

then       AZ  (SX'>   ~   U     K   (S;) 
■( X 

In words,  if the stated inequality holds then,   in the terminal 

condition,   each of the stimuli of class   /     activates the union of all sets 

which were initially activated by any of the stimuli of class   X   .    That is, 

each stimulus of a given class has   "captured" all of the A-units that initially 

responded to all of the other stimuli of that class.    The proof follows from 
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the fact that any     A '     unit which originally  responded to any of the 
A' 

stimuli in class   X    contributes a non-zero term in     2L in (16.18). 

The postulated inequality then guarantees that the A-unit will be active in 

the terminal state. 

ii)   If 
•0[A(I- p) ^JK] 

2 Kef 
<  G ,      then    A^fS,)   Q      U     A^(5;) 

5; £X V 

In words,  if the stated inequality holds then,  in the terminal 

condition,  no stimulus of class /    activates any A-unit outside of the union 

of sets initially activated by stimuli of class    /     .    The proof follows from 

the fact that,   if we were to solve (16. 18) by iteration,  then any A-unit 

which is activated by none of the X-stimuli has,  on the first iteration,  no 
K 

contribution from      2L        •    In virtue of the assumed inequality it will not 

have any contribution on any following iteration either,  and o£  remains less 

than    Q     .    Since only a finite number of iterations are involved,  this unit 

does not become active. 

iii)     If the inequalities of (i) and (ii) both hold,  then   A^ (S^) ~     U     A     (S: J ■ 
S-f.X 
J 

Necessary and sufficient conditio   s for both (i) and (ii) to 

hold have been found by H.  D.   Block.    They ara 

a) A    -    -/KiK-l) 

b) p y    KA  + yfl'K-lj] / S(KJ-I) 

c)      K'/(4p-h pk-j ±  Yjhed < K/(A{I-P) + ^K) 
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Condition a) insures that a probability   p(0<p<l)    can be chosen to 

satisfy b).    Condition b) insures that    tf/29$     can be chosen to satisfy c). 

The conditions can be written in the alternative form 

a') 

c) 

p   > K /' K A /1 

.1  >  jKfK-t}  ' \_p{K+ 1} - ATj 
■ i 

as above. 

Under the conditions indicated,   if Experiment  10 is completed 

by exposing the perceptron to a continuation of the same stimulus sequence 

with R-controlled    JT -reinforcement,  the first response to occur will 

immediately generalize to all stimuli of the same class as the one which 

evoked the response,   since each member of the class activates the identical 

set of A-units,  after the preconditioning sequence.    Suppose a member of 

class  /    is the first stimulus to occur,  and that this happens to evoke the 

response     r'      > I   .    Then this response will be reinforced,  and will 

generalize immediately to all other members of class    X      .    However, 

under the conditions assumed above,  the intersections between the sets of 

A-units initially responding to stimuli of class  /    and stimuli of class   / 

were all equal to   o    ,  and it was noted that by using large thresholds,   q 

could be made arbitrarily small relative to the measure of the responding 

A-sets.    If each A-unit has a large number of distinct origin points (no two 

identical  )   o    can,  in fact,  be made small relative to the product     Q(- 0: 

Thus,  with a large threshold, in a      /'  -system,  the generalization coefficient 

g--       for Si   in X   and   5"     in  Y   will be negative.    Consequently,   any 
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Stimuli of class   /    will automatically be assigned the opposite response 

from stimuli of class   X   .    Thus a completely consistent dichotomy has been 

created, from the time the first stimulus of the terminal training sequence 

occurs.    Further reinforcement will only strengthen the tendencies thus 

established. 

If the ratio   /? ,'cf   is made large enough,  the perceptron in 

Experiment 10 will ultimately arrive at a state in which every stimulus 

activates all A-units which   ever responded to any stimulus of either class. 

However,  in practice,  the constraints on the parameters need not be as 

severe as those indicated in conditions a),  b),  and c) above,  in order to 

obtain useful generalization effects from the system.    As long as   f?/(f 

is not so large as to cause a complete merging of all A-sets for all stimuli, 

it remains possible to teach the "preconditioned" perceptron to discriminate 

all stimuli of the two classes correctly with -   sing1e corrective reinforcement 

(                  .-■       i          r         11                    i                 .i      ■             !•*        i? (Ap + qK) ior one stimulus ot each class,  as long as the inequality   —      -—r-1  

is satisfied. 

> 

16.4       Organization of Multiple Classes 

Suppose we have the same kind of environment as in 

Experiment 10,  but that the stimuli are considered to be of,   say,  three 

classes: 

We assume there is not too much overlap between the different types of 

stimuli, an assumption which will be made more precise below, (as in 

the previous case, the overlap can always be reduced as far as required 
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by making    6    sufficiently high.)   The three   classes will be called  X, Y, 
(t) 

and    Z    .    We assume that the     Q- ■       matrix is 

(i) 
(o I   r) /'V. 

if   5'    and    5-    are in different classes 

if   S;    and    S;    are in the same class, 5; f 

r^ri-A)/Na if     j- 

From the nature of a   Q—    matrix it is necessary that   a  > 0,  (Q + r) k 0 

and     (r t A)   ^  0 We assume      A    ^   0 

Suppose that the transition probabilities are large   (p)     for 

transitions to a member of the same class,  and small    (i - p)   2     to each 

of the other classes.    Within a class each transition is equally likely.    Then 

r.. 

/'   '- 

p; M 

''      p)    2L 

(I - o'/2'- 

i n    / .    ^'   in 

in 

m 

in 

in 

in   / in    V'';    or  ' ;   in    Z ; i n   Y 

in   X,    j;   in   Z;    or 5'   in    Y,    5- in   Z 

in      i     -\'   in    * ;    or J,'   in    Z,     b: in   ^ 
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The probabilities of occurrence of individual stimuli are given by 

P- 
j 

f/3K 

I/3L 

l/jM 

S-       in    X 
J 

5J       in    / 

5-       in    Z 

Then Equation (16. 16) becomes 

r 'V_   'V^V LL>L L-L L'L L+L L   o^m 
J£/   i(X    jex    JiiY   jix   Ail    JiY   AeX    JcY  45/ 

'eV   iez    ifZ  &€*    ,/>-7 ßeY     UZ  leZ\  L 

where, for simplicity of notation, X , / , and Z have been used for the 

appropriate index sets. Suppose X is in / (i.e., 5Z is in X )• Then 

(16.19) yields 

-   '^JL 2::/<^/•;', 
(16.20) 

K 
i', x 

n-j.)fKrf^^r^     i   Jofs^lr^^-Jcpi'-1'     : 

A, v 
+ o 

AeZ 

We can now assert the following: 

i)      If      _//l>^l^^l   a9       , then the set    ^"(5,)  P     U    A1»^} 
Sj'€X 

3d K ^ 
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(Z) 
That is,  if the stated inequality holds, then every    A unit which initially 

responded to any stimulus in class   X     now responds to each stimulus in 
(2) 

class  A    .    This is readily proven by noting that for any   /I       unit which 

initially responds to any of the stimuli in class   X     there is at least one 

non-zero   c,      in / .       in (16.20),    The postulated inequality then guarantees 
AeX 

that     /      -/  -9       for any /    such that    '].x    is in   /    . 

ii)       If 
1- nlf Kr + A)+- 2a K P.' 

6Krf 
Ü     , then    A^tSx)  Q     U     A(

Q
2)
(5;) 

That is,   if the stated inequality holds,  then every    A        unit which did not 

initially respond to at least one of the stimuli of class   X     does not respond 

to any class   X    stimulus in the terminal state.    This is proven as follows. 

For an A-unit which does not respond to any stimulus of class   X     , none of 

the terms in     2L/ in (^- ^) are present on the first iteration,  which 

starts with      '"'•'' - fj   .    The stated inequality guarantees that, even if all the 

other terms are present,  no    /"'     for   5;    will reach    Q       .    Thus no terms 

in       £_,        will ever be non-zero. 
it s 

iii)     If both of the above inequalities hold,  then    A^   f 3x) U     An    (5;) 
,v o    ■ ^j 

(2) 
That is,  each stimulus in class X   activates exactly the same set of   A 

units in the terminal state; and that set consists of just those A-units which 

originally were activated by any one of the stimuli of class    X 
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Necessary and sufficient conditions that the inequalities of both 

i) and ii) be satisfied have again been derived by Block,  and are 

a)      r  > -A/K 

b)       7 < (k r ->   il 

)        p > ^ - <}K(K- IJ + K{ sr^\ \  / ij(r * -t){K-h2} 

d) Ar-   ! ^K\  -i    r//'.<ff   <   6 A/  [{I - p,   fr + A'U ?^K \ 

Condition a) guarantees that a suitable   n   ^ 0    can be chosen 

in b); Condition b) guarantees that a suitable    p £   I     can be chosen in c); 

Condition c) guarantees that an    t?   rf     can be cliosen to satisfy d), 

If the parameters are suitably set we have seen that the response 

in the     /: layer to any stimulus in class   '■     is U    A'. ' •'-;'        .    Similarly 

for classes   /    and    ."        This means that a    ''' -system perceptron with a 

single R-unit will tend to assign the same  response to all members of the 

first class of stimuli to be represented in the training sequence.    All   other 

stimuli will receive the opposite response,   if the initial intersections of 

responding A-sets are small enough.    With more than one R-unit and   inhi- 

bitory connections between the R-units,   so that only one can go on at one 

time (c.f.,   Chapter ZO) it is thus possible for the perceptron   to assign a 

unique response to each stimulus class.    If there is too much initial overlap 

between the responding sets of A-units,  or if condition i) is satisfied 

without condition ii) being satisfied,  a  single corrective reinforcement applied 

for any one stimulus of each class may still be sufficient to yield the correct 

response for all stimuli in the environment. 

374 



16,5       Similarity Generalization 

In the experiments considered above,  the nature of the stimulus 

classes was never explicitly stated.    Clearly,  they could have been 

similarity classes,  under a suitably chosen similarity relation,  and the same 

results would have been obtained.    In order to obtain generalization over the 

entire class,  however,  it was assumed that "runs" of stimuli from each class 

occurred,  it being much more likely that a stimulus was followed by another 

member of the same class than by a stimulus from a different class.    After a 

long preconditioning sequence of this type,   it might be expected that the 

perceptron would have seen each stimulus in the environment a great number 

of times.    We now consider the generalization of a similarity relation to 

stimuli which have not occurred during the preconditioning sequence. 

EXPERIMENT  11:    Consider an environment of stimuli    '.,...,   1. 

and their transforms     T'Z,),   T ' . ■ s . . . , ^'_ rJ where   T   is 

any transformation in which the measure of fixed points is zero. 

Let the perceptron be exposed to a preconditioning sequence, 

consisting of stiinuli followed by their transform.s,  i.e.,  a 

sequence of the form    \  [. ^   >T<Ji   ' '   -^, '  ^-^   ''•••'   -^    > ^^--k,  ' 

where the subscripts        &,,   £>-.,...       are picked at random 

from the set of integers  1  through    n   .    Now consider a pair of 

test stimuli,   ',,  and    [,     ,  and their transforms      T (c)x)     and 

T' rj   )    ,  none of which occured during the preconditioning 

sequence.    Let one response be associated to   5y    and the 

opposite response to    [',     , by means of an error correction 

procedure.    Now test the perceptron to determine its response 

to     T(5y)   and      f ( r, .)   . 

* This is directly analogous to the phenomenon of similarity generali- 
zation originally predicted for cross-coupled systems in Rosenblatt, 
Ref.  85. 
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It is predicted that if this experiment is performed with random 

dot stimuli in the preconditioning sequence,  with a finite retina,  and    5X 

and   ,\,    are any other stimuli (e.g. ,  a square and a triangle,  or two letters 

of the alphabet) the transforms   T JX! and    T(S )   will each tend to activate 

the appropriate response,  which was associated to  S/    and   zu      ,  respectively. 

In other words,  the perceptron will have learned that any two stimuli which 

are similar under the transformation    ?     are to be treated as equivalent, 

even though the stimuli have never been seen before. 

To begin with,  v/e consider the following problem,   which is 

essentially a special case of Experiment 1 1,  performed with only a single 

test stimulus . 

Consider the stimuli 

-■K + 2h' T K 

and their transforms 

For example. 

),.....   _ ,      may be in the left half of the field,  and    T   a transformation 

which moves them to the right half of the field.       S/ ^-<  ~ /K + f)     is not 

shown during the preconditioning sequence,   but is  a test stimulus to be 

appliedlater. .        ^' '-r    -     ^ '      P K -i- ..        n .    Letus assume    5 x 

intersects        ^"^, ■ ■ ■ >  -    [ I   -  y '     to a larger extent than it does the others 

and hence     „,'   intersects mainly the stimuli        ^ K *■ \   ••■•'    ■SV , ,    .    These 

relationships are illustrated in Figure 44. 

i\ i 
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RETINA 

Figure W    RELATIONSHIP OF TEST STIMULUS TO PRECONDITIONING STIMULI 

AND TRANSFORMS 

Specifically,  consider the conditions 

I ( a <■ A rfy •)   A,/ ; > ' 

Q, 
(i) 

y No. 
Ki- I  < J  £ K + L 

: y K+ I 

In the preconditioning sequence, a stimulus   5;    is picked at 

random from    'j. , . . . , S „ ,  and this is followed by its transform,       T( S[} ' K 

Then another stimulus is picked at random from 

followed by its transform,  and so on.    Then 

•^ / ; , 5^ and this is 
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/'   / ' 2K ^   2K 

>   JK 

/  / J    ±   K,    £ -- K+J 

^- i "K 
J     > K>    t^K 

.   0 c^Jx'-r fji'^ 

We also specify that no A-unit is activated by more than   jx ( JJ- < K/LJ of 

the stimuli 7 ^   1     ) K 

From Equation (16. 16) we obtain 

(r)        N„n 
K 2K K 

L >.;,;      (K+ 
■' 75/ i/J    + ?    ) (16.21) 

/. r' 0 
i - r L> f? Z < * :\ 

• = / 

Hence we have the following results: 

i)       If      /     ^ r)     . Ki   _■  ■-    ,  then      A„ ['l, 

J 

(16.22; 

V(5jf   }'    Ao   U'S-)) 
J  S   L 

In words,  if the stated inequality holds,  then,   in the terminal state,    ' x 

activates all those elements originally activated either by itself or by any 

of the transforms     T ('>^    T      . j 

ii)     If        ':f      K+^-L)  s  e    , then     A^ (Sx) ^ A(*\sx) <     il   A^ {T(5J}) . 
2K(f + I 

(?) (2) ^ 
iii)    If both inequalities hold, then     A^ (S^)    -  A0 {Sx) -h     U    ^0(T(SJ))' 

J ^ L 
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Thus far, we have considered the generalization of a response 

from   Sy.    to the transforms     T(SI) ,    T(Sj)     , etc.       Suppose a response 

is associated to   T (S r)     ; we are then interested in determining whether 

there is any generalization in the reverse direction,  i.e.,  to   T     (5y'j 
(X') 

We can obtain     ^ from Equation (16.21), with  x    replaced by     X        , 

which yields: 

< r 1 

2Kd £   ^(/^r'^'j+^^^s 
.;= / 

'J'. -/Jy 

Consequently, 

iv)    If 
SKrf 

(].i< + u   + < 0 ,  then     A ^  ( 
'2). 

*o(5X') 

If inequalities i),  ii),  and iv) all hold,  then the stimulus    Sy    generalizes to 

) . . .       ' b', )     ,  but the transform      Tf'Sy)  ~   S-y'    does not generalize 7-/ 

to the stimulus Necessary and sufficient conditions that all three 

inequalities hold are easily found:   (With    r , then iv) implies ii)   ). 

a) 

b) 

KTi  K 

i./' 

/ 1 /k 

9 
K 
      ^ ' < 
f r Orf K (K + Mj y + Lr/M 

In particular, let     L  =  !   .    Then     A^  (Sj   = A0  (3X)+A0   (T(SI)) 

Thus, due to the intersection between     A0   (Sx')        and      A0  (Ti,St)j , 

the test stimulus generalizes to its transform,  even though neither the test 

stimulus nor its transform has occurred during the preconditioning sequence. 

Under these conditions, the perceptron will behave in much the same manner 

as the specially constrained similarity-biased perceptron of Chapter 15.     The 

actual magnitude of the bias thus induced,  in a simple discrimination experi- 

ment, can be calculated as follows. 
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int 

Let   5o    be another test stimulus, like    SY    , but its chief 

ersection is with   S^   ,  say also   a -h r  .    Then if conditions a) and b) are 
(2) 

satisfied, (with   L=l )    , A(£(SJ   = ^' 75J v- Al^TiSj) 
(2) / 

oc ^}'       '-o   ^y   ■   "o   ^ -y and 

(r(S2)) Suppose the perceptron has zero 

initial values on the    A'~     to R-unit connections.    Let  5^   be shown,  and all 

active A-R connections reinforced by    -hi.    Then let   5o   be shown, and all 

active A-R connections reinforced by    - / .    Now if the perceptron is shown 

T(Sx)   (which it has never seen before) the input to the R-unit is equal to 

the number of A-units in     A(£(r(Sz)) (1 ^^(TiS,)) UA(J)(SX)_ 

minus the number of A-units in     A(£(r(Sx)) 0 [A^^TiS^) U ^ {S}j\ 

which in general is positive; while if it is shown    T(So)      the signal to the 

R-unit is negative.    Thus the discrimination which was   taught for    St     and 

and - j     carries over to    f   Sz, rV ■ 

In the above analysis,  it was postulated that the test stimuli 

should have larger intersections with some of the preconditioning stimuli 

than with others.    This assumption is crucial for the predicted effect to 

occur.    The reader will recall from the discussion of the last chapter, that 

in a perceptron with an infinite retina,  no similarity bias could be obtained 

between random stimuli because the distribution of their intersections had 

zero variance.    The same situation holds here.    If the preconditioning stimuli 

are random dot patterns,  and the retina is infinite, then every preconditioning 

stimulus will have exactly the same intersection with the test stimulus   Sz   > 

and the required bias cannot occur.    In a finite retina, however, the inter- 

sections will be binomially distributed (as in the analysis of Chapter 15), and 

the predicted effect will be obtained. 
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We also note an advantage, as before, if compact,  coherent 

stimuli are employed for preconditioning and as test stimuli.    In this case, 

even in an infinite retina,  the distribution of intersections will have non-zero 

variance,  and the test stimulus will tend to be more closely related to some 

preconditioning stimuli than to others.    As long as two test stimuli,   Sx    and 

5,    , do not intersect the same sets of preconditioning stimuli to the same 

degree^ they can be discriminated in the terminal state of the system (provided 

the required parametric conditions are satisfied), but each will generalize to 

its transform.    Thus the claim  made for the performance of such a system in 

Experiment 11 has been verified in principle.    Quantitative studies of actual 

cases are not yet complete, but similar experiments with cross-coupled 

systems (to be presented in Chapter 19) suggest that highly satisfactory results 

can,   in fact,  be obtained in practice. 

The asymmetrical generalization from        to     T{ j)   , but not 

from    f (_ /    to   C   can,  of course,  be overcome by employing a symmetrical 

preconditioning sequence,   in which a stimulus is as likely to be followed by 

the inverse transformation,     T     (^)        as by     T(S)  . 

For instance,  take   ;^/,...,  ','    /        ; i ,,■■•. 5^ j    $ K + I ' 

5 !>•.•, Sf ;   T'Stj ,...,    T{3Kj j where     K      n   2   .    Let 

c 
n 

! ft I   icf. .        V 

/   2kf 
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p- 

p 

p 

^  /C,    ^   =-- K + j 

{\-p)/{2K-\) 

>   K 

I   ^  K,    A  * K 

K 

>  K ,     Ä   1 J-K 

Let   y.</-  --  p - (I - p] /(2K- I)      ; then the   Pj£    can be 

expressed as follows.    For      I ^ J  ^   K,     I 4   ■£  £   K ,     we have 

P-i      =     P-   L   L-        f   .   S     ^     r 

i, K+ -& P. k-,i r t urcfjt 

where        r   -   (l -MT) j2K   - ( I -p)/(2K-l) .    This means that the transition 

probability from a stimulus to its transform,  or vice versa, is    r + ur    , 

while for any two unrelated stimuli,  the transition probability is     r 

Then from (16. 16) we have 

2K(f 

2Kd 

K      K 2\< 2K        K 2K 2K 

LL + LL + L L>L L ^p.H^W1 

K       K K        K 

i & i ; -- /  i  i 

K     ic K      K 

;-'   ^-/ = /  4-1 
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Assuming    5; 6 [S,,..., SK we have 

K      K   r 

IKd 
oc ) 

J •=/ i = l 

+ <l[(r + Mr<fjA}<pU{k}) + rcp(*JA-,K>)) 

7 
ii)        V 

K       K 

'Kef LLV'. r 

.1    i = l 
(plot   7 i- Oioi 

(4+K)] 

i Arf;y.r0(<ya,)i-(r + ^(fji)rp(r^ + K)}) 

j.i)       q     , 
'^ —   ' J r or f aus i   i r. 

K 

4-1 
2K(f        [ 

Thus if p   (or x/y   ) is nearly 1 and A./n  is large,    S;    will 

generalize to its transform,   and conversely    T(fj-)   will generalize to   5; 

since 

T --fi^Kcjr -i-riUr. Ar 
K     - 

*-iy j 

To get the specific form of the conditions for such generalization to occur, 
K 

we extract the term for  S "I   in    2^ and put it with the second term.    This 
Al' 

gives the first required inequality, 

(r?   P.K(f)(2Krj_r i- yus + Ar + A^)   >  0 
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or,  replacing   r   and w in terms of p   , and 2K  by  n   , we get the 

condition 

i)       If      /?(<} +Afl/d-n   ± 9      then    A(£(Sl) ^   A^fSj + ^[(7(5^). 

The second required inequality turns out to be 

(fl (K-l)/2K(f)[2K^r + c^iw i- Ar) C Q 

or,  replacing   f   and MS in terms of   p   ,  we get 

ii)     If     r?(n-2)[9(n-l)+A(l-p)]/2n(n-l)d<e, then  A^CS;) ^ A^iSi) + A^friSil 

iii)    If both inequalities hold, then    A^tS;)   = A 2 (S;) + A ^(l'iS;)) . 

Necessary and sufficient conditions that both inequalities hold,  given   n > 4 , 

are 

a) p >  fn-2)  '{in - 4) 

b) Q <   A\p' in - 4)     n -h2 , / (n - l)(n -4) 

c) /('    d must be so chosen as to satisfy i) and ii), 

For    n = 4   , these conditions are satisfied if   ^o > 1/4   and 

4/fyfAp) '-    '   l2/\3y + A(t-p 
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16,6       Analysis of Value-Conserving Models 

In dealing with simple perceptrons, a single value-conserving 

model,  the     /" -system,  has been considered.    In this system, the total 

value of the set of input connections to an A-unit is conserved.    In four-layer 

and cross-coupled perceptrons two types of value-conserving systems are of 

interest: the    / -system.,  defined as beofe,   (where the sum of the input values 

is held constant) and the     H -system,  where value is conserved over the set of 

output connections from an A-unit,  rather than the inputs.    In the perceptrons 

to be considered in the following chapters,  this second system appears to offer 

important advantages in performance, and will generally be preferred over the 

7' -system. 

The most important difference between the  ^T-system and the 

r -system is that the latter tends to activate those A-units which would 

respond to the most probable successor of the present stimulus,  whereas the 

"f -system tends to activate the set of A-units which respond to the stimulus 

for which the present stimulus is the most probable predecessor.    The 

difference between these two situations can be seen from the following example. 

Suppose there are three stimuli, A,   B,  and C, with transition probabilities as 

shown in the following diagram; 

A 
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In this case, with the     /'-system, we would expect the set of A-units 

responding to stimulus A to become most closely associated to the set 

responding to stimulus C, since A is the only possible predecessor of C, 

whereas  B can be preceded by either A or C.    In a   H -system, on the other 

hand, the set responding to A would be most closely coupled to the set 

responding to B, and might even develop inhibitory connections to the set 

responding to C, since B is the most common successor of A.    Thus the 

r -system tends to be predictive,  tending to anticipate the most likely 

successor of the present stimulus, whereas the    7° -system tends to antici- 

pate the stimulus which is most likely to be preceded by the present stimulus, 

As shown above,  this latter choice is not necessarily a good prediction of 

the next event. 

16, 6. 1     Analysis of    f -systems 

The differential equation for the    'f -system is identical with 

(16.11),  except that the constants    C- ■    are now equal to 

n 
(I) (I)     (!) V1    '     '/; ''/ 

k -1 

The negative term, - y- Q^   ,  is familiar from previous analyses of the 

/'"-system,  and represents the quantity substracted to balance the gain 

in value of the active connections.    It will be recalled that for a Poisson 

model,    Q-^ - Q- Q^    is always equal to or greater than zero,  so that the 

expected value of      C- •       will remain positive, and the previous analysis 

(Section 16.2. 1) applies without modification.    More generally,  however, and 

for a binomial model in particular,  the    C; •     may be negative, and the 

previous analysis must be reexamined to see how this affects the situation. 
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To begin with,  it no longer follows that the solution will be 

monotone,   since different combinations of positive and negative      C- •  's may 

be picked up in equation (16. 1 1),    depending on which   0's are currently non- 

zero.    Since the solution is non-monotone,   it also does not follow that a 

solution will occur in   n   steps,  or that the solution of the iteration equation 

(16.13)     is minimal. 

While we are unable,  at this time, to provide any short-cut 

method of finding the steady state solution (if one exists) for the      "f -system, 

it is possible to compute a time-dependent solution by the following procedure. 

We note, first,  that the solution is piecewise exponential,  as in the case of the 

oc -system,  and that the time constants for all    tf J'   are equal.    This means 

that we can readily determine which   c^        will be the first to cross the level 

of   6-  ,  by computing the initial asymptotes,   M for all    /    .    The   j/f 

with the highest value of   j M^    i     will change most rapidly,    If the initial 

value of    'y "        h    ,  and     Mr
{J'    is negative,    0   a; *   /       will   immediately go 

to   0    .    If no M   is negative,   then the first change to occur will be for some v 

to change from 0     to  1 ,  and this will occur for that ,/    for which    Al is 

greatest.    Having thus obtained the first discontinuity point,    7t/     ,  we can 

compute the values of all    ^      (tj)      >  and determine the next  (p   to change. 

This is done by computing the function 

Afa (L) 

r 
^ 

or - T-iti) 
(16.23) 

{G-ß(i))- ru,{t&} 

Joseph has pointed out that singularities are possible.    For example,  with 
0 -  /,   (/■=/,   /3I     I   , and   /32     0 ,  if   C  -(j-jj we have (at   ^      /n  3/2     ) 
r, '/j   ,   /; -   I    .    But then    r, (T      while    /■. r, Thus    r. 
immediately falls below 1,  hence back to the original equation, which brings 
it back to 1 again.    While /J,    thus fluctuates about 1, the future history of 
tf      is not determined. 
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for all i.    Note that   |   will be greater than   /   only if the numerator and 

denominator agree in sign,   and   [M/tf - f)   >     Q ~ /3 - if       .If these 

conditions are met (i. e. ,  if    ^   >   /     ).    C()(GC'
A)

}   will change value some- 

time before     J '     reaches its new asymptote.    Thus, by finding the value 

(or values) of   i for which    s, „     is maximum,  at the discontinuity time   t.£ 

we can always determine the next   0   to change.    Introducing this new 0 

gives us a new set of asymptotes,   Mo    , ('f     }       ,  and the process can be 

continued.    The values of the     "f ' (t)     at the discontinuity times can be 

readily calculated from the exponential solution: 

r'itt.,]- ^-e-^'^'-^(^l-r:(t())       (16.24) 

i 

where the discontinuity time,     tß ^ t      ,   is obtained by solving the equation for 

the next    T'      to cross threshold,  that is 

/ 

i.    I  o_ it^t-tt)--fJ>r.?i  T:77r -    j    . (16.25) 

16.6.2       Analysis of   f   -systems 

The -system is similar to the     '^ -system,   except that 

after each increment of reinforcement,   the total value is restored to   its 

former level by subtracting the net gain uniformly from the set of output 
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connections from an A-unit,  instead of the input connections.    The differen- 

tial equation now takes the form 

d) n        n 
1      - ^ Z Z VH* dt 

(S) 1 _      (2) n(,) £       H^
{1} (l6-26) 

; -■ /   i--i 

The same uncertainties as to existence of steady state solutions 

and difficulties of computation occur here as in the case of the     'f -system 

analysis.    A time-dependent solution can again be computed,  piecewise,  by 

the same procedure as above.    In chapter  19,  we shall reconsider the 

r -system,   in connection with cross-coupled perceptrons. 

16.7        Functionally Equivalent Models 

In Ref.  41,   Joseph has presented an analysis of a perceptron with 

"binodal A-units",  which is now seen to be functionally equivalent to a variation 

of the system analyzed above.    In the binodal model,  there is only a single 

layer of A-units,  but each A-unit receives two logically distinct sets of input 

connections and has a separate threshold for each set.    The first set of 

connections is fixed in value,  and activates the A-unit according to the usual 

rules.    The second set consists of a single connection from every sensory 

point in the retina,  and is variable in value.    The reinforcement rule for 

these variable connections is that if the A-unit is active at time     f    >   a-nd the 

retinal origin point of one of the variable connections is active at    / J  /     ,  the 

variable connection gains an increment in value.    At the same time, all 

variable connections tend to decay at a fixed rate,      (f     .    This is equivalent 

to a four-layer model in which  each    A        unit receives its fixed connection 

from an    A        unit with a normal number of input connections and threshold   Q 

and receives variable connections from   A/A    other    A units,  each having a 

single excitatory input connection,  and a threshold of 1 ,    The main difference 
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(2) 
from the above analysis would then be that the     A unit responds to the 

logical sum,  rather than the algebraic sum, of the inputs from the fixed 
(2) 

connections and the variable connections, i.e., the    A       unit is active if its 

fixed connection (the     /3 -component) is active, or if the sum of the variable 

connections (the     tf -component)    ^  Q    .   As this writer had previously- 

predicted on heuristic grounds,  Joseph has successfully demonstrated that 

similarity generalization will tend to occur in the binodal model,  after a 

preconditioning sequence analogous to those discussed above.    In this system, 

the set of fixed connections acts as a "template",  and the variable connections 

tend to adapt themselves to an origin configuration which resembles the fixed 

set under the transformation T.    The reader is referred to Reference 41 for a 

quantitative analysis. 

While it was assumed that the models analyzed in the preceding 

sections had a complete set of connections (from every   A       unit to every 

A unit),  a system which merely has a large number of input connections 

to each   "    '   unit,  originating from randomly selected   A units,  can be 

seen to be equivalent in all of its essential properties.    For such a system. 

the 
LJ 

matrix,   representing the expected values of the fractions of A 
(2) 

units responding to   j-  and   S; ,  would have the same equations as before, 

except that A/     must be replaced by the number of variable connections to 
f/) 

each A   ' unit. 

In the following chapter,  it will be shown that a form of weakly 

cross-coupled system,   in which there are no closed loops,  is also virtually 

equivalent to the model analyzed in this chapter,  and can be represented by 

the same equations,  with a slight reinterpretation of the   , T -component of 

the input signals to the A-units, 
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1 7 OPEN-LOOP CROSS-COUPLED SYSTEMS 

The most interesting features of cross-coupled perceptrons are 

those   which result from the possibility of closed feed-back loops,  or 

cycles,  in the network.    It is  possible, however,  to design a cross-coupled 

system with no closed loops,  and such a system has a number of important 

features,  including the ability to act as an adaptive similarity-generalizing 

system equivalent to the perceptrons of Chapter 16,  and increased economy 

and versatility in general classification problems of the sort considered in 

Chapter 5.    These properties will be considered briefly,  in this chapter, 

before proceeding to closed-loop systems,  which represent a more challenging 

problem in analysis. 

17. 1       Similarity-Generalizing Systems; An Analog of the Four-Layer System 

The three-layer perceptron shown in Fig.  45 is directly comparable 

to the four-layer system considered in the last chapter.    The A-units are 

divided into two subsets,   called A' and A".    All A-units receive    fixed 

connections from the retina,  but only the A" units have connections to the 

R-units,  the A'units sending their output signals to the A" units.    Each A'unit 

is connected (in a fully-coupled model) to all A" units,  and each A" unit is 

connected to all A' units.    The rule for modifying the connections from A' 

to A" units is identical with the rule for modifying A       to A       connections, 

in the four-layer system considered previously:   If the origin of the connection 

is active at time t,' and the terminus is active at t + 1 ,   the connection gains a 

quantity    Y)     .    All inter-A-unit connections decay at a rate    f/'     ,  as before. 
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":-->0 

Figure 45    OPEN-LOOP CROSS-COUPLED SYSTEM (COMPARE Figure 42).   BROKEN  LINES 

INDICATE VARIABLE CONNECTIONS. 

Clearly,  the only differerence between this model and the 

previous one is that the     /j -component,  instead of originating from one 

of the A       units,  comes direct from the retina,  and consequently can take 

on more than two values.    The differential equation (16. 11) and the equi- 

librium equation (16.12) thus apply without modification to this system 

(where the A' set is equated with the Av      set, and the A" set with the 
(2) 

A       set).    The additional freedom in choice of   /$ -values means that the 

sets designated    ^ 0   {
rji)      ,  representing sets of units whose    /5-value 

in response to    Sj     is   -M     , must now be fractionated into subsets for 

each possible value of    /J    , and the history of each such subset (having a 

given     /3   -vector) must be followed separately.    Thus the full designation 
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.(*) of such a subset would be    A 0' (/S; , S-J .   Apart from this further 

fractionation of the A-set, the same analysis holds as in the last chapter, 

and much the same results would be expected. 

17.2       Comparison of Four-Layer and Open-Loop Cross-Coupled Models 

A numerical comparison of the performance of the perceptrons 

considered in this and the preceding chapter will be based on the following 

experiment: 

EXPERIMENT 12:    Take an environment of four stimuli,    5, •■■ S*     ,  each 

having retinal area      Q - .2    .    The intersections    c,,      and   CM 

are each equal to    . /   , and all other intersections are zero.    The 

perceptron is exposed to the following sequence,  which is 

repeated until a steady state is attained: 

-', V/^, Z2&\S2S\S2S: 545j^53 ^ -JV
5
A)- 

This sequence 

can be considered to consist of two events, the first consisting of 

the alternating pair i    5. S., ■ ..     with a duration of     iOT      , 

and the second consisting of      "    ,').  _■_, $....,   also with duration 

of    10 T     .   A matrix of   Q- •     functions is obtained at the 

beginning and end of the preconditioning procedure,  to compare 

steady state with initial conditions. 

The relationship among the four stimuli can be seen from the 

following Venn-diagram of the retinal sets,  where the double-headed arrows 

indicate the oscillating pairs of stimuli,  and the number in each cell 

indicates its area. 
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The initial and terminal Q-matrices have been computed for a four-layer 

and open-loop cross-coupled perceptron,  as a function of the parameter 
(1) 

Naf} / (f .In both models the parameters of the   A       units (or of all 

A-units, in the cross-coupled case) were     je   ~ i,   u=0,    and    0 = 2, 

with a binomial model.   In the four-layer model,     9  ''   was also taken to be 

2    ,  so that the systems are directly comparable. 

The Q-matrices obtained in this experiment are shown in 

Tables 5 and 6.    The important Q-functions are also shown graphically in 

Fig. 46, as a function of the parameter     A./z f? / cf    .    Note that for both 

models, there is a considerable parametric range within which generalization 

is much greater for stimuli which belong to the same event    than for stimuli 

from different events.    This gain in generalization between    5,     and    5-,     , 

and between    5,    and   5;     is more than sufficient to offset the handicap of 

the intersections between   5,    and   j      ,  and between   5,     and   S4   , which 

gives the system an initial disadvantage.    The cross-coupled model,  while 

it follows a similar history, has a considerably greater "use.f'T range" 

than the four-layer model.    For the four-layer system, the range of 
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TABLE 5 

Q-MATRICES FOR FOUR-LAYER a-PERCEPTRON IN EXPERIMENT 12 

(PARAMETERS: ^r = 3, y = 0, 0=2) 

INITIAL Q-MATRIX: 

104 .000 .034 .000 

000 .104 .000 .034 

034 .000 .104 .000 

000 .034 ,000 . 104 

TERMINAL MATRICES FOR: 

7/.0 < /Va% < 88.9 

88.9 < A/^ % < 166.6 

Na % < 166.6 

104 .0/0 .034 .000 

070 .174 .000 .034 

034 .000 . 104 .070 

000 ,034 .070 .174 

174 . 140 .034 .000 

140 . 174 .000 .034 

034 .000 . 174 . 140 

000 .034 . 140 . 1/4 

314 .280 .034 .280 

280 .314 .280 .034 

034 .280 .314 .280 

280 .034 .280 .314 
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TABLE 6 

Q-MATRICES  FOR OPEN-LOOP CROSS-COUPLED   a-PERCEPTRON  IN EXPERIMENT  12 

(PARAMETERS:   *= 3, y = 0, 0 = 2) 

INITIAL  Q-MATRIX: 

.104 .000 .034 .000 

.000 .104 .000 .034 

.034 .000 .104 .000 

.000 .034 .000 .104 

TERMINAL  MATRICES  EOR; 

38.5 < /Va % < 44.5 

.122 .018 .034 .000 

.018 .104 .000 .034 

.034 .000 .122 .018 

.000 .034 .018 .104 

14.5 < Na % < 77.0 

.122 .036 .034 .000 

.036 .122 .000 .034 

.034 .000 .122 .036 

.000 .034 .036 .122 

77.0 < Na % < 83.3 

.174 .082 .034 .000 

,082 .122 .000 .034 

.034 .000 .174 .082 

.000 .034 .082 .122 

83.3 < A/a%, < 88.9 

. 9 < /Va %. < I 17.6 

.183 .097 .034 -.027 

.097 .140 .027 .034 

.034 .027 .183 .097 

.027 .034 .097 .140 

.192 .131 .034 .036 

.131 .192 .036 .034 

.034 .036 . 192 .131 

.036 .034 .131 .192 

17.6 <Na
rtA. < 166.6 

.210 .176 .034 .072 

.176 .210 .072 .034 

.034 .072 .210 .176 

.072 .034 .176 .210 

166.6 < A/a% < 235.2 

.262 .228 .034 .176 

.228 .262 .176 .034 

.034 .176 .262 .228 

.176 .034 .228 .262 

N0 %> 235.2 

.314 .280 .034 .280 

.280 .314 .280 .034 

.034 .280 .314 .280 

.280 .034 .280 .314 
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a    PLAYER MODEL (b) OPEN-LOOP CROSS-COUPLED MODEL 
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Figure 16     COMPARISON OF 1-LAYER AND OPEN-LOOP CROSS-COUPLED oi-PERCEPTRONS 

ON EXPT.   12.   [ %   =3,   (/ = 0,   0 = 2 FOR BOTH SYSTEMS) 
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N Q^Ü I a"    for which the system tends to classify events "correctly" is 

77.0 to 166.6,  while for the cross-coupled model this range is extended to 

38.5 to Z38.Z.    Thus the cross-coupled model begins to show the generali- 

zation effects earlier,  and saturates later than the four-layer system. 

