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Abstract

Pipeline flushes due to branch mispredictions is one of
the most serious problems facing the designer of a deeply
pipelined, superscalar processor. Many branch predictors
have been proposed to help alleviate this problem, includ-
ing two-level adaptive branch predictors and hybrid branch
predictors.

Numerous studies have shown which predictors and con-
figurations best predict the branches in a given set of bench-
marks. Some studies have also investigated effects, such as
pattern history table interference, that can be detrimental
to the performance of these predictors. However, little re-
search has been done on which characteristics of branch
behavior make predictors perform well.

In this paper, we investigate and quantify reasons why
branches are predictable. We show that some of this
predictability is not captured by the two-level adaptive
branch predictors. An understanding of the predictabil-
ity of branches may lead to insights ultimately resulting in
better or less complex predictors. We also investigate and
quantify what fraction of the branches in each benchmark
is predictable using each of the methods described in this
paper.

1. Introduction

To build high performance microprocessors, accurate
branch prediction is required. The correct prediction of
branch outcomes and targets is necessary to avoid pipeline
bubbles. Over the years, several branch prediction strate-
gies have been proposed [8, 11, 2] to improve prediction
accuracy. Several researchers have proposed modifica-
tions [2, 3, 7] to these schemes, and there have been studies
on which configurations of these work best [6]. However,
there has been little work that explains what makes branches
predictable. A better understanding of this would likely lead
to insights ultimately resulting in better predictors, or in re-

ducing the complexity of current predictors.
Global two-level branch predictors such as GAs [11]

and gshare [2] take advantage of the correlation between
branches. Pan, So, and Rahmeh [4] identified several cases
of such correlated branches in the SPEC89 benchmarks. If
two branches are correlated, knowing the outcome of the
first branch gives you information about which direction the
second branch is likely to take. Consider the example:

if (cond1)
...
if (cond1 AND cond2)

The first branch depends on a condition (cond1), and the
second branch later in the program depends on a condition
(cond1 AND cond2) which is related to the condition of the
first branch. If the first branch is not taken, we know that the
second branch will not be taken. If the first branch is taken,
we now know that the second branch only depends on the
condition cond2. Clearly, these two branches are correlated
even though the outcome of the second branch does not
fully depend on the outcome of the first branch. In section 3
of this paper, we will examine and quantify the nature of
correlation between branches. We will link this back to the
performance of gshare, which is generally considered to be
the best performing global two-level branch predictor. We
will then show that there is a significant amount of branch
correlation that gshare fails to exploit.

In addition to correlation with other branches, many
branches are predictable based on the previous outcomes
of the branch itself. This is the predictability exploited by
per-address two-level branch predictors such as PAs [10].
Branches predictable in this way include loop branches with
a regular number of iterations and branches that follow a
periodic pattern (such as being taken every other time). As
in the branch correlation case, it is possible for a branch to
be only partly predictable based on its own history. We will
examine branches that are predictable based on their own
history in section 4.



Since the best performing branch predictors today are
hybrid predictors containing both global and per-address
components, we categorize branches in section 5 based on
whether they are more predictable using global branch cor-
relation or per-address based methods. We also identify the
set of branches where neither global correlation based nor
per-address based methods do better than statically predict-
ing the predominant direction of the branch.

In this study, we build on existing work on branch cor-
relation. We try to identify why predictors work well, and
identify some areas where the current predictors are not
uncovering the predictability that exists.

2. Previous work

2.1. Branch prediction mechanisms

To improve prediction accuracy, various branch predic-
tion strategies have been studied. Smith [8] proposed a
branch prediction scheme that uses a table of 2-bit saturat-
ing up-down counters to keep track of the direction a branch
is more likely to take. Each branch is mapped via its ad-
dress to a counter. The branch is predicted taken if the most
significant bit of the associated counter is set; otherwise, it
is predicted not-taken. These counters are updated based
on the branch outcomes. When a branch is taken, the 2-bit
value of the associated saturating counter is incremented by
one; otherwise, the value is decremented by one.

By keeping more history information, a higher level of
branch prediction accuracy can be attained [10, 11]. Yeh
and Patt proposed the Two-Level Branch Predictor which
uses two levels of history to make branch predictions. The
first-level history records the outcomes of the most recently
executed branches and the second-level history keeps track
of the more likely direction of a branch when a particular
pattern is encountered in the first level history. The Two-
Level Branch Predictor uses one or more k-bit shift reg-
isters, called branch history registers, to record the branch
outcomes of the most recent k branches. If there is one his-
tory register per branch, the predictor is called a per-address
(PAs) predictor. If there is one history register to record the
outcomes of all branches, it is called a global (GAs) predic-
tor. The two-level predictor uses one or more arrays of 2-bit
saturating up-down counters, called Pattern History Tables,
to keep track of the more-likely direction for branches. The
lower bits of the branch address is used to select the appro-
priate Pattern History Table(PHT) and the contents of the
branch history register select the appropriate 2-bit counter
to use within that PHT.