Moreover,  the transition occurs more gradually,  in eight steps for the 

cross-coupled system as opposed to three for the four-layer model. 

The matrices shown here assume    oc -system reinforcement. 

A   f    or    P -system, with the four-layer model, eliminates 

all     4  '      activity immediately,   in this experiment.    In the cross-coupled 

model,  however,  activity is not completely eliminated., and the terminal 

Q-matrices obtained for a   y   -perceptron are shown in Table 7.    Note 

that the bias favoring     ^.3     and    "-}..4    is eliminated for most values of 

'i.x'J    f    ,  and that the "dynamic range" is greater than in the     06-system, 

The    I1   -system,   illustrated in Table 8,  is similar to the     'f -perceptron 

for small values of   //. 0     '    ,  but it appears to "saturate" more easily. 

While the performance of the cross-coupled perceptron closely 

resembles the system in Chapter  16,   it is a somewhat more satisfying 

model from the standpoint of biological plausibility and parsimony,   since 

it does not require the assumption of a special set of fixed connections 
(I) '2) 

from     A. to     A        units in addition to the variable connections  - an 

assumption which was necessary,   in the four-layer system,   to provide a 

"template" for the organization of similar    A units to be connected to 

each    A *     unit,  and in order to prevent all connections from decaying to 

zero value.    In the present scheme,  all S-A connections are fixed, and 

all other   connections variable,  yielding a conceptually simpler organization. 
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TABLE 7 

Q-MÄTRICES FOR OPEN-LOOP CROSS-COUPLED  ^-PERCEPTRON 

IN EXPERIMENT 12 

(Parameters: x= 3, y=0, 0=2) 

INITIAL  Q-MATRIX; 

I OH -OOO .034 

.000 .lO'l .000 

,03« WOO 0 .104 

.000 .034 .000 

TERMINAL MATRICES  FOR: 

0   <   -^1<   68.7 

.008 .000 .001 .000 

.000 .008 .000 .001 

.001 .000 .008 .000 

.000 .001 .000 .008 

68.7   <   ^±1 <  85.i 

.009 .002 .002 .002 

.002 .009 .002 .002 

.002 .002 .009 .002 

.002 .002 .002 .009 

A/   r7 
35.8   < —5-1. < 101 

.019 .012 .008 .008 

.012 .012 .008 .008 

,008 .008 .019 .012 

,008 .008 .012 .012 

101    <   —%1~  < 152 

,u22 .022 .014 .014 

.022 .022 .014 .014 

.014 .014 .022 .022 

.014 .014 .022 .022 

152    <    A/a t   <   303 

.025 .025 .017 .017 

.025 .025 .017 .017 

.017 .017 .025 .025 

.017 .017 .025 .025 

"a i? 

d 
-L.   >   302 

.030 .030 .030 .030 

.030 .030 .030 .030 

.030 .030 .030 .030 

.030 .030 .030 .030 
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TABLE 8 

Q-MATRICES FOR OPEN-LOOP CROSS-COUPLED T-PERCEPTRON 

IN EXPERIMENT 12 

(Parameters: AT = 3, y = 0, 0 = 2) 

INITIAL Q-MATRIX: 

/.104 .000 .034 .000 

.000 .104 .000 .034 

.034 .000 .104 .000 

.000 .034 .000 .104 

TERMINAL MATRICES  FOR: 

0 < 

58.5 < 

If 

HaV 

<  58.5 

<  77.8 

008 .000 .001 .000 

000 .008 .000 .001 
001 .000 .008 .000 

000 .001 .000 .008 

009 .002 .002 .002 
002 .009 .002 .002 
002 .002 .009 .002 

002 .002 .002 .009 

77.8 <   -^   <   88.5 

.019 .012 .008 .008 

.012 .012 .008 .008 

.008 .008 .019 .012 
,008 .008 .012 .012 

.5 <   —4L   <   92.0 

.022 .015 .014 .014 

.015 .015 .014 .014 

.014 .014 .022 .015 

.014 .014 .015 .015 

92.0.-'. -"*?   <I3I 

.025 .025 .020 .020 

.025 .025 .020 .020 

.020 .020 .025 .025 

.020 .020 .025 .025 

131 < ^1  < 181 

.028 .028 .026 .026 

.028 .028 .026 .026 

.026 .026 .028 .028 

.026 .026 .028 .028 

^a»? 

.030 .030 .030 .030 

.030 .030 .030 .030 

.030 .030 .030 .030 

.030 .030 .030 .030 
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It will be seen in Chapter 19 that this system,  with the addition 

of a unit time-delay (all     T- ■   =   I      ) performs identically to a closed loop 

fully cross-coupled perceptron for the first two cycles of operation.    By 

further extension of the network along the same lines,  it will be shown that 

additional cycles of closed-loop activity can be duplicated. 

17.3     Reduction of Size Requirements for Universal Perceptrons 

In the case of simple perceptrons,  it was demonstrated that in 

order to obtain a "universal perceptron",   in which a solution exists for any 

classification of  n    stimuli,   at least   n    A-units are required (Theorem 3, 

Corollary 2,  Chapter 5).    Now consider an open-loop cross coupled perceptron, 

constructed as follows:    Let the A-units be numbered in series   a. , ö, , ...,  aN 

and let   /V    - NA    (the number of S-points).    The last of these units,     a N„ 

has an output connection to an R-unit.    Each A-unit has a variable-valued 

connection from every S-point,  plus one connection for every A-unit prior 

to itself in the seriesi i.e.,    a;     receives a connection from every S-point 

and from     ./^ ,   a, , ■ ■ ■ , o ; 

It has been demonstrated by Cameron    that for small values of  /? 

(n  - J   J )       only     Mog2[n)    A-units are required in order to obtain a 

universal perceptron,  in which a solution exists for all of the  2     possible classi' 

ficatibn.  This   was    demonstrated by explicit construction for    n     as 

large as 8.    At some higher value of    n     ,  this ceases to be true, although 

the maximum   n   for which the observation holds true has not yetbeen 

determined. 

S.  Cameron,  personal communication. 
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A lower bound for the number of A-units required for a 

universal perceptron in such a system has been obtained by Joseph (although 

it is not a least upper bound).    The analysis (given in  the Appendix of 

Ref.  41) is based on the Hay-Joseph theorem that the maximum number of 

orthants achievable by linear combinations of  r   vectors in    n -space is 
n r-i 

approximately     M''n, r) = 7 ;—   where   n   is large,  and   f  is small 
( r - /;.' 

relative to   n   .    An upper bound for the number of dichotomies achievable 
-•    N„ 

with    Na     A -unit s is found to be   M(2  a, Na + i) M (^   a
) Na + 2) ... M(2 

Nn 

'     (2        a . 

It is shown that for large A/    the number of possible dichotomies is increasing 

at a much greater rate than the number of achievable dichotomies,   so that 

there must be some point at which the system ceases to act as a universal 

perceptron. 
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IS, Q-FUNCTIONS FOR CROSS-COUPLED PERCEPTRONS 

A general cross-coupled perceptron is illustrated in Figure 47, 

It consists of three layers of units, with complete freedom of interconnection 

among the A-units.    Due to the likelihood of closed circuits of connections 

within the network,  this is called a closed-loop system. 

S-UNITS 

A-UNITS 

Figure 47    TYPICAL CONNECTIONS   IN A CLOSED-LOOP CROSS-COUPLED PERCEPTRON 

In passing from open-loop to closed-loop networks,   several 

fundamentally new considerations enter into the analysis.    In the first 

place,  the state of the network at time   r   becomes a function,  not only 

of the present sensory input and the momentary values of the connections, 

but of the preceding sequence of inputs and past activity states as well. 
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The dependence of the system's state upon time-sequences of previous 

states means that the transmission time,    T- ■       , which previously 

played no part or only a minor part in the analysis of system performance, 

now becomes a parameter to be reckoned with at all times.    The question 

of network stability is also a fundamental one; some cross-coupled 

networks,  once triggered,  will explode into total activity which prevents any 

further stimuli from making any impression at all,  others will oscillate, and 

others will settle down to a stable steady-state condition.    In this chapter, 

we begin by  re-examining the concept of Q-functions,  in order to provide a 

means of measuring the response of the network to sequences of stimuli, 

and comparing its response quantitatively for different stimulus sequences. 

These new Q-functions will be found to encompass the functions analyzed 

in Chapter 6 as a special case. 

18.1     Stimulus Sequences: Notation 

In Chapter 4,  a stimulus was defined as any set of  input signals 

to sensory units of a perceptron,   excluding the null stimulus.    In practice, 

these signals are generally taken to be   1    or zero.    For present purposes, 

the null stimulus (all signals equal to zero) will be re-admitted as a stimulus, 

and will be symbolized by    0    when it occurs as part of a sequence.    A 

stimulus sequence,      J-   - .      •      ^ can be an arbitrary series 

of stimuli which are assumed to occur at successive discrete times 

t, ,   rt + At.  ,   tj + 2At   ,    t, i ! .    An arbitrary set of stimulus 

sequences can be taken to comprise a stimulus-sequence world, for a 

given perceptron,   in the sense of Definition Z6 of Chapter 4. 
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In this and the subsequent chapters,  it will be assumed that the 

transmission time,    T- ■      is equal to   At      for all connections,     C; ■      ,  and 

this transmission time will be symbolized in abbreviated form by     T 

Consequently,  if a stimulus      5;       occurs at time   t    , the response to this 

stimulus in the A-system occurs at time    t t T    ,  and    Q-     is interpreted to 

mean the probability that an A-unit is activated at time    t    if    5;      occurs at 

time   f - r .    In a cross--coupled perception,  however,     Q-       is not a well- 

defined quantity,   since in addition to signals from the retina,  an A-unit may 

receive signals from  other A-units at time   t    ,   so that the response at time t 

depends both on     S(t - t)   and on the activity state of the association system 

at     t - T    •   Ql    is therefore redefined to apply to sequences   c/^-      of length 

m   , which begin at time    t -m7   ,  and terminate at    t - T   , with the association 

system assumed to be totally inactive,   or "silent" at time   t -mT .    In this 

case, for a sequence of length 1,    Q-     is interpreted in the usual manner, 

and is represented by the equations of Chapter 6,   without modification.    For a 

general sequence of length   m   ,   we use the notation    Q'       to designate the 

probability that an A-unit is active at time   t    ,  given that the sequence   J- 

began at time    t,    mT  ,   so that the   m       member of the sequence occured at 

t - T      .    More generally,  we can write     Q- to designate the probability 

that an A-unit is active at time    t     if the sequence   J-      began at     t - rT  , 

where   r    maybe less than,  equal, or greater than  m   .    If   r   is less than m, 

this is equivalent to the probability of response to a truncated sequence, 

containing only the first  r    stimuli of the sequence I -' ' "• ''    Jir ' •• •' JiV 

If    r .■ m ,  we adopt the convention that the sequence    .■'        is understood to 

have been augmented by the addition of  r-m  null stimuli,   yielding the 

sequence    {5,,  5^ , ■ • • >   5,„ ,  C, ,... ,   O r _ n))      .    In other words ,  it is assumed 

that the sequence   J;     began at    / ■ r l    ,  and that no other inputs occurred 
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through time   t -T    , the probability of A-unit activity then being determined 

for time    t   .   In a simple perceptron,  this probability would, of course, be 

zero for   r > m   ; in a cross-coupled system,  however, the presence of 

persistent cycles of activity,  or reverberating loops in the A-system,  may 

maintain     Q;   > 0     for an indefinite period, 
'r 

Q- ■     is redefined in a manner analogous to    Q^     .    Where  ü/; 

and   J'     are any two sequences, we define 

Q 
Lu   ■.'■; 

probability that an A-unit responds at time   t    if   «/; 

begins at   t - uT   , and also responds at time   t 

if   J-       begins at    t - J'T   ■ 

It is again assumed that the A-system is "silent" at the start of each sequence 

for which the Q-function is defined,  and that if /M    or   ^     is greater than   m    > 

the corresponding sequence is augmented by a sufficient number of null 

stimuli at the right-hand end.    Q-functions with arbitrary nurrbers of sub- 

scripts can b e generated by an obvious extension of the above definition. 

In contexts where no ambiguity can arise,  the notation    Q- ■    will 

be used to denote   Q-     ■   i      ,  i.e. ,  the probability that an A-unit responds 

immediately after the termination of    <>/•      and also responds immediately 

after the termination of   J-    .    Note that it is not required that the sequences 

J-   and J-    be commensurate,   i.e., the lengths m   and   m' may be different 

for the two sequences,  without requiring any redefinition oi     Q- • 
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Generalization coefficients,   o.     ■ ,  can be defined analogously 

to Q-functions.    For example,  in an alpha system, we would have  £(^ j   )~Qi   J. > 

where    ?■ is a measure of the increment added to the output signal of 

the A-set responding after   ^     stimuli of the sequence     Jj     , as a result of 
th / 

an      ry. -reinforcement after the    ,0.       stimulus of the sequence    «/;       .    Again, 

if the second-order subscripts are suppressed,  it will be assumed that 

ii:, m J m 
the effect of a reinforcement immediately after the termi- 

nation of     J:     upon the signal which follows immediately after the termination 

of    J-      .    If reinforcements are always applied and measured immediately 

after the end of stimulus sequences,  the performance of the perceptron in 

learning responses to such sequences can be derived from the resulting G 

matrix,   in precisely the same manner as was done for elementary perceptrons 

in Part II.    Thus a knowledge of the Q-functions for a cross-coupled perceptron 

permits us to predict the performance of such systems in discrimination and 

generalization experiments. 

18.Z )■  Functions and Stability 

The rigorous analysis of     Q-       for a cross-coupled perceptron 

with a finite number of A-units presents the identical difficulty which was 

encountered in the case of Q-functions for multi-layer systems (Section 15.1). 

The probability    Q-       is,  of course,   identical to the function   Q-    defined for 

the first stimulus of the sequence     J^        in accordance with the equations of 

Chapter 6; but the probability      Q- already depends upon the distribution of 

numbers of A-units which respond to the first stimulus,      5;        .    In order to 

avoid consideration of these distributions,  the Q-functions obtained here will 

always represent limits for large networks, where it can be assumed that the 

actual proportion of A-units responding after     5; is equal to     Q-       .    It 

should be noted that due to the assumption that the sequence    J-       starts with a 

"silent" perceptron,     Q '1 
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A number of alternative topological models might be considered. 

For convenience, the following analysis takes up the case of a perceptron in 

which both the connections from the retina to the A-units and the "internal" 

connections to each A-unit are constrained as in the binomial model of 

Chapter 6.    In this model,  we have five parameters for each A-unit: 

Q      -       threshold of A-unit 

XA    -       number of excitatory connections from the S-set, 

or retina 

:, i      =       number of inhibitory connections from the retina 

/t'       -       number of excitatory connections from other A-units 

7       =       number of inhibitory connections from other A-units 

In the present chapter,  we shall be concerned only with perceptrons in which 

all input connections to A-units are fixed in value,  regardless of where they 

originate.    Systems with modifiable couplings between A-units will be 

considered in the following chapter.    It is assumed that each of the above 

sets of connections has its origin points assigned at random from a uniform 

probability distribution over the S-set or the A-set, as required.    This 

results in the following equation for      Q-L  ,     : 

■'>■' 
Z_L     P,i^)^(h)^a) PAh 

(18.1) 

trhi-Ea-Ia G 
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where 

Pii^A f, / V"'W I i^ 

P2 {h )   - T \       I 

^I^   '. 
I-P-     I 

'JJ - h 

P3^a) 

. j PIT]:        ■ -     >    '\ )   J  ■'/-   ■>. ) 

^•a ' rü 

y^"I i 

^, =   fraction of S-units activated by      V 't-'J 

Taking   ,(- 0 ,     , •        can thus be developed recursively in terms of C1; 

up to any value of 

For a Poisson model,   in which the number of output connections 

from each A-unit is constrained but the number of inputs is a random 

variable (or in which both ends of a set of connections are picked at random) 

equation (18. 1) still applies, but the probability functions     /^ ,  P, , P- ,   and   R 

must be redefined,  in a manner analogous to Chapter 6.    It is also possible, 

of course,  to have some kinds of connections (e.g.,  the internal excitatory 

connections) distributed binomially,  while the other sets of connections are 

organized according to a Poisson model,   so that    A P^     need not all be 

of the same type.    For present purposes,  however,  we shall continue to 

concentrate on the pure binomial model defined above.    All major conclusions 

undoubtedly appl/ to Poisson and mixed systems equally well. 
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One of the first questions to be raised about such a system concerns 

the stability of the activity-level, and the possible tendency of the system to 

burst into total activity in response to a transient stimulus (which would, of 

course, preclude any possibility of learning or discrimination of different 

stimuli).    Figure 48 illustrates the response to a transient stimulus (i.e.,   a 

sequence of length 1) for a number of representative cases.   Figure 49 presents 

the response of a number of networks to a steadily maintained stimulus, or a 

sequence of stimuli all of which have the identical area.    (Note that it follows 

from Equation (18. 1) that the actual sequence of stimuli does not affect   Q-      , 

so long as the stimulus area,    P-        ,  is fixed for each     5;      .    Thus any two 

sequences for which the succession of    k'-      are equivalent will yield the same 
■/' 

value of ) 

Figure 48(a) illustrates the effect of the size of the "trigger sti- 

mulus" upon the transient response of the system.    Note that the final activity 

level is independent of   / ,•    ; it is also independent of  XA    and   j^     ,  so long as 

' ,    -■   ■ ■ Figure 48(b) shows the effect of varying the ratio of internal 

excitation to internal inhibition and '/;. For a purely excitatory 

system,  total activity of the network is likely to occur,  in which all A-units 

become and remain active.    As the inhibitory component is increased, a lower 

level of stable activity results,  and with still further increase in   u       relative 

to    za     , the initial transient activity will die away entirely.    Figure 48(c) 

shows that the effect of increasing the threshold of the A-units is similar to 

the effect of increasing the internal inhibitory component.    It should be noted 

that all of these   r,'-    functions in response to transient phenomena in a cross- 

coupled system are identical to the succession of    Q -functions for successive 

layers of a multilayer perceptron (as discussed in Chapter 15).    For infinite  Nc 

('■') 

the equations for    Q- and     Q-       are identical, where p    in the first case 
' ' P1 

denotes the layer,  and in the second the cycle of activity in the A-system. 
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Figure 49(a) shows that as the internal inhibitory component is 

increased to the point where the terminal steady-state level of the system is 

below the value of    Q-      for the initial impulse from the retina,  a damped 

series of oscillations occurs,  which becomes pronounced as   u       is increased. 

Changing the threshold (as in Fig. 49(b)) also serves to reduce the asymptotic 

activity level, but does not cause the qualitative alteration from a monotonic to 

an oscillating sequence,as does the increase in    (7     .A sequence which is 

either monotone or oscillating for one value of   ^     will remain monotone or 

oscillating as   Q     is changed. 

18.3 Functions 

The function    ,r-    ;       for a binomial-model cross-coupled per- 

ceptron can be calculated by an extension of the treatment employed in the 

preceding section.    The resulting equation (again assuming large    A/.      ) is: 

(/c t/p 

(18.2) 
r'     r^     T '-'       n    ';-'■    rJ   rC)r  ,'T '    rJ   j'c\ 

J 

where      CY, E: + E?-I: -ii + E': f Er„ -i: -J. 

rs. £J + F    - TJ -T     + FJ 4- t C- T'1 - T'' CA   i   L^      L
A     

ls   y  co   ■   -a     la     1..' 

The above notation for excitatory and inhibitory signal components received 

from the "unique" and "common" sets of sensory points and A-units active at 

t - 7.'    is an obvious extension of the notation employed previously (c ,f,, 

Chapter 6).    For the multinomial probabilities,  we have 
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For arbitrary values of  u.    and   >;    ,      Q-    ;       can again be calculated by 

a recursive operation, assuming that the perceptron is "silent" prior to the 

start of each sequence.   If the two sequences   J-L      and  Jj    are incommen- 

surate (or ii JUL  ^ >>   ) the values of   Ca    are thus taken to be zero up to the 

time that both sequences have begun,     (This is equivalent to extending the 

shorter sequence by adding a sufficiai t number of null stimuli at the beginning 

to make it equal in length to the longer sequence. ) 

Two questions are of particular importance concerning these 

functions.    The first is the question of the sensitivity of the system to 

pertubations in a sequence of stimuli; this determines how well a  cross- 

coupled perceptron can discriminate one stimulus sequence from another.    The 

second question is the dependence of the present state of the system upon 

stimuli from the remote past; this is of importance in order to guarantee a 

sufficiently consistent response to a present stimulus so that it can be 

correctly    identified,  and also in justifying an approximation to the perceptron's 

performance by means of an analysis of finite sequences (as will be done in the 

following chapter).    Figures 50 and 51 present the results of an investigation of 

these questions . 

In Figure 50 the effect of a perturbation in the stimulus sequence 

is illustrated.    In each case the sequence   «/,     is assumed to consist of 17 

stimuli (     A   ,   t\ ., , , , . , A j7       ).    In the other sequences,  one or more 

"perturbation stimuli" are introduced in  place of some of the "A" stimuli; 

The data for these illustrations were computed by W. Eisner,  on the 
Burroughs 220 computer at Cornell University. 
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these are denoted by the letter "B" in the figure.    In figure 50(a),  a single 
ii ii 

"B" stimulus is introduced,  in place of the eighth A   stimulus, with   C ,. 

(the intersection between the "B" stimulus and the corresponding "A" 

stimulus,     Aq      ) being zero.    We find that with    0=2     ,      Q is 

abruptly reduced as soon as the "B" stimulus occurs, and then approaches   a 

new asymptotic level,  considerably below the   Q        level.    With a threshold of 

3, however,  the curve following the perturbation returns to   the    Q,,      level,  so 

that three or four stimuli after the perturbation it is impossible to tell from the 

active A-sefthat the perturbation occurred.    If the location of the "B" stimulus 

in the sequence is changed, the same type of    Q        curve is found,  with the 

deflection merely being displaced in time, but not changed in magnitude. 

Figure 49(b) shows that the same asymptotic level is approached regardless of 

the value of    C. n    , as long as the "A" and ",B" stimuli are not identical 

(   C < .2   ),    In general,   it appears that the asymptotic value of    Q.^      depends 

on the parameters of the network,   but is independent of the magnitude of the 

perturbation. 

Figure 50(c) shows that as the internal inhibitory component is 

increased, the asymptotic value of    Q        approaches the asymptotic value of 

Q ,  in much the same manner as when the threshold is increased. 

Finally,   Figure 50(d) illustrates the effect of increasing the duration of the 

perturbation up to four "B" stimuli.    Note that the return curve following the 

perturbation is practically identical in all cases. 

Figure 51 demonstrates the effects of introducing null stimuli 

at the beginning of each stimulus sequence,  in place of the initial "A" 

stimuli.    The curves obtained are very similar to those obtained with a 

-41 7 ■ 



<x r< >N 
cc ■- •H 

o- O 

II II 

a 
N 

U.I m 
z LU — Z 
—I 

ei —I 
z z — LJJ Q >- i<: — 
a: o —1 < oc O > CD CO 

u- 
O 
1— 
o CN 

0) 

0) 

a; Cj o 
u. 5. o 

II 
LU =) 

>• « o 
tir N w _> 
o UJ 

< 

; J-    ••.. 

  

1             CO 

' ( T  

0:
6 

1       I; ; \x ,  ■  i 1   1 
1             1; 
i        i; 

li 
 \  i/iij\i ( 

v.l i !.. __ > 
  

i         V Sr4—-^=J *^^    r^i          1 

T'"",^-r^--:;-• 4- !__"   '1  
o 
CM 

00 
O 

ID 
o o 

■ ^ 

Or 

2 'X 

'                       '                      1 

O      1 

s,, JT— ^   -J \ 1....  

.    o 
CN      I 

\2t^~--- /1 
 —1 .  1  ; -1 i  

■    —A 1 IMI..     I               1 

> 

o 
o 

00 
o 
o 

o o 
ID 
o o 

'-> 
7k 

LD 
O 
O 

O 
O 

CO o 
o 

cs; o 
o 

o 
o 

(A 
LU 
O 

o 
LU 
CO 

oo 

Z _ 
(- 

LD CD 

U. 
o 

o z 
o 
M 

h- 
< 
> 
LU 
o: 
as 

o QQ 
CM s. 

Ü- 

o 

- 1— 
o 

o 

(- 
Q- 
UJ 
o 

o 
LU   CM 

II   m 

(D 

0 

o 
z 

r  

j 
< <  < 
< <i  < 

"! • .-... - ^ , (- , ,-  

i              L                                           l       ex   1              i           ..; 1  

A
A
A
A
A
 

A
A
A
A
A
 

A
A
A
A
A
 

;     ^   i                                    V        i           i    ^   :           i           ;           I 

V
O
O
O
O
 

V
V
V
V
V
 

V
V
V
V
V
 

V      \           \          \           \     *\                      i      ~T~: i  
1        1         1        i    /i   ^ 1         i        i        1        i        i 

A
A
A
A
A
 

O
A
A
A
A
 

0
0
0
0
0
 

Sn        ;       i    H^IX.     i        :        i        ;       i 
:         ;         ;         :         ! f- i 1 i         •        "  

vvs 'S    "vv   CM 
o 
CN 

Or" 

00 
o 

ID 
o 

2 TV 

o 
CM o 

o 
^ o 

CO ^ 
CO o 
o 
ct: II 
o 

w 
o ^ 
u_ 

CO 

II 

A ^ 
O N 

0) 

-418 



perturbation of the   J.       sequence, and it is again found that by increasing the 

threshold or the value of    a      the A-set responding to the altered sequence 

can be made to approach the set responding to the original, unaltered sequence. 

These results demonstrate that there are two distinct conditions 

which may be found in a cross-coupled perceptron, depending on the choice of 

parameters.    With small    6    ,  or small values of     y ,  any perturbation or 

variation in the stimulus sequence will cause the system to follow a unique 

course for all subsequent time,  and the A-set which is active at time   t 

depends on the entire sequence at all times prior to    t     ,  rather than on the 

most recent stimuli.    By increasing    Q      or    j       ,  however,  such a perceptron 

can be converted into the second type,   in which only the most recent stimuli 

appreciably affect the current state of the A-system,   and stimuli which are 

sufficiently remote in time have a negligible effect-    By lowering    0     or    ua 

slightly,  the duration of the noticeable aftereffects of a sequence perturbation 

can be increased,,   while still   permitting an ultimate return to the A-states 

associated with the unperturbed sequence      This means,   in effect,   that the 

perceptron has a "short term memory" for sequences of a length commensurate 

with the time for the    '.)■ ■     curve to return to its "normal" level,  and such 

sequences can be discriminated by the system.    In discriminating such 

sequences,   the most recent stimuli will tend to dominate,  and differences 

which occur in the remote past will be harder to recognize.    With the first 

type of perceptron,   however,  which is obtained abruptly when the threshold 

becomes low enough (or   u        becomes low enough) even the most remote 

stimuli have about the same effect as the most recent stimuli,  and the 

current   A-state gives relatively little information about what the present 

stimuli actually are.    Thus,   in order to guarantee an adequate degree of 

correlation between the activity state  and the current stimuli,  it is   necessary 

to maintain thresholds or inhibitory components at a  sufficiently high level; a 

perceptron of the first type is unlikely to be of much practical value. 
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19.   ADAPTIVE PROCESSES IN CLOSED-LOOP CROSS-COUPLED PERCEPTRONS 

In Chapter 18,  cross-coupled perceptrons with fixed connection 

networks were analyzed to determine their stability and characteristic 

responses to sequences of stimuli.    In earlier chapters, four-layer and 

open-loop cross-coupled perceptrons were analyzed to show that an adaptive 

preterminal network could vastly improve the capabilities of such systems for 

similarity generalization.    We now turn to the consideration of cross-coupled 

perceptrons with adaptive interconnections between the A-units,  and will 

attempt to show that the same phenomena can be found here,  in a more general 

and more efficient form.    The cross-coupled system not only recognizes 

sequences of stimuli of arbitrary length,  but tends to accellerate its adaptation 

process due to positive feedback effects within the system.    It will be shown 

later that the closed-loop cross-coupled system is equivalent to an infinitely 

extended open-loop system, analogous to the one described in Chapter 17. 

The first attempt to demonstrate similarity generalization in 

cross-coupled systems was that of Rosenblatt,  in Ref.  85,    This was a 

partially analytic and partially heuristic argument, based upon a study of the 

similarities of origin-point configurations of the A-units under an arbitrary 

transformation   T.    While the general predictions in this paper were correct, 

and have subsequently been demonstrated in simulation experiments, the 

method of analysis failed to yield quantitative predictions of the terminal 

state of the system,  after a prolonged period of pre-conditioning.    The 

method employed here is basically different,  and yields a more general,  as 

well as more accurate,  result.    In the   following sections, the time-dependent 

evolution equations for the cross-coupled system will first be developed in 

their most general form,  and specific applications will then be made to 
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Systems  in which the assumptions and initial conditions are simplified, to 

permit a more complete analysis.    In the final sections, several similarity 

generalization experiments will be presented, and performance will be 

compared with that of multi-layer perceptrons. 

19.1     Postulated Organization and Dynamics 

The perceptrons to be analyzed in this chapter will be assumed, for 

convenience,  to be fully cross-coupled,  that is,  there is a connection from 

every A-unit to every other A-unit and to itself as well.    It can be shown that 

the conclusions which we shall reach for such a system can  be extended to any 

perceptron for which the number of cros s-coupling connections per A-unit is 

large,  and the termini of the connections are assigned at random. 

Connections from S to A-units are assumed to be fixed in value,  and 

connections from A to R-units are modifiable according to any of the usual 

reinforcement rules.    (We shall not be concerned here with the reinforcement 

of A-R connections,  but shall concentrate upon the evolution of the association 

network itself.)   The A-units are assumed to be simple, with threshold    Q     , 

and output signals    a    -  /      or   C    .    The transmission time for all connections 

is a constant   /'   .    Stimuli are assumed to occur at intervals of the transmission! 

time,   y 

Interconnections among A-units are assumed to be variable, 

according to the same rule employed for the four-layer system of Chapter 16;. 

namely, if   ■>•   is active at time   t    ,  and   a-   is active at time   t + T , the 

value of the connection    Cj •     is increased by a quantity   Y?-&t,  and at the same 

time, all values ir-■    decay by the quantity    a At (ir; •)     ■    The time unit, At     , 

will generally be considered large relative to   T     .In symbols,  we have 
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^ v- (t) 
(r?- (fv;;)At  if    af(t-r) aUt) - / 

(fAt. (■y;;) otherwise (19.1) 

thus the total signal,     oc-{t)     ,   received by the A-unit   Q-[   at time  t    consists 

of a fixed-connection component,    /3',\t)      ,  originating from the retina,  and a 

variable component,    7/ S)     >  comin.g from those A-units which were active at 

t ~T . 

19.2     The Phase Space of the A-units 

Let us suppose that the environment of a cross-coupled perceptron 

consists of exactly //    admissible stimulus sequences.    In order to obtain a 

G-matrix for this perceptron,  and predict its performance,  it is necessary to 

know how its A-units will respond to each of the admissible sequences,  inclu- 

ding the response to the  1st,  2nd, . . . . ,    m       member of the sequence.    We 

will use the notation    u- (5;   i      to denote the output signal of the unit   a; 

following the   "^        stimulus of the sequence    «/•     ,    If the sequence Ä'•    begins 

at    t- i1?   ,  the stimulus     J; ,      will occur at   t-7   ,  and the input to the unit 
J,' 

a-    at time   t    is given by 

(Jo) 
ry ■ 

where   /j- 

the occurrence of 

/Jl +■   /i. 
(■'v) it) (19.2) 

is the sum of the signals received from the retina following 

;•       and     /'.        it)     is the sum of the signals received 

from other A-units at time   t    , given that  J-     began at   t - PT •    Knowing 

ry 
M ,  we can readily determine     n. (S;   )    ,   since 

1 J y) 

o 
1 if   ^ - G 

L 
0 otherwise 
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(J ') 
In the percepti'ons to be considered hei*e,    /i- is a constant, while 

(f)   is a time-dependent variable (as in the four-layer perceptrons T- -'p- 

of Chapter 16). 

It will be convenient to represent each abbreviated sequence 

consisting of the first   -'    members of any of the original n    sequences by 

a full sequence of length    i-'    .    If ni   is the maximum sequence length, this 

results in a set of at most   rn n    sequences.    Let //   be the number of such 

sequences, and let them be numbered from   ^/    through     e<lN   .    Then in 

terms of these new sequences,  We can obtain all of the    a- ('JJ ,) -   2-^ {<Ä&]       , 

where   ^    is the sequence corresponding to the first   )->   members of the 

original sequence      ./■      .    The notation     a-(JiJ  means the signal from a; 

following the last niember of sequence    Je     .    Similarly, we have 

rv-   ' -    '■      i-   ■■'■      'ti . 

All of the information necessary to predict the response of an 

A-unit    /'■    at time   *    can now be obtained from the   -''V   numbers 

'■    ,   : ■    ,...,/.?.',    / •       /.      /('       ■        i.';, ;•   ;,/ .    Thus the 

set of ail possible signals (divided into retinal and internal components) 

which might affect the activity of    r/;    at time     t       ,  can be represented 

by a vector of /'A/   components, which depends on    t     .    The space of all 

such vectors can be mapped into a Euclidean      .-■ V   -space,  where each 

point represents a possible A-unit,   or set of A-units.  of the perceptron. 

This will be called the phase space of the A-units,    For a large,  or infinite 

perceptron,  there is likely to be some concentration of A-units at each 

point in this phase space at time .    Thus,  at time ,   there is a 

probability density associated with each point in the phase space.    The state of 

the entire association system at a given time,   '   ,  can then be represented by 

a probability density distribution over the phase space of the A-units, 
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For convenience of notation, parentheses for superscripts of 

oc  , /3   ,   and   f   components will hereafter be omitted, with the understanding 

that the symbol /j.     means the /3 -component for unit    a;     from stimulus 

sequence   Jr   .    If exponents are required,  they will be expressed by the 

notation   (ß.  )     , which would be  /i-     to the 4       power.    It should be 

remembered that with the symbols  <x   ,   /3   ,  and   ^ ,  subscripts always 

denote A-units, whereas superscripts indicate stimulus sequences. 

19.3     The Assumption of Finite Sequences 

In analyzing the performance of a perceptron,   it will generally 

be our objective to predict the condition of the association system in the limit, 

as the length of the preconditioning sequence becomes infinite.    This means 

that there are generally an infinite number of possible sequences in the 

environment,   and the phase space of the A-units is properly represented by 

an infinite dimensional Euclidean space.    To justify later assumptions,  how- 

ever,   it is necessary to assume that the preconditioning sequence is actually 

composed of a mixture of a finite number of subsequences of finite length. 

While this assumption will be carried through the analysis of the following 

section,   it will be shown later that it is possible to drop the assumption in 

the case of periodic preconditioning sequences. 

Justification for an assumption of finite sequences can be found 

in one of two ways.    First,  v/e may assume that only the  /"   stimuli prior to 

time   t    can have any appreciable effect on the activity state of the A-system 

at time   t    .    In this case,  we need consider only sequences of length   m      as 
v 

possible determinants of    d ■ (t)   .    Note that this assumption applies only to 
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the activity state of the system,  and not to the values of the connections or 

memory state of the network, which clearly depends on all prior time.    Such 

an assumption appears to be supported by the analyses of the last chapter, 

which show that for suitable parameters,  only the most recent stimuli affect 

the activity state of the system at time   t   , progressively more remote 

stimuli making a progressively smaller contribution,  which soon becomes 

negligible.    Specifically,   it has been shown that with suitable parameters,   it 

makes no significant difference to assume   that the sequence began at time 

t - mv, rather than at some earlier time,  which is equivalent to the assumption 

of a finite universe of sequences of length   m   ,  in place of the universe of 

infinite sequences. 

An alternative approach,   for which a rigorous analysis rather than 

a mere approximation is possible,   is the following:   Assume that the activity 

of the A-units is "quenched" after every />/   stimuli; i.e.,  the perceptron is 

shown only sequences of length    '•'    ,   and at the end of each such sequence,  its 

activity is  interrupted by setting all      .'•  - 0   ,   so that the next sequence begins 

with the perceptron in a "silent" state,  as  required.    Let us analyze the 

performance of such a perceptron (for which the dimension of the phase space 

is finite) and then let   TI   approach infinity.     The limiting behavior of such a 

system should correspond to a perceptron in which the sequences are uninter- 

rupted.    For specificity,   and to permit a rigorous analysis,   this type of 

inter rupted-activity system will be assumed in the following analysis,   although 

it will be shown later that the results can be extended to a more general case. 

In keeping with the above assumption,  it will be assumed that 

there are a total of /V    possible subsequences which comprise the precondi- 

tioning sequence of the perceptron,   symbolized    J. ,   Jy , ' N The 

phase space therefore has dimension    2N     ,  and it is assumed that no stimulus 
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sequence (i.e., no subsequence) has more than  m    members (where   m    is 

finite).    By selecting both   f)    and    ß    sufficiently small,  it can be guaranteed 

that the change in the memory state of the perceptron during a single sequence 

of length   m   is negligible,  or infinitesimal,   so that the output signal  a^ {J&) 

depends only on   cA    and the memory state of the system at the start of the 

sequence, and does not depend on changes in the memory state which occurred 

during the sequence   e/^     itself. 

19.4    General Analysis::   The Time-Dependent Equation 

Given the probability density over the phase space of the A-units 

at time   t    ,  it is possible to obtain the Q-functions     Q-     ; ,  = Q-;     for any 

pair of sequences (of length ,u   and  -J   ,   respectively) by integrating the 

probability density over the region of phase space for which   CL  [JlJ o  [djJ - / 

That is,  we integrate over the region for which     (X* ^   P      and       ex ^  ^   0 

The subscript denoting particular A-units is suppressed here,   since we are 

concerned only with the density of such A-units,  and not with their individual 

identity. 

The object    of a general analysis of the evolution of the association 

system in such a perceptron is to describe the "flow" of A-units in thi s 

phase space,  so as to obtain the density function at time   f   as a function of 

the initial distribution and the stimulus sequences to which the perceptron 

has been exposed.    The system can be represented by a sort of hydrodynamic 

model; the probability density in the phase space is treated as a sort of 

compressible fluid,   in which convection phenomena    occur, but in which 

there is no diffusion,   since it will be seen that the A-units which initially 

occupy a given point in phase space will always move together,  in unison. 
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rather than following unique paths.    Throughout this analysis, it will be assumed 

that we are dealing with finite stimulus sequences (as described in Section 1 9. 3), 

and that the rate of flow (the length of the velocity vector) for all points in 

the phase space is infinitesimal over the duration of the longest sequence. 

The history of the perceptron,  then,  consists of an endless sequence of such 

finite sub-sequences,  so that at a given point in time,  the perceptron can be 

assumed to be exposed to a mixture of all possible sequences,  each weighted 

according to its probability.    The velocity vector for a given point in phase- 

space at time   t   then depends on the combination of velocity components 

contributed by each of the stimulus sequences to which the perceptron is 

exposed. 

We have seen that each A-unit,   O-i     ,  is characterized by a set 
/ 2 N 

of coordinates in phase space at time    t   , namely   (/3- , /i;  , . . ■ . /3-  , 

J'■.'■,..., ,';   ).    For the given A-unit,  the     j  -components are fixed for all 

time,  while the    ?   -components depend on   t    .    Thus,  to follow the history 

of this A-unit (or point in phase space) we ma-öl determine the velocity 

vector 

point ! 

n s as a function of time for the 

We consider first the effect of the reinforcement which occurs 

for the last stimulus in   a sequence upon the component To be 

specific,   suppose sequence   J;.      occurs at time    /    , and    Jr      occurs at 

/.  i- At     ,   and assume the transmission time   T << At .    Then the 

(infinitesimal) change in    f.       due to having reinforced the last stimulus in 

sequence    J     at time   t    v'.U be denoted by    A    (/5; ,   cf; (t))  ■    It is a 

function of the location of the point in phase space whose motion is being 
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traced,  at time   t    .    Note that although only the effect due to the last 

stimulus of the sequence J-   is considered, all abbreviated sequences are 

present among the  N   possible sequences,   so that if we know the effect of 

reinforcing the terminal stimulus in each case, the effect of all possible 

reinforcements can be calculated. 

A notation for the sequence corresponding to    <J0      with its 

terminal member omitted (i.e., the sequence   ^/'     abbreviated by one 

stimulus) will be required.    We shall use the symbol    J '    to denote such 

an abbreviated sequence.    The change in the memory state due to the last 

stimulus of sequence  J     is then attributable to the modification of the values 

of those connections which originate in the set of A.-units which respond to 

»J  >    and which terminate in the set of A-units responding to   Jf      .    From 

equation (19. 1) we see that each such connection gains a quantity of value 

)/ -  O-Xi     At     ,  while all other connections lose a quantity    -n-<-/\t 

Figure 52 illustrates the relationship of the A-unit sets which 

are involved in this transaction,  and shows the increments to    '/fr     which 

result from the occurrence of  ^     at time    t     .    The sets responding at 

time   t    and   /. -■ r   are designated     •'     (t)   and    A   ''t)    ,   respectively.    The 

set   ■'■,.■ ,  ' J- .-' ■ -'  is the set responding to the preterminal stimulus of 

sequence   «/,,'.    The measures of these sets are    Qn{tJ>  On'  *)   and  ^r'(t+At 

Since it was assumed that all A-units are interconnected,  the measure of 

the set of connections   for which   .^i- ('■'-'fi/'At is    Qni(t)      for 

a- ^ A n (t)       ,  and the measure of the set of connections for which 

Ais- - - (f'-i/At    is      /- Q  '    .    If     a;   £   A   (t)    ,  all of its input connections 

lose    - (firAt       .    But we are particularly interested in the change in   /I   . 
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A-SETS RESPONDING TO 
ABBREVIATED SEQUENCES 

A-SETS RESPONDING TO 
FULL SEQUENCES 

Figure 52      EFFECT OF REINFORCING SEQUENCE   J    UPON 1fr 

which is the sum of the changes of value for all connections originating in 

the set     ~r' i '   •■ .' T.)     f and terminating on the arbitrary unit    a:     , whose 

coordinates are .,• ,   J- j      .     These connections can be divided into 

three subsets: 

V"' 

(1) Connections which originate from the intersection 

>■   t+U.)       and terminate in   A   (t)    change by (yf - (fv) At 
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(Z) Connections which originate from the set 

Ar'(t + At) -  [A  ,(t) H Ar'(t + At)j       and terminate in   A   (t)   change by 

- (f-ir A t 

(3) All connections which originate from the set   Ar'(t-i-At) 

and terminate outside of   A   (t)      change by   - d'-ir At 

Now let us consider the difference equation 

A^i/l;, 'fLit)) - r'it+At) - r-'it) (19.3) 

for the A-unit   a;    whose location at time   t.    is    ('/5;,  fi (t))       .    Sine« 

r L uji ,  we can make the substitutions: 

a-(A. 

a ■ iA-'it) 
J ' 

?\r(nAt)-     21   ^.^^^   -    21   '::('■!<      21 
n;£Ar.(t.fAtj yeAr'(tl aj6Ar'(t; 

+        21      tr^i't+At) ' 21    Vj'Jt + At) 
a;c{Ar'(ttAt)-Ar'(t)}       ije\Ar'U}-Ar'(tfAt)] 

Making these substitutions yields: 

Azrj; 

7       '      ' 
(19.4) 

where       AAr'   =  ^Ar'(ti-Af.}  - Af.'(t)j i-fAr'(t) -Ar'(t+At)j     ,  that is,  the 

set of A-units added or subtracted from the set   Ar'(t)     during the period 

At      .    The first sum represents the change of value of the set of connections 
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which originate in   4r'{t)     and are reinforced at time  t   due to sequence 

s/      .    This change in value is readily obtained from the components listed 

above,  and is given by 

r 

2>^.(ti-< 

\N 1   a 
a;€Ar'(t) 

4t   for    aieA^it) 

for     Oj^.^j 

which may be combined in the form 

a-€Ar'it.) 

where ,  as before , 

it) o'.öh ■/:'[-}) -of.r'tj l\t (19.5) 

/      for oi ^ i-    ,  and C   otherwise,  and   $"•  (t. r^ 

has been substituted for       7       ->r--\t 

The second sum in (19.4) represents the value of the set of 

connections which originate from the incremental set,   /\Ar'      .    For this 

sum,   it will be convenient to substitute the svmbol       .4.,   '-''•   >' .    Thus, 

(19.4) becomes 

- v,,..:-'V,..,v-) 
if f 

L\t  + A., f-   it. (■;   ' 

(19-6) 

where the subscript   ■'    indicates that the subscripted variable is a component 

of the vector   '/.i,  '"/    for the unit    a-    . 
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which originate in    ^r'it'      and are reinforced at time   t    due to sequence 

«/_      ,    This change in value is readily obtained from the components listed 

above,  and is given by 

aj€Ar'(t) 

which may be combined in the form 

a-eAr'{ t] 

_ 

\Na>? '\'r (t) - 
*>\ vjl it) 

a S^r' it) 

- iA t L 'Ku it) 
a ;iAr' it) 

At   for    ai€AJt) 

for     ai$Ajt) 

,o-> r- [ö.,. ft:''it i 1st (19.5) 

where,  as before,    :J 'v ,l = /      for oi =: G    ,  and    '   otherwise,  and   jT-  (t) 

has been substituted for      /       '''",7^ 

The second sum in (19.4) represents the value of the set of 

connections which originate from the incremental set,    AAr'      .    For this 

sum,   it will be convenient to substitute the symbol       A     '■/'■   't' .    Thus, 

(19.4) becomes 

./ •, ;.   /       *- 4. t" :t 

(19.6) 

where the subscript   .'    indicates that the subscripted variable is a component 

of the vector   r \ '"/    for the unit    a-    . 
1   - i 
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Now suppose each possible "conditioning sequence",    J       , 

occurs with a probability   P     ,  and that a statistically uniform mixture of 

all such sequences occurs at time    t   •    This supposition is justified by 

our assumption that the length of each sequence is infinitesimal,   relative 

to the rate of change in the memory-state of the perceptron.    In that case, 

we obtain from (19.6) 

Z^ TA^w; = 2L^4f/^ Tiit)) 

N^/MV^P Q%.r.(ij (p^jhr^t)) 

(19.7) 

-(fAr. rf{t) + &*rf{t) 

where  £\  '£■  (t)   -    value    added or subtracted due to connections originating 

from the combined incremental set due to all    J.      .      If we now divide both 
Q 
f 

sides by zjt   and allow   At     to approach zero,  we obtain the differential 

equation for the velocity component   >/'  it)     for the unit    a;     ; 

where 

V „"/'/.' 

a 

*,'/ IL^ !V^rjc /37r r'/'a))-,<■:}'-/)f 

Ar. At 

(19.8) 

Note that the quantity    A,   /j■ 't ■■    is zero except at those times 

that new A-units are added to the set     ^ r '   i >     ,   since it represents the sum 

of the values in the incremental set    AAr'      .    Again,  we note that for 

sequences of length 2 or less,  the set    Ar'(t)      never changes,   since new 

units can be added to the set only if   <ft (&'    )     changes from 0 to 1,  and for 

*   Strictly speaking,  this is either zero,   or fails to exist.    However,  this 
expression will be restated below in terms of delta-functions (see 
Equation  19.9). 
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sequences of length 2,    (f) {<y-r ) ~   (p{ß    >   ,  which is constant.    Similarly, 

for sequences of length Z or less,   Q ir-(t)     is constant.    Consequently,  for 

these conditions,  the equation (19.8) is equivalent to (16.11),   except that 

Q ,   ,    takes the place of   Q ir   ■    In the general case, however, d  /]. (t)/dt 

is not always zero; at those times that new A-units are added to the set 

--,,-      ,  an unknown increment to the value of   z']'     occurs,  which depends upon 

the values of the connections from those units whose   o< r     has just become 

equal to   ,9    ■    This quantity is exceedingly difficult to calculate,  as it depends 

upon detailed correlation of the       'J<  -vectors for the new transmitting units and 

the       ;  -vector for the receiving unit,    a;      .    Fortunately,   it can be shown that 

the steady-state solution to (19.8) does not depend upon the actual value of the 

last term,  even though it affects the rate of convergence to the staady-state 

condition. 

In the general case,  the solution of (19.8) is discontinuous,  unlike 

the solution of (16. 11), which was always continuous despite its discontinuous 

derivative.    From the above discussion    as to the nature of    /;    }'• (tj       ,  it 

becomes clear that (19-8) can be rewritten in terms of Dirac delta-functions: 

—^—^ if,   =   N   // 
dt a L ho S- ^ 0[^+ C^-^'^ i-J^d-t-u .*?:%'}■   (19_ 9) 

9 l 

where   f,      is any "ime at which one or more of the  0 [W-: I    changes from 0 

to     1      or vice versa. 
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19.5    Steady State Solutions 

Consider the equilibrium equation corresponding to (19.9).    If 

an equilibrium exists at time   t   ,  then no   0(/y)    can change its value at 

time   t    ,  and thus the last term of (19.9) is zero at this time.    Thus,  a 

steady state solution must correspond to a solution to the equation 

' dt 

which gives 

"a '/ £> ^,,.,'f) 0(V/^ r^cc)) -cj r-rM = o (19.10) 

rfa fosl  (p(/3h   ■'■)''oo)J 

/ 

or, substituting for 

(19.11) 

/•   ,>:: Ik* / /'/V.j 
//' 

(19.12) 

Note that the terminal vector    (, i, ^   )      of an A-unit (in a given system) 

depends only on the starting vector    f/3, J0)     so that we can also write in 

place of (19. 12), 

/• foo. 
II 

rC t.—i 
9 

c
7 o^.-k $?{<*)) 2L^u^^J^^'^ f'^H^* t'^) 

(j,rj 

(19.13) 

where   /-■'/;, /0      is the probability that an A-unit is initially situated at the 

point   (/j, 'fo)   in the phase space.    Thus,  in this form,  the steady-state, 

solution requires no knowledge of the individual A-units and their connections, 
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but depends only on the initial point-mass distribution over the phase space. 

The corresponding time-dependent differential equation represents the 

velocity vector for an element of probability-mass in this phase space. 

Now a possible solution of (19. 13) can be found by the following 

iterative procedure:   Assume that initially,   the values of all A-A connections 

are zero,  so that    'fQ - 0      for all units,  and (19. 13) depends only on the 

/3 -vectors.    Begin by inserting     T0 = 0      for all    /'a   on the right-hand side 

of (19.13);  and compute the resulting approximation for     /]• (/?, "/oo)       > for 

all possible       - -vectors (or for all units,   a-    ).    The first approximation for 

/'^     is then inserted on the right-hand side,   to obtain the next approximation, 

etc.    If we let     7,   ,    represent the result of the    -j       iteration, we have 

r N   r?   v 
T  '-L-L     7 
'if}*') 0 

2 I ' ■ -J 

(19.14) 

We will now attempt to show that this iteration must converge in a finite 

number of steps to the solution of the differential equation (19.9), for 

equivalent initial conditions. 

We first show that the iteration process itself converges in less 

than    V.,//      steps (where   N -   the number of stimulus sequences,  and   Nß ■ 

the number of    ;'   -vectors for which    r /• '  >   9    )   .    On the first iteration ,   it 

is clear that the   T  's can only increase,   since they start out from zero,  and 

are set equal to a non-negative quantity.    But introducing this quantity for the 

next iteration can only increase the  0 's   from zero to 1; it cannot cause any § 

to decrease.    Consequently,   on the next iteration, the     ^  's   can again only 
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increase, and similarly for each subsequent iteration.    Since   'f     is non- 

decreasing,    §iß +  /   /   is non-decreasing,  for all  r    .    But    ^"r can 

change only when some   0    changes,   and each   $   can change at most once 

(from 0 to 1).    But there are at most    N^N   ^-functions,    fyi^i ) ■    If all of 

these are initially zero,  the system is already at a solution, and no further 

changes will occur.    Therefore, at most    n < NLM    (^-functions can change, 

and the process must converge in less than    N  N     iterations. 

r' 
Let the end result of this process be     'f.        for any unit    d^     .    We 

r* 
now wish to prove that     f. is a solution of the differential equation (19.9). 

To begin with, we prove that    •/'       is a minimal solution of the 

equilibrium equation (19. 13). 

*J - 
Let   'f,       be any solution of the equilibrium equation.    Then for 

r ,    ~r . 
the iteration process,  we have     /.fO^    -   f. for all   r    and all    p- 

Since the right-hand side of (19. 13) is a monotone non-decreasing function 
r 

of    "f.      ,  we have 

id) 
3   L /?,• 
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Similarly,     't       ^   Y , and heue«    X     £ /     .    Hence   /.      is 
i(n) fi < i l 

minimal 

Now consider the differential equation,  (19.9)!.   As long as no 

changes value,  all ö   functions are zero,  and (19.9) simplifies to 

j 

dt -   Na 1 Z Pf %', V Hß*+ S«)) - $ rf (t) ft 

=N^ L p% ^ML^i)^*/10^^'^'6 <(i) 
/3- 

wh ere    oc^ {i) -   ß.   +   ■/• (t) •    Thus,  while the ip 's are constant,  the 
f } 

differential equation is of the form 
ay 
dt =   A7 - 6V > where 

^ = A/ 

Thus,  during this time, there is an exponential approach to the limit   M/ö1    .« 

analogous to the solution discussed in Chapter 16 (pg.    355 ),     Now suppose 
n 

at time    t        one of the    <p 'fi   changes.    At this point,  the last term in 

(19.9) is infinite,  and the solution is discontinuous,  since the value of the 

connections from the incremental set   AAn/    has just been added to   Y. 

Consequently,   the solution takes the form shown in Figure 53. 
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Figure 53 FORM OF SOLUTION FOR CROSS-COUPLED o^-SYSTEMS 

where 

^ - M L k *(Jit^ Z p^) ^ k1'<>) tH'tO) 

**(K)=rt + L   6 3 

The middle term of this expression represents the value of   -/.       at time 
a 

ti   - ät    , just prior to the discontinuity.    The magnitude of Zl* /. 

remains unknown, but we know that it must be non-negative,  since it 

consists of values of A-unit interconnections which began at zero and can 

only have changed in a positive direction.    As in the case of the iterative 
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process, there are at most    N* N    times,   f       .   at which these discontinuities 
M *      >   JljLzL can occur,  and each new limit —=—   > ""^^       •    Moreover, the solution remains 

monotone increasing,   despite its discontinuities.    This last conclusion can be 

seen from the fact that the increment   A*V.r     comes from the values of a set 

of connections whose origins are now active for one more stimulus sequence 

than previously.    Since no previously active A-units have become inactive {all 

d)    's being monotone increasing) the values of these connections will not 

diminish,  and will,  in fact,  tend to increase.    Thus the new limit for    /.      can 

be no lower than its present value. 

New consider the first step of the iterative process.    This yields 

for      / the value of the first asumptotic level,   M0/$     , for all    Y.r     in the 

differential equation.    This means that if any    ^    changes in the differential 

equation prior to reach i.;^ the level    M-Zj   ,  this    0    must also change in the 

first step of the iterative process.    (If no   ^   changes prior to the level   M0/(S 

then no   (f)   will ever change,  and we are at a solution for both equations').    But 

the new level,     M./d   <   ^s a positive monotonic function of the    ri 's,  and the 
r 

next step of the  iteration process,     7^ ,   corresponds to the level   [^    /§ 

which would have resulted had every  /    actually attained its asymptotic level 

\An/s     ■    Thus       ^-ß)     -     '^  Ü-i )    for    every   r    .    But from the same argu- 0 

me nt,   it follows that       /.^     ^     '/.   (t *)   ,  and in general,     ^j    >   ^7^) 

Consequently,        /. 

indeed identical . 

/. ,   and the solutions of the two equations are 

*    It is assumed that   M   is not identically equal to   y   ,   in which case the 
solutions might coincide only for     t = 00 

-440 ■ 



■miiiiiiwiw»mn&*e*sr titrgt 

19.6    Analysis of Finite-See   -^nce .    ■'ir.jnnientL. 

The term "finite-sequence envi., ^nmenl" w:M be u.sed for any 

system in which the stream of activity L-; periodicaii/ interr'1.pied,  e-ith«r by 

actively setting all   A.    to zero,  or by introducing sequences of siuJl Stimuli of 

sufficient duration to allow all A-unit activity to die out of its o vn ac'.,...uc1..    Thy   :/■ 

ter ■ possibility exists only for systems in which the internal connection vu'^es 

are sufficiently small,  or contain a sufficient inlubitory component,  to guor^nt^c 

that activy will,   in fact,  die away.    Some idea of lie conditions for this to occu • 

may be gained from Section 18. Z,  and Figure 47.      For convenience (and because 

it can always be realized,  regardless of choice 0.1 ;>? rainete 1-3) the interrupted 

activity model will be considered here.    In either ca.e,  unite-sequence 

environments are directly analyzeable   by the method c    Section  19.5.    Several 

examples are given here,  based on the same stimulus environment as in 

Experiment 1Z.    It will be recalled that this consisted of four stimuli,  with 

areas    (^ = , 2    ,  and intersections    C       and      C?4=,/   >  all other intersections 

being zero.   As in the example in Chapter 17,  we will consider a binomial 

perceptron with parameters   ^ = 3,^=0    ,  and     6 - Z ,  for all A-units . 

EXAMPLE 1:      Suppose the preconditioning sequence consists of an endless 

repetition of the subsequence:     SS  S 5    / S3   5   5   / 5. S  S  5   /.. . .    , where 

the symbol / is used  to indicate points at which activity is interrupted.    Then 

for this environment there are actually four possible sequences to be considered 

in the a.i.-ilysis,  namely 

J3 -(S,5,S3) 
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\ 

\ 

-^•-.h occurring with probability     P ~.2S     ■    The   ß -vectors for these tour 
V f 

^ffq;'^-,,;.;^. correspond to the signals received from the terminal stimulus in 
\\ 

c^cn oe.q\.Mv..-.cej and are listed in Table 9, together with their probabilities. 

,v    •'. e-..t.u;. :•; i'-^^rilisting oniy of I's and O's represent A.-units which will alway? 
■v. 

The initial ü-T^trix for this experiment is precisely the same 

as that found for the correüpondinf^ terminal stimuli in Chapter 17, namely, 

/. 104>\^00 .034 ..000 
/ .000 . l^y,000 .034 
i . 034 .000 ^\!!24 . 000 
\.000   .034   . OoVv   104 

r 
V U is jound that no change occurs in this matrix for    ^„rj/S  ^ ll~J,(o   ■    Let-w.-? 

•"her-v .''.Te consider the case in which      A/   0 / 0 =  t&0   ■    In the open-loop system 

of Cha'citer  '7,   the  sequence of Experiment  12 yielded the terminal Q-matrix: 

,''.210 .176 .034 .072 
'   . 176 .210 .072 .034 
\   . 034 .072 .210 . 176 
\.072 .034 .176 .210 

If we now compute the terminal matrix foi  a iVi'.v cross-coupled system,  from 

Equation (19- 14),  we obtain: 

0, 

104 .000 .034 .01') \ 

.000 . 152 ,000 . 13G \ 

.034 .000 . 104 .000 I 

000 .130 .000 .152/ 
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TABLE 9 

/?-VECTORS FOR STIMULI OF EXPERIMENT 12 

(Parameters of  A-units:    X = 2,  (/ = 0) 

Piß) /3 P(/3} 

>V. 

0000 .064 

0001 .048 

0010 .048 

0100 .048 

1000 .048 

0011 .024 

0110 .02Ü 
| ;Vi! . w 

1 ,00 .024 

010, .072 

i o; o .■172 

OMI .03^ 

(Oil .030 

1 10! .030 

i i 10 .030 

IIII .036 

0003 .001 

0030 .001 

0300 .001 

3000 .00! 

0303 .001 

3030 .001 

0002 .012 

0020 .012 

200C--.- 
012 

202 3 .0I8X 
020 i .027 

oic; .027 

201J .027 

(oao 027 
02(,3 .003 

03 0? .003 

20:,iO .003 
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3020 .003 
0012 .003 
0021 .003 
0120 .003 
0210 .003 
12 CO .003 
? ! 00 ■ .0C3 
1002 .003 
2001 .003 
0103 .003 
0301 .003 
1030 .003 
3010 .003 
0212 .003 
2120 .003 
0121 .003 
1210 .003 
2021 .003 
1202 .003 
1012 .003 
2101 .003 
1212 .003 
2121 .003 
1112 .006 
1 121 .006 
121 i .0*6 
;;i! ' . OOi 
0112 .006 
02 il .006 
1021 .006 
2011 .006 
1102 .006 
1201 .006 
1120 .006 
21 10 .006 
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The only change which occurs in this case is that the set  f\ 7 gains a larger 

intersection with the set    /\       .    There is no tendency here for the A-sets 

responding to adjacent pairs of stimuli to merge, as would be the case in a 

four-layer model,  or an open-loop cross-coupled network with zero transmission 

times.    This is shown even more strikingly in the following example, 

EXAMPLE 2:   For the same parameters as Example 1, let us extend the basic 

subsequence to 8 stimuli,  using as the preconditioning sequence; 

s, W; WA/WA WA/-• • • 
The sequences for this environment are now 

^ =ßj J5 =(3,5,5,3^) 

l- 6,5,) /. =(5,5,5,5,4^) 
4 = ß, 5,5j J1  - C, 5,. 5/ 52 83 S4 53} 

Each sequence occurs with probability    R,  -   A 25   .    The initial Q-matrix 

again depends only on the terminal stimuli,   and takes the form: 

. 104 . 000 . 104 .000 .034 .000 .034 .000 

. 000 . 104 . 000 . 104 ,000 ,034 .000 ,034 

. 104 . 000 . 104 ,000 .034 ,000 ,034 ,000 

.000 . 104 .000 . 104 .000 .034 .000 ,034 

.0 34 . 000 . 034 .000 . 104 .000 , 104 ,000 

. 000 . 0 34 . 000 .034 .000 , 104 ,000 . 104 

. 034 . 000 . 0 34 .000 . 104 ,000 , 104 .000 

. 000 . 0 34 .000 .0 34 . ÜUU , 104 ,000 , 104 
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For the. terminal matrix (again with    N   n/o = f^O   ) we now have 

/. 104 000 104 .000 . 104 .000 . 104 .000 

/ . 000. \ 74 000 . 174 ,000 . 174 .000 .174 

. 1 04 000 174 000 . 174 , 000 , 174 .000 

, 000 174 000 . 174 . 000 . 174 . 000 , 174 

. 104 000 174 .000 . 1 74 .000 . 174 , 000 

. Ü'iO 1 74 000 . 174 . OOC . 174 .000 . 174 

\  ,104 000 ,1.74 . 000 . 174 . 000 . 174 .000 

',.000 174 000 . 1 74 .000 . 174 . 000 . 174 

This corresponds to an oscillating condition,   in which each A-unit (after giving 

its original unaltered response to the first stimulus of the sequence) responds 

either     1, 0, 1, 0,   1, 0, 1 or 0, 1, 0, 1, 0, 1 , 0   to the remaining seven stimuli of 

the sequence. 

In contrast to previous models,   there appears to be a failure to 

associate  successive stimuli,  and an association of every alternate Stimulus 

instead.    Actually,   appearances are misleading here; a strong association of 

successive stimuli is masked by the appearance of these stimuli in the test 

sequence  (which is identical,   in this experiment,  with the preconditioning 

sequence).    In other words,  the perceptron "predicts" the A-set for the next 

stimulus at precisely the time that this stimulus actually appears,  and conse- 

quently the effect of the prediction is not detected.    The following experiment 

reveals these "hidden associations" in a striking fashion. 

EXPERIMENT 13: Using the same four stimuli as in Experiment 1Z, the 

perceptron is shown the preconditioning sequence S/;S2, 5,, 5^ / 

5, j   5Z j   5i )  54/ It is then tested with the sequence 

$! ,  0,0,0..-,  and the Q-matrix for all subsequences (from 

both preconditioning and test sequences) is obtained. 
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If this experiment is performed with       Ng, r] A =100   >  and all 

other parameters as before,  it is found that on presenting the test sequence 

(   S, ; 0 j Oj  • • •  ) the perceptron recapitulates the identical sequence of active 

sets     An  ^2 ; A3 , A4    which would have been activated had the preconditioning 

sequence occurred in full.    After     A .    , the system lapses into inactivity,   since 

the preconditioning sequence is interrupted at this poin. 

19.7       Analysis of Continuous Periodic Environments 

Up to this point,   it has been assumed that the activity of the 

perceptron is interrupted at least once every 7^   stimuli.    We now turn to the 

case of a continuous,  unbroken sequence of stimuli,   where the activity of the 

association system is allowed to run on without interruption.    To begin with, 

the case of a periodic stimulus sequence will be considered, where the pre- 

conditioning sequence takes the form: 

5, 5;, 53 ....  S1nSlSzS3 . . .   S^ . , . . 

the period of the sequence being    TTI     .    Such an environment can be considered 

as being composed of a set of   m    subsequences,  each of length    m + I    . 

Specifically,  we have the subsequences: 

Jr- (S,S2S3... S^SJ 

Jz- (5,5,... 5^5,) 

^ (Sm 5,5,3, . 5   ^ v 

Tills "hallucinatory recall" effect,  m which the perceptron, cued by the 
initial stimulus of the sequence,   reproduces the identical sequence of internal 
states which would have been activated had the stimuli continued in their usual 
order,  ;ö suggestive of some of Peufield's observations on hallucinatory recall 
of stereotyped sequences induced by electrical stimulation of brain foci in 
epileptics (Ref.  68). 
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Each sequence occurs with probability   f/w?   ,  and   each sequence begins and 

ends with the same stimulus. 

Now since the preconditioning sequence is assumed to extend 

indefinitely into the past,  at any arbitrary time   t   ,  the antecedent sequence for 

the first and last stimulus of any (z^y-/j-subsequence is Lhe same; consequently 

/.   -   /.'   for all   t    .    But this means that there are,   in fact,  only a finite 

number    (TT?)       of     / 's for any A-unit,    d^   ,   so that the steady-state value of 

"/•       can be computed exactly by equation (19. 14), where the sequence    e/r,       is 

interpreted to mean the sequence 

above. 
r-t 

in the set of  77?  subsequences specified 

Several special cases are cf particular interest.    Consider first 

the case of a steadily maintained stimulus,    (S, 5, 5, . . • .}    .    Substituting in 

(19. 14), we have 

A 

and it is readily seen that the set of active units can never change from the 

initial set,   since this equation yields zero unless      $>(/3. ) -0     for the first 

iteration.    Thus for a steadv stimulus,  we have 

U Li 
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Next, consider the alternating sequence    5/ S^ 5,5^     In this 

case, (19. 14) takes the form 

t if it i) 
N. al 
Z d' my ^(P) Lp(%) m+K-v) m+^ :b) 

f ^ %;) L pM ^J + fj(j)) $& K'ft) 
P: 

In this case, if either    $($[)      or     'Piß; ) - !>  ^^ w^^ generally be non-zero, 

and the system v/ill tend to form a union of the sets initially responding to  5/ 

and    >_,       (provided     .-T,,   0-)   4=  0       ). 

Finally,   consider the stimulus sequence of Experiment 12, 

consisting of a period of alternation of  5,   and    5,    followed by an alternation 

of     J j      and    i_.      ,  as described in Chapter 17.    Rather than compute the 

entire 20 by 20 Q-matrix for Experiment 12, we present here a "miniaturized 

version" of this experiment, based upon the eight-stimulus sequence 

employed in Example 2 of the preceding section.    For the continuous environ- 

ment, the eight sequences ,vill be: 
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J2 

S, S, S. 5, S3 54 53 S, 5,)     J5  - {S3 S4 S3 54 5, Sz 5, S, S 

-. 5/ 5. 53 S4 ^3 5,-^J     ^ 

(5,5, S, S, 5^,5,5^5,)     /, 

(-Cj7   '■'.,   '•'A   -'3  J4 ijl   'v  ''I '^)       ^6 

It    ccccrc    C^^i 

J 3 J4  J,  -^ J, jy ^-i _)4 JJ / 1 J3 -"4  J/  -2 -I 

(c     C     C      C     C     ? "    I 

J       , and   Q7a    without 

It ia found that in this experiment,  there is no choice of para 

meters which will yield an increase in    (V,-,    ,     Q ^ 

producing a corresponding increase in the set of A-units responding jointly to 

all stimulus sequences.     It can also be shown that no matter how far the 

period of the preconditioning sequence is extended (by increasing the duration 

of    St S3   alternation and also increasing the duration of     ■ , S4   alternation) 

the system will never be able to selectively combine the sets     [''•. , ^ ■, )       and 

(*3, Aaj       as in previous models.    There is,  nonetheless,  a "predictive" effect 

which would be revealed if the stimuli  were suddenly   cut off,  as in Experi- 

ment 13 . 

From this example (and those of the preceding section) it is 

clear that the condition for selective merging of A-sets for temporally 

adjacent stimuli is not as easily satisfied as in the four-layer system,  or 

open-loop systems with zero transmission time.    Experimeni  14,   however, 

illustrates a simple modification of the preconditioning sequence by which 

such a merger can be obtained. 
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EXPERIMENT 14:    The same four stimuli are employed as in Experi- 

ments 12 and 13.    The preconditioning sequence, however, takes 

the f orm;   S/S/ S£ S2 5,5, S£ 5Z 5, Sj 53 53 5+ S^ S3 5i S^ S4 S3 Sj    ; 

repeated ad infinitum.    The terminal Q-matrix is obtained as 

before, for the twenty possible sequences of duration 21. 

In this case,  it is found that there will be a tendency for the 

sets    /\l     and    /\       to merge,   and for the sets   A3   and   A+   to merge in a 

separate "cell assembly".      What happens here is that the A-units responding 

to     5,    tend to be associated to the two most common successors of     5/      in 

the preconditioning sequence: namely,     S,    itself,  and    S     .    Similarly,   S 

is associated both to    5    and     S,   .    Thus,  when    S    occurs at the start of 

the sequence it tends to be followed (coincident with its  second appearance) 

by the combined set    (A, ) ^2) ■    When the first    5,   stimulus appears,   A0 

combines with the "predicted"     /\     set,   and the combined   (A, , An)       set 

tends to persist until the first occurrence of    5,     ,  at which   point it may 

combine with the new   A3   set,   or may become inactive,   depending upon the 

magnitude of    W    H/o      •    ln order to prevent the original set from persisting 

indefinitely (since each A-set tends to predict itself,  on the following c^cle) 

|\J   n/o      must be kept small enough so that the     7" -components alone are 

insufficient to activate A-units whose'    /5-components are zero.    In this 

case,  only part of the original A-sets will be activated in the absence of the 

actual stimulus,  but a bias will still remain in the direction of the desired 

combination of A-sets, 

*   The term "cell assembly" seems appropriate here,  as the sets which are 
formed in the terminal state of a cross-coupled perceptron bear a close 
resemblence in organization and functional properties to the cell assembly 
concept proposed by Hebb,   in Ref.   33. 
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In general,  if each stimulus which forms part of an "event"   can 

occur with equal probability after any other stimulus in the same event, then 

all of the A-sets responding to these stimuli will tend to merge,  at least in 

part,  and will be evoked by any stimulus of the event-class.    This is essen- 

tially the same effect which was found for four-layer perceptrons in 

Chapter 16. 

Actually,  with the     ß -vectors corresponding to those in Table 9, 

(for A-units with only three retinal connections) the system is not well 

behaved in Experiment  14 regardless of the choice of threshold and  N^ n /Q 

With larger numbers of connections and the possibility of higher thresholds, 

however,  it seems likely that the desired effect could be obtained with the 

preconditioning sequence given in the experiment.    A     ■/-perceptron (or a 

V -perceptron) would probably be somewhat better behaved in this experi- 

ment,  as it would tend to inhibit the sets of A-units characteristic of the 

first "event" once the second event began.    In the    oc-system,  there is a 

strong tendency for all A-sets to merge whenever    M   f\/§   is sufficient to 

permit the merger of the desired sets. 

19.8     Analysis of Continuous Aperiodic Environments 

If the preconditioning sequence is not periodic,   some sort of 

approximation procedure must be used,   if Equation (19. 14) is to be applied, 

Two possibilities suggest themselves:    First,   the aperiodic sequence (if it 

is statistically uniform throughout) can be approximated by a periodic 

sequence if the  period is sufficiently long to encompass all likely juxta- 

positions and short subsequences of stimuli.    Second,   we can consider all 
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subsequences of length   rri    ,  assigning a probability to each,  and analyze the 

system as though we were dealing with a finite-sequence environment,   con- 

sisting of the various    m -sequences in an appropriate frequency mixture.    In 

this case, the analysis should converge to a correct solution as  777  becomes 

large,  provided the original sequence is statistically uniform.    If the statistical 

composition of the original preconditioning sequence changes over time, 

neither of these methods are applicable,  and it seems likely that accurate 

solutions can then be obtained only by actually simulating the system and 

observing its behavior empirically. 

In the experiments which are of primary concern at this time,  it 

is always possible to assume a statistically uniform preconditioning sequence, 

so that one of the two methods described above can be applied.    In practice, 

this problem is likely to be soluble only for relatively small numbers of 

stimuli in the environment,  as the Q-matrices rapidly become too large to 

handle in currently available digital computers.    For long stimulus sequences 

and large numbers of stimuli,   digital simulation remains the: preferred techni- 

que,  and this offers tlie additional advantage of being applicable to small 

perceptrons or systems where the assumption of infinitesimal transmission 

time is   inadmissible.    In the preceding examples,  where theoretical values 

(rather than empirical values) of    Q..     were used,    U.    was implicitly taken 

to be very large 
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19.9      Cross-Coupled Perceptrons with Value-Conservation 

The two types of value-conserving systems,     7' -systems and 

P    -systems,  which were considered in section 16.6,  are also of interest 

in cross-coupled systems.    The     /; -system,  which tends to strengthen 

connections to the A-set responding to the most likely successor of the 

present stimulus,  while developing inhibitory connections to the A~units 

responding to unlikely successors, appears to be the more promising of the 

two.    In most environments,  however,  both systems will probably show 

similar phenomena,  provided transitions between stimuli can occur symmetri- 

cally in either direction.    The analysis of the     -/-system,  which is somewhat 

more familiar from previous work,  will be considered first. 

19.9.1   Analysis of     /-systems 

In the     / -perceptron,   the total value of the set of input connections 

to each A-unit is conserved.    Specifically,   (assuming the system to be fully 

coupled) the change in the value of   connection   /O . .     is given by 
' 0 

a. it ■7 At (19.15) 

Instead of (19.19),   this leads to the differential equation: 

A* ^f- = ^'? Z p?. k^)-■ yt)^r,{t)) 
(19.16) 

-*/ft)+2: ^t-t'jL'/ai) 
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Since     Q , ,   -    Q / Q may be negative,  the former proof of convergence 
f f      r r 

again breaks down,  since    /     need not be monotonic.    As in the case of the 

four-layer system,  the approach will be to try to obtain a time-dependent 

solution for the       / 's   .    The task is complicated in this case, however, by 

the presence of the unknown quantities     A   Y.  (t)     in the equation, which 

we have not hitherto had to evaluate. 

For the   '/  -system,  any equilibrium equation must be of the 

form: 

L YUfV) 
N0. 

8 

s 

V" Qf ^ 
(19-17) 

I pf ^(L^) [H') ti*p- mLp(A) f(*! 

V/here     A  = set of active A-unit sets,     A .     ,  for which the value of   ■/, (oo) 

is computed.     As long as all    (j)  's    remain fixed,   the      /'s   will tend 

exponentially towards such an equilibrium condition ,  as in previous models. 

Now consider the set of units whose       m 's   change value at time     t 

We wish to find the asymptotic value of the change in      7.       due to adding or 

.    This is 

equal to the difference between the asymptotic value of    T*.        based on the new 

set of active units    A   i K» )       and the asymptotic value based on the old set 

of active units      A   i ft.    ) "   Specifically,  from (19. IV),  and vi th an 

obvious extension of previous notation, 

subtracting this set of active units to the set     A  i     at time    t 

4 54 



^AV.K)^M/(A'(t;|-iM<4'(0; 

/ 

N. 

A 
fz^^f/az^^^fcij^^d-^^j; 

i 

-ki'Kh^XltLp^H-I'Ct 

(19.18) 

With this equation for the asymptotic value of the "incremental 

set" of A-units which become active (or inactive) at time     t.      ,  it becomes 

possible to compute the time-dependent solution in much the same mannei' as 

for the four-layer perceptron.    To begin with,  we obtain the functions ft 

(defined in equation  16. Z3)    for all A.    ,  and thus determine the next   ocj^ 

for which     (pfci)    will change.    This gives us the values of    <i f«*^ (t. )) 

which are required in equation (19.18).    We then compute the actual value 
y fl M fit* 

ot     A   Y-   (tj,) as follows.    The contribution,     A  /.        ,  being composed 

of a number of individual values,   /iT-j       ,  will approach its asymptotic value 

exponentially,  with the same time-constant as the      •/ ' s .    Thus,   if we can 

determine the value of the set of contributing connections at the start of the 

interval (time   t.   .        ) we can determine its value at time     t.     .    Now the 

value at    t. is simply the sum of the^f^    ) for all  j-   such that   (piot-: ) 

changes at    t     .    We will use the notation    /S0 Y.  (t.   )   for this starting 

value.    Specifically, 

 %_, .  
*   To avoid computing    ifjiit)   , an approximation is required,  e.g., 

(19.19f 
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Then, by analogy to (16.24), we have 

At:)=^mi. e-<-o (^Lia^ ,7,;j] 
(19.20) 

Thus,  the complete solution for    /.     at time     t       (including the discontinuity 

at the terminal end of the interval) is given by: 

5 f &*) - 

The value of the dicontinuity time,    t       >  is obtained as before,  from 

equation (1 6 . 25). 

This completes the analysis of the cross-coupled      ■/-system. 

While no cases have actually been computed at the present time,  it seems 

likely that this system will generally be better behaved than the      ot -system, 

particularly in such problems as Experiment 14,  where there is a tendency for 

all A-sets to merge under      cc-system dynamics. 

19.9.2       Analysis of     P-systems 

In the     p -system,  where the value is conserved over the set of 

output connections from each A-unit,   the change in the value of the connection 

/O..       is now 

A<v = *? (t~r) <^-TrL<V 1 At (19.22) 
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This leads to the differential equation and equilibrium equation,  respectively, 

dt 4 
9.23) 

^^lPt[^)-a}]Qf,r, (19.24) 

From these equations, a solution for      T'.  {tAJ     can clearly be computed 

along the same lines as in the previous section, for the      -/-system. 

Specifically,  the asymptotic value for the connections from the difference set 

takes the form: 

^y=^ipf[^ jt-iV   v^//_ 
(19.25) 

A    Yr it*)       an^     L\   7'.r ft * )    are computed by equations (1 9. 1 9) and (1 9. 20) 

without any modification,   so that the final solution can be obtained as before 

from Equation (19.21). 

Due to its apparent superiority as a predictive system,   and since 

it appears to have the same advantages in stability of the A-set organization 

as the     / -system,  this model seems likely to be the most versatile system 

analyzed thus far. 

19. 10     Similarity   Generalization Experinaents 

The considerallon which first drew attention to the importance 

of cross-coupled perceptrons was the prediction by Rosenblatt (Ref.  85) that 

such networks would be capable of improving their performance in similarity 
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generalization, as a result of prolonged exposure to an environment in which 

stimuli are more likely to be succeeded by their transforms than by unrelated 

stimuli.    In Chapter 16,  it was shown that a suitably organized four-layer 

perceptron has such a capability,  and the above analysis shows that   for 

sequences in which the activity of a cross-coupled perceptron is interrupted 

after every other stimulus,  its performance should be equivalent to the four- 

layer model.    Thus the original prediction appears to be upheld. 

The mathematical analysis of cross-coupled networks has been 

completed too recently to permit detailed examples of similarity generalization 

to be worked out at this time.    A series of simulation experiments have been 

completed,  however,  employing a program written by Trevor Barker for the 

IBM 704.    In this program a fully coupled network of 102 association units is 

represented,  with     / -system dynamics.    The model differs from those 

analyzed above,   in that the values do not decay.    This leads to "instability" of 

the system (a tendency to go into terminal oscillatory modes with massive 

A-unit activity,  unrelated to the stimuli which are presented), unless some 

additional measures are taken to limit the growth of the connection values.    The 

program was thferefore modified for bounded values.    In order to prevent the 

tendency of the      /-system to turn off most of the initially responding A-units 

after the first few preconditioning stimuli,   a further modification was 

included to permit half-integer values for     6    .    Thus the values of the 

cross-coupling connections have no effect until the magnitude of    •/      is at 

least equal to   \/l 
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Even in this modified program, performance is considerably- 

poorer than might be expected of the decaying value models,   since the system 

ultimately goes to a saturation condition, with all values   either at the upper 

or lower bound,    Prior to this saturation state, however,   (and to a lesser 

degree   even in its saturated condition) similarity generalization can be 

successfully demonstrated,  as in the following experiments. 

Figure 54 shows the results of two experiments, with five 

excitatory and five inhibitory retinal connections to each A-unit,  6 - L5} 

n = ,005        ,  and an upper bound of .2    for all values.    In each case,  the 

preconditioning sequence consisted of random stimuli,   alternating with their 

transforms.    The transform,     T(5)    , consisted   of a displacement of   5~ 

by half the width of the retina.    The retina itself was a 4 by 36 mosaic 

(144 points),  and all stimuli covered one fourth of these points.    In the first 

experiment,  the preconditioning stimuli consisted of random "salt and pepper 

patterns",   in which any combination of points is equally likely.    In the second 

experiment,   the stimuli were constructed by a "blob generating program" which 

produces coherent, but randomly shaped patterns such as those illustrated in 

the figure.    The test stimuli,   in each case,  consisted of the same set of ten 

coherent patterns (rectangular designs).       After being exposed to the pre- 

conditioning sequence      5,,   7(5,), 5-, ,  T(52)} 53 ,  7(5^,   •  ■  ■ ,     activity of 

the A-system is interrupted,  and a G-matrix is computed for the twenty 

sequences: 

s,s, 
5 A 

7Vj= T(S,)T(SI) 

TC4)= T(SJ T(SJ 

1-- 10 
s s 

10     10 %)- T(S10)T(SJ 
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Figure 51 CROSS-COUPLED PERCEPTRON SIMULATION EXPERIMENTS 
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This G-matrix indicates which of the ten transforms would be identified 

correctly if the perceptron were trained to recognize their   images, by means 

of a single reinforcement.    Sequences of duration 2 are used,to provide time 

for impulses to propagate over the cross-connections before testing the 

response. 

The curves show the mean performance of ten perceptrons over 

the set of ten test transforms,  as a function of the number of preconditioning 

stimuli.    In the case of the coherent stimuli,  note that learning is both more 

rapid,  and saturation is reached more quickly than with the random stimuli 

(where the saturation condition has not been reached even after 5000 pre- 

conditioning stimuli).    While the peak performance level is less than .60,  a 

statistical evaluation of the data reveals that the trend is definitely significant. 

All ten perceptrons,   individually,   showed a trend in the expected direction, 

so that the chance of obtaining these results accidentally would be less than 

.001.    It should be noted that since the expected generalization coefficient, 

*• .      ,  from a stimulus to its disjoint transform is negative (in a     /   -system) 

these perceptrons had to overcome an initial negative bias before achieving 

even the "chance" level of 50% correct identifications. 

These experiments confirm the predicted tendency of cross- 

coupled perceptrons to generalize on the basis of similarity,   in a suitably 

organized environment.    They also indicate the advantage of coherent  over 

random stimuli,  which is more pronounced in larger retinas than that 

illustrated.    Doubling the number of retinal points would virtually eliminate 

the trend which is found for random stimuli,  while the coherent stimulus 

curve would be relatively unaffected.    All of these results are consistent 

with the laws of similarity generalization which were tentatively proposed in 

Section 15.4. 
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Until further empirical studies are completed, the theoretical 

results obtained for cross-coupled systems should still be interpreted with 

caution.    There is at present no knowledge of the variance in performance 

over perceptrons,  and how this relates to the size of the system; nor can 

we estimate the effects of finite stimulus sequences,  in which the assumption 

of an infinitesimal rate of reinforcement per stimulus is not fully justified. 

The equations of the preceding sections represent limiting behavior for large 

values of   hi     ,  very gradual memory modification,  and very long training 

sequences.    The assumption of large    /V     can be obviated by writing the 

equations with empirical      ß -vectors measured for a particular perceptron, 

but in this case the results can be generalized only by means of an empirical 

sampling procedure, with many such perceptrons,      The  given equa- 

tions   will    probably be found to   yield correct qualitative results, but 

considerable work is still required to test their quantitative accuracy. 

19.11     Comparison of Cross-Coupled and Multi-Layer Systems 

In similarity generalization experiments,  it has already been 

observed that there is a marked similarity between the perforrrumce of the 

four-layer perceptron of Chapter 16,   the open-loop cross-coupled system 

of Chapter!?,  and the closed-loop cross-coupled systems considered above. 

All of these systems are capable of learning to associate patterns which occur 

frequently   in temporal succession,   and abstracting the principle of simi- 

larity from a transformation sequence (in which stimuli alternate with their 

transforms).    All of these systems will tend to work better with coherent 

patterns than with random point patterns.    In all cases,   the constant /Ma n A1 

determines the nature of the terminal G-matrix which is obtained,  for a 
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given environment.   Actually,  an exact equivalence is found between the 

performance of the fully cross-coupled system in finite-sequence environ- 

ments,  with sequences of two stimuli,  and the performance of the open-loop 

system of Chapter 17 with     T ~ I      ■    Suppose the system of Chapter 17 is 

extended to include an infinite number of A-sets,   each with identical connec- 
, th 

tions from the retina,  and with variable connections to each unit in the    Jt 

A-set from each member of the   Jk-I A-set (and allowing unit time delay 

in transmission).    It can then be shown that the states of the   Jk       A-set for 

the first ,i   stimuli in the sequence will correspond exactly to the states of 

the equivalent fully cross-coupled model (having all S-A connections equivalent 

to those in the   open-loop model).    Thus,  the fully cross-coupled model, 

considered through all time,  is equivalent to the output of an infinitely extended 

open-loop model,  of the type discussed in Chapter 17. 

While these similarities would lead us to expect basically 

similar behavior in most problems for these different types of systems,   some 

noteworthy differences do exist between the cross-coupled system and multi- 

layer systems with finite numbers of layers.    First of all,  there is an inherent 

sequence-dependence in the cros s-coupled model,   which makes its present 

state a function of the recent succession of events,   (i.e. ,   stimuli) rather 

than just the last event to occur.    This means that all cross-coupled 

systems have some capability for temporal pattern recognition,   even without 

variation in the transmission times of the input connections.    Secondly,  the 

cross-coupled systems are likely to reach their terminal condition more 

rapidly,  and with initially accelerating rates of adaptation,   since the differ- 

ential equation depends on changes both in the transmitting and receiving 

sets of A-units,  while in the four-layer model,   the differential equation 
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depends only on changes in the receiving set,  the transmitting set being fixed 

for all time.    The dependence on both receiving and transmitting sets makes 

the cross-coupled system more subject to "instability" phenomena, and 

probably tends to reduce the "dynamic range" of the system (as a function of 

N0 f] /d     ) in most cases.    These phenomena have not yet been stuijjied «• ( 

sufficiently to present conclusive quantitative results at this time. 

A more important difference than any of the above may be 

potentially present,  although this remains in the realm of speculation at 

present.    In a value-conserving cross-coupled perceptron, where there is 

the possibility of developing pronounced inhibitory interaction between A-sets, 

there is a tendency to develop "cell assemblies" (in Hebb's sense),  and these 

cell-as semblies tend to rival one another for dominance at all times.    It 

seems possible that such a phenomenon may provide a basis for figure- 

ground separation in complex sensory fields,  where it is desired that the 

system attend to one object,  or component of the input situation,  and ignore 

the remainder.    This will   be discussed further in Part IV.    If such an effect 

can be demonstrated,   many of the remaining problems in the design of a 

perceiving system would be solved. 

-464. 



20, PERCEPTRONS WITH CROSS-COUPLED S AND R-SYSTEMS 

A number of interesting effects may be obtained by cross-coupling 

the S-units or R-units of a perceptron.    Several such systems are considered 

briefly in this chapter.    The first section deals with cross-coupled sensory 

systems; the second section deals with cross-coupled R-systems.    Detailed 

analyses are not presented here, although several analytic studies are 

available in the referenced literature. 

20.1        Cross-coupled S-units 

If the sensory units are arranged in a two dimensional array, 

or retina,   then it has been proposed that inhibitory interconnections between 

each S-unit and its nearest neighbors will tend to inhibit activity most 

strongly in the center of a field of illumination,  and ]ess around the edges. 

Such a system should lead to accentuated edges or boundaries for a visual 

pattern,   reducing the relatively redundant information coming from interior 

regions.    Systems utilizing this principle have been proposed by Taylor 

(Ref. 99),   by Inselberg,   Lbfgren,  and von Foerster (Ref.  4),   and by a 

number of others.    The Inselberg-Löfgren-von Foerster treatment includes 

a more detailed quantitative analysis than was hitherto available, including 

cases in which the probability of interconnection of two units is a Gaussian 

function or an exponential function of the distance between them. 

While it appears that contour detectors can indeed be constructed 

by this means,  it should be noted that some information is lost in the 

process: namely,  the indication of the direction of the illumination gradient 

*   See also Chapter 23,  on visual analyzing mechanisms. 
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across the contour.    Thus if a square patch of illumination is operated upon 

by the network to yield a square outline,  there is no way to tell whether 

the inside of the square was light and the outside dark,  or vice versa,    The 

contour-detectors proposed by Rosenblatt in Ref.   79,  which consist    of 

A-units with circular or elliptical distributions of origin points,  with 

slightly different centers for excitatory and inhibitory origin clusters,  still 

preserve    this gradient information. 

A somewhat more interesting possibility has been demonstrated 

by Inselberg,   et all,   if three layers of units with anisotropic connections are 

superimposed on one another,  with a rotation of the axes of symmetry by 60 

in the successive layers.    With such a system,  it appears to be possible to 

construct a network from which there is zero output from a straight-line 

stimulus (regardless of its orientation) but a non-zero output from a curved 

line.    Such systems clearly deserve more study as possible stimulus analyzing 

mechanisms for reducing the input data to a perceptron. 

Systems with excitatory interconnections between S-units are of 

relatively little interest,   as  such a network would generally lead only to a 

spread of activity from the stimulus region.    The only useful function which 

such connections might have would be in smoothing irregular or broken 

images,  by filling in holes and gaps; such an application,  however,   seems 

to be of questionable utility at the present time. 

20.2     Cross-coupled R-units 

Inhibitory interconnections between R-units may be useful in 

several ways.    One application is to guarantee that no more than one R-unit 

can be "on" at any time.    For this purpose,  all R-units are given inhibitory 

*   See also Hubel,  Ref.   113, for relevant biological evidence, 
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interconnections to all the others; whichever unit first goes on,  inhibits all 

the others, holding them off.    Such a system will tend to "hang up" in this 

state, until the positive signal to the first R-unit is reversed, permitting 

some other unit to come on.    If the speed of response of an R-unit is 

proportional to the magnitude of its input signal,   such a scheme can be used 

to select the R-unit with maximum input from a given stimulus. 

In R-controlled reinforcement systems,   inhibitory connections 

between R-units may sometimes be employed to guarantee that a unique 

response is associated to each new stimulus in succession.    Suppose there 

are four stimuli,   which activate disjoint or nearly disjoint sets of A-units. 

Let there be four R-units,  with inhibitory connections as follows: 

• R. 

In this scheme,  unit   i?,     inhibits (absolutely) all successive R-units 

(R-   ,,/?.„,.••   •      )     •    Now if stimulus    S,     occurs,   and transmits an 

initially positive signal to all R-units,  only     P      can go on,    With an 

R-controlled value-conserving system (in which the sum of values over all 

connections is held constant)      5.    will then develop an excitatory signal to 

P        ,  and negative signals to all other R-units.    At the same time (since 

we have assumed essentially disjoint A-~sets) the value-conservi ng system will 

guarantee that the    f?      response generalizes negatively to all other stimuli. 

Thus,  when    S?     occurs,   it will tend to turn off     R       ,  but will try to turn 

on     P     j f?       and    f?       .    Of these,  only   P     can remain on,   due to the 

inhibitory coupling,   so that    5^ (or whichever stimulus occurs second in the 

sequence) will become associated to    R      .    Similarly,   S      is associated to 

R3    .and    5^   to     R^     . 
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This scheme becomes somewhat less trivial if it is applied to 

the four-layer perceptrons of Chapter 16,  subsequent to a preconditioning 

sequence in which the perceptron has learned to associate a unique A-set 

to each similarity class of stimuli in a given environment.    The above 

method can then be employed to assign a unique response to each class of 

stimuli (provided the terminal A-sets have sufficiently small intersections). 

While the interconnection schemes proposed here for   S     and 

R-units are occasionally useful for control purposes, they do not introduce 

any fundamentally new properties of importance.    The most striking pheno- 

mena to be found in cross-coupled systems are the similarity generalizing 

capabilities of the cross-coupled association systems  -- with the tantalizing 

possibility of a figure-ground mechanism still to be investigated in future 

work. 
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PART nr 

BACK-COUPLED   PERCEPTRONS AND   PROBLEMS 

FOR   FUTURE   STUDY 



21.       BACK COUPLED PERCEPTRONS AND SELECTIVE ATTENTION 

In Parts II and III of this volume, we have tried to establish the 

fundamental properties of two topological classes of perceptrons: series- 

coupled and cross-coupled systems.    While the possible configurations of 

these two types of perceptrons have by no means been exhausted,  the most 

general forms of series-coupled and cross-coupled networks appear to be " 

sufficiently well understood so th^.t their principles can now be applied to the 

analysis of more elaborate systems.    The most general network is achieved 

with the addition of back-coupling (Definition 26,   Chapter 4),   so that layers 

of units which are relatively remote from the sensory end of the perceptron 

can modify the activity of layers which are relatively close to the sensory 

end.    Given this additional mode of coupling,   then virtually all perceptrons 

of interest,  however  elaborate their structure,  can be regarded as compounds 

or modifications of the types previously considered. 

The modulating effect of back-coupling upon the behavior of a 

perceptron will be considered qualitatively in this chapter.    It will be seen 

that while the analysis of such systems can frequently be carried out in terms 

of already established principles,  their behavior possesses a new order of 

sophistication.    In particular,  the psychological phenomena of selective 

attention and "cognitive set" now begin to emerge.    A related exposition of 

these ideas can be found in Rosenblatt,   Ref.   79,   Chapter X. 
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Zl.l       Three-Layer Systems With Fixed R-A Connections 

21.1.1       Single Modality Input Systems 

The first case to be considered is the class of three-layer 

perceptrons having fixed-value connections from the R-units back to the 

A-units.    For simplicity,   it is assumed that there is no cross-coupling 

within any of the three layers.    Such a perceptron with two R-units can be 

represented by the symbolic diagram: 

S >A«:~' 

where solid arrows represent fixed-value connections,  and broken lines 

represent variable-valued connections.    In particular,  assume that there is 

a connection from every R-unit back to every A-unit,  half of these connections, 

chosen at random,   having the value +1,   and the other half having the value  -1. 

In the following section it will be assumed that the R-units are of an ''on-off" 

variety (having the outputs     1 or 0,   rather than +1  and  -1) although analogous 

effects can be found for simple R-units.    It is also assumed, for the sake of 

avoiding impossible closed-loop situations,   that all connections have a short 

time delay,    T       ; a stimulus,  however,   is generally assumed to be held on 

the retina for a time     T  >> T 
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ah 

The signal    ^   .      which is fed back to an A-unit    &. 

response unit    r     is given by the linear function 

from the 

^> ri =   r    /ir rl 

Thus    /Or-L      is equal either to   /z^  •    or 0,  depend ing on whether     r =   I     or 

0       .    The effect of these feedback signals on the set of A-units responding to 

a given stimulus is shown in Figure 55.    The symbol   /5      is used to represent 

the component of the input signal,    <X    ,  which comes to the A-unit from the 

retina.    It is assumed that there are two R-units,   so that there are four 

disjoint sets of A-units with roughly   ^/4    units in each set,  corresponding to 

the four possible combinations of    /V    ■       and    /vr   ■      .    These sets of 

A-units are represented by the four quadrants of the diagram.    The circles 

indicate the values of    /3.      received from the given stimulus,  in relation 

to the threshold,     Q-     .    The A-units in the innermost circle,  for which 

/J - G -h 2     ,  will always be on when the given stimulus occurs,  regardless 

of the condition of the R-units.    Those units for which   0 £: ß < Q+ 2      will 

be on except when they receive an inhibitory signal from both R-units simul- 

taneously.    The units for which      A =: Q - I      must receive a net excitatory 

signal from one or both of the R-units in order to go on,  and those units for 

which     ß ~ Q~2,   will only go on (in the presence of the given stimulus) if 

they receive an excitatory feedback signal from both R-units at once.    Units 

for which     ß L Q-Z   will never respond to this stimulus.    The magnitudes 

of these sets can be calculated from tables of Q-functions (c.f. ,  Chapter 6 

and Reference 87).    The shaded area in Figure 55 shows the sets which 

respond to the given stimulus when   (P(   >   ^j ) = (/; /) 
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NET FEEDBACK = 

0 FROM (1,1) 
+1 FROM (1,0) 

FROM (0,1) 
0 FROM (0,0 

NET FEEDBACK = 

-2 FROM (1,1) 
-I FROM (1,0 
-I FROM (0,I 
0 FROM (0,0 

NET FEEDBACK = 

+2 FROM (1,1) 
+1 FROM (1,0) 
+1 FROM (0,1) 
0 FROM (0,0) 

FEEDBACK = 

0 FROM 
-I FROM (I,0) 
+ 1 FROM (0,1 ) 

0 FROM (0,0) 

Figure 55 EFFECT OF FEEDBACK ON ACTIVITY OF A-SET, IN RESPONSE TO A GIVEN 

STIMULUS, FOR PERCEPTRON WITH 2 R-UNITS. SHADING SHOWS ACTIVE 

A-SiITS FOR THE RESPONSE STATE r (I.I). 
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Now suppose there are two stimuli,    5      and     5, 11 it 
is 

trained to give the response combination      (V"*.  T   )-U)0)      • while     5     is 

associated to the response code     [0, l)      .    We assume that the retinal sets 

representing the two stimuli are completely disjoint.    Having trained the 

perceptron,   let us now present both stimuli simultaneously (i.e.,  a composite 

image,     5. ÖS7   ,  is projected on the retina).    Under these conditions,  a 

series-coupled perceptron might equally well give the response combinations 

fO, 0,1,(0,/,)  ,    (/,  0}       or    (l}l)      ■    The present system,   however,   will 

tend to respond either with    (I, 0)      or with    (ö, I) In other words,  it 

will tend to correlate those R-states which go with one of the two stimuli, 

rather than giving a partial response to each. This can be understood by 

reference to Figure 56,  where the A-sets responding to each of the two 

stimuli are shown.     For convenience,   the sets responding to are 

assumed to be disjoint from the sets responding to     5„    ,  and the diagram 

is simplified by assuming that the set which is active for the composite   5, S2 

stimulus (in the presence of a given R-state) is equal to the union of the sets 

responding to   5      and   S     alone.    This last assumption is not generally 

warranted,  but the qualitative conclusions reached will still be correct.    The 

shading shows the reinforced sets for    J       and     5^ 

At the moment that      5   So       appears on the retina,   both R-units 

will be off,   so that there is zero feedback to the A-system,   and  the total 

signal coming to each R-unit from the A-system will be approximately zero 

(consisting of a positive signal from one stimulus,   and an approximately 

equal negative signal from the other stimulus).    Suppose initially,  both 

R-units go on.    In this case,   the sets of A-units responding when   $   -(l^t) 

will become active,   and the total signal to each R-unit will still be approxi- 
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Figure 56 A-SETS RESPONDING TO THE STIMULI S, AND S2, FOR THREE RESPONSE 

CONDITIONS. SHADED AREAS SHOW REINFORCED SETS, AND DOUBLE 

HATCHING SHOWS REINFORCEMENT WHICH GENERALIZES TO THE 

CONDITION R*  (1,0). 
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mately zero,   so that the response state is unstable.   Alternatively,  suppose 

the R-state goes to   (1,0 )      .    In this case,  the signal to the R-units comes 

from the double-hatched regions of the Venn-diagram in Figure 56,  and the 

5 set becomes "dominant".    If this occurs, the response (1,0)      will 

tend to remain stable,  and may even persist after the stimuli  are removed 

(provided some of the A-units have thresholds   L I    }.    Similarly,   if the 

R-state goes to    (0,1)       ,  then the     S2     set becomes dominant,  and its 

response will tend to persist. 

If either stimulus has been trained to give the response   (0_,0) 

in the above experiment,  the R-units will tend to "hang up" in their initial 

condition,  and no other response can ever occur to the joint stimulus   5, 5, 

On the other hand,  it is possible to produce an oscillating or cyclical response 

by training a given stimulus to give the response    (1,1)      when the present 

response is (0 , 0 )      ,  then conditioning the (1,1)     set to give the response 

(1,   0 ),    conditioning this set to give    (0,   1  )    ,  and finally associating the 

response     ( 0,   0 )to the A-set responding for      (0,   1  ) ■    In this case,   as 

long as the stimulus is held on the   retina,   the  R-units will cycle through the 

four responses in succession. 

The important tendency which has been demonstrated for this 

system is a tendency to correlate the output of the R-units so that they 

all apply to a single stimulus,   when a composite stimulus occurs at the 

retina.    This now provides the basis for the following experiment: 
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EXPERIMENT 15: Using a four-R-unit perceptron,  and a universe of 

squares and triangles of equal area in all positions on the retina, 

train the system to give the responses   (p   ) P    ) =   (1,0)    for a 

triangle,  and    (0, I)       for a square;     (r* ,  r*)-(l}0)      for a 

stimulus in the top half of the retina,  and     (0, /)    fc stimulus 

in the bottom half.    After training with an error-corj. ,wtion 

procedure, test the response of the perceptron to the stimuli 

5^ -    triangle in the top half of the field and square in the bottom 

half,  and   5    =     square in the top half with triangle in the bottom 

half. 

In this experiment,  the first pair of responses are used for square/ 

triangle discrimination,  and the second pair for top/bottom discrimination. 

For the time being,  assume that the error correction procedure is modified 

by forcing the correct    R*    condition whenever a correction is applied. (This 

assumption will be dropped in Section 21. Z.)   It is predicted that a back-coupled 

system,   organized as above,   will tend to give one of the two responses 

(1,0, 1,   0)       or   (0,   1,   0,   1)   for stimulus    S*     (signifying "triangle,   top" 

or "square,  bottom", respectively),   but will give one of the two responses 

(1,0,0, 1) or  ( 0,  1,1,0)   for stimulus    5^   (signifying "square,   top" or 

"triangle,   bottom").    In other words,   the system should give a consistent 

description of  one of the two stimuli,   in terms of shape and location,   and 

ignore the other stimulus; it will not name the shape of one and the position 

of the other,  even though both shapes and both positions are simultaneously 

present. 
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That the predicted effects will tend to occur can be seen by 

referring to Figure 57,  where it is assumed that the     S^     combination 

{top triangle and bottom square) occurs.    Reinforcement is shown by cross- 

hatching.;.    The relative sizes of the intersections in the Venn diagram are 

drawn to suggest the relative intersections of the A-sets for the response 

states of interest,    Note that the set responding when     R   - (l,ö;0,ö)    tends 

to have a relatively large intersection with the      ('-> ^ ;   ' , ^7     set.   due to the 

fact that three of the four R-units are in identical states.    The combined 

intersection of the    (/, 0, 0. ())    set with the sets which are reinforced to 

yield the "top" response   (',0J     on    r     and    r.     is greater than the combined 

intersection with the sets which were reinforced for the "bottom" response. 

If the triangle first becomes dominant with respect to the    f   , r,      pair of 

responses  (yielding the condition      1,0,0,0)      the activated set which has 

been most heavily reinforced,   shown by cross-hatching,   will now tend to 

evoke the "top" response from    r     and    f.    ,   since the "top triangle" set now 

carries considerably greater weight than the "bottom square" set.    Thus a 

consistent configuration on ail four R-units is induced.    If   (0, 1)0,0)     should 

occur,  however,   the system will have an opposite bias for    r,    and    K^    ,   tending 

to evoke the condition    [0,  1,0,/).    If   Su..   should occur instead of    S^   ,   the 

biases will be found to favor the   (/, 0, 0, /)    or   (0, /, 1,0)   conditions,  as 

predicted. 

Experiment  15 illustrates the simplest conditions under which 

"selective attention" might be said to occur in a perceptron.    In a complex 

field,  with more than one trained stimulus present,   rather than giving a 

conflicting mixture of responses,  the perceptron tends to pick a single 

familiar "object" and    respond to this object to the exclusion of everything 
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TOP O 

BOT. D 

BOT. A 

Figure 57 SETS AFFECTING THE TRANSITION FROM THE RESPONSE STATE (1,0,0,0) 

WHEN THE COMBINED STIMULUS "TOP TRIANGLE" AND "BOTTOM SQUARE" OCCURS. 

SHADING SHOWS REINFORCED SETS, AND THE MEASURES OF THE INTERSECTIONS 

WITH THE (1,0,0,0) SETS ARE DENOTED BY THE LETTERS a, b, c, AND d. 

THE VENN DIAGRAM IS DRAWN SO AS TO EMPHASIZE THE PROBABLE MAGNITUDES 

INVOLVED. 
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else.    By adding additional responses, a complete description might be 

obtained of the shape,  size, position,  etc.,  of a single object in the field. 

The particular object which is selected,  however,  depends on chance factors, 

such as the relative amounts of reinforcement which have been applied to 

different A-sets,  or momentary noise within the network.    In the following 

section,   it will be shown how a stimulus in a different modality,   such as a 

spoken word,  can be made to direct the attention of the perceptron towards a 

selected object or region in the visual field, 

21 . 1 . Z       Dual Modality Input Systems 

The perceptron which is illustrated in Figure 58 is similar 

to the one which was described in the preceding section,  except that it 

possesses two sensory input systems,  one visual (a retina) and the other 

auditory (e.g. ,  a filter system).    There is a set of A-units for each of these 

input sets,  designated    A^,,     for the visual association system,   and     f\^     for 

the auditory association system.    Again,  there are four R-units,  each one 

receiving variable-valued connections from all A-units in both sets,   and 

sending a set of fixed value connections back to all the A-units.    As before, 

half of the feedback connections from each R-unit are assumed to be excitatory, 

and the remainder inhibitory,  with values   I   / 
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Figure 58    ORGANIZATION OF A DUAL MODALITY D(;RCEPTRON,  WITH H R-UNITS 

(BROKEN  LINES   INDICATE  VARIABLE-VALUED CONNECTIONS) 

With this system,   the following experiment can be performed; 

EXPERIMENT 16;     Using a dual-modality input system (visual and 

auditory),   with four R-units,   train the perceptron to distinguish 

square/triangle and top/bottom,   using the same code and 

stimuli as in Experiment 15.    Then,   selecting four discriminable 

audio-patterns,  SQ,   TR.,   T,      and B,   train the perceptron by 

means of the audio-input to associate the responses for "square", 
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"triangle",  "top" and "bottom" to these four stimuli.    In testing 

the perceptron, a composite visual stimulus,  consisting of a 

triangle in the top half of the field and a square in the bottom 

half,  is used.    Simultaneously with the visual input,  the audio- 

pattern SQ, TR,   T,      or   B  is presented, and the response of the 

perceptron is observed for each of these four conditions. 

From the discussion of Experiment 15,   it is clear that the 

visual section of the perceptron will tend to give a consistent response of 

(1,0,1,0)     or   (0,1,0,1)    ,   representing "top triangle" or "bottom square" , 

respectively.    The effect of adding the audio-stimuli is to add an additional 

bias to the R-units,  favoring one of the four "concepts",   square,  triangle,  top, 

or bottom.    For example,   if the TR stimulus is applied (which has been 

independently associated to the composite response      r. , rn = 1,0      )   there 

will be an auxiliary positive signal to     r,      ,  and an inhibitory signal to    r2    , 

coming from the    A      set.    There will be no bias introduced on    r3   and    r. 

Consequently,  the system will be biased to give the initial response 

(1,0,0,0 )      ,  which we have seen tends to transform itself into the stable 

condition     (1,   0,1, 0)     for the given stimulus. 

Thus the results which are predicted for Experiment 16 are that 

when the audio-pattern     TR   is given,  the perceptron will give the composite 

response indicating the shape and position of the triangle; when     SQ is 

presented,  the perceptron will indicate the shape and position of the square; 

for the audio-input      T   ,   it will indicate the shape and location of the top 

visual pattern; and for     B    ,   it will indicate the shape and location of the 

bottom pattern.    An audio-coinmand can therefore be used to direct the 
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attention of the visual system to a specified location or a specified shape, 

and the output of the perceptron will be a consistent description of the indi- 

cated object. 

While it is possible by means of the above procedure to assign 

"names" to visual objects or events,  and direct the attention of the perceptron 

by means of these names,   it should be noted that the association is actually 

much too complete for this to serve as a model for linguistic "naming behavior". 

For the perceptron,  there is no difference (at the response level) between the 

name for an object and the object itself.    Thus the audio-symbol     TR and the 

visual image of a triangle both turn on the same response combination 

(1 j 0, . . )      in the experiment considered above.    If it is desired to retrain 

the system to associate some other visual pattern (say,   "trapezoid") with 

the    TR   symbol,   it is necessary to completely eliminate the previous asso- 

ciation of triangles to   (1,0, ..)     and train trapezoids to give this response 

instead.    Words and visual patterns are part of the same conceptual class,  for 

this perceptron,   and cannot be re-associated as distinct entities,  but can only 

be used as  raw material for building up new conceptual classes.    The distinction 

between the name and the visual object becomes important in practice if we 

wish to tell the perceptron to "look for the square" when there is no visual 

square present.    The audio-symbol "look" might be used to start an auto- 

matic scan or hunting process,  but to stop the process when a square is 

found,  the perceptron must be capable of distinguishing between the audio- 

symbol for "square"  (which it must remember for the duration of the search 

process to tell it what it is looking for) and the visual pattern of a "square", 

which must: stop the search when it appears.    A perceptron which is capable 

of distinguishing between symbols and objects,  and is not subject to these 

criticisms,  will be considered in Section Z1.3. 
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Z1. Z       Three-Layer Systems With Variable R-A Connections 

In the previous examples,  the existence of a bias towards one 

of the two consistent response configurations when part of the  /,'      state is 

achieved,   is due to the fact that reinforcement is applied only in the presence 

of the correct response.    This means that whenever a corrective reinforce- 

ment is applied,  the reinforcement control system must first "force" the 

desired response configuration.    But in a simple error-correction procedure, 

as this concept has been used previously,  the corrective reinforcement would 

normally be applied only when the response is wrong,  and this would tend to 

reduce the indicated bias quite drastically.    For example,   in Figure 56,   it 

can be seen that if   Sz   had been negatively reinforced in the presence of the 

R    = fi , ö)     state,   this negative reinforcement would tend to cancel the effect 

of the   S,    signal.    One method of eliminating this problem,   which leads to a 

system which appears to be generally better-behaved (on the basis of a quali- 

tative examination of its properties) is to make use of adaptive back-connections, 

rather than fixed-value connections,  from the   R     to A-units. 

Zl.Z.l   Fixed Threshold Systems 

The first model to be considered corresponds topologically to the 

model treated in Section Zl . 1 . 1, but differs in having variable connections, 

so that its symbolic diagram is of the form; 

rR. 

o ^t 
'*R. 
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The forward connections, from A to R-units, are assumed to follow the 

usual      oc -system dynamics,  subject to error-correction procedures.    The 

back-connections, however, are subject to the P-system rule which was 

introduced for cross-coupled perceptrons.    This means that the total value 

of the set of feedback connections from each R-unit remains constant, but 

that if both termini (the R-unit and the A-unit) are active in succession, the 

connection value is incremented by a positive quantity,      n . At the same 

time, a proportional decay occurs in all active R-A connections,  so that in 

the absence of reinforcements,  they tend to approach zero exponentially.    The 

net change in value of connection   /O  •       at time     t       is therefore o r L 

A. ri   v- 
i- ) = r':t-r 4-Z a ■it) -S*r   (t) 

1 
(21.1) 

Assuming,  as before,  that each stimulus persists for a time    T »V      , the 

result of this rule is to raise the value of the feedback signal to all S-units 

which respond to the current stimulus,  from the active R-units,  and at the 

Note that in this equation decay occurs only when     r,  =   /     .    This 
means that the feedback signals from different R-units will have 
approximately equal weight,   regardless of the relative frequency 
with which the R-units are used.    The transmission delay,    T     , 
is included only for conformity to previous models,  and plays no 
essential role here, 
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same time to develop inhibitory connections to the A-units which are not 

currently active.    The decay guarantees that the entire system will tend 

towards a dynamic equilibrium, at which the expected rate of gain just 

balances the rate of decay. 

The effect of this system is illustrated in Figure 59,  which shows 

the condition after associating stimulus      S,      to the response (1,0) and   S^ 

to the response (0, 1), by an error correction procedure.    This corresponds 

to the same conditions as Figure 56.    The sets which respond when 

=    'C , ■ ,      are shown by the large circles.    If these sets are initially 

reinforced to yield the appropriate response for each stimulus,  then when the 

composite stimulus appears, they will try to turn on opposite responses,  with 

about equal strength.    Such a condition,  however,  will be an unstable one.  If 

one of the sets,  say      S,      ,  carries slightly greater weight than the other, 

the condition illustrated in the figure will arise.    With     r,       on,   excitatory 

#, 

Figure 59    A-SETS RESPONDING TO THE COMPOSITE STIMULUS   S^.   SHADING 

SHOWS ACTIVE A-SETS FOR THE RESPONSE STATE (1,0). 

(COMPARE Figure 56). 
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signals will be transmitted back to the      5,        set,  and inhibitory signals to 

all other A-units,  including the     5,     set.    Thus the     £,        set remains 

unchanged,   but the      5^       set is diminished.    Alternatively,   if     5^^      should 

gain an advantage,  the     5,      set will tend to remain unchanged,  and the   5, 

set will be reduced. 

If we assume that the universe consists of a large number of 

stimuli in each class,  as in Experiments 15 and 16,   the set of A-units 

responding to      Sl       would generally not be perfectly preserved, but would 

be shifted to include more units which respond to many stimuli in the S, 

class,  and to eliminate those units which respond only to      S/       .    Thus 

there is an additional tendency,   in this system,  to convert the sets of 

A-units for different stimuli which have been associated to the same response, 

to sets which are nearly identical.    It is clear that if the procedures of 

Experiments  15 and  16 are carried out with this system (but with the usual 

error-correction practice of reinforcing in the presence of the wrong 

responses only, rather than forcing the correct response) the results predicted 

in Section Zl . 1  will be obtained,   but with less chance of confusion or 

erroneous bias due to conflicting active sets.    The special property of the 

variable feedback system can be characterized as a tendency to activate the 

A-units  responding to one of the previously trained parts of a complex 

stimulus,  while suppressing those A-units which respond to the remaining 

parts. 
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21.2.2 Servo-Controlled Threshold Systems 

In all perceptrons considered thus far,  the thresholds of the 

A-units have been assumed to be invariant over time.    It is possible to vary 

the effective threshold of an A-unit    by adding an excitatory or inhibitory 

component to its input signal.    If this is done for all A-units in the system, 

the result will be to increase or decrease the proportion of units which 

respond to a given stimulus.    If all signals and thresholds are quantized,  then 

the change in the active set will occur by   sudden jumps; for example,  the 

addition of      A 6 - + I     will suddently activate all A-units whose       oc -signal 

was equal to      0- - I     .    Such a condition would be hard to utilize effectively 

for the control of activity.    On the other hand,  if each A-unit has a threshold 

9. selected at random from some continuous distribution,   say a Gaussian 

distribution,  then there will always be some A-units whose thresholds    96- 

are just below the present value oi   oc ^     ,  and others whose thresholds are 

just above the present value of    oc- .    In this case,  a slight change in   G 

will always yield a corresponding change in the size of the active A-set,  and 

the size of the active set will vary in an approximately continuous fashion 

as     0      is changed continuously. 

Figure 60 shows a back-coupled perceptron in which the amount 

of activity is continuously monitored by a servomechanism,  which controls 

the magnitude of the thresholds so as to keep the total activity constant. 

If the fraction of active units falls below the desired level,  the servo-system 

transmits an excitatory signal to all A-units (equivalent to   A Ö <  0   ) while 

if the activity rises above the desired level,  an inhibitory signal (equivalent 

to     Zl 6   > 0      ) is transmitted to all A-units. 
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A        \-ZZZZf? 

Figure 60    BACK-COUPLED PERCEPTRON WITH SERVO-CONTROLLED THRESHOLDS. 

Such a system is likely to have advantages in many types of 

perceptrons.    Attached to a series-coupled perceptron,  for example,  the 

;'■ -servo can guarantee that regardless of stimulus size or intensity,  the 

level of A-unit activity will be optimum.    In a cross-coupled system,   it can 

be used to prevent "blow-ups" of activity,  by providing an active mechanism 

for counterbalancing the growth of excitatory weights .     It is worth noting 

that the        •   -servo can substitute for inhibitory connections from the retina 

to A-units,   since it generally yields the condition that if   stimulus     ii      is 

a subset of stimulus     S ^     (on the retina),  the corresponding active  asso- 

cia iation set     A ' 'Z w ill not be a subset of       A IS 
;/' 

In the back-coupled 

system,  the      6  -servo yields particularly interesting results. 

Figure 61(a) shows the condition of the A-set for the same stimuli 

as in Figure 59,  with the R-units in the (0, 0) state,   so that there is no feed- 

back.    The large circles show the sets which respond to     5,    and    5.   alone, 
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normalized by the action of the servomechanism.    When the composite 

stimulus appears,  it is no longer possible for the union of the sets    A(S,) 

and    A(S,)    to remain active, however;   consequently the active sets 

are reduced to those units (shown by the shaded areas of the diagram) for 

which    ß.   — 6; + A6  .    Under these conditions there is still no bias 

favbring the    5,      response or the    S2      response; both sets are still in 

balance, and either response might occur.    As before,  however,  this condi- 

tion tends to be unstable,  and (assuming that    5/      and   Sz    have been 

associated to the same response codes as previously) either (1,0) or 

(0, 1) will tend to occur. 

Figure 61(b) shows the stable staie of the system in which the 

response (1,0) has become dominant.    The  servo-system is now obliged to 

adjust to the effect of the excitatory signal fed back to the     A(SI)    set,  and 

the inhibitory signal io the    A(5,) set.    The result is that the active set is 

nearly identical to the set which would be active for   5,    alone,  the   A(Sa) 

set being virtually obliterated by the combined effect of the negative 

feedback and the increased threshold.    It seems likely that by strengthen- 

ing the excitatory feedback component (   AT     in the diagram) sufficiently, 

the active set can be made to coincide perfectly with the set responding to 

>S"/       alone.    Thus the effect of selecting the (1,0) response configuration is to 

enable the perceptron to respond exclusively to the    S.      stimulu s completely 
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(a)    ACTIVITY STATE  FOR  R'^O.O 

0 • < /5i < 9i + 

(b)    ACTIVITY STATE   FOR  R'MM 

Ri   (ON) 

R2  (OFF] 

/?■ i Qi f AO -V4 

Figure 61 ACTIVE A-SETS FOR COMPOSITE S, S^ STIMULUS, IN SERVO-CONTROLLED 

BACK-COUPLED SYSTEM. ACTIVE SETS SHOWN BY SHADED AREAS. 
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free from interference by the presence of     S      .    Pleversal of the   R*   state 

would,  of course,  lead to a reversal of the A-state.    These phenomena are 

highly suggestive of reversible perspective and figure-ground reversal in 

psychological experiments, where one of two ways of perceiving a complex 

figure dominates to the exclusion of the other. 

In a dual-modality perceptron,  the above system will work in a 

similar fashion,  assuming that separate        9-servos    are employed for the 

visual and auditory channels.    Thus by giving the audio symbol for square 

or triangle,  top or bottom,  in Experiment 16,  the perceptron can be directed 

to attend to one of the two objects present,  and will develop an A-unit state 

which corresponds closely to the state which would be expected if only the 

indicated object was present in the field. 

21.3       Linguistic Concept Association in a Four-Layer Perceptron 

In Section 21 . 1 . Z,   it was noted that although names can be 

associated to objects or visual events in a three-layer back-coupled model, 

so as to permit the experimenter to direct the attention of the perceptron 

selectively to a named object in a compound field of stimuli,  the associations 

formed tend to be associations of particular stimuli,  rather than universals. 

It is not possible to change the name of an object (or a class of objects) 

without actually undoing the previous perceptual organization of the stimulus 

world for the given perceptron,   and then reconstructing it in a new form. 

Words and visual patterns are not distinguished,  at the response level, but 

are amalgarrlated into a common concept. 
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A perceptron which is capable of first forming auditory and 

visual concepts, or universals, and then associating these with one another, 

and which can change its "linguistic associations" without disrupting its 

perceptual organization, is illustrated in Figure 62,    The system has a 

visual input and an audio-input,  as in Figure 58.    It is also equipped with 

a      -"   -servo, and the back connections to the      / ^    set are variable, as in 

Section 21.2.    For present purposes no back-connections to the    P\a     set are 

required,    There are two distinct sets of R-units: one set,     /^        ,  receives 

its primary inputs from the     -'      system,  and can be associated to visual 

stimuli.    The second set,     fv*"    ,   receives its primary inputs from the audio- 

system,  and can be trained to respond to sound patterns, or words.    (By using 

a spectrum of    ~ ■ for the    S    to    Ai;   connections,  or by means of a 

cross-coupled    A7    -set,  the system can be taught to recognize sound 

sequences,  so that it need not be restricted to momentary sound patterns.) 

Figure 62    A DUAL-MODALITY PERCEPTRON FOR LINGUISTIC CONCEPT ASSOCIATION. 
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Thus far, we have what amounts to two mutually independent 

perceptrons, one for visual stimuli, and the other for auditory stimuli. 

Each of these perceptrons can form classes and generalizations. by means of 

an error-correction procedure applied to the appropriate response sets. 

The added feature,  however,  is the extra association layer, which,  in this 

system,  comes after the R-units.    The A-units in this set receive fixed 

connections from the R--units (which f\orm a sort of retina for a second-order 

perceptron) and send back variable-valued      oc -system connections to the 

R-units.    It is assumed that each R-unit (in both sets) receives connections 
(?) 

from all of the      t\        units,  and that the values of these connections can be 

corrected by an error-correction procedure, just as with the connections 

from the     A        layer. 

Suppose the perceptron has already been trained to recognize 

several kinds of visual objects (say squares and triangles) and has also been 

trained to recognize several spoken words ("square" and "triangle") for a 

variety of intonations,  voice qualities,   etc.    During this training,  the   f\ 

to R-unit back-connections have not been reinforced.    Now let the perceptron 

hear the word "triangle",   without any visual stimulus being present.    The 

result will be an appropriate code-configuration    in the       R units,   which 

will induce a characteristic!   state of the      f\        system ,  identifying the 

spoken word.    By means of an error correction procedure, the perceptron 

can now be biased to give the    ^     code for a triangle, and will hereafter 

tend to prefer this response to any others when the word "triangle" occurs. 

Consequently,  when a composite stimulus is presented,  as in Experiment 16, 

together with the spoken word "triangle", the system will tend to give the 
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R      response to the triangle, and due to the feedback connections to the A^ 

set, and the action of the       6 -servo, it will selectively augment the inputs to 

those    A-units which respond to the triangle,  while tending to suppress 

activity of A-units responding to other stimuli.    Since all idiosynchratic forms 

of the spoken word,  and all forms of the triangle-pattern,  have been asso- 

ciated to identical response codes, the association will generalize immediately 

over both the audio class and the visual class of stimuli, without having to 

train the system with multiple examples of each. 

Thus the four-layer perceptron can be made to direct its 

attention in response to spoken commands in much the same way as the 

previous models,  but without requiring a modification of the A-R connections, 

or "perceptual organization" of the network,  in forming the linguistic asso- 

ciation.    By a similar procedure,  the     A to    R     connections can be 

reinforced in the presence of a visual pattern to create a bias,  or "expentancy", 

favoring the perception of the word corresponding to the perceived object.    By 

replacing the       oc -system back-connections from      A       to the R-units with 

P       -system connections  (as in Equation Zl.l)the association can be made 

to occur in a relatively spontaneous fashion,  by presenting the visual image 

together with its  spoken name.    The result will be a reinforcement of the 
(2.) connections from the      A set which responds jointly to the visual and 

auditory codes;  since this set will have many units in common with the 
(2) 

separate audio and visual        A sets,   the reinforcement will tend to 

generalize,  to yield the desired result. 
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i  - 
!  1 

This system can be used for the problem of searching for a 

named object which is not currently present in the visual field.    For this 

task,  one must assume that the     p"*,    units are of a"flip-fiop" variety, 

which tend to go on and stay on when.'they receive a sufficient input signal, 

until they are specifically cut off by a strong inhibitory signal.    The system 

is taught to initiate an automatically controlled search or scan procedure in 
(2) 

response to the spoken word "search".    It is also trained (at the    A        level) 

to turn off the search response whenever a coincidence occurs between a 

spoken name-code, and the visual object-code,, but to leave the search-state 

alone when either   the name or object,  but not both,  are present.    Thus,  given 

the command "Search for square",  the word "search" initiates the search 

activity,  and the word "square" sets the system to anticipate a square pattern. 

When a square appears in the field,  the     A "    set corresponding to the com- 

bined object-code and word-code is activated,  and transmits a strong inhi- 

bitory signal to the search response,  turning it off.    It would be possible to go 

a step farther,  by training the perceplron (which has now isolated the set of 

A units  responding to the square) to continuously center the image of the 

square in the retina,  using two continuous R-units to measure   ^C     and   -y 

displacements of the image from the center of the field (as in Section 10.2). 

Such a system,  having found a moving stimulus,  will track it and tend to 

keep it centered without being confused by the presence of extraneous objects 

in the field. 
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12, PROGRAM-LEARNING PERCEPTRONS 

In the last chapter, we have seen that a back-coupled perceptron 

can be made to attend selectively to parts of a complex field,  suppressing 

A-unit activity corresponding to objects other than the one attended to.    In 

the last few paragraphs,  it was also shown that such a perceptron can be 

made to anticipate decisions which are to be made at a future time, and 

execute them when the appropriate perceptual conditions are met.    This 

lays the basis for the learning of sequential programs of responses in 

perceptrons. 

Programmed activity is,  of course,  of supreme importance in 

carrying out logical sequences or algorithms,  as in a digital computer.    It 

also appears to provide a possible basis for the recognition of highly complex 

stimulus configurations,  which depend on relations of simpler parts,  rather 

than a fixed overall shape.    The recognition of a human form, or an animal, 

is of this variety.    It is also possible that the recognition of abstract topo- 

logical relations  -- a problem which has hitherto defied all perceptrons 

analyzed -- can be performed by means of a suitable programmed sequence 

of observations.    This writer has become increasingly convinced that a 

passive filter-type system (such as a simple perceptron) cannot be designed 

which will economically recognize topological abstractions and relations 

such as "A and B are disjoint" or nA is inside B" or 'A is a closed curve". 

On the other hand,  a perceptron which can attend selectively to part of the 

stimulus pattern at a time,  and carry out a sequence of observations under 

program-control,   seems to offer a potential solution to this problem. 

-499- 



22. 1        Learning Fixed Response Sequences 

A perceptron of the back-coupled or cross-coupled variety can 

be taught to execute a fixed,   stereotyped sequence of responses without 

introducing any new features in the system.    If the sequence  R1, , ^j, ) &, 

is required, for example,  when stimulus    S     occurs,  but the inverse 

sequence ( f?, j ^ ,  f?* )       when    5       occurs,  it is only necessary to 

associate the required responses to the succession of A-states which 

follow the stimulus in the cross-coupled system,  or to the A-states which 

result from the interaction of the retinal input and the R-A feedback,  in the 

back-coupled system.    Of these two approaches,  the cross-coupled system is 

more versatile,   since it can be triggered by a momentary stimulus,  and will 

not return to an identical state if the same response condition should occur 

at different points in the sequence.    The cross-coupled system,  however, 

requires that the response sequence occur with exact timing of each element. 

If the triggering or execution of each response takes an indeterminate amount 

of time,, then a closed-loop system of the type shown in Figure 63 would be 

more appropriate.    This system (which is also applicable to the recognition 

of strings of sensory events,   such as words or speech sounds,  where each 
'2.) 

element of the sequence is of indeterminate duration) employs an     A       system 

with units which tend to lock on once they are activated,  unless specifically 

triggered.    These units are of the same variety as the "flip-flop R-units" 

employed in the    P       set in Section 21.3.    The      A       set is cross-coupled, 

with fixed Conner tions,  and feeds back (with fixed connections) to the    A 

set. 

(U 
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Figure 63    FOUR-LAYER PERCEPTRON  FOR RECOGNITION AND CONTROL OF A5 -SEQUENCES 

WITH ELEMENTS OF INDETERMINATE DURATION. 

the 

When a response occurs in the R-set,  it immediately triggers 

system to assume some characteristic state.    The parameters 

of the cross-coupling at the      A       level can be so picked (e.g., by making 

all interconnections inhibitory) that the system will immediately assume a 

steady state,  which will be held until   some subsequent response occurs. 

When the second response of the sequence occurs,  it finds the effective 

thresholds of the     A'      units modified by the cross-coupling signals from 

the units which are already on.    Consequently, the       A        state which occurs 

will depend not only on the new response, but also on the previous   j\'" 

state.    Unlike the previous cross-coupled systems,  however,  it does not 

depend on the time-lapse since the previous input,  since the      A''      state 

has held steady over the interval. 

501- 



By means of the feedback to the       A        set, the       A'       state 

(and consequently the response sequence) can be made to modify the response 

of the       A system to the present stimulus.    Thus a distinct succession 

of responses can be associated to the stimulus, each new      A'       state 

signifying the joint information that the stimulus is present,  and that a 

particular succession of responses has occurred in the past.    To terminate 

such a sequence,  it is possible to assume that one of the R-units has inhibi- 

tory connections to all       A units,   so that when the end of the sequence 
(2) is recognized, the       A system can be reset to its inactive state, by 

turning on this response. 

22.2        Conditional Response Sequences 

In the last section,  the response sequences learned by the 

perceptron were assumed to be of a fixed,   stereotyped variety,   such as 

the utterance of a given word or phrase,  or the execution of a particular 

sequence of movements.    Of more general interest,   is the possibility of 

conditional response sequences, where the execution of the next step 

depends upon the realization of a set of conditions at the present time. 

In a limited sense,  we have already demonstrated the possibi- 

lity of conditional responses in the perceptron of Figure 63,  where the 

next response depends not only upon the preceding R.-sequence,  but also 

upon the continuation of the initiating stimulus.    A more interesting case, 

however,  would be one in which the next response depends upon the recogni- 

tion of some condition which results from the preceding activity of the 

perceptron itself.    For example, if the perceptron is equipped with a move- 
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able appendage by means of which it can apply pressure to external objects, 

we might ask it to push aside any object placed in front of it.    Such objects 

might have their movement blocked,  either to the right of to the left,  in 

which case the perceptron might first bring its "pushing arm" into contact 

with the left side of an object and try pushing to the right,  but if it finds 

that the object remains stationary,  it must reverse the position of its arm, 

and push to the left. 

Such a decision program  still seems to be within the capability 

of a perceptron of the type just described.    It must recognize (through its 

visual inputs) the conditions  "no object present","object present to right of 

arm location",  "object present to left of arm location",  arm in contact with 

left side but object stationary",   "arm in contact with left side and object 

moving",  etc.    The recognition of the contact conditions might be facilitated 

by the inclusion of pressure transducers on the arm,  providing an auxiliary 

sensory input to the association system.    An appropriate response sequence 

must then be associated to each of these conditions.    For example,   if the 

condition "arm in contact with left side but object stationary" is recognized, 

the response sequence might be 

1 . Retract arm 

Z. Shift arm position to right 

3 . Extend arm 

This would then yield the condition "object present to left of arm location", 

for which the response would be 

1 . Shift arm to left until it contacts object 

2. Apply pressure 
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The conditions of "moving" and "stationary" objects can, of course, be 

recognized by a perceptron with time delays from the retina to the   A' 

units,  so that there is nothing in the above description which cannot be done, 

in principle, by perceptrons which have already been analyzed. 

22.3       Programs Requiring Data Storage 

In all of the sequential programs considered above, the next 

step has been determined entirely by the conditions at the previous step, 

and a knowledge of how many steps have already occurred in the current 

sequence.    More elaborate programs require a conditional response based on 

information which was available several steps previously, but is no longer 

present in the sensory input.    The- perceptrons considered so far can solve 

such problems only by anticipating all possible sequences of conditions, 

and learning a unique response sequence for each special case.    This rapidly 

becomes impractical, as the sequences become more involved.    An example 

of such a problem is counting.    In counting from, zero upwards,  we first 

produce a sequence of single digits,  from one through nine; we then add a 

second digit (a one) and reset the low order digit to zero.    The one in second 

place is held fixed,  while the low order digits are recycled, and is then 

changed to two,  and so forth.    At an advanced stage in this procedure, we 

may be holding three or four high-order digits "in memory" while modifying 

the low-order digits      To perform such a program expeditiously,  an internal 

storage mechanism is required,  which can be set to hold a given item of 

information and read out or altered whenever required.    Such a memory 

mechanism is much more like a conventional digital computer memory than 

anything yet encountered in perceptron theory. 
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While it is fairly easy to contrive systems which employ rigidly de- 

termined gating mechanisms and more-or-less conventional computer memory- 

logic to provide a temporary storage device for a perceptron,  no realy satis- 

fying solution has been found to date,    A biological system undoubtedly employs 

something more subtle than a coded address system which transmits its 

stored information on command,  but the similarity in logical requirements 

nonetheless suggests that there might be a similarity in structure at this 

particular point.    It should be remembered, however,  that human ability to 

perform complex algorithms without extensive practice and learning time 

does not begin to approach that of a digital computer.    The human computer 

also tends to rely heavily on such external aids as pencil and paper to augment 

his memory for relevant data,  and with the aid of an external transcription of 

its outputs,  a perceptron can also be made to perform rather elaborate logic 

(in the manner of section ZZ.Z). 

Some possible cues as to the nature of temporary data storage in 

the human brain come from introspective observations of recall of strings of 

digits, words,  or melodies, and such exercises as attempting to count in 

binary up to the point where one loses track of the number on which one is 

operating.    In all of these cases,  recall is helped by rhythmic grouping of 

elements, and by visualization or auditory imagery of the elements in a 

continuously recurrent sequence.    It seems likely that an active memory, 

such as a reverberating loop system,  which continuously rewrites itself 

on every rehearsal of the stored information,  is involved. 
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22,4 Attention-Scanning and Perception of Complex Objects 

The preceding sections have dealt with the phenomena of 

program learning with respect to response sequences.   A capability for 

program learning is also useful for the direction of attention over a sensory 

field, and the perception of a complex pattern or object by noting its parts 

and the relations between them.    The possibility of directing attention 

selectively to part of the visual field was already observed in the last 

chapter.   A program-controlled perceptron Could, therefore, be taught to 

direct its attention successively to different parts of the field in some syste- 

matic order,  e.g.,  to scan from, left to right,   or top to bottom.    It is also 

plausible (although it remains to be demonstrated) that a back-coupled 

perceptron can be taught to shift its field of attention along a contour,  or 

edge of a figure,   so that the association set,  at any one time,  responds 

only to part of the contour.    Such a system, by starting at one point on a curve 

and following it in one direction,   could determine whether the curve is closed 

or open by indicating whether the scan process returns to its starting point 

without having lost the contour at any time. 

In the recognition of a complex structured object,  such as a 

man (regardless of posture,  angle of view,  etc.) a program of observations 

might note significant parts and the transitions between them.    There should, 

for example,  be a head joined to the shoulders, and by following a path from 

one of the hands,  the system should successively come to a forearm,   shoulder, 

and torso.    The reader may recognize a similarity between this suggestion 

and Hebb's concept of a "phase sequence" (Ref.  33).    The phase sequence 

consists of a progression of cell-assemblies,  each of which represents some 
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elementary perceptual fragment, the entire sequence representing a 

perception of a complex stimulus or experience.    In the perceptron, however, 

the progression of states is assumed to be under the control of a learned 

program, which directs the attention of the system in such a way as to make 

first one set of A-units, then another set achieve dominance, by the 

mechanisms described in Chapter 21.    A sequence-recognizing system,  such 

as the five-layer perceptron shown in Figure 64, would be required for the 

direction of the scanning process and for the recognition of the total configu- 

ration from its parts.    This system employs an      A '      layer of the same type 

as in Figure 63 (cross-coupled,    with fixed interconnections,  and A-units 

which hold their state until triggered by a sufficiently strong signal to change), 

The M) set in this model, however, has variable-valued connections 
.(2) both to a new      R set, which can learn to recognize complex patterns from 

sequences of parts,  and also back to the        R units,  so that the system can 

be taught to direct its attention in a systematic manner to look for anticipated 

parts of the complex. 

<x 

\J 

r\ 

,w 

KJ 

Figure 61    FIVE-LAYER PERCEPTRON  FOR RECOGNITION OF COMPLEX PATTERNS BY 

ATTENTION SCANNING PROGRAMS.   (BROKEN ARROWS  INDICATE 

VARIABLE CONNECTIONS). 
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22,5       Recognition of Abstract Relations 

It is apparent that the perceptrons proposed above are already- 

stretching the limits of what has been firmly established analytically and 

experimentally.    While there is good reason to think that the proposed 

systems would work in principle, they are highly speculative,  and we are 

far from being able to describe their performance in quantitative terms. 

Nonetheless,  one further venture in extrapolation seems to be of interest: 

As was previously noted, the recognition of abstract topological relations 

(or metric relations, for that matter) cannot be performed economically 

by a perceptron which is required to grasp the relation instantaneously from 

a complex pattern.    The relation "A is inside of B", for example, would 

require that the system be trained with all possible cases of "A inside B" 

and MA outside B",  even after it has been taught to identify patterns "A" 

and "B" correctly.    It seems more likely that a program-controlled perceptron, 

having been taught to recognize patterns A and B,  can determine whether A 

is inside of B by means of a directed scanning process. 

Suppose we show the perceptron a complex field,  containing a 

circle and a square, both of which it has previously been taught to identify, 

and we ask the system to indicate whether the circle is inside or outside 

the square.    This question could be answered by means of two attention 

sweeps,  beginning at the circle and first sweeping to the right,  then returning 

to the circle and sweeping to the left.    If an edge of the square is encountered 

on one of the two Sweeps but not on the other,  then the circle is "outside" 

the square; if an edge is encountered both to the right of the circle and to the 
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left, the circle is "inside" the square.    A somewhat more elaborate 

program would determine whether a known figure (e.g., a square or 

triangle) is inside or outside of an arbitrary closed curve. 

In the recognition of topological relations or metric relations 

(A is larger than B,  or A is above B),  and in programs which call for 

attention scanning,  it would probably help considerably to introduce geometric 

constraints into the S-A and A-A connections of the perceptron.    In the models 

which have been of primary interest up to this point,  there is no way of telling, 

apart from learned association,  that activity of a particular A-unit refers to a 

particular region of the sensory field.    The A-unit space is non-topological in 

character; it has no well-defined geometry or dimensionality.    This means 

that,  apart from learning,  there is no way of telling from observations on 

the state of the A-units,  what are the topological or geometrical  properties 

of the stimulus which is present on the retina.    While it seems likely that a 

geometrically constrained organization of A-unit connections (e.g. ,  increas- 

ing the probability of interconnection between A-units whose retinal fields 

lie in close proximity to one another) would be helpful,   there is  still no 

indication of what are the best constraints,  or what gain in performance 

can actually be realized by such means. 
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23.        SENSORY ANALYZING MECHANISMS 

The term "sensory analyzing mechanism" will be used for any 

signal transmission unit or network which detects and transmits information 

about selected parts or features of a total stimulus pattern.    Such mechanisms 

can frequently be used to reduce the amount of information which the perceptron 

must be prepared to evaluate.   They are particularly useful in highly organized 

environments (such as the familiar visual environment,  or an environment of 

printed words or spoken language) where purely random stimuli are unlikely 

to occur or are of little interest.    Thus a mechanism which detects boundaries 

of a solid image or describes gradients and contrasts in the visual field,  or 

performs a Fourier analysis of an audio input, or which encodes speech into a 

sequence of phonemes,  would be considered a sensory analyzing mechanism, 

A simple sensory unit which detects the level of illumination at a given point, 

or an A-unit which samples the illumination over a selected set of points are 

also sensory analyzing mechanisms. 

In most models considered thus far, little attempt has been made 

to optimize the sensory analyzing mechanisms employed.    The random origin 

configurations which have generally been employed can be shown to be far 

from optimum.    In this chapter, various methods of improving this primitive 

organization will be considered, particularly with respect to visual and 

auditory systems.    For the most part,  these mechanisms are assumed to take 

the form of built-in constraints,  such as were considered briefly in the d.i.d, 

models of Section 7.2.2, and the similarity-constrained perceptrons of 

Section 15.3.    The existence of such mechanisms in biological organisms 

is supported by an increasing amount of evidence,  such as Lettvin's studies of 
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frog vision (Ref,  51), Sutherland's studies of octopus vision (Ref.  98), 

Gibson and Walk on depth perception (Ref. 24), Sauer's work on bird navigation 

(Ref.  90), and Hubel's work on cat vision (Ref.   113).    Since most of these 

mechanisms appear to be hereditary rather than learned, it seems likely 

that they may be realized either by simple spatial constraints in the distri- 

butions of connections in the sensory network,  or else by simple "typological 

constraints" governing the kinds of cells which may be interconnected. 

23.1        Visual Analyzing Mechanisms 

A number of basic strategies for processing visual information 

have been proposed.    Some of these are so closely tied to digital computer 

processes that they are of little interest for a biological model,  while others 

require such a degree of logical precision and so large a system as to be 

biologically implausible (e. g. ,  Refs,   16,   17,  71),    The techniques to be consi- 

dered here are grouped under four main headings:    (1) Local property detectors; 

(2) Hierarchical retinal field organizations; (3) Sequential programs (centering 

and scanning methods); and (4) Sampling of sensory parameters.    The possible 

advantages of each of these methods will be considered (largely in a quali- 

tative fashion),   and the problem of an optimum mixture of analyzing 

mechanisms (somewhat analogous to the "mixed strategy" problem in game 

theory) will be discussed, 

23,1.1      Local Property Detectors 

The term "local property detector" will be used for any 

mechanism or neuron which responds to some particular feature of the 

stimulus pattern at a particular location (for example,  brightness,  color. 

-512. 



contour direction,  etc.).    Contour detectors and other types of property- 

detectors have been described by Culbertson (Ref.   17),  Taylor (Ref. 99), 

Inselberg,   Lttfgren,  and von Foerster (Ref. 4), and others.    Lettvin and 

associates (Ref.  51) have described four mechanisms (for detection of 

contrast,  convexity,  or small spot detection,  moving edge detection, and 

dimming detection) which appear to map into four distinct layers of the frog's 

tectum.    Of particular interest for present purposes is the series of experi- 

ments described by Hubel (Ref,   113),  in which the cells of a cat's visual 

cortex are shown to respond to lines and bars in particular positions and 

orientations,  or to stimuli moving in particular directions. 

The visual property detectors which appear on an a priori basis 

to be of maximum value for pattern recognition in an ordinary terrestrial 

environment (where the main purpose of the system is to detect and recognize 

coherent physical objects )include the following: 

1)        Brightness and color detection and measurement 

Z) Contour and gradient detection 

3) Curvilinearity detection and measurement 

4) Detection of angles,  intersections,  and discontinuities 

of lines and boundaries 

5) Spot detection 

6) Sensing of textures, and measurement of texture 

gradients 

7) Velocity and accelleration detection and measurement 
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In order to recognize stimulus patterns or objects, information 

of the types listed above must somehow be combined for different parts of 

the retina, to provide an indication of the total configuration.    This has been 

the main job of the association units,  in the perceptrons considered thus far. 

In all cases considered in previous chapters, the A-units have formed 

combinatorial functions of information coming from "local intensity detectors" 

{the S-units); thus the only property detectors employed have been of the first 

type.    The perceptron illustrated in Figure 65 introduces an additional layer 

of A-units immediately following the S-units, which can detect additional 

properties of the types indicated above.    The    A  '      layer, having its origin points 

in the     A layer,  now responds to combinations of local properties such 

as lines and gradients,  rather than merely to points of light. 

r\ 

KJ 

Figure 65 ORGANIZATION OF A PERCEPTRON EMPLOYING LOCAL PROPERTY DETECTORS. 
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The organization of origin fields for A-units serving as property- 

detectors of various types is illustrated in Figure 66.    The single-connection 

"point detector" serves merely as a logical relay for information which 

could be obtained equally well directly from the retina.    The concentric 

field organization of the spot detector appears to be found (in the case of 

the cat) more characteristically in the retinal ganglion cells than in the 

visual cortex (Ref.   113),    The various forms of line detectors and the 

"Type 2" termination detector have all been observed in the cat's cortex 

by Hubel.    Hubel has also reported units which respond only to moving 

stimuli, although the organization appears to be different from that suggested 

in Fig.  66(a), for the "moving edge detector".    There is some evidence that 

the movement detectors in the cat rely more upon the simultaneous summation 

of "off" signals from uncovered retinal points and "on" signals from retinal 

points which have just been covered by the displaced stimulus. 

The use of the Type Z termination detectors is illustrated in 

Fig.  66(b).    An     /\        unit which receives connections both from a termination 

detector and a line detector crossing the same field can recognize that the 

line approaches the inhibitory spot of the termination detector,  but does not 

cross it.    The same termination detector,  taken in conjunction with lines at 

different angles,  can serve to indicate termination of any one of the lines,  so 

that there is considerable saving by this method.    In fact, if there are ,-& 

discriminable angles for straight lines,  and   r    discriminable translates of. 

each line, (so that there are about    p    distinguishable termination-points 

scattered over the retina) then a system which employs Type 1 termination 

detectors would require a total of     r  *        A       units to guarantee a detector 
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id)    ORGANIZATION OF SENSORY FIELDS OF A ^ UNITS.  BROKEN LINES INDICATE FIELDS 

OF INHIBITORY ORIGIN POINTS; SOLID LINES INDICATE EXCITATORY FIELDS. 

RETINA A-UNITS 

+ 

/^-v^ 

G^^^I 

-*0  POINT DETECTOR 

SPOT DETECTOR 

LINE DETECTOR (LIGHT ON DARK GROUND) 

LINE DETECTOR (DARK ON LIGHT GROUND) 

*N 

TERMINATION OR CORNER DETECTOR (TYPE 2) 

"2ÜO  BOUNDARY OR GRADIENT DETECTOR 

OBSERVED IN 
CAT CORTEX 

33^30  TERMINATED LINE DETECTOR (TYPE 

CORNER DETECTOR (TYPE I 

MOVING EDGE DETECTOR 

lb) TYPICAL A (2' COMBINATIONS.  POSITION OF RETINAL FIELDS OF A '' ^ UNITS IS SHOWN 
RELATIVE TO FIXED AXES, FOR EACH UNIT. 

RETINAL ORIGIN FIELDS 

^=> 

4=& 

A ^ '  UNITS 

RESPONDS TO HORIZONTAL LINE. 
TERMINATED AT RIGHT END 

RESPONDS TO HORIZONTAL LINE, 
MOVING DOWNWARDS 

Figure 66 ORIGIN FIELD ORGANIZATIONS FOR LOCAL PROPERTY DETECTORS 
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for each combination of angle and termination point.    The use of Type 2 

detectors in conjunction with line detectors (as in Fig.  66(b))would require 

only    r' + rk        A^1'    units, to convey the same information.    If     r      and   A 

are both equal to 100, this means that   10        A   ' units are required with 
4 

Type 1 units,  and    2x10     with Type 2 units.    This may indicate why the 

Type 2 configuration appears to be found in the cat,  rather than the Type 1 

configurations . 

Figure 66(b) also demonstrates the multiple use of the same 

elementary property detectors (    -/' units) for a number of more complex 

functions at the     A  '       level.    Thus,  the unit    a^     is employed both in a 

terminated line detector and also as part of a moving line detector.   Since 
(2) 

movement detection can thus be obtained quite economically at the   A 

level, the type of moving edge detector illustrated in Figure 66(a) would 

tend to be obviated.    Hubel's observations on the cat suggest that (although 

more complex organizations may remain to be discovered) the most promi- 

nent types of property detectors in the visual cortex are of very simple types, 

such as the line and boundary detectors and Type 2 termination detectors 

illustrated in Figure 66(a).    In all of these cases,  a single excitatory and 

inhibitory field,  with simple constraints on the density of connections of 

each type,  is sufficient to yield the mechanism indicated. 

The actual advantages which might be realized by means of 

various types of property detectors have been investigated for several 

simple discrimination problems,  witli the results shown in Table  10,    Two 

types of environments were considered:    the first consists of the   letter "T" 
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in right-side-up and upside-down orientations,  and the second consists of 

the letter "L", also right-side-up and upside-down.    Each letter can appear 

in all translational positions.    The problem of discriminating the right-side- 

up "T" from the upside-down "T" is considered for a variety of retinal sizes 

ranging from 20 x 20 to 1000 x 1000.    The retina is assumed to be torroidally 

connected in all cases.    With both the   T   and the    L   ,  the horizontal line is 

taken to be nine units long, while the height of the letter is ten units.    The 

thickness of the lines is one unit, throughout.    The perceptror.   conidered 

are of the type shown in Figure 65, with the assumption that all inputs to 

A-units are excitatory.    Rather than attempting to find optimum parameters 
(2) 

for the various types of property detectors,  the number of     A inputs is 

always the minimum number which will permit the discrimination to be 

achieved.    Other parameters (and the introduction of inhibitory connections) 

would undoubtedly permit more economical solutions, but this serves to 

illustrate basic principles. 

The table gives the probabilities of finding     A units which 

will discriminate between a given stimulus of the "positive" class (say the 

upright position) and all members of the opposite class.    The origin points- 

of the     A units are assumed to be chosen at random from among the 

/• units.    The first line of the table,  in which the     A units are 

simple point detectors,  corresponds to the case of a simple perceptron, 

where each A-unit receives its input connections directly from the retina. 

For such a system,  it can easily be seen that at least two excitatory origins 

and a threshold of 2 are required in order to distinguish between the 

upright and upside-down "L",  while three excitatory origins and a threshold 
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of 3 are required to distinguish the upright from the upside-down "T". 

The figures in the first two columns of the table are influenced by small- 

retina effects, which disappear for the 40 x 40 and larger retinas. 

Several general conclusions can be drawn   from this table. 

First of all,  it is clear that the value of different types of property detectors 

depends upon the stimuli to be discriminated as well as the size of the retina. 

For the discrimination of the L-shaped stimuli, which require only two points 

or blobs for discrimination, the best results are obtained with large (4 x 4) 

square origin point configurations for the     A units, while for the   T's 

a slightly elongated (4x5) configurations with a high threshold is preferable, 

since it permits the use of only two    A '        units instead of three per   f\ 

unit.    Note that the advantage of the rectangular origin configuration over 

the 4x4 square is pronounced only for large retinal sizes, however; for a 

smaller retina than 20 x 20, the square configuration might actually be 

preferable.    For the conditions considered in this analysis, the following 
(2} 

equation for the probability of a useful   A       unit shows the effect of 

increasing retinal size: 

P 
frNJ (23.1) 

The reader may find it instructive to examine the Q-matrices for a 
binomial perceptron in these problems, and satisfy himself that they 
are consistent with the geometrical requirement that three inputs and 
a threshold of 3 are required to discriminate between the upright and 
upside down "T",  in all translational positions. 
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where        /V. 

r 

e 

number of S-points in retina 

(I) number of useful combinations of    A origin configurations 

for an   A '     unit 

=   number of admissible rotational positions for each   A 

configuration 

(2) 
-   number of input connections to each    A        unit 

U) 

For a large retina,   P   clearly becomes small very rapidly,  and the situation 
(Z) 

is aggravated by the requirement of many inputs for each   A       unit.    Thus 

for the discrimination of the upright and upside-down   T   >  which requires 
-4 -16 three point inputs,    P    goes from   10       for a 20 x Z0 retina to about  10 

for a  1000 x 1000 retina.    The use of 4 x 5 bars as line detectors instead 

of point configurations, while it improves the probability by more than three 

orders of magnitude,   still leaves a requirement for over   10 A        units 

if the   T   is to be discriminated reliably in the large retina.    Even with 

optimum parameters,   the required number of   A units is inadmissibly 

large.    Nonetheless,  the recognition of the position of a   9x10 " T" in a 

1000 x 1000 field is certainly well within the limits of human vision.    Some 

additional means must therefore be found,  to provide an economical solution 

for this problem without introducing a brainful of special  "T-detectors" . 

The principles discussed in the following section,  combined with the use of 

property detectors,  will be seen to yield a radical improvement in the 

recognition of small stimuli. 
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E3,1.2      Heirarchical Retinal Field Organizations 

The "retinal field" of an A-unit is the region of the retina in 

which its origin points may be found.    In a multi-layer system,  the retinal 

field of an     A       unit is the union of the retinal fields of the    /\       units 

which are connected to the      /\        unit; in general, the retinal field of an 

A   '    unit is the union of the retinal fields of the connected      A. units.    In 

a perceptron with a heirarchical retinal field organization,  the retinal fields 

of the A-units tend to increase in area, the greater the logical distance of the 

A-unit from the retina.    For example, the     A       units may have highly local- 

ized origin configurations for the detection of local properties (as in Table 10); 
(2; 

the      A        units could then detect combinations of properties over a somewhat 

larger field (responding to small,  compact figures or parts of larger patterns); 

and a layer of     A units might then be added to respond to combinations of 

sub-figures over the entire retina.    While the general principle of organization 

is from  small to large retinal fields as the A-units increase in depth,  it is not 

required that all A-units at a given level have retinal fields of the same size; 

there may be       A        units, for example, whose fields are larger than the 

smallest     A       fields, provided the expected size of the retinal fields 

increases with increasing depth. 

Such a system is clearly much closer to the organization of 

the mammalian visual system than the uniform origin distributions which 

were considered in previous models.    A brief consideration was given to 

constrained origin fields in Section 1.2,2,  where it was found that no 

appreciable gain in performance was obtained with large stimuli,  such as 

the squares and triangles of Experiment 7.    The effects of employing cons- 
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trained retinal fields for the      A      units in the perceptron of Figure 65 

will now be considered, for the range of retinal sizes shown in Table 10. 

It was found in the preceding section that as the retina becomes large 

relative to the size of the stimuli, the probability of finding a useful   A 

unit becomes inadmissibly small in the unconstrained system.    Table 11 
In) 

shows the effect of limiting      /\        retinal fields to a 20 x 20 region of the 

retina (located at random in a larger retina).   Again, it should be remembered 

that the parameters have not been optimized, and that appreciably better 

results might be obtained with larger numbers of inputs to the     A       units, 

and the inclusion of inhibitory connections.    Nonetheless, a comparison 

with Table 10 illustrates the marked improvement in the size of the system 

necessary Co achieve recognition in a large retina.    The first column of 

probabilities (for the 20 x 20 retina) is,  of course, identical to the correspon- 

ding column of Table 10, and the first line corresponds to a three-layer 

model with constrained origin fields for the A-units.    In the case of the 

1000 x 1000 retina,  using the best of the      A       origin configurations,  a 

gain of more than five orders of magnitude is obtained, bringing the discri- 

mination problem for the first time within the capacity of a human-sized 

brain model.    Note, however, that the best    /\('      origin configuration has 

shifted from the 4x5 bar with    9 = 5 to the 4x4 square with 0 = 1. 

The probability   P     of finding a useful      A      unit in this system 

is given by the following equation,  which is analogous to (Z3. 1); 

P-- 
vi 

« 
i \k 

N. s     _ 
N. 

TV 

IA/;'  NS 
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where    77/ ,  r ,    and J&  are defined as for equation 23. 1,    Ws    = number of 

S-points in the retina, and    H.      - number of S-points in the retinal field 
w 

of an     A       unit.    Taking the ratio of equations (23.2) and (23.1), we obtain 

the relative advantage of the constrained retinal field system over the 

unconstrained system: 

N< 

N (23,3) 

Thus the advantage increases exponentially with the number of connections 

required to each      A       unit, and with the ratio   Ns/N     ■    Both of these 

effects can be seen in Table 11 

Clearly,  if the system is required to recognize a stimulus of 

diameter D,  the size of the retinal field cannot be taken smaller than D;. 

without loss of performance; the above equations assume that the retinal 

field is large enough so that boundary effects can be neglected.    The optimum 

size, then appears to be on the order of D, the expected stimulus diameter. 

We now have the problem of how to deal with universes of stimuli which vary 

in diameter from very small to very large patterns.    The best choice of a 

distribution of retinal field sizes for the    A      units will generally be one 
(Z) 

which guarantees the same likelihood of finding a useful     A       unit for all 

stimuli.    For the particular case in which the stimulus diameter distribution 

is uniform between the limits   D and D ,  this can be approximately 
mm max 

realized by taking 

Prob (A = D2) = l/o2 £ 
(23.4) 
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where    A    - fraction of retinal area in an    A   ''    retinal field 

max 

Z,    -     7^ ——        (where  D   is measured in retinal diameters) 
D 

D mtn 

Table 11  suggests that stimuli of the complexity of alphabetic 

characters ranging in size from .01 to 1 retinal diameter can be recognized 

by a system the size of the human brain (   10 units) by employing a four- 

layer model, with a suitable combination of property detector configurations 

and a suitable distribution of   A'        field diameters.    The recognition problem 

can be made considerably more difficult, however, by adding additional degrees 

of freedom to the stimulus organizations.    Consider, for example, the following 

environment: Let  //    consist of two classes of composite stimuli.    Each 

stimulus consists of two 9x10    T's   , which may be located at any position 

in the retinal field, provided they are at least 10 retinal units apart.    If 

both T's    are right-side-up or if both are upside-down, the stimulus,   is a 

member of the positive class; if one is right-side-up and the other is upside- 

down,  the stimulus is in the negative class.    Let us consider the probability 
{2) 

of finding a useful      A unit for this dichotomy. 

If these stimuli are to be differentiated by A-units with random- 

point origin configurations (all excitatory,  as in the previous examples) then 
(2) 

six connections and a 0 of 6 is required for each   A unit.    By employing 

one of the line-detector mechanisms of Table     10,  4 inputs and a 0 of 4 are 

required.    The conslrained-field system of Table  11  (with 20 x Z0 retinal fields 
(2) 

for the    A units) cannot be employed here,  a« the combined stimulus 
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pattern may cover the entire retinal field.    The best that can be done is to 

,") employ the     /\       configuration of 4 x 5 bars, which yields a probability of 
-25 '2) 

6 x 10     ' of finding a useful     ft      unit,  with a 1000 x 1000 retina.    (For 

the single random point configuration -~ the worst case -- the probability 

is 7,34 x 10"33.) 

By employing a five-layer topology,   it is possible to take 

advantage of the fact that each stimulus actually consists of two organized 

sub-patterns,  each having quite small dimensions relative to the retina. 

>(.'i] Assume the     /I       units to have Z0 x Z0 retinal fields,  as in Table  11,  while 

the    A       units have two excitatory input connections,   chosen at random 

from among the    /\      units.    Thus the     A'    units serve as local property 
,(2' .(3) detectors,  the      A     units serve as sub-pattern detectors,  and the   A 

units integrate this information over the whole retinal field.    (In this 

particular problem,  the performance could be improved further by taking a 

larger number of input connections for each     A'     unit,  but as before,  we are 

trying to demonstrate basic principles rather than find optimum organizations.) 

This five-layer system is compared with the four-layer system in Table 12. 

For moderate numbers of connections to the    A      units in this system,  the 

probability of a useful     A      unit (with   0 = 2) can be closely approximated by 

the binomial probability: 

(3; 

I P'   1
//-PT 

(23.5) 

(3)   , 

p - kj P' (I-P) 

where       P       =   probability of a useful      A        unit for "sub-figure" 

discrimination,  and 

^      -   number of (excitatory) input connections to an     A unit 
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Thus with 25 inputs to each  /t"     unit the probabilities for the five-layer 

systems could be increased by a factor of about 300.    Note that even under 

these conditions, however,  while the problem becomes soluble for a brain- 

sized system in the case of a 100 by 100 retina, it is still unmanageable in 

the 1000 x 1000 retina. 

The difficulty of this problem for the large retina should not 

surprise us; it is unlikely that a human subject,  asked to perform the 

indicated discrimination with tachistoscopically presented stimuli,   could do 

appreciably better than chance,  where the two   T's   each subtend only 1/100 

of the central visual, field,  and are located at random relative to one another. 

Even the case of the  100 x 100 retina (where the  T's     subtend 1/10 the 

diameter of the field) would probably yield marginal results,   if the subject 

were not permitted time to scan the field or shift his attention during the 

exposure.    On the other hand,   if the    T's were constrained to lie relatively 

close to one another (say within a 40 x 40 subfield) the problem would 

probably not be difficult.    This problem,  however,   could readily be handled 

by a five-layer perceptron in which the    -l'       retinal fields were constrained 

to a 40 x 40 region,  while limiting the   A'      fields to 20 x 20,  as before. 

Thus it appears that a heirarchical organization with three association layers 

is competitive with human visual performance,  with respect to resolution of 

detailed figures    and recognition of complexes of sub-figures,  under condi- 

tions in which no scanning or shifting uf attention is allowed. 
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If we were to complicate the problem by adding a third   "T"   , 

again placing the stimuli in the positive class if all  T's    face the same way, 

and the negative class if some face up and some down, the probabilities of 
'';■) (3) 

finding suitable    A        and   A        units would again fall by many orders of 

magnitude.    For this problem,   it is unlikely that any purely spatial and 
10 

parametric constraints on the network would permit a solution with only   10 

units,  with a retina appreciably greater than the size of the stimuli.    It is 

also unlikely that a human subject,  under tachistoscopic conditions,  could do 

much better.    Thus for complex organizations of organized sub-figures,  each 

of which has several degrees of freedom independently of the others,  some 

additional strategy must be sought to improve recognition capability.    The use 

of sequential observations seems to be indicated at this point. 

Z3.1.3     Sequential Observation Programs 

The perceptrons considered in the last two sections,  while 

facilitating the discrimination of small patterns in which fine details provide 

the essential information,  are still far from optimum.    For one thing,  the 

number of A-units required remains very large; for another thing,  the 

learning time would be correspondingly great,   if the discrimination must be 

learned for all combinations of figural elements.    These difficulties can be 

drastically reduced by the employment of a program-learning perceptron,   such 

as the models considered in the last chapter.    In particular,  a system of the 

type described in Section Z2.4,  with a selective attention mechanism which 

permits it to attend to one detail or sub-figure at a time,   is likely to prove 

useful in dealing with complex stimuli.    Such a system can be employed in 

at least two basic ways: 
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1)   It can be taught to recognize the presence of a sub-pattern 

(a spot or region of in which the fine structure is particularly dense) without 

having to classify it or differentiate it precisely.    It can then direct the visual 

centering mechanisms to bring this pattern to the center of the retina, where 

high-resolution is possible,  and where the system is taught to differentiate 

the type of pattern more precisely. 

Z)   The perceptron may be taught to examine each of a number 

of retinal regions in   turn (either by a systematic scanning procedure, by 

following boundaries,  or by directing attention to those sub-fields in which 

the fine structure is particularly dense).    This will result in the recognition 

of a definite sequence of details, which,  in its entirety,  serves to identify 

the complex stimulus organization. 

The recognition of small objects in a large field may best be 

achieved by the first of these methods, while the discrimination of complex 

organizations (e.g.,  individual faces) requires the second method.    In 

employing the second method,  it would be particularly helpful if the 

perceptron could shift its field of attention systematically in a given 

direction,  with the direction of attention shift provided as an additional 

piece of information to the association system at all times.    In this case, 

the general configuration of the letter   "A"   followed by the letter "B" 

followed by "C" could be recognized by starting from the left of the field, 

shifting attention right to the first "detail",  then right again to the second 

detail, and then right again to the third.    The recognition of this complete 
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sequence would indicate the ABC configuration regardless of the actual 

positions of the letters in the field or their relative distances.    It seems 

likely that the general problem of relation-recognition will ultimately yield 

only to sequential programs of this type. 

Z3 , 1 .4     Sampling of Sensory Parameters 

•-  A fourth basic strategy for simplifying the sensory data which 

the perceptron must deal with is that of independent sampling of sensory 

parameters.    In a general visual input system, five parameters are of 

interest: the intensityof illumination at a point,  the frequency or color of 

the illumination,  the time at which it occurs,  and the   /   and   y    coordinates 

of the location of the point on the retinal surface.    Each of these variables 

may be varied independently of the others.    If we required a retina of 1000 

lines resolution (i.e.,   10     points),  with sensitivity to 10 frequency bands, 

10 levels of illumination,  and 10 time delays for the outputs of each S-point, 
9 

a total of   10       retinal points would be required to provide a sensory unit for 

each combination ol values. 

If it is actually required to discriminate between any two patterns, 

no matter how minute the difference between them,  then there is no way of 

escaping this requirement.    In general,   however,  we are satisfied with 

approximate information,  and it is only under special conditions of "good 

observation" that we expect to obtain the highest resolution from the system. 

We can take advantage of this by means of the following organization. 

One sequential mechanism which may greatly improve performance is to take 
a sequence of "looks" at a given stimulus,   with different fixation points selec- 
ted at random,   accepting a majority decision for the final response.    The gains 
which might be expected,   assuming independence between "looks",   have been 
discussed in Reference  79,   pp    156-157. 
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Suppose we limit the number of retinal points to  10       .    To each 

of these S-points,  x    and  y   coordinates are assigned at random (from a uni- 

form distribution over the whole field,  rather than just points on a 1000 by 

1000 lattice).    In addition, a frequency drawn at random from the sensitivity 

range of the system is assigned to each S-point, and a threshold and time 

delay are similarly assigned at random.    Now,  if the perceptron sees a 

moving figure,  with a variety of shading and color variation,  it will be less 

precise in its judgement as to the exact position of the figure at time   t    , or 

the color of a given point in the- retinal field at time   t    , than would be the 
9 

case with the "complete" system with   10       S-points.    If,  however,  we "fix" 

the position of the figure on the retina,  and provide maximum contrast 

between illuminated and non-illuminated points (i.e,  sharpen the figure to 

a black and white silhouette),  and observe it for long enough to permit all 

time delays to propagate, then we have just as good shape-definition as in the 
9 6 

system with   10      S-points,  since all 10        retinal points will contribute one 

bit of information.    Alternatively,  if the entire field is illuminated at maximum 

intensity with a given frequency of light,   this frequency can be discriminated 

to one part in   10       .or five orders of magnitude better than the previous 

model.    The same will be true with respect to intensity discrimination if 

the field is illuminated with white light,  ail frequency components being 

present with the same intensity.    Similarly, the velocity, acceleration, 

and higher derivatives of the velocity of a moving object can be discrimi- 

nated much better with the 10     element randomized-parameter system, 

provided the moving image consists of a sharp black and white pattern. 

Finally,  we note that if we wish to specify the exact retinal coordinates of 

a square,  the edges of which are alligned with the lattice pointq   in the first 
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model, we can expect a maximum accuracy of one part in 1000, whereas 

with the random configuration (where some of the points will fall virtually 

on the boundary of the square regardless of its location) we could expect 

to improve the performance by several orders of magnitude. 

What is sacrificed in this system is the ability to provide full 

information about individual retinal points,  and the ability to provide maximum 

precision of discrimination in the case of shaded,  moving figures.    It would 

be difficult,  for example,  to precisely locate the boundary of a moving cloud, 

or to state the exact colors of specified points in a continuously varying 

mixture of colored lights; these are precisely the conditions,  however, 

under which a human observer would also encounter difficulty,  whereas if 

we optimize the conditions of observation by providing stationary figures and 

sharp contrast,  resolution far in excess of the "fixed lattice system" can be 

obtained.    Note that there is a trade-off between the resolution obtainable in 

one parameter and the resolution in other parameters; we cannot simultaneously 

optimize conditions for observing position and velocity,  or color and intensity, 

for example.    An interesting analogy can be drawn to the limitations on 

simultaneous observation of related variables in quantum mechanics,  although 

there is no reason to suppose that the analogy is anything other than coinci- 

dental . 
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23,1.5       "Mixed Strategies" and the Design of General Purpose Systems 

In the preceding sections,  it has been demonstrated that the kind 

of network organization which is best suited for one stimulus environment 

or discrimination problem may be far from optimum for a different problem. 

The upright and upside-down   T's    , for example, might best be discriminated 

by a specially designed      T -detector; but in this case every other letter,  or 

combination of lines which might be encountered would have to have its own 

special detector mechanism, and the system would be useless in a general 

environment.    Thus the question arises,   if we know only the general character 

of an environment, but cannot anticipate all discriminations that the perceptron 

may be required to learn, what is the best combination of stimulus analyzing 

mechanisms to provide a good "general purpose" system? 

This problem (on which no real analysis has been done to date) 

seems to be related, at least superficially, to the mixed strategy problem 

in game theory. The object of the game is to minimize the probability that 

any discrimination problem likely to arise in nature will be insoluble,   subject 

to constraints on the size of the system, admissible learning times, etc.    In 
(2) 

Equation (23.4) a proposed solution for the distribution of  A        fields was 

presented, for the special case in which the stimulus diameters are uniformly 

distributed.    A more general solution should also consider the best mixture 

of line-detectors,  spot-detectors, point-combination detectors,  etc, among 
fi) 

the   A units,  the number of layers to be employed and the distribution of 

retinal fields among them,  etc. 
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A few general rules seem to have emerged from studies thus 

far.    For one thing,  it seems to be inadvisable to seek highly specialized 

property detectors in the early stages of the network.    A few basic types, 

such as line and boundary detectors,   spot detectors, termination detectors, 

and movement detectors are certainly helpful,  and yield appreciable 

improvements over random-point combinations.    But higher-level organizations 

seem to be achieved better either by a mixture of simple properties at a 

greater logical depth in the network (as in the five-layer system considered 

in Section 23. 2. Z) or else by learning,  at the R-unit level.    For another 

thing,  the extension in depth of a heirarchical retinal field system is useful 

for a limited number of levels,  but extension much beyond three association 

layers seems unlikely to improve capabilities appreciably in systems the size 

of the human brain.    Recognition problems which cannot be dealt with by a 

five-layer heirarchical   structure, due to the large number of small details 

which must be considered in solving the problem,  are best handled by a 

sequential system,   rather than by continuing to increase the depth of the 

network. 

It is questionable whether analytic procedures will be able to 

make much headway in dealing with this problem,  although a combined attack 

with simulation techniques and analysis wherever applicable should yield 

considerably better information concerning the optimum organization    for a 

given visual universe. 
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23. Z    Audio-Analyzing Mechanisms 

The sensory analyzing  mechanisms which are best suited to 

an auditory input system are in some respects similar to those which have 

been considered for visual inputs.    The difference in character of typical 

auditory patterns (speech in particular),  where temporal organization largely 

takes the place of spatial organization,  leads to a number of distinctive 

requirements.    The following sections consider several of these special 

problems. 

23.2.1.     Fourier Analysis and Parameter Sampling 

In principle,  a number of possible sensory representations 

could be used for auditory material,  including the continuous measurement 

of the amplitude of a waveform; spectral analysis, with the amplitudes given 

for all frequency components as a function of time; and various "reduced 

information" systems,   such as the indication of zero-crossings,  or the 

outputs of special filter systems.    In the human auditory system,  phase 

information appears to be disregarded,  and a Fourier analysis into spectral 

components is employed.    In a system designed to simulate human perform- 

ance in speech recognition,  musical recognition,  and related problems, a 

presentation of the actual waveform would burden the system with a great 

deal of excessive information.    The same word spoken with slightly different 

phase relations between the frequency components, for example,  would 

present completely different wave-shapes, which the perceptron would 

have to learn to identify.    Thus the spectral analysis of the audio input 

seems preferable. 
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With a Fourier analyzed input, the important sensory parameters 

to be represented by an S-point are the frequency, amplitude (or threshold), 

and time relative to the present (generally represented by connection delays). 

With these three variables, the principle of independent sampling of sensory 

parameters,  discussed in Section Z3.1.4,  is again applicable.    If the system 

is required to discriminate 100 frequencies,   100 time delays, and 100 ampli- 

tude s,  for ' example,  then a total of   10        frequency-threshold-delay 

combinations would be required with a "complete lattice" system.    Using 

independently sampled parameters,  on the other hand,  a system with only 

1000 S-units could discriminate  1000 frequencies in an intense sustained 

tone or mixture; it could discriminate 1000 amplitude levels in a "white 

noise" mixture sustained for the duration of the maximum time delays; or 

it could place the occurrence of an intense "pip" of white noise to a 

precision of one part in 1000 in time.    Under less optimum conditions,  the 

accuracy of discrimination in separate dimensions would be reduced,  but 

the   composite organization could still be discriminated readily from an 

appreciably different organization. 

23.2.2       A Phoneme-Analyzing Perceptron 

An introductory discussion of the phenomena of speech per- 

ception can be found in the chapters by Licklider and Miller in Ref.   112. 

Perceptrons for speech recognition and the association of names with 

objects or events have been discussed in Section 21.3.    In these systems, 

it is assumed that a complete word must be learned as a primitive pattern, 

without preliminary analysis into significant sounds,  or phonemes.     In 

this section,  a more   sophisticated perceptron,  capable of phonemic analysis, 

will be described. 
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The possible improvement in efficiency which can be obtained 

by analyzing a word into a sequence of phonemes can be highly significant. 

If we consider a hypothetical (and rather unnatural) language in which there 

are 100 allophones (or functionally equivalent sounds) for each phoneme,  and 

a word of five phonemes consists of an independent choice of one of the 

allophones for each phoneme, then the word may appear in any one of 
5 10 100      =    10 possible forms.    For a perceptron with a high degree of 

sensitivity to differences in sound patterns,  this would mean that the 

discrimination of two words would require an enormous number of 

utterances (perhaps many millions) in order to generalize to all equivalent 

pronounciations (allomorphs) which might occur.    (In actuality,   the 

correlation between choices of allophones for different phonemes,  in 

ordinary speech,  would greatly reduce the sample size required,  but the 

example will serve for illustrative purposes.)   On the other hand,  if each 

phoneme were first recognized by a distinct R-unit,  and the outputs of the 

R-anits taken as the input for a word recognizing perceptron,  this second 

perceptron would receive an invariant sequence for each word,  and in prin- 

ciple a single utterance of each word (morphene) would be sufficient for 

complete generalization.    The phoneme-recognizing units would each have 

to distinguish a set of 100 allophones from a universe of   500 (assuming that 

only five phonemes are involved,  so that the learning at this level might be 

achieved quite readily. 

In actuality,  the recognition of a phoneme is not as simple 

as the above discussion suggests,   since a single speech sound cannot,  in 

general,  be recognized independently of its context.    The preceding and 

subsequent sounds may completely alter the sound of a vowel, for example. 

Thus a phoneme-recognizing perceptron must itself be a sequence- 

recognition device,   rather than a momentary-pattern recognizer. 
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A perceptron which appears to be capable of analyzing a 

sequence of words,   so as to spontaneously develop an internal code for the 

phonemes employed is illustrated in Figure 67.    It is a five layer perceptron, 

with variable connections between the    A'     and     tf     layers, and between 

the     A       layer and the R-units.    The     /\ "     layer can be thought of as 

playing the role of "R-units" for the first three layers of the perceptron, 

and will eventually learn the phoneme code to be employed.    At the same 

time,  it serves as the "sensory system" for the last three layers,  which 
(3) 

act as a three-layer perceptron for word-recognition.    The     ft      system 

may either be organized as a cross-coupled system,  or its input connections 

may be given a spectrum of delays; in either case,  it is capable of 

recognizing sequences of inputs,   rather than just momentary patterns.    If 

the    f\       units are cross-coupled (particularly with inhibitory connections) 

and are of the "flip-flop" variety, tending to remain in their present "on" or 

"off" state until receiving a super-threshold signal,  then the     A        system 

will tend to go to a state characteristic of the sequence of input patterns 

regardless of the duration of the individual patterns in the sequence.    This 

is particularly true if the     A        system goes through a sequence of states 

(A,   B,  C, . . . ) where each state is "held" without variation for a time 

greater than the "settling-down time" of the    A       system (which should 

normally be no greater than two or three transmission delays, for the 

conditions given).    Thus a "word" encoded into a sequence of phonemes 

by the     /V       units would lead to a fixed state of the     A'       system upon its 

termination,   regardless of the actual duration of the phonemes. 

This effect,  as well as some of the others discussed in this section, 

might be employed to advantage in a visual system which is required 
to recognize sequences of stimuli,  such as successively presented 
letters or signals. 
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The reinforcement rule for the to R-unit connections is a 

conventional    oC -system rule,  so that an error correction procedure may 

be employed to teach the system to recognize words.    The reinforcement 
>') (2) 

rule for the A      to   A        connections,  however, is a probabilistic one, 

defined as follows: 

1. With each connection,   £• ■     , from an   A        to an  /I        unit 

is associated a time-dependent probability,    P- j (t)    , called the instability 

coefficient of the connection. 

ft) (2'1 

Z. Reinforcement at the preterminal level [A       to   A 

network) is applied only upon the decision of the reinforcement control system, 

or experimenter.    Otherwise,  the values of these connections remain 

unchanged. 

3.        If preterminal reinforcement is applied at time   t    , all 

instability coefficients are changed by the amount  /IP-•  ■   a*e' - (T P; ■(t),\o < f-1 I 

If no reinforcement is applied at time   i  ,     /\: • •   -   - (f P.: (t) 

4.        If reinforcement is applied,  assume that the current 

activity states of all A "    units are "wrong", and apply the correction 

/."•;■;   -   /     J • {■,] i.' )      with probability     M ■   t'i      .    (This is equivalent 

to an     >   -system error correction applied probabilistically.) 

The actual training procedure can best be described in terms 

of the following experiment: 
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Assume a language,  L, possessing three phonemes, A,  B, and 

C, with k allomorphs of each phoneme.    Time is quantized in units  At 

Each phoneme persists for a duration At    , unless otherwise indicated.    Let 

L consists of the six words, AB,  BA, AC, CA,  BC,  CB,   Assume some 

output code,   P (w)     is assigned to each word, A*/   .    Then the procedure for 

training the perceptron is as follows: 

Present a randomly chosen allomorph of the first word (AB),  and 

observe the response of the perceptron.    If this is correct,  go on to the next 

word (BA); if it is incorrect,^present AB again,   this1 time applying i). (quantized) 

error-correction reinforcement to the terminal connections (     '' to R-units), 

Again test the response; to the word AB.    If the response is now correct,  go 

on to the next word; otherwise,  present the word again,   this time reinforcing 

the preterminal network [A to     /■ '      connections)   and leaving the 

terminal network unaltered.    Then apply a second correction to the terminal 

network,  and retest the response to AB.    Continue alternating between 

reinforcements applied to the terminal network and reinforcements applied 

to the preterminal network,  until AB elicits the correct response.    Then go 

on to the next word (BA) and repeat the same procedure.    Continue cycling 

through the complete vocabulary until all words have been learned correctly. 

A very limited amount of experimental work has been done with 

this system,  using coin-tossing experiments and pecil-and-paper simulation 

techniques to investigate performance for the three-phoneme language 

considered above.    Note that in this experiment, the perceptron is never 

given a single phoneme in isolation,  but always as part of a two-phoneme 

word.    Moreover,  the perceptron is never corrected for "mistakes" in a 

single phoneme; reinforcements applied to the preterminal network are 
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maintained for the duration of an entire word,   regardless of whether one or 

both phonemes are causing the difficulty.    Nonetheless,   it is found that as 

long as the number of '1     units is greater than the number of phonemes 

( A/ 5"   has been found to work well),  the system tends to form a 

phoneme-code at the 4      level; i. e. ,   after a period of training,   each 

phoneme (A,   B,   and C) activates a different set of A'    units,   and all allo- 
', j 

phones of a given phoneme tend to activate the identical set of 4      units. 

These results can, be obtained in a very short training sequence 

(generally less than one complete run through the 6-word vocabulary) with 

a suitable choice of the parameters   f    and   rf   (which determine the rate of 

growth and decay of the instability coefficients,   i->- ■   ).    On the other hand, 

no deterministic system has been found which will yield comparable results, 

although something like a dozen alternatives have been tried.    A rough heuris- 

tic explanation for the observed effect can be given as follows:   When the system 

arrives at some state in which the activities of the A      units constitute a phoneme- 

code for the language,   new words can generally be learned with at most one or two 

reinforcements of the terminal network,   so that there is little occasion to re- 

inforce the preterminal connections.     Consequently, the instability coefficients, 

'-'; ■   ,   all decay towards  zero,   and the probability of disrupting the learned 

code,   even if a reinforcement of the terminal network does fail to correct 

an error,   is negligible.    On the other hand,   if any two phonemes are assigned 

the same code,   there will be repeated confusions of words which can only be 

distinguished by means of the undiscriminated phonemes.    Consequently,   the 

preterminal network will frequently be reinforced for words containing these 

phonemes,   but not for other words.     Therefore,   the connections originating 

from /I     units which are activated by one of the conflicting phonemes will tend 

to acquire large instability coefficients,, leading eventually to the modification 

of the A     responses to these phonemes.    But since the corrections are applied 

probabilistically,   the system will tend to try out arbitrary A'    codes,   and is 

544 



thus immune to ''trapping" cycles,  which tend to occur in deterministic 

models.    In brief,   the effect of the instability coefficients is to make those 

connections most suspectible to change which are most troublesome to the 

system. 

It remains to be seen why the system tends to assign the same 

A       code to all allophones of a given phoneme,   rather than merely making 

up totally unique codes for every input pattern.    In part,   this is helped by 

keeping the number of 4     units small,   so that conflicts are likely to arise 

if the code is not an economical one.    The main effect,  however,   is due to the 

fact that different allophones of a given speech sound are not arbitrary, 

independent patterns,   but tend to be highly correlated in the frequency-time- 

amplitude picture which comes from the sensory    system.    Thus the condi- 

tions are ideally suited for generalization from one allophone to nearly 

identical sounds,   from there to next-nearest neighbors,   etc,    In fact,   the 

tendency would be to classify all sounds identically (due to positive   o,-; 

coefficients in an ^-system) were it not for the intervention of the experimenter 

or r. c. s. ,   which forces the separation of significantly different sound patterns. 

The spontaneous clustering of "similar" sounds can be compared to the 

spontaneous clustering of "similar" visual stimuli discussed in Section 7. 3, 

and demonstrated for a   /'-system in Experiment 9  (Page 214). 

By adding fixed back-connections from the ■■      to the •■      units in 

the perceptron of Figure 67,   the recognition of individual phonemes may be 

more readily influenced by the preceding sequence.    Alternatively,   variable- 

valued back-connections from -i     to   ■      units might be conditioned,   by a 

suitable training procedure,  to provide a bias to the A     units,   tending to favor 

the recognition of the most probable next phoneme,   as determined by the 

prior sequence. 
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While the above discussion has concentrated on demonstrating the 

possibility of a self-organizing mechanism for phoneme analysis,   it is also 

possible to employ a somewhat simpler version of the five-layer system in 

which the A     units are actually trained by the experimenter to emit a chosen 

code for each phoneme.    In this case,   the A     units are actually R-units,   and 

the probabilistic reinforcement rule for the pre-terminal network is no longer 

necessary,   an ordinary od-system error correction procedure being perfectly 

suitable.    One might also consider the possibility of extending the five-layer 

system in depth,  by adding another A-unit layer and terminal R-layer after the 

last layer of the present model.     By reinforcing first the te'   .linal connections, 
'i.i fr 

then the A'    outputs,   and finally the A     outputs (in case of failure to correct the 

mistake at the terminal level),  the system might be expected to develop a 

phoneme code in the initial part of the network,   a syllable code in the middle, 

and a code for complete words or phrases at the level of the final R-units. 

Z3. 2, 3   Melodic Bias in a Cross-Coupled Audio-Perceptron 

The final stimulus analyzing mechanism to be considered is one 

which seems likely to occur spontaneously in cross-coupled perceptrons (of 

the type analyzed in Chapter 19) with audio-inputs.    Suppose such a perceptron 

is exposed to a random sequence of notes,   covering a range of several octaves, 

and played by a variety of string and wind instruments.    Each note is held long 

enough for the cross-connections of the association system to be reinforced, 

before the next note is sounded.    Then,   assuming that the input comes from a 

Fourier analyzing systeni,   the fundamental will be associated most strongly 

to the major overtones of the sequences characterizing the instruments employed. 

Thus the main association will generally be to the octave above or below,  next 

to intervals of a major fourth and fifth,   etc.    This means that the main 

harmonic intervals of a twelve-tone scale will tend to predominate,   rather 

than purely random frequency associations. 
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Such a system will tend to respond most unambiguously to chords 

and combinations of notes bearing a simple harmonic relation to one another 

(e.g. ,  major fifths,  fourths,  and octaves) while strongly discordant combin- 

ations will tend to create a conflict (particularly in a   /-system) such that 

the system tends to oscillate between several alternative and mutually 

competitive activity states. 

By adding variable-valued back-connections from R-units to A-units 

(as in Figure 60),   and associating a different response to each fundamental 

tone,   the perceptron can be made to emit responses corresponding to a 

melodic sequence,   if each response in turn is suppressed shortly after it is 

turned on.    Such a perceptron,   preconditioned as above,   will tend to pick a 

harmonically consistent sequence,   probably avoiding major shifts in tonality 

except by means of gradual progressions. 

These observations,   although suggestive,   should not be over- 

interpreted.    It seems plausible that melodic and harmonic biases in music 

have a fundamental basis in the overtone series (as Hindemith has suggested); 

however,   the ease of vocal transition from one note to the next,   and other 

considerations which play no part in the above model,   are undoubtedly of  equal 

importance in the determination of musical traditions and the conditioning of 

musical perception. 
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24.    PERCEPTION OF FIGURAL UNITY 

In almost all tests of perceptron performance considered in 

previous chapters,  the environment,   or stimulus world,   was assumed to 

consist of discrete objects,   or events,   occurring one at a time in an ordered 

sequence.    The actual physical environment which we experience on a day-to- 

day basis is not of this form; the visual field,   in particular,   is likely to contain 

a large number of different objects,   patterns,  or constellations of objects 

simultaneously.    In human perception,   it is easy to detect and name familiar 

objects in an unfamiliar scene,   such as a landscape or a strange room.    For a 

perceptron,   each such combination of objects represents a new "composite" 

stimulus.    If the composite organization consists of familiar patterns which 

have previously been learned in isolation,   then it has been demonstrated that 

the perceptron may attend selectively to one object or pattern,   and respond 

consistently to this object (see Chapter 21).    For the human observer,   however, 

it is not necessary for the individual objects or component patterns in the field 

to have been previously learned individually; totally new and unfamiliar organi- 

zations may nonetheless be perceived as "objects".    Other organizations,   no 

matter how familiar,   will always be perceived as sets of objects,   rather than 

as single entities. 

The organization of a complex field into "objects" or distinct entities 

is frequently ambiguous,   in that the field permits many alternative constructions 

or organizations of " meaningful parts".    Problems of reversible perspective, 

the interpretation of Rorschach ink blots,   or the detection of alphabetic charac- 

ters in collections of random lines,   all serve to indicate this ambiguity.    The 

recognition of an "object" in the human perceptual process is generally experi- 

enced as a figure-ground organization,   in which the object emerges as "figure" 

while the rest of the field serves   as "ground".    Hebb,  who holds the segregation 

of figural patterns to be an innate process,   has proposed the term "primitive 

unity" for such figural entities (Ref.   33).    The perception of such unity is clearly 
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essential for an organism which must move about and interact with the objects 

of its environment.    It applies not only to spatial organizations but to temporal 

sequences as well; a sequence of human movements is broken up,   perceptually, 

into acts,   steps,   or gestures, while   speech or music is divided into words or 

phrases,   even if the sequence of sounds is an unfamiliar one. 

The Gestalt psychologists have considered the problem of figural 

unity from the standpoint of what constitutes a "good figure" (c.f. ,   Ref,  44), 

It is assumed that certain organizational properties of the stimulus field lead 

to a preference for one figural organization rather than another,   and considerable 

experimental data have been gathered on the influence of such factors as contrast^ 

boundedness,   connectedness,   and the like.    There is no doubt that all of these 

factors are important determinants of  figure-organization in human perception. 

For present purposes,   however,   we will attempt to work with the hypothesis that 

what is most readily seen as a figural entity in a given environment tends to be 

an organization which is likely to undergo a continuous transformation in that,. „ 

environment (e.g. ,   a detachable rigid object,   or surface bounded by discontinu- 

ities).    Whether the patterns which are most likely to be operated on by a 

continuous transforrnation are learned or innately recognized is left open,   for 

the time being; it seems likely that both innate and acquired biases are at work 

in human vision. 

Posing the problem in this form suggests that the system must be 

sensitive to cues indicating rigid,   moveable objects,   or surfaces (such as the 

faces of a cube) whose two-dimensional projections may undergo transformations 

which are discontinuous at their boundaries  (i.e. ,   the object moves,   but adjoining 

regions of the field do not,   or undergo a different kind of motion).    The attempt 

to define figural objects as connected blobs of uniform illumination (as has been 

advocated in several computer programs) seems quite inapplicable,   except under 

highly contrived and artificial conditions.    It seems likely that in actuality,   a 
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combination of many different cues of "good figure" are at work simultaneously, 

the final organization being arrived at by an active process,  typically involving 

a good deal of trial and error before a good "fit" is obtained. 

The cues which are suggested by psychological experiments as being 

influential in the determination of figural organization,   or the perception of 

separate entities,   include the following: 

1)    Differential motion of textured or bounded regions,   or sets of 

points in the retinal field. 

Z)    Cues indicating differential distance or "depth"  of surfaces,   or 

sets of points. 

3) Differential surface properties in a bounded region (e.g. ,   color, 

texture,   or type of fine-structure). 

4) Contours,   boundaries,   or discontinuities in surface gradients. 

5) Object familiarity. 

These five types of information are listed in approximate order of their 

strength,   or dominance.    If two constellations of points in a visual field are 

seen in relative motion,   then even if they are intermixed spatially,   they will 

tend to be seen as distinct objects,   and the observer will have difficulty attend- 

ing to both simultaneously.    This is illustrated by the view of a moving scene 

outside a dust-streaked train window:    either the window or the outside scene 

can be viewed as an object,   but not both in combination.    An experiment by 

Gibson employs motion pictures of talcum powder scattered on two glass plates, 

one behind the other.    As long as both plates are stationary,   or both moved 

jointly,  the two planes cannot be separated; as soon as differential motion is 

introduced,   however,   the picture breaks up unmistakeably into two planes, 

each with its own distribution of spots. 
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The relationship of depth to figure organization is well known,  and 

suggests that an attack on problems of depth perception in perceptrons will also 

contribute a great deal to the figural unity problem.    The remaining cues 

(contrasting surface areas,  boundaries,   and familiar object    recognition) are 

the ones most generally incorporated in attempts at devising computer programs 

or nerve-net models for figure segregation.    It should be noted that the last of 

these (object familiarity) is the only one demonstrated as workable in perceptrons ■ 

up to this point,   in the selective attention mechanisms of Chapter 21; nonetheless, 

this mechanism is only useable under relatively ideal conditions,   in which objects 

are present without overlap,   confusing lines,   spots,   or "camouflage",   and where 

it can be assumed that a pattern which contains the sensory components of a 

familiar object actually represents the object,   rather than a random concatin- 

ation of lines or points of illumination. 

In order to evaluate the performance of a perceptron in the realm of 

figural organization,   or the "perception of unity",   a suitable set of criterion 

experiments must be defined.     This proves much more difficult than in the 

testing of discrimination capabilities,   or the study of generalization over a given 

group of transformations.    In the simplest case,   we may require a decision as to 

presence or absence of a figure in a noisy field.    In this case,   the detection 

experiments discussed in Sections 7. 4 and 8. 4 may be employed,   with little 

ambiguity.    In the case of organized environments,   however (c.f. ,   illustration 

in Section 8. 4) it is frequently difficult to decide on an a priori basis that a 

particular decision is "right"  or "wrong".    If the field is sufficiently ambiguous; 

or the context is not indicated,   a particular pattern of lines might represent the 

letter "E" or a random pattern of cracks on concrete.    To evaluate performance 

on such material,   it may be helpful to run the same experiment with human 

subjects,   to provide an arbitrary standard for comparison.    The results,  however, 

are always subject to interpretation,  based on the intentions,   experience,   and 

additional information available to the human observers in contrast to the 

perceptron. 
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Three types of criterion experiments seem possible: 

1) Description of the figure by a multi-response perceptron (e. g. , 

"small right triangle in upper left,  with cross-hatched surface"). 

2) Detection of familiar objects; perceptron is trained to tell 

whether object is present or absent. 

3) "Test-point experiments" where the perceptron can attend selec- 

tively to a test-point,   or the end of a pointer placed in the field, 

and tell whether or not the point is in contact with the figure. 

In this way,   a description of the figure can be obtained by trac- 

ing its boundaries,   or obtaining an inventory of its parts. 

Little work has been done,   to date,   to determine the capabilities of 

cross-coupled and back-coupled perceptrons in experiments of these types. 

The detection experiment is the one most readily performed with the systems 

analyzed to date,   and it is hoped that some data can be obtained in the near 

future.    Series-coupled perceptrons appear to offer little hope of good perform- 

ance in these problems. 

Cross-coupled perceptrons have been observed to form mutually 

exclusive "cell assemblies"  in their association systems,  under the spontaneous 

organization rules considered in Chapter 19.    It is possible that with a suitable 

choice of preconditioning sequence and network parameters,   such cell assemblies 

may be related to figural organizations,   so that when two  or more rival figure- 

ground organizations are present,   the A-units activated will correspond to one 

of these organizations in preference to the others.    At present,   however,   this 

conjecture must be regarded as pure speculation,   with no real evidence to 

support it. 

The introduction of back-coupling,   however,   does permit the percep- 

tron to take advantage of the first and most powerful cue as to figural organization, 
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namely,  differential rnotion.    A suitable organization is illustrated in Figure 68. 

The perceptron is a three-layer system with multiple R-units,   of the "on-off" 

variety.    Each R-unit is trained to respond to a different motion,  or transform- 

FIXED VALUES 

DISTRIBUTED   r 

Figure 68    A PERCEPTRON FOR FIGURAL SEPARATION OF MOVING PATTERNS. 

ation.    The variable connections from A to R-units and from R to A-units are 

reinforced as in Chapter 21,   for selective attention systems with variable back- 

coupling.    Due to the spectrum of time delays,   the A-units respond directly to 

the movement pattern as well as the shape of the stimulus.    The system may be 

further improved by adding inhibitory interconnections between the R-units,   so 

that only one can go on at a time.    If there should be two stimulus patterns 

simultaneously present on the retina,   moving in opposite directions (or one 

moving and the other stationary),  the dominant response will tend to support 

those A-units responding to the stimulus whose motion corresponds to the R- 

unit,  and will suppress the A-units responding to the second stimulus.    The 

threshold servo plays the same role as in the systems of Chapter 21.    If the 

A-system is cross-coupled,   with a      -system rule,   the effect will be supported 

by the formation of "cell assemblies" characterizing different directions or 

velocities of motion. 
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As the stimulus field becomes increasingly ambiguous in its 

organization (as in ink-blot patterns,  for example) the field organization which 

results in a human observer depends less on a passive response to automatic 

mechanisms,   and more on an active "construction" of a meaningful figure.    In 

this process,   a number of alternatives may be reviewed in quick succession, 

before one of them "settles in",   and the field loses its ambiguity.    This sort 

of active structuring of the field may also be possible for a perc eptron with 

feedback loops from the R-units,   if the perceptron can evaluate the strength, 

or decisiveness of its response,   and actively perturb its response state (and 

hence the feedback signals to the A-units) until a strong,   persistent response is 

obtained.    This may be done by adding random Gaussian noise signals to the 

inputs of the R-units,   resulting in frequent changes in the response state as long 

as the signals from the A-system are weak and indecisive. 

While the above discussion indicates several possibilities which are 

open to experimental treatment,   it is clear that much fundamental groundwork 

remains to be completed before the problem of figural unity can be attacked in 

a systematic manner.    At the present time,   this problem remains one of the 

most severe challenges to all theories of brain mechanisms. 
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25.    VARIABLE-STRUCTURE PERCEPTRONS 

All of the memory mechanisms employed in previous chapters 

employ a fixed network structure,   in which the weights of connections are 

variable.    It is occasionally proposed that a system in which the structure of 

the network itself is modifiable,   with new connections being formed and old ones 

discarded on the basis of demonstrated utility,   might lead to the evolution of a 

better model,  with a smaller number of logical elements   than would be possible 

for a fixed-structure perceptron with random connections.    This might,  for 

example,   be a way of evolving special-purpose stimulus analyzing mechanisms 

of a high degree of utility for a paiticular environment.    A model in which 

structural modification is possible -- i. e. ,   in which the origins or termini of 

connections are changed as a result of activity -- has previously been referred 

to as an "evolutionary model".    Apart from the possibility that such a system 

might provide a useful memory mechanism,   or adaptive mechanism,   it has been 

suggested that by observing the terminal states to which such a model goes, 

after long exposure to an environment,   we might learn something about the 

kinds of physical constraints which could be usefully built into future systems 

at the outset. 

25. 1    Structural Modification of S-A Networks 

To date,   very little work has been done with evolutionary systems. 

Several examples have been programmed for the IBM   704,   which indicate a 

slight improvement in some cases,   but these programs have proven too costly 

in computer time to permit extensive experimentation.     The cases illustrated 

here come from this group of pilot experiments.       A three-layer perceptron 

with a single R-anit was employed,   and an    .  -system error correction method 

was used for reinforcing the terminal network, 

The programs were written by Kesler,   and  carried out at the AEC/NYU 
Computing Center. 
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The rules for changing the structure of the network are closely- 

analogous to those employed for perceptrons with variable S-A connections, 

in Chapter 13.    Each A-unit,  o ■  ,   is continuously evaluated by means of a utility 

measure, £■ .    If the current response   r    is wrong, £■   may be increased by 1 

with probability      p   ,    n^ , or pl ,   defined as follows: 

pl    - probability of incrementing E■ if the sign of ir-r  disagrees 

with the desired classification of the current stimulus,   and 

./ ■ is active . 

/ ,     = probability of incrementing I-■ if the sign of ir-f agrees with 

the desired classification of the current stimulus,   and  a; 

is inactive. 

p     - probability of incrementing £";   if the sign of i/;-,.   disagrees 

with the desired classification,   and o; is inactive. 

The quantities /     are assumed to decay by an amount 6'£■   at each 

stimulus presentation time.    If /:; reaches or exceeds a threshold level. P.-   , 

the origins of all connections to unit r/• are reassigned,   and  f(-    is reset to zero. 

In most experiments,   n f> ■   -■   <>, so that an A-unit is most likely to have its 

connections changed if the value of its output signal frequently disagrees in 

sign with the intended classification of the stimulus which activated the unit. 

The results of several experiments (on horizontal/vertical bar 

discrimination) are shown in Figures 69 and 70,   with the performance curves 

for the corresponding fixed-structure models shown for comparison.    While 

there seems to be a slight advantage for the variable-structure systems 

(particularly in Figure 69,   where only 20 A-units were used),   the improvement 

over the fixed-structure system is not impressive.    Nonetheless,   it is possible 

that a more sophisticated procedure for determining which A-units are to be 

changed would produce better results.    It also seems likely that the horizontal/ 

vertical bar problem,  which is not very demanding in the geometry of origin 
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Figure 69    EVOLUTIONARY MODEL,   IN HORIZONTAL/VERTICAL BAR DISCRIMINATION.  MEANS 

OF  10 PERCEPTRONS.   50 A-UNITS, X= 8,  y = 2,   0= 3, 

/J = .9,   ^ - .3,   /^ = .01  . 
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Figure 70    EVOLUTIONARY MODEL,   IN HORIZONTAL/VERTICAL BAR DISCRIMINATION.  MEANS 

OF  10 PERCEPTRONS,  ZERO RESPONSES COUNTED WRONG.   20 A-UNITS, X = 8, 

5 = 2,  0=3, 3,= 3,     /> = .9,   Pz= .3,   P3= .01 . 
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configurations required for discrimination,  may be a poor choice of a calibration 

experiment for evaluating the evolutionary model     Unfortunately,  the procedure 

is so time-consuming for a digital computer that only a small number of experi- 

ments have proved feasible. 

As a memory process,   the above system seems excessively compli- 

cated.    Not only are three distinct probabilities required,  under three sets of 

logical conditions,   but the t;  must be stored as an auxiliary variable for each 

A-unit.    This is clearly implausible for a biological mechanism.    The difficulties 

encountered seem to be common with those met in all attempts at providing a 

useful memory process which operates on the preterminal connections of the 

network (as in the variable S-A systems of Chapter 13).    It is hard to see what 

simple criterion might be employed to identify those connections which should be 

changed in order to improve the final output of the R-units.    It seems likely that 

a local information rule (Page 289) is incompatible with an efficient system of 

reinforcement at the preterminal levels of the network. 

Z5. 2   Systems with Make-Break Mechanisms for Synaptic Junctions 

A somewhat different kind of structural modification from the model 

described above is that in which there is a fixed set of "potential connections" 

to each unit,   but these connections may be either "made" or "broken" on an 

all-or-nothing basis,   in the manner   of switches or mechanical relays.    A 

possible application of auch a mechanism to the terminal network of a three- 

layer perceptron is illustrated in Figure 71.     The A-units arc divided into a 

set of excitatory units (E-units) whose output is always positive,   and a set of 

inhibitory units (I-units) whose output is always negative.    All signals are of 

unit amplitude,   and the connections from I-units to the R-unit are fixed,   only 

the E-unit connections being modifiable.    The connections from E-units to the 

R-utiit are of the make-break variety,   the reinforcement rule being as follows; 

There ia some hope,   however,   that the "elastic perturbation"  system suggested 
in Section 26.4 will prove applicable to tiiis problem. 
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The reinforcement control system can call for a &v>0 or for 

A-v"< 0 .    If a positive increment is required,  excitatory connections with active 

origins are made with probability   P   (applied independently for each unconnected 

E-unit), while if a negative A->r is required,  excitatory connections with active 

origins are broken with probability P .   If the system begins with initial conditions 

such that the number of connected E-units just balances the number of connected 

I-units,   and if the number of units is very large,  the effect of a single reinforce- 

ment will be identical to the application of a quantized    oi-system reinforcement 

to a system with fixed A-R connections.    Thus,  under the error correction 

procedure,  this system can be expected to duplicate the performance of an 

■v -system perceptron quite closely,  provided the number of A-units is large. 

MAKE-BREAK 

EXCITATORY CONNECTIONS 

FIXED   INHIBITORy 

CONNECTIONS 

Figure 71     SIMPLE PERCEPTRON WITH MAKE-BREAK CONNECTION SYSTEM. 

An alternative system is one with equal numbers of E and 1-units, 

in which the I-connections are also variable.    In this case,   new connections can 

be made,   but once established are assumed to be permanent.    For Air > 0,   new 

E~connections are formed with probability P ,  as above.    For AutO,  however, 

new I-connections are formed with probability P ,   instead of breaking E-connec • 

tions.    At the outset,   assuming that all A-units are initially disconnected,   this 

system again behaves in much the same way as an ^y -system perceptron.   As 

the system "saturates",   due to the exhaustion of available connections,   the 
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increments to the R-unit input signal from each new reinforcement become 

progressively smaller.    If the number of A-units is infinite,   then the system 

never saturates entirely,   new reinforcements always having some effect, 

although this is apt to become negligible as saturation is approached. 

These models- are of more interest as possible analogs for biological 

systems than as significantly new types of perceptrons.     Their properties, 

short of the saturation condition,   closely resemble the systems previously 

considered,   but they do not require values which change sign,   and are sugges- 

tive of a possible synaptic growth mechanism in biological memory.    As engineer- 

ing devices,   their reliance on probabilistic mechanisms is apt to make their 

construction more difficult than the ^/-system models. 
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26.    BIOLOGICAL APPLICATIONS OF PERCEPTRON THEORY 

When the perceptron was first proposed,   it was considered 

primarily as a model of biological memory mechanisms.    As the models 

became more sophisticated,   a number of psychological properties not directly 

related to memory were investigated,   but the main emphasis,   as a biological 

model,   is still on the adaptive mechanisms employed,   and the recording of 

past experience.    In this chapter,   the application of perceptron theory to 

biological problems will be considered primarily from this point of view. 

26. 1    Biological Methods for the Achievement of Complex Structures 

The biological evidence which has been cited repeatedly throughout 

this volume indicates that highly organized structural constraints exist in 

many parts of the nervous system.    Apart from the gross anatomical complexi- 

ty of the brain,   the mechanisms of optic nerve growth and regeneration,   the 

stimulus analyzing mechanisms found by Lettvin in the frog and by Hubel in the 

cat,   and the better known mechanisms of motor coordination and control 

indicate that organization of a rather involved type may occur even in the fine 

structure of the network.    In perceptron theory,   as it has developed to date, 

most emphasis has been placed on learning and memory as a means of 

achieving such organization.    In actuality,   a number of alternative procedures 

are possible for the creation of complex networks,   satisfying a given set: of 

logical constraints.     These include: 

1. Logical specification (e.g.,   let the   i       cell of the   k       row be 

connected to tlie   i+lst   cell of the   k+3rd   row,   for all   i > k). 

This is equivalent to an exact blueprint of the network. 

2. Natural selection,   whereby the useful sub-networks of an 

originally random population survive,  while the others decay. 

3. Simple spatial constraints (gradients,   directional bias,   or 

distributions of connections specified by a small number of 

parameters). 
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4.    Typological constraints (e, g, ,   cells of Type A can only connect 

to cells of Type B or C,   where cell types might be distinguished 

by chemical properties). 

Of these four mechanisms,   only the last three seem to be well 

suited for the development of biological nerve nets.    The first mechanism, 

logical specification of the structure,   is   primarily a contrivance of engineer- 

ing,   which is well suited to the construction of computers,   but which seems to 

have no clear counterpart in known mechanisms of growth and maturation. 

It is this first method of control,   however,   which has been most investigated 

in studies of brain mechanisms during the last few decades  (e.g. ,   References 

17,   57,   71). 

In specifying the initial physical form of the networks in perCeptron 

theory,   most attention has been given to the third alternative; spatial constraints 

of a simple sort have been employed throughout.    In the last chapter,   limited 

use was made of the second and fourth methods.     The use of typological 

constraints has thus far been used mainly to distinguish excitatory from 

inhibitory neurons (Section 25. Z),   but it seems likely that its use is relatively 

widespread in biological systems.    In particular,  Sperry's work on neural 

maturation and fiber regeneration,   and Lettvin and-Maturana on the regener- 

ation of scrambled connections in the frog's brain,   suggest a chemical control 

or "homing mechanism"  of remarkable sensitivity. 

The limited experiments performed thus far on "natural selection" 

as a structural control mechanism do not appear particuarly promising 

(Section 25. 1).     The evolution of tlit; network occurs too slowly,   and is too 

subject to disruption and instability of partially achieved organizations,   to be 

useful in any of the forms examined up to this point.    It remains possible, 

however,   that a more rapidly converging mechanism may be found,   and the 

field remains open for future investigation.    Typological constraints,   on the 
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other hand,   are likely to come into their own with the investigation of 

perceptrons having complex mixtures of property detectors,   and other 

specialised A-units,   all deriving their connections from a common sensory 

field. 

26. 2   Basic Types of Memory Processes 

Perceptron memory mechanisms have all taken the form of 

modifications of the signals transmitted across synaptic junctions.    There 

appear to be at least two basic types of memory dynamics which are useful 

in perceptrons.     The first is a system in which values  remain stable unless 

action is taken by a reinforcement control system,   based upon an evaluation 

of the current response of the perceptron.     The most effective method actually 

investigated for this purpose has been the    >  -system,   with an error correc- 

tion procedure for modifying the values of A to R-unit connections.    The 

second type of memory is one which achieves stability only in the form of a 

dynamic equilibrium with a continuously active reinforcement process      This 

second system does not depend upon evaluation of the perceptron1 s output,   but 

maintains a continuous state of adaptation in the network,   based only on local 

activity.     In practice    it seems likely that a decaying   / ' -system will prove 

to be the best of the systems of this type which have been analyzed.     The 

first type of mechanism permits the system to learn from an external 

"teacher",   or by reward and punishment experienced as a result of trial and 

error activity.     The second type permits the perceptron to acquire an internal 

model of the "similarity structure"  of its environment,   as defined by the temporal 

relationships of moving stimuli.     It may be that more complex forms of organi- 

zation (such as the recognition of connected patterns,   or Gestalten) can also 

be achieved by means of dynamic processes of the second type,   but this remains 

conjectural at this time 
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While it is certainly conceivable that additional basic mechanisms 

may be required to perform the memory tasks of a complex organism,   there 

seems to be some reason to believe that the two types of dynamics character- 

ized above may prove sufficient for the phenomena of "adaptive behavior". 

The first variety permits the system to be "set" passively to any desired state, 

which will then be retained indefinitely.    Thus any form of permanent learning 

can be handled,   in principle,   by such a system.    The error correction theorems 

of Chapters  5 and 10 seem sufficient to demonstrate this assertion.    On the 

other hand,   any spontaneous modification process which is not to be self- 

defeating must ultimately achieve some sort of dynamic equilibrium with the 

conditions which induce the change in state; without such a mechanism (provided 

in the case of our four-layer and cross-coupled perceptrons by the decay term 

in the equations) the dynamic  range of the memory variables must ultimately 

be exhausted,   and the system will saturate.    In any case,   a mechanism which 

is to serve as a basis for generating a model of the external environment must 

be one which ultimately approaches a stable condition,   as the model approaches 

a true representation of the external world.    Such considerations make the 

second mechanism appear to be a natural complement to the first. 

Two memory functions which might call for processes of a different 

logical character are the serial recording of experience (in the manner of a 

tape recorder or motion picture camera) and a temporary memory for data which 

are to be used in the immediate future and then forgotten (as in the "i-nemory" 

of a digital computer).     For the second of these phenomena,   it is likely that a 

dynamic storage mechanism,   such as pools of activity or reverberating loops 

which can be triggered and extinguished by a suitable control system,   will prove 

to be the most effective storage mechanism.    The problem of serial memory is 

a more serious one,   but can only be dealt with together with the problem of selec- 

tive recall and the mechanisms for its control. 
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It is certain that in a simple perceptron,   memories are not tagged 

in any way which would permit their serial order to be re-established later. 

But the "memories" stored in a simple perceptron are in any case merely 

associative,   rather than substantive.    The nature of substantive memory in 

humans must be investigated more carefully in the future.    While k seems 

unlikely that a complete image or state of the association system is stored,   it 

is nonetheless clear that a great deal more information is retained than is 

represented by a simple classification of an experience as belonging to one of 

n   categories.    One alternative is that of storing a description of a large number 

of characteristics or dimensions,  which jointly permit the reconstruction of 

the original experience by the active creation of a model,   or image,   which 

approximates the original state of the association system,    Among the charac- 

teristics stored would be such time-tagging information as the location in which 

the event occurred,   the time of day,   the activity that the subject was engaged in, 

etc.    An accumulation of such cues would enable a suitable search process to 

locate the experience in time,   and to associate it with preceding or successive 

events in appropriate order (c. f. ,   Reference 79,   Chapter VIII).    In any case, 

it seems likely that substantive recall is an active,   creative (or recreative) 

process,   rather than merely a passive reading-out of a memory bank, 

Z6. 3   Physical Requirements for Biological Memory Mechanisms 

From the considerations just stated,   it should be clear that not one 

but several memory mechanisms are likely to be encountered in a complex 

system.     Limiting our attention,   for present purposes,   to the two basic mechanisms 

which have been studied in perceptrons,   what can we say as to the probable 

physical characteristics of the memory traces? 

First,   as to location:    it appears that the most suitable location is in the 

connections,   or synapses,   which mediate the interaction of particular pairs of 

neurons.    Perceptrons  in which the memory trace affects an entire neuron and 
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all of its interactions with other neurons have been investigated (Reference 79) 

but this has invariably involved the introduction of artificial constraints on the 

topology or logic of the network,   in order to limit the effects of reinforcement 

to the desired transmission channels.    In any case,   systems in which the re- 

inforcement is specific to the connections appear to be far more economical 

than those in which reinforcement is applied to an entire neuron,   or A-unit. 

A second condition is that the memory change should be reversible. 

Both the externally controlled error-correction procedure and the fully automatic 

memory processes of the cross-coupled perceptrons require reversible modifica- 

tions.    In the case of the error-correction procedure,   two antagonistic control 

mechanisms seem to be called for,   one of which strengthens the excitatory outputs 

of active A-units.   and the other of which weakens excitatory outputs or strengthens 

inhibitory outputs.     While most of our analyses have assumed that the actual sign 

of the value of a connection may change from positive to negative,   this is clearly 

a non-biological artifact,   introduced for convenience in analysis,    The same effects 

could be achieved by a system in which half of the connections are always positive, 

and half are always negative      If the negative connections are fixed in magnitude, 

then only the excitatory connections need be modified,   yielding a net positive 

signal if they exceed the strength of the fixed inhibitory component,   and a net 

negative signal if they fall below the inhibitory strength,    Alternatively,   the 

excitatory connections might be fixed,   and the inhibitory connections variable, 

or each type might be variable within its own dynamic range. 

The requirement that the "strength"  or value of a connection be 

modified as a consequence of the correlated activity of both terminal units, 

rather than just the transmitting unit,   appears to place a unique condition on the 

memory process.    Most metabolic processes such as growth,   changes in cell 

chemistry,   etc   ,   which mif, it be involved here are of a type which generally depend 

only upon the cell in which the change occurs,   and its over-all environment. 

■568- 



whereas we seem to require a two-factor phenomenon,  which depends upon the 

activity of two specific Cells.    This writer has previously stated the conjecture 

(Reference 83) that the required effect might be obtained if the production of 

transmitter substances depended upon an enzyme or catalyst produced in the 

nucleoplasm of the trans-synaptic cell,   and released to the medium when that 

cell is stimulated to activity.    The presynaptic fibers which were most recently 

active,   being in a heightened metabolic state,  would then be in the most favorable 

position to compete   for the limited supply of this catalyst,  which would then 

enable them to produce their transmitter substance at an increased rate in the 

future.    The competition for metabolites in limited supply in the neighborhood 

of a particular cell body would tend to create a  /"-system,   in which the most 

active cells would gain at the expense of the inactive ones.    Whether this is a 

correct description of the mechanism or not,   some type of symbiotic relationship 

seems to be demanded between the presynaptic fibers and the post-synaptic cell, 

in order to provide a memory mechanism of the type analyzed in Part III of this 

volume. 

The memory mechanism employed for error-correction learning 

places rather different demands on the biological system.    Here the reinforcement 

depends not so much on the correlation of activity of the two terminal units,   as on 

the correlation of the activity of the transmitting unit with the decisions of the 

reinforcement control system.    It is conceivable that this might again involve 

the release of a catalyst in the neighborhood of the active connections,   but in this 

case the release must be remotely controlled -- perhaps through glandular action. 

In one respect this is a simpler requirement,   conceptually,   than the former case, 

where the activity of two specific cells had to be considered for each connection 

which might be reinforced.    In the present case,  the general release of an 

excitatory or inhibitory reinforcing agent from a central source would appear to 

be sufficient; the recently active connections,   being most metabolically active, 

would tend to be most strongly affected.    In a second respect,   however,   this 
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mechanism presents a new problem which is more serious:   the problem of 

limiting the effect of reinforcement to the specific response which is to be 

corrected. 

It was demonstrated in Chapter 12 that the error correction procedure 

can be guaranteed to work only if the correction is limited to the erroneous 

responses,   in a multiple response system.    To achieve this condition in a biologi- 

cal system,   it seems that a mechanism is called for which can select one response, 

or response component,   at a time as a candidate for reinforcement,   and limit the 

corrective action to the selected locality.    In dealing with niotor responses,   the 

topographical mapping of the motor control areas of the cortex is likely to prove 

helpful here,   particularly if we adhere to the hypothesis that the memory trace 

involves the release of a chemical agent which affects everything in its neighbor- 

hood. 

The proportional decay mechanism which is required for the "spontane- 

ous" memory process is probably the easiest of the requirements to rationalize 

in a biological model; a chemical mechanism,   in particular,   would tend to exhibit 

decay at a rate which increases with the concentration. 

At present,   any treatment of the compatibility of perceptron theory 

with biological memory mechanisms must remain entirely speculative.    It is 

to be hoped that as additional evidence on synaptic transmission and neurochemistry 

comes to light,   it can be fitted into the picture.    Thus far,   there seem to be no 

serious conflicts,   although there are a number of missing links.    The considera- 

tions stated above do suggest several plausible hypotheses for experimental 

investigation. 

A procedure is now being investigated by which an error correction is applied 
to a randomly chosen set of R-units,   the value increments being transient 
rather than permanent,   unless the correction actually proves effective.    It is 
hoped that this technique will yield an efficient reinforcement mechanism which 
does not depend on specification of the erroneous R-units.   (see Section 26.4) 
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26.4   ivlechanisms of Motivation 

The problem of motivation for perceptrons,   considered as models 

for biological nervous systems,   has hardly been treated adequately up to this 

time.    The reinforcement control system,  which forms part of the experimental 

system,   plays the role of a sort of deus ex machina,  which not only has know- 

ledge of right and wrong responses,   but can control the distribution of re- 

inforcement to individual R-units in the perceptron,   as required.    A more 

"natural" system with only a slight reduction of efficiency does seem to be 

possible,   however,   although at present the model proposed is a heuristic one, 

on which no quantitative analysis has been completed. 

The proposed model for biological reinforcement mechanisms is 

illustrated in Figure 72.     In this  system,   the r. c. s. is no longer external to 

the system,   but is essentially part of the perceptron.    It is assumed that the 

perceptron system includes a sensing device for a physiological condition 

which has been arbitrarily called the "discomfort level",   measured by the vari- 

able    D.     This might be compared to Ashby's concept of "essential variables". 

In addition to continuously measuring the variable   D,   which is assumed for 

simplicity to be some function of the current stimulus pattern,   a second 

mechanism (readily represented by a neuron with inhibitory input connections 

with a short time delay and excitatory connections with a longer time delay, 

both originating from the   " D-detcctor" ) responds to a negative   dD/dt.     The 

corrections to this system are random perturbations applied either to active 

connections,   or to all connections of the perceptron; the increments,   however, 

take the form of "elastic perturbations!1, so that the connections tend to decay 

back to their previous values unless a "positive reinforcement"  occurs to "fix" 

the new values.    Thus negative reinforcement applies a slight random perturba- 

tion,   which tends to disappear unless it actually proves helpful,   in which case it 

is stabilized by a positive  reinforcement. 
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Figure 72    EXPERIMENTAL SYSTEM EMPLOYING ELASTIC PERTURBATIONS,   STABILIZED 

BY  IMPROVEMENTS  IN SENSORY SITUATION    (COMPARE Figure 1). 

For this system to function efficiently,   it is again necessary to 

assume some degree of temporal continuity in the environment,   so that the 

change in   D   indicates a true improvement in the response of the system,   rather 

than an irrelevant change due to a sudden alternation of the environment. 

Preliminary simulation experiments to evaluate this scheme are now'in progress, 

employing the Burroughs 220 computer,   and indicate that the system should work 

with a reasonable degree of efficiency,   as compared to a system employing a., 

more deterministic error correction procedure.    The results of these experi- 

ments will be reported as soon as the data are complete.    The system has the 

advantage that it works well with an arbitrarily large number of R-units, 

without requiring an individual decision as to the error of each one,   as long as 

D   is some monotone increasing function of the joint error,   such as the norm of 

the difference vector,   [/' -'■'! .    Such a representation will work best when all 

of the R-units are continuous transducer units,   so that any random value- 

perturbation will have a 0. 5 probability of yielding an improvement. 
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27.    CONCLUSIONS AND FUTURE DIRECTIONS 

Man's intelligence is a unique phenomenon on our planet,   occurring 

at such a level of complexity in a single species only.    The lack of other 

similarly intelligent species is unfortunate from the standpoint of science, 

for it makes it difficult to tell from comparative evidence which features of 

human psychology are accidental products of man's peculiar biological constitu- 

tion,   and which are fundamental to the nature of intelligence itself.    Despite 

this lack of comparative material,   some of us believe that it may ultimately be 

possible to answer such questions through an understanding of the physical basis 

of psychological phenomena,   independently of the biology of any one species.     The 

perceptron program represents a small part of such an undertaking; it is an 

attempt to study the psychological properties of certain highly simplified mathe- 

matical or physical models of the central nervous system,   in the hope that such 

a study may throw light on basic principles which can then be applied to more 

sophisticated models. 

The use of "models" to represent complicated natural phenomena 

has been an essential technique in the physical sciences for many centuries. 

The model is a simplified theoretical system,   which purports to represent the 

laws and relationships which hold in the real physical universe.    The solar 

systems of Ptolemy,   Copernicus,   and Einstein,   and the Atomic models of 

Democritus,   Bohr,   and Heisenberg represent two successions of such models, 

each in turn coming somewhat closer to an adequate representation of its subject 

matter.    In some cases  (the concept of an "ideal gas" for example) the model 

deliberately neglects certain complicating features of the natural phenomena 

under consideration,   in order to obtain a more readily analyzed system,  which 

will suggest basic principles that might be missed among the complexities of 

a more accurate representation.    Such simplified models may then be refined 

through a series of "perturbations" ,   which introduce the known complications 

one at a time,   in a manner which permits the mathematician to incorporate them 
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into his analysis.    It is this approach which has been most characteristic of the 

perceptron program. 

Stated in simplest terms,   our objective has been to discover a 

physical system,   or abstract model,  which will be capable of "perceiving" its 

environment,   and learning to recognize those objects or events which it has 

perceived in the past.    However,   since it is our purpose to understand the actual 

mechanisms employed by the brain,   rather than simply to construct a new type 

of computing device,   the perceptron models are constrained in their organization 

and dynamic properties by what is known of the biological nervous system.    Rather 

than attempting to "invent" .or "construct" a machine which will calculate such 

things as similarities   or geometrical properties of stimuli,  the approach has 

been to begin with a hypothetical network of idealized neurons,   or nerve cells, 

resembling the brain in its general organization,   and then analyze the system 

mathematically to determine whether or not it possesses "psychological" 

properties of interest.    Where the model is found to deviate markedly from the 

behavior of biological systems,  modifications are suggested,   and the new model 

that results is subjected to the same sort of analysis.    In this fashion,   it is hoped 

that the necessary conditions for a system to "perceive"  in the same manner as 

the brain can be abstracted. 

In this chapter,  we will attempt to summarize the principle results 

which have thus far emerged from this approach,   the problems which have now 

come to the foreground,   and the means by which these problems might be attacked. 

The possible applications of perceptron theory to engineering devices and the 

construction of physical brain models will also be considered.    Finally,   an attempt 

will be made to anticipate the future re    tionship of the neurodynamic approach to 

the various alternative strategies by which the problems of understanding and 

simulating intelligence are being investigated. 
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27. 1   Psychological Properties in Neurodynamic Systems 

Our main conclusions deal with the properties of closed experimental 

systems,   such as those illustrated in Figures 3,  4,  and 72.    It has been shown 

that as the topological organization of the perceptron increases in complexity, 

new psychological properties emerge.    The principle results can be summarized 

as follows: 

(1) A network consisting of less than three layers of signal transmission 

units,   or a network consisting exclusively of linear elements connect- 

ed in series,   is incapable of learning to discriminate classes of 

patterns in an Isotropie environment (where any pattern can occur 

in all possible retinal locations,   without boundary effects). 

(2) A three-layer series-coupled perceptron is a minimal system capable 

of learning to discriminate arbitrary classes of stimulus patterns 

or stimulus sequences.    Any discrimination problem can,   in princi- 

ple,   be solved by such a system,   and any arbitrary response function 

can be assigned to the stimuli of a given universe, 

(3) By means of an   A -system error-correction procedure,   a three- 

layer series-coupled perceptron with simple A-units and a- fixed 

preterminal network can always be taught the solution to any classi- 

fication problem or response function for which a solution exists. 

(4) Equations for the learning curves of simple perceptrons under 

various  reinforcement rules have been presented.    The results 

•indicate that for simple tasks,   such as the recognition of large 

alphabetic characters against a plain background,  the three-layer 

series-coupled system performs with reasonable efficiency, 

although it may require a lengthy training procedure with large 

samples of each stimulus class to guarantee recognition of all 

variations,   or " allomorpha" of a pattern. 
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(5) In perceptrons with variable-valued preterminal networks,  a non- 

deterministic reinforcement rule may be required to guarantee that 

the solution to a classification problem will be achieved,   given that 

the solution exists. 

(6) Generalization capabilities of three-layer series-coupled systems 

are poor,   and  in "pure generalization" experiments (where the test 

Stimuli have no sensory points in common with the training stimuli) 

there is essentially no generalization capability. 

(7) Series-coupled perceptrons with randomly organized origin-point 

configurations for the A-units tend to be highly resistant to stimulus 

noise and network damage; in a complex field containing mixtures of 

familiar stimuli,   however,   they are easily confused,   and are incapable 

of responding selectively to one stimulus or object at a time. 

(8) The addition of a fourth layer of signal transmission units,   or 

cross-coupling the A-units of a three-layer perceptron,  permits 

the solution of generalization problems,   over arbitrary transform- 

ation groups. 

(9) Four-layer and cross-coupled systems with suitable rules for 

modifying their connection values (Chapters  16,   17,   and 19) are 

capable of learning a group of transformations which have occurred 

commonly in sequences of stimuli,   and later recognizing the 

similarity of stimuli which are equivalent under the observed 

transformation group.    This phenomenon occurs "spontaneously", 

without any external influence on the perceptron apart from the 

occurrence of stimuli. 

10)    In back-coupled perceptrons,   selective attention to familiar objects 

in a complex field can occur,    It is also possible for such a perceptron 

to attend selectively to objects which move differentially relative to 

their background. 
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(11) By a suitable combination of geometric constraints (Chapter 23) 

a multi-layer perceptron can be enabled to recognize detailed 

patterns in high-resolution fields with markedly increased efficiency, 

compared to a randomly organized three-layer system.    For a given 

universe of stimuli,   there will be an optimum organization of such 

a system,   which will rarely exceed three layers of A~units for 

tasks commensurate with human capabilities under tachistoscopic 

conditions. 

(12) A number of speculative models which are likely to be capable of 

learning sequential programs,   analysis of speech into phonemes, 

and learning substantive "meanings" for nouns and verbs with 

simple sensory referents have been presented in the preceding 

chapters.    Such systems represent the upper limits of abstract 

behavior in perceptrons considered to date.    They are handicapped 

by a lack of a satisfactory "temporary memory",   by an inability,to 

perceive abstract topological relations in a simple fashion,   and by 

an inability to isolate meaningful figural entities,   or objects, 

except under special conditions. 

The capabilities which are outlined above,   and the variety of networks 

and dynamic principles considered,   map out a substantial territory,   much of 

which still remains to be explored in detail.    While rudimentary perceptual 

behavior appears to be present in these systems,   it seems likely that to deal 

adequately with the problems of complex perceptual fields and the recognition 

of abstract relations between objects or events,   additional principles must 

still be found. 

27, 2   Strategy and Methodology for Future Study 

A number of perceptrons analyzed in the preceding chapters have 

been analyzed in a purely formal way,   yielding equations which are not readily 
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translated into numbers.    This is particularly true in the case of the four-layer 

and cross-coupled systems,  where the generality of the equations is reflected 

in the obscurity of their implications,   except for the few cases where explicit ex- 

amples have been'worked out.  'For>other models,   ondy qualitative results are 

available,   although the way is clear for quantitative work to be initiated.    Those 

problems which appear to be foremost at this time include the following: 

(1) Theoretical learning curves for the error correction procedure. 

(At present,   only empirical results are available,   and no 

attempts at theoretical analysis have proven successful. ) 

(2) Determination of the probability that a solution exists to a 

given problem,   for a perceptron drawn from a specified class. 

(3) The development of optimum codes for the representation 

of complex environments,   in perceptrons with multiple R- 

units (see Section 12. Z). 

(4) Development of an efficient reinforcement scheme for pre- 

terminal connections (c.f. ,   Chapter 13). 

(5) Optimum organization of stimulus analyzing mechanisms and 

networks with geometrically constrained connections (c.f.. 

Chapter 23). 

(6) Terminal performance of cross-coupled and four-layer percep- 

trons in generalization experiments,   as a function of network 

parameters,   reinforcenient dynamics,   and environment 

characteristics. 

(7) Theoretical analysis of convergence-time and learning curves 

for adaptive four-layer and cross-coupled perceptrons. 

(8) Quantitative studies of effects of threshold servos on system 

performance (c.f.,   Chapter 21). 
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(9)    Quantitative studies of speech recognition and phoneme analyzing 

systems. 

(10) Performance of back-coupled systems in selective attention and 

detection experiments. 

(11) Quantitative studies of sequential program learning in back- 

coupled systems, 

(12) Effect of spatial constraints in cross-coupled systems (e.g. , 

limiting interconnections to pairs of A-units with adjacent 

retinal fields). 

(13) Studies of possible figure-segregation (figure-ground) mechanisms. 

(14) Studies of abstract concept formation,   and the recognition of 

topolop'ical or metrical relations. 
] 

(15)'    Biological memory mechanisms,   and studies of neurophysiology 

in relation to perceptron theory. 

Four basic techniques are available for the study of these problems: 

theoretical analysis,   digital simulation,   the construction of physical moiels, 

and physiological experimentation.    The first two problems of the above list 

are specifically mathematical in character.    Tiab Lvird,  while posed as a 
•    #/■»• 

theoretical question,   might best be investigated, ät the outset by means of simu- 

lation studies.    In the case of problems  (4) and (5),   simulation studies seem to 

be indicated for preliminary exploration,   although it is hoped that some theore- 

tical formulations may ultimately be achieved.    The sixth problem -~ the 

determination of terminal performance of adaptive four-layer and cross-coupled 

systems -- calls in effect for a variety of explicit solutions to the steady-state 

equations presented in Part III.    Such a program is currently being carried out 

both by direct computation of the equations and by simulation techniques.    For 

the cross-coupled systems,   simi'lation is likely to prove more economical in 

most cases than the numerical solution of the equations.    The seventh question 
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again is a theoretical one,   although preliminary results obtained from simulation 

programs should prove enlightening.    The problem of threshold servomechanisms 

can be investigated both by theoretical means and by simulation. 

It has recently been proposed that an audio-perceptron should be 

constructed at Cornell University to study the problem of speech recognition. 

Since this is a problem in which the chief interest is in performance under 

typical environmental conditions,   rather than in theoretical problems of pattern 

recognition (which have all been solved on paper,   insofar as spoken inputs 

resemble any other form of sensory sequences),   it seems best to provide for 

convenient input to a real-time system,   rather than working with simulated 

perceptrons and samples of digitalized speech.    The problem of phoneme analysis, 

however,   still presents enough theoretical problems and uncertainty as to the best 

solution,   so that a digital simulation program is indicated.    The system proposed 

in Chapter 23 is now being investigated by this means.     The problems of back- 

coupled systems referred to in (10) are probably also best referred to an actual 

physical model,   although a certain amount of useful simulation can be performed 

in checking out the general theory before such a model is built.    Problem (11) 

is also of this character.    Problem (1Z) is again of the type which will yield most 

readily to simulation at this time.    It is of interest in connection with possible 

figure-ground mechanisms,   which are included in a more general way in Prob- 

lem (13), 

Problems (13) and (14) are primarily speculative in character,   and 

must await new insight into possible mechanisms,   the exact nature of which is 

not yet clear.    It is hoped that studies of the other problems,   which are all well 

enough formulated to be investigated directly,  will suggest possible approaches 

to these two problems,  which represent the most baffling impediments to the 

advance of perceptron theory in the direction of abstract thinking and concept 

formation.    The previous questions are all in the nature of "mopping-up"  oper- 
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ations in areas where some degree of performance is known to be possible,   and 

where suitable mechanisms can be described,  at least in qualitative terms; the 

problems of figure-ground separation (or the recognition of unity) and topological 

relation recognition represent new territory,   against which few inroads have been 

made. 

The last problem -- the correlation of perceptron theory with 

biological evidence -- represents at once an area of investigation in its own 

right,   and a potential source of insights into solutions to the prior problems. 

To date,   little has been done to obtain relevant physiological data directly. 

Nonetheless,   several hypotheses have been suggested (c.f. ,   Chapter 26),   and 

a great deal of useful work along the line of Hubel's studies of the cat cortex 

can be carried out using known laboratory techniques. 

27. 3   Construction of Physical Models and Engineering Applications 

From a purely scientific standpoint,   physical models  of particular 

perceptron organizations seem to be indicated only for relatively advanced 

systems (such as the speech recognition,   selective attention,   and program 

learning perceptrons  referred to above) where the theory is  reasonably well 

known,   but the actual quantitative behavior under realistic environmental 

conditions remains in doubt.    In some cases,   it may ultimately prove more 

economical to build a physical model than to simulate a highly parallel signal 

network on a sequential computer.    Digital simulation,   however,   always has 

the advantage of greater versatility and adaptability to radical changes in design 

and dynamics of the simulated network.    Its main difficulties are insufficient 

speed,   insufficient high-speed memory,   and difficulty of programming the 

simulation of complicated "naturalistic" environments required for some exeri- 

ments.    This last disadvantage can be overcome by the design of special sensory 

input devices (such as audio analyzers and flying-spot scanners) for digital 

computers,   and it is hoped that such equipment will be available in the near 
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future.    While most problems can be investigated successfully in scaled-down 

versions using a computer comparable to the IBM  704 or    7090,  a problem 

occasionally occurs which places a severe strain on the capability of even the 

best digital equipment now available.    The study of evolutionary model8s  and 

adaptation processes in cross-coupled systems appear to be of this variety. 

A special purpose digital computer (such as the Mark II design proposed by 

C, A, L. ) may ultimately prove to be the most expedient solution to these 

problems,   although the limits of useful simulation with conventional computers 

have not yet been reached. 

The construction of physical perceptron models of significant size 

and complexity is currently limited by two technological problems:   the design 

of a cheap,   mass-produceable integrator,   and the development of an inexpensive 

means of wiring large networks of components.    The Mark I (Frontispiece) 

employs motor-driven potentiometers for integrators,   and a large patch-panel 

for connections  - both intolerable solutions for very large systems.     The 

integrator problem is currently being attacked by groups at Aeronutronic 

and Stanford Research Institute,   who have developed magnetic integrators which 

are suitable for alpha-system perceptrons,   and at  Cornell University,   where an 

electrochemical system is under investigation.    While these approaches seem to 

offer some hope of an "intermediate" solution to the problem,   an ultimate 

solution is more likely to come from some of the solid state work and studies 

of microelectronics,   such as the work of Shoulders at SRI (Reference 114), 

This last technique offers a potential solution to the interconnection problem, 

as well as a possible means of fabricating large numbers of digital integrators 

at low cost 

Since the main emphasis in this volume has been on neurodynamic 

theory,   rather than applications,   little has been said about the engineering aspects 

of the field.    It is clear that if the objective of a coherent theory of brain mechanisms 
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is achieved,   it i s likely to prove applicable to pattern recognition and control 

devices,   as well as the development of advanced computing systems of many 

varieties.    Preliminary studies have been carried out dealing with possible 

applications of perceptrons to photo-interpretation (Reference 116) and the 

recognition of events in bubble chambers (Reference  115).    More abstract 

applications of the pattern recognition ability,   such as the diagnosis of clinical 

syndromes or meteorological prediction,   have occasionally been proposed, 

although little evidence has been accumulated regarding the relative suitability 

of perceptrons as  opposed to more conventional techniques for dealing with such 

problems.     The applications most likely to be realizeable with the kinds of 

perceptrons described in this volume include character recognition and "reading 

machinej",   speech recognition (for distinct,   clearly separated words),   and 

extremely limited capabilities for pictorial recognition,   or the recognition of 

objects against simple backgrounds.    "Perception1' in a broader sense may be 

potentially within the grasp of the descendants of our present models,   but a 

great deal of fundamental knowledge must be obtained before a sufficiently 

sophisticated design can be prescribed to permit a perceptron to compete with 

a man under normal environmental conditions. 

The most important technological development which may be inherent 

in the future development of brain models,   would be the provision of "eyes and 

ears" for conventional computers and automata,   giving them a common universe 

of discourse with their operators.     Current attempts at heuristic problem-solving 

programs  (such as Newell and Simon's programs) and at automatic language 

translation,   are hampered by a lack of common referents for symbols,  which 

can be no more than code-numbers for the computer,   but which have a wealth 

of associated meanings for the operator.    The development of a system which,   by 

virtue of shared sensory experience,   can "comprehend" the nature of the physical 

referents in a descriptive statement,   is probably a necessary first step to the 

creation of a truly useful  problem-solving computer.    Linguistic capability,   related 
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to perceptual experience,   is of the essence for an "intelligent" system,  artificial 

or otherwise, 

t, 

27.4   Concluding Remarks 

The last four years have seen the development of perceptron theory 

from the study of a few primitive models to the mapping of a comprehensive 

field of investigation.    In its present form,   this theory is definitive only in its 

treatment of relatively simple systems,   although a considerable number of more 

advanced systems are now understood at least in a qualitative fashion,   and the 

way is now open to quantitative studies of well-defined problems. 

As advanced perceptron models become more sophisticated in their 

psychological properties,   it becomes more appropriate to consider them as 

devices capable of performing arbitrary programs of observation,   response,   and 

manipulation of data.    As this condition is reached,   the methodology of perceptron 

studies is likely to merge with that of the "heuristic program" approach to 

psychological functioning,   advocated by Newell and Simon (Reference 6Z).    In 

such programs,   goal-motivated behavior becomes the main object of study, 

whereas in perceptrons studied to date,   the behavior is motivated primarily by 

the present environment and state of the system.-   A me'rger of.these approaches' will 

not only open up new territory,   but will be a sign of the "psychological maturity" 

of perceptron theory,   inasmuch as it will permit the study of non-trivial prob- 

lems in the psychology of thinking and problem-solving,   in terms of neurodynamic 

systems of known physical structure. 

On the other hand,   the "biological maturity" of neurodynamic theory 

must await the solution,   or at least a more promising approach,  to the biological 

memory problem.    Once this is achieved,   a fruitful interaction between percep- 

tron theory and ncurophysiology    can be expected; but the memory problem remains 

paramount in importance. 
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The theoretical approach presented in this volume is clearly a long 

way from an adequate "explanation" of the foundations of human experience.    The 

work will have fulfilled an important purpose,  however,   if it has succeeded in 

conveying a recognition of the potential power of a mathematical study of neuro- 

dynamic systems,   not only for understanding the physical mechanisms of the 

brain itself,   but for comprehending the relationship of the cognitive process in 

man to the nature of the environment in which it occurs. 

• 585- 



APPENDICES 



APPENDIX A 

NOTATION AND STANDARD SYMBOLS 

1,    Notational Conventions 

While the mathematical notation employed in this volume may still he 

capable of further improvement, several conventions have been established which 

appear to work reasonably well.    They include the following: 

(1) Individual signal-units in the perceptron are referred to by a lower 

case letter to indicate the type,   and a subscript to designate the 

particular unit in question (a- = ,'   'A-unit).    Individual stimuli are 

referred to by a subscripted capital (5-),   while stimulus sequences 

are designated by script capitals («);). 

(2) Numbers of signal units are designated by a capital N  ,  with a 

subscript to indicate the type of unit in question (/V = number of A- 

units).     The number of stimuli is indicated by a small n, 

(3).    An asterisk is vised to denote activity: >;,-   = activity state (or 

output signal) of the unit   /•;  N',  = number of active A-units; 

C- = signal transmitted by connection   c; • . 

(4) Sets of units may be designated either by a subscripted capital or 

by a functional notation.    For example,   the set of A-units respond- 

ing to stimulus  T •   may be designated either by A- or by ^5,). 

(5) Where it is necessary to refer both to the unit receiving a signal 

and to the stimulus for which the signal occurs,   a tensor notation 

is employed,   with the signal unit indicated by a subscript and the 

stimulus by a superscript.    For example, a-ft) = input signal to the 

i      unit from the,/     stimulus at time   t   .    An obvious extension 

w ould permit this notation to be applied to origins as well as 

termini of signals; thus (' (t) would designate the signal trans 
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mitted to unit J from unit  /   in response to stimulus 5«   at 

time   t   . 

(6) Whenever pairs of subscripts are used to designate a signal or 

connection (as in /;• •) the first subscript indicates the origin, 

and the second the terminus.    In generalization coefficients 

ii/--),   the first subscript indicates the "recipient" and the 

second subscript indicates the "source" stimulus. 

(7) In multi-layer systems,   the layers are counted separately for 

each type of unit,   and the number of the layer may be denoted 

by a superscript in parentheses (e. g. , /V,j    = number of units 
(3)       ■, th in the second association layer; rj" 

R-unit layer). 

«     R-unit of the third 

Matrix and vector notations,   where employed,   follow usual conventions, 

the particular symbols being defined in the text where they appear.    The symbol 

rf ,   when it appears without subscripts,   indicates a decay rate,   and should not be 

confused with Kroneker's delta,   which appears onlywith subscripts ((/'• ■ ), or with 

Dirac delta-functions, cf ■■' ,   for which the functional notation is always used. 

2.    Standard Symbols 

The following list includes those symbols which are used consistently 

throughout the text.    A number of additional symbols are occasionally employed 

for convenience in particular expositions,   and are defined where they occur. 

th 
u-  = generic symbol for the i,     signal-unit of a perceptron,   or,   in 

simple perceptrons,   signal to the R-unit fronn the i      stimulus. 
. th 4-   = i     sensory unit 
.th .   .. a-   - L     association unit 
Ah , 

r-   - L     response unit 

£■■ = connection from unit t   to  unit   J   . 

A-    - output signal from A;. 

oi    = output signal from r/•. 
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rt'   =   output signal from    r;   . 

'hJi -   sequence of response states occurring as outputs of a perceptron. 

c-•  -   signal transmitted to unit  j    from unit    i    ,   on connection c-- 
(measured at point of arrival at the terminal unit). 

T-■  -   transmission time of connection   c-, ■ 
■j <-J 

v-- -   value of connection r--    (occasionally abbreviated to ir-     in simple 
perceptrons,   indicating the value of the connection from  a-   to 
the R-unit). 

Vj   =   number of S-units 

'V,   =    number of A-units 

Nr  -   number of R-units 

a:- =   total input signal to the  l     unit.    The signal due to stimulus 
is designated either by .^j'J ) or by ot'J-   .    If the tensor notation 
is employed,   then  '>-;   designates the vector of signals fo^- , oc-,..., rxi ). 
Similarly, './'y   may be used to designate the vector   f«/, a;',..., i^JN   ). 

,:1';,7  =    component of   «.     consisting of the sum of all signals originating 
from the S -units. 

/'•v  =    component of  ''■',■      consisting of the sum of all signals originating 
from the A-units. 

[The vectors  /i-   , /J'    ,   ,'';    ,   and    'f      are defined analogously to the correspond- 
ing  rx   vectors . ) 

',:(■<) -   functional notation for activity state of a simple A-unit.    0=1 
if O- 1- "v ,    0   otherwise. 

=    number of excitatory input-connections to an A-unit 

u     -   number of inhibitory input-connections to an A-unit 
th 

0     =    threshold (specifically,   ''j-    = threshold of /      unit) 
th 

7;    =    /        stimulus 

...•',■    = sequence of stimuli 
,. . th 

Jy  =    i        sequence of stimuli up to,   but not including,   the terminal 
stimulus 

/ /    =    normalized retinal area (or fraction of sensory points) covered by   T; 

[ ■   =    common area (retinal intersection) of stimuli 5;   and   :>• 

'V   -   stimulus world,   or universe 

n    -    number of stimuli in  \\! 

N    -   number of admissible stimulus sequences,   consisting of stimuli 
in   W 
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C(W) =   classification of stimuli in W ,  into two or more equivalence 
classes. 

P(iV) =   response function,   assigning possible R-unit states to each 
stimulus in M/ 

/J- 

r? 

9l.t 

L' 

=   sign of classification of stimulus Sy (+1 or -1) in a binary- 
classification, c(w) 

-   increment of reinforcement per connection (typically   ^1 or 0, 
in quantized systems) 

=   decay rate,   generally applied to decaying values,  but occasionally 
used in connection with other quantities which are subject to 
exponential decay. 

=    generalization coefficient; the change in the signal to an R-unit 
for stimulus 5;   as a result of applying a unit of positive re- 
inforcement ( y = +1) for stimulus 5; 

=    matrix of generalization coefficients,   g 
'j 

!t* 

' -tJ 

probability that an A-unit,   in a given class of perceptrons, 
responds to stimulus   S; 

th 
\probability that a #    layer A-unit responds to   3; 

>>i 

probability that an A-unit responds to the  P     stimulus in 
sequence   ,/j 

,'• •    =   probability that an A-unit responds both to j- and to C: 
th p 

C- ;'i ■   -    probability that an A-unit responds both to the u     stimulus of e/- 
and to the  i'     stimulus of   J- 

J 

(The-probability of joint response for an arbitrary number of stimuli, Q--_ m, 
is similarly defined.    When it is understood that the environment consists of 
stimulus sequences,   as in discussions of cross-coupled perceptrons,   the sub- 
scripts of the   Q-functions   are always understood to refer to stimulus 
sequences,   rather than individual stimuli. ) 

mean of the random variable  / 

expected value of 7 

standard deviation of   r 

probability,   particularly probability of correct performance in 
a given experiment. 

notation commonly used for the probability that the random 
variable X  has the value /z ;. equivalent to P(x - r) 

i_l {X. 

£(x) 

a'fxj 

P 

Pz(r) 
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T(5) -   the transform obtained by applying transformation  T  to 
stimulus   5 

t      -   time 

T      -   number of stimuli (or duration,   in units &t    ) in a training 
sequence 

rt,/7, and P as prefixes indicate types of reinforcement systems. 

r.c.s.   =    reinforcement control system. 
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APPENDIX B 

LIST OF THEOREMS AND COROLLARIES 

This appendix contains those results which have been explicitly 

stated in the form of theorems,   for convenient reference.    Theorems are 

numbered by chapter and theorem number,   in the order in which they 

originally appear. 

THEOREM 5. 1:   Given a retina with two-state (on or off) input signals, 

the class of elementary perceptrons for which a solution exists to 

every classification, I'Vi-V.' ,   of possible environments, W   ,   is non- 

empty. 

THEOREM 5. 2:    Given an elementary perceptron and a classification 

C W) ,   the following conditions are necessary but not sufficient for 

a solution to .  wi to exist: 

i)    every stimulus must activate at least one A-unit; 

ii)    there should be no subset of stimuli containing at least 

one member of each class,   such that in the union of the 

responding A-unit sets,   every A-unit has the same bias 

ratio (with respect to the stimuli of the subset). 

THEOREM 5. 3:    Given an elementary  oi -perceptron,   a stimulus world 

W ,   and any classification C(W) ', then in order for a solution to   C(IA/) 

to exist,   it is necessary and sufficient that there exist some 

vector u in the same orthant as CfwJ,   and some vector /  such 

that G ■( -  u ■ 

COROLLARY  1:    Given an elementary perceptron and a stimulus world 

W ,  then if (5   is singular,   some C(w) exists for which there is no 

solution. 

COROLLARY 2:   Given an elementary perceptron,   if the number of 

stimuli in W   is n >Na,   there is some C(w) iox which no solution 

exists. 
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COROLLARY 3:   For any elementary perceptron,  as the number n of 

stimuli in W increases,   the probability that a randomly selected 

classification, C(w),  has a solution approaches zero (where   C(W) 

is chosen from a uniform distribution over the possible classifica- 

tions oi W ). 

THEOREM 5. 4;   Given an elementary  cc -perceptron,   a stimulus world 

W ,   and any classification ^(W for which a solution exists; let all 

stimuli in IV occur in any sequence,   provided that each stimulus 

must reoccur in finite time; then   beginning from an arbitrary 

initial state,   an error correction procedure (quantized or non- 

quantized) will always yield a solution to C(w)ir\ finite time,  with all 

signals to the R-unit having magnitudes at least equal to an arbitrary 

quantity (f > 0 . 

COROLLARY:   Given an elementary perceptron,   a stimulus world W , 

and any classification c:(W); then if a solution to Coexists,   the set 

of possible solutions to C(w) has positive measure over the phase 

space of the perceptron. 

THEOREM 5, 5:    Given an elementary  cv-perceptron with a finite number 

of memory states,   a random-sequence stimulus world W ,   and any 

classification C(w) for which a solution can be reached from the 

starting point by some reinforcement sequence,   then a solution 

will be obtained in finite time with probability 1 by means of a 

random-sign correction procedure. 

THEOREM 5.6:   Given an elementary a:-perceptron,  a stimulus world 

IV ,   and some classification C(wJ for which a solution exists,   a 

solution can sometimes be achieved by an S-controlled reinforce- 

ment procedure.    However,   such a solution cannot be guaranteed 

for an arbitrary stimulus sequence,   and may be unstable if it 

occurs. 
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THEOREM 5. 7;   Given an elementary perceptron with a finite number of 

memory states,   a stimulus world IV ,   and a classification Cfw) for 

which a solution can be reached from the starting point by some 

reinforcement sequence,   then a solution can always be obtained in 

finite time by means of a random perturbation correction procedure. 

THEOREM 5. 8:   Given an elementary   /-perceptron,   a stimulus world 

W ,   and a classification CfWJ,   it is possible that a solution to C(w) 

exists which cannot be achieved by the perceptron. 

THEOREM 5.9:    Given an  ry -perceptron,   and a classification C(w), 

a necessary and sufficient condition that the error correction 

procedure reach a solution (in finite time,   with arbitrary starting 

point) is that there exists no non-zero vector X       (whose components 

do not disagree in sign with     [Wj ) such that   h-X    = 0  for all  i 

(where   ü-   is the bias number,   defined as in Chapter 5). 

COROLLARY:    For an   «-system,   the condition that there exist no non- 

zero vector  X    such that 6; \    =    ';   for all   i.   is equivalent to the 

condition that there exist 7   and U   such that GX -  U   (where U   is 

in the same orthant as  C(W)) . 

THEOREM 5. 10:   Given a   /-perceptron,   and a classification C(iv),   a 

necessary and sufficient condition that the error correction procedure 

reach a solution (in finite time) is that there exists no non-zero   X 
n 

such that b- for all 

COROLLARY:    For a    '-system,   the condition that there exist no non- 

zero vector /   such that biX  ~ c.  for all I is equivalent to the 

condition   that there exist  "'  and  ''/   such that 

in the same ■orthant as  C.[W)). 

II  (where   U   is 

THEOREM 7. 1: . Given a class of elementary   Y-perceptrons,   a finite 

stimulus world    W ,   a classification   ■..''!•*.'-' ,   and a training sequence; 
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then for every e > 0, there exists an N0f(-) such that if N > N0(f), 

the probability of selecting a perceptron which will correctly ... 

identify the class of every positive stimulus will be greater than 

I - e  . 

(see Page  157 for definition of positive stimulus. ) 

THEOREM 9. 1:   In a bounded oc -perceptron,  with S-controlled reinforce' 

ment,   the probability distribution TT(nr){£oT the value of a particular 

connection) approaches a stable terminal distribution of the form 

}T(iy-) -- cif-i      where   ,<"    is a normalization constant equal to 

t-(P/q)
L'l + *  ' 

THEOREM 10. 1:   Given a completely linear perceptron,   a stimulus 

world  W ,   and a classification C(w) such that the bias ratio of 

every S-unit is equal (and non-zero) no solution to C(w) can exist. 

THEOREM 10. 2:    Given a simple  tx -perceptron with simple A-units, 

an R-unit with a continuous monotonic sign-preserving signal 

generating function,   a stimulus world  IV (in which each stimulus 

ultimately reoccurs) and any response function  P(W.) for which a 

solution exists,   then by means of the error-corrective reinforce- 

ment procedure,   the given response function can always be 

approximated in finite time by an output vector   R{W}+£ ,   where 

'-     is a vector (';, , <; ,,   ...   , - „ ). |t; j ^ ^',   where   e    may be an 

arbitrarily small quantity greater than zero. 

LEMMA 1:   Given a symmetric positive definite or positive semi- 

definite matrix,  H   ,   and any vector  %   ,   then {n,Hi) = () only 

if/^-O. 

LEMMA 2:   Eor the same conditions as Theorem 10. 2,   given that a 

solution exists,   the set of all solutions forms a hyperplane of 

dimension equal to the nullity of   G 
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COROLLARY 1:   For the conditions of Theorem 10. 2,   and a phase space 

which is unbounded in all dimensions,  the probability of convergence 

to an arbitrarily close approximation to RiW) by means of a random- 

sign correction procedure or a random-perturbation correction 

procedure may be less than 1, 

COROLLARY Z:   Given the conditions of Theorem 10. 2,   and a phase space 

bounded in all dimensions,   then (given that a solution to R(W} exists 

in this bounded space) the response function can always be approximated 

by means of the random-sign correction procedure,   the system converg- 

ing in finite time to an approximation P(W)i £ ,    6    a vector,   where 

| et-j < £    for arbitrarily small €   > 0 . 

COROLLARY 3:   Given the same conditions as Corollary 2,   the response 

function can always be approximated by the random-perturbation 

correction procedure,   the system converging in finite time to an 

approximation  PiWJ+6 ,   ■"   having components of magnitude \i-i\ = \tf\ 

if the reinforcement is quantized,   or  ;(.;| ■= <-.    '0,   if   r?   is chosen 

from a continuous distribution around zero. 

THEOREM 10. 3:   Given a simple perceptron with a simple R-unit,   and 

with transmission functions for all A-R connections of the form 

■F(oci}v;r,  where   f  is any function,   and given the existence of a 

solution to a classification function C(w)iox this perceptron,   then 

if pitr) is any polynomial of odd degree in   u  ,   there also exists a 

solution if the transmission function is changed to r(ix.;) p(-tr:r) . 

THEOREM 10.4:   Given the perceptron of Theorem 10.3,   if a solution 

exists for some transmission function    fi^.,iv-rf   a solution does not 

necessarily exist for the transmission function g((y;)i~;r ,    g $ -F   . 

THEOREM 10. 5: Given a simple perceptron with A-R connections which 

differ in their transmission functions, or with uniform transmission 

functions but non-simple A-units,   a response function P(w)  may 
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have a solution which is unattainable by either the error correction 

procedure or the randorn-gign correction procedure. 

THEOREM 10,6:   Given a simple perceptron with any mixture of trans- 

mission functions fj (a.-,'w-r) for the connections £;r.,   and a response 

function p(WJ for which a solution exists; then there exists some- 

transmission function  g(ry.,-/y) which is uniform for all connections, 

such that a solution to /YlVj exists. 

THEOREM 10. 7:   Given a simple perceptron with an R-unit which is either 

simple or has a continuous  signal generating function,   and with any 

combination of transmission functions from its A-units (all continu- 

ous functions of ir-r ,   equal to zero if c/.^ = 0 ),   and given a bounded 

phase space within which a solution exists for P(w) ; then,   if each 

stimulus in  //    ultimately reoccurs,   an approximate solution   PiW) + 6 

is always obtainable in finite time by the random-perturbation 

correction procedure. 

THEOREM 12. 1:    Given a perceptron with more than one R-unit,   and a 

response function  '" .1 '  or a classification  C(W)   for which a solution 

exists,   it may be impossible to achieve this solution by an error 

correction procedure which applies negative reinforcement jointly 

to all R-units based on errors in their joint response. 

THEOREM 13. 1:    Given a three-layer series-coupled perceptron with 

simple A and R-units and va.riable S-A connections,   and a classi- 

fication C(w) for which a solution exists,   it may be impossible to 

achieve a solution by any deterministic correction procedure which 

obeys the local information rule. 

THEOREM 13.2:   Given a three-layer series-coupled perceptron,  with 

simple A and R-units,   variable-valued S-A connections,   bounded 

A-R values,   and a classification C(W) for which a solution exists. 
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then a solution to (:(w) can be obtained in finite time with 

probability 1 by means of a back-propagating error-correction 

procedure,  given that each stimulus in W   always reoccurs in 

finite time,   and that probabilities A , p., ,   and p,  are all greater 

than 0 and less than 1. 

(See Section 13, 3 for definition of the back-propagating correction 

procedure.) 
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APPENDIX C 

BASIC EQUATIONS 

The following equations are those most likely to be referred to 

repeatedly,   and are listed here in a somewhat different order from their 

appearance in the text, 

(1)   Generalization Coefficients 

For an  o^-system, 

Q- ■ -   n • 
J t-.i lJ 'J 

t 9:1 (normalized form) 

For a   f -system, 

0--   =   n- •  - [l/N1 )  n- n; 

La- ■   =  Q; • - Q; Q; (normalized form) 

(2) R-unit Input Signals 

For an   rx, or   / -system, 

u   =  G x 

where a  is the vector of R-unit input signals,   and  Xi -Pi^[    {$[   being 

the number of times  5"   has been reinforced), 

(3) Q-Functions 

For individual stimuli,   in a simple perceptron, 
I' 

px(n PyH) 

where 

E=9   r=e 
jX for binomial model 

■ m a X 

p%(r.> 

\V'J for Poisson model 

probability that E   excitatory connections to an 
A-unit originate from active S~points (see 
Equations 6. 2 and 6. 3) 

/, 'I)    - probability that I   inhibitory connections to an 
A-unit originate from active S-points (see 
Equations 6. 2 and 6. 3) 
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0: 
■LJ I pz(^'EJ'£c) pu(i;>ij'U 

where   Py and   P     are defined by Equations 6. 6 and 6. 7,   for binomial, and 

Poisson models. 

For series-coupled perceptrons with distributed transmission 

times,   see Sections  11.1 and 11. Z for prototype equations, 

For multi-layer series-coupled systems,   Q-functions for the 
r ri 

<:       layer can be computed by the approximation described in Section 15. 1 

For similarity-constrained four-layer perceptrons,   Q--   for 

two random or unrelated stimuli is given by: 

w ; ; '-:'-^ ; 

w here  m  is the number of   A' units connected to each  A ^    unit. 

For a stimulus 5; ,   and its transform   5t-'   ,   in a similarity- 

constrained model, 

J Q 
(2) 

'?! 
where     -J ■   '  i-J-(.: and   ?,'i-    can be approximated by Equations 15. 5 

and 15. 8 for the case of random stimulus patterns in a finite retina.    In an 

infinite retina,   with random stimuli,     ',;M-'      Q-- .    For coherent stimuli and 

assuming   T    to be a topological transformation, 

(yi m  - I (,..    -' (I)      \ 
n, - I 

/-■'/- Q... /- Qlj (0) 

Q a) 
(i) 

where 'O is the order of the transformation group, and Q.-i-* is given 

by Equation 15. 6, A particular solution for the case of square stimuli can 

be found in Equation 15. 15. 

.For cross-coupled perceptrons with fixed connections,   Q;      and 

Q-    ■   are given by Equations 18. 1 and 18.2,   respectively. 

For adaptive four-layer and cross-coupled systems,  the terminal 

values of the Q-functions are obtained as a product of the iterative procedures 

described in Chapters  16,   17,   and 19,   and take the form: 
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Q:; = Z.p(/3*) H^A 
f ri^i/3!*- ifUM\ 

(4)   Equations for Learning-Performance 

For an error correction procedure,   an upper bound on the 

number of corrections that will be required to achieve a solution from zero 

initial conditions is given by 

N   ^   nM/oi. 

where    n    is the number of stimuli in W , M   is the maximum diagonal 

element   Q-- ,   and  oc   is the minimum of the function   %'HyJ^x^   as defined 

for Theorem 4,   Chapter 5.    For a more general bound,   see Equation 7. 12. 

For an S-controlled learning procedure,   in an elementary 

perceptron,   a bound on the error probability for a "positive stimulus"   5^ 

is given by 
(T   iu. x ) P    - e   '     EHux) 

An improved estimate of the probability of correct response,   employing a 

normal distribution assumption,   is given by Equation 7. 7. 

For fixed training sequences. 

for an oc -system 

JNx L Pj pj ( (ljx ' Qj Qz)  for a P or   '/-system 

*2("r)~- r\LL P.; ^ P- p* fv;tr - Qjz Q,z) 

for an   «-system,   and 

^2(uz) - r 2Na £ Z ^P* D; ^ \(^AX ' QJ Q^z) -2^ (Q^ -Q. Qx) 

for a   /' -system.    The equation for a true 7' -systeni is given in Equation 8. 7. 

For random training sequences, ti/^jia as above,   and the variances 

are given by Equation 7, 11 for an ai-system,  and Equation 8, 14 for a   7f -system. 
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(5)   Steady-State Equations for Four-Layer and Cross-Coupled Systems 

For an adaptive four-layer ^-perceptron (Chapter 16),  the 

terminal values of the signals transmitted by the variable-valued conneC' 

tions are given by iterating the equation: 

/: 

where    'f 
0) 

(VM) 

0 

lLci:H^> 
; - / 

■r/, (>>> 

"       (0 
and    C- ;   - T, Q -A ?£ •     (t'c , being the frequency of the 

i-i 
sequence 5*5-).    This equation will converge in at most   n    steps to the 

terminal value of    ,''     .    Equations for   /  and    r   -systems are presented 

in Chapter 16. 

For an open-loop cross-coupled system,   the above iteration 

equation applies without modification. 

For a closed-loop cross-coupled  ry-perceptron,   the iteration 

equation becomes 

r. 1     \ LV^i^iWj I^pi^H/iJ+r^j^J+r 
S: 

th 
W 

Llp + I) 

hich  is specific to the     I. '"    A-unit,   or to the set of A-units having the 

,J -vector /j-.    The solutions for  /'    and   ,r'    -systems are discussed in 

Chapter 19. 
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APPENDIX D 

STANDARD DIAGNOSTIC EXPERIMENTS 

A number of experiments have been described in the course of 

the text which are employed for comparison and evaluation of different percep- 

tron models.    Those experiments which are referred to by number are listed 

here for convenience in cross-referencing figures and discussions in the text. 

EXPERIMENT I:    Horizontal/vertical bar discrimination,   in 20 by 20 
toroidally connefcted retina,  with 4 by 20 bars.    Stimuli occur in 
fixed sequence.    S-controlled reinforcement is employed, 
(see Page 162) 

EXPERIMENT 2:   Same environment and procedure as Experiment 1,   but 
with alternating positions in opposite classes,     (see Page  164) 

EXPERIMENT 3:   Same as Experiment 1,  but with stimuli occurring in 
random sequence,     (see Page  170) 

EXPERIMENT 4:   Same as Experiment 3,  but horizontal bars occur four 
times as frequently as vertical bars,    (see Page  170) 

EXPERIMENT 5:   Same as Experiment 1,   but with error-correction reinforce- 
ment,    (see Page  173) 

EXPERIMENT 6:   Same as Experiment 5,   but with stimuli occurring in 
random sequence,     (see Page 173) 

EXPERIMENT 7:    Triangle/Square discrimination experiment,   with error- 
correction procedure,   in 20 by 20 retina.    Random sequence,  with 
stimuli occurring in all translational positions with equal probability, 
(see Page 173) 

EXPERIMENT 8:    Horizontal/vertical bar discrimination,   with random 
sequences,   and random-sign correction procedures    (see Page 176) 

EXPERIMENT 9:    Horizontal and vertical bars in random sequence,   with R- 
controlled reinforcement,    (see Page 214) 

EXPERIMENT 10:   "Spontaneous organization'1 experiment,  with an environ- 
ment of  n   stimuli,   such that all pairs have equal intersections.    The 
stimuli are divided into two classes,   and the perceptron is exposed to 
a preconditioning sequence in which the transition probability between 
members of the same class is large,   and the transition probability 
between classes is small.    At the end of the preconditioning sequence, 
R-controlled reinforcement is applied for a brief period,    (see 
Page 365) 
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EXPERIMENT 11:   "Transformation learning" experiment,   in which percep- 
tron is exposed to alternating preconditioning sequence of stimuli and 
their transforms.    After the preconditioning period,   the perceptron 
is taught to discriminate two test stimuli,   which were not previously 
seen,   and is then tested on their transforms,    (see Page 375) 

EXPERIMENT 12:   The preconditioning sequence consists of a repetitive 
sequence of four stimuli,   with spatial relationships favoring the 
dichotomy   (i^.j'j) vs {52,S4),  while temporal association favors ('S,, 52) 
vs (Sj.SJ.    The Q-matrix is evaluated at the end of the preconditioning 
period,    (see Page 393) 

EXPERIMENT  13:   "Sequence prediction" experiment.    The preconditioning 
procedure uses a finite sequence-environment with the same stimuli as 
in Experiment 12,   but the perceptron is tested (in addition) with the 
stimulus   S,   followed by a sequence of null stimuli,   and the Q-matrix 
for all subsequences is obtained,     (see Page '145) 

EXPERIMENT 14:   Preconditioning procedure with same stimuli as in 
Experiment 12,   but with each stimulus repeated two times whenever 
it occurs.     The  terminal Q-matrix for all subsequences is determined 
(see Page 450) 

EXPERIMENT  15:   Selective attention experiment,   for a four R-unit percep- 
tron trained to discriminate shapes and retinal positions of stimuli, 
and then tested with complex stimuli combining two shapes and two 
positions simultaneously,     (see Page 478) 

EXPERIMENT  16:   Selective attention in an audio-visual perceptron, 
trained to discriminate shapes and positions as in Experiment 15,   but 
biased by the addition of an auditory name for the shape or position 
of part of the stimulus pattern,     (see Page 482) 
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