Several variations of the Two-Level Branch Predictor
have been proposed. McFarling [2] introduced gshare, a
variation of the global-history Two-Level Branch Predictor
that XORs the global branch history with the branch address

to index into the PHT. This leads to better utilization of the
PHT. Nair [3] proposed using a path history instead of a pat-
tern history to index into the PHT. This has the advantage
of being able to represent the path, albeit imperfectly. It has
the disadvantage that information from fewer branches can
be captured in the history.

To further improve prediction accuracy, hybrid branch
predictors have recently been proposed [2]. A hybridbranch
predictor is composed of two or more predictors and a mech-
anism to select among them. A hybrid branch predictor can
exploit the different strengths of its component predictors,
enabling it to achieve a prediction accuracy greater than that
achieved by any of its components alone.

2.2. Studies on effects seen in branch predictors

There have also been some studies on the behavior of
branches and branch predictors. Pan et al. [4] identified
several cases of branches being correlated in the source code
of the SPEC89 benchmarks.

Chang et al. [1] classified branches based on their taken
rates. They proposed a predictor using a static predictor for
the strongly biased branches, and a dynamic hybrid predictor
for the weakly biased branches.

Sechrest et al. [5] studied the role of adaptivity in two-
level branch predictors and determined that, for per-address
predictors with short histories, having statically determined
values in the PHT performed on par with the adaptive scheme
using 2-bit counters.

Talcott et al. [9] and Young et al. [12] studied and clas-
sified the effects of pattern history table interference, and
showed that it negatively affected the performance of 2-level
branch predictors. These two papers used interference-free
predictors to aid in the understanding of the potential of 2-
level predictors. An interference-free predictor has one PHT
for each branch and is therefore prohibitively large, but does
not suffer from the negative effects of PHT interference.

Young et al. [12] also showed the advantage of path histo-
ries over pattern histories for static branch prediction. Fur-
thermore, they investigated the importance of adaptivity in
the PHTs of global 2-level predictors and found that, in
some cases, a statically determined PHT, when using the
same profiling and testing set, would outperform a PHT
using 2-bit counters.

3. Branch correlation

Global two-level branch predictors such as GAs and
gshare take advantage of correlation between branches. In
this section, we identify several classes of correlation, de-
scribe how correlation is detected, and present results quan-
tifying the amount of branch correlation in the SPECint95
benchmarks.



3.1. The general case

There are two reasons for the directions of two branches
to be correlated. One is that the conditions of the two
branches are based (fully or partly) on the same or related
information. An example of this is shown in figure 1a. The
other reason is that information affecting the outcome of
the second branch is generated based on the outcome of
the first branch. An example of this is shown in figure 1b.
Since the outcome of the second branch is correlated to the
direction of the first branch, we will refer to these two kinds
of correlation as direction correlation.

branch Y: if (cond1) branch Y: if (cond1) a = 2;
... ...
branch X: if (cond1 AND cond2) branch X: if (a == 0)

(a) (b)

branch Y: if (cond1)
...
branch Z: if (cond2)
...
branch X: if (cond1 AND cond2)

(c)

Figure 1. Correlation examples

In both of these examples, the later branch (branch X)
is the one that we are trying to predict. In the rest of this
paper, we will refer to this as the current branch. We will
refer to the preceding branches (branch Y and Z) whose out-
come is correlated with the current branch as the correlated
branches. In this study, we will only look for correlated
branches within a history of the last n branches leading up
to the current branch, where n is in the range 8-32 depending
on the experiment.

branch Y: if (NOT(cond1)) ...
branch Z: else if (NOT(cond2)) ...
branch V: else if (cond3) ...
...
branch X: if (cond1 AND cond2)

Figure 2. Example of in-path correlation

In addition to the direction of the correlated branch, just
knowing whether we arrived at that branch on the path lead-
ing up to the current branch will give us some informa-
tion about the outcome of branches preceding the correlated

branch. This is illustrated by figure 2. In this case, if we get
to branch V, we know that the first two conditions were false,
so cond1 and cond2 are both TRUE. Note that the direction
of branch V is not related to the condition of branch X, but
from knowing that branch V was on the path to branch X we
know that the condition of branch X will be satisfied. If a
branch is one of the last n branches leading up to the current
branch, we will say that it was in the path to the current
branch. We will refer to the correlation between a branch
being in the path and the outcome of the current branch as
in-path correlation. In-path correlation is exploited more
directly in path based global predictors than in pattern based
predictors. If the current branch is at the beginning of a sub-
routine, its outcome may depend on where the subroutine
was called from. In-path correlation would also account
for this effect.

In many cases, the correlation between one pair of
branches, such as the pairs shown in figure 1a and 1b, is
not strong enough to guarantee the direction of the second
branch. Sometimes the correlation is strong only if the
correlated branch is taken (or not taken); if the correlated
branch is not taken, the correlation is not strong enough to
guarantee the direction of the second branch. In these cases,
we need to look at the correlation between several branches
and the current branch. In the example shown in figure 1c,
branch X will be taken if both Y and Z are taken. It will
not be taken if either Y or Z is not taken. We do not know
whether X will be taken if neither Y nor Z is in the path.
Later in this section, we investigate how the predictability of
branches increases as a function of the number of correlated
branches that are used to determine the prediction.

3.2. Accounting for loop behavior

The discussion in section 3.1 examined the nature of
correlation between branches with the assumption that the
address of a branch is sufficient to distinguish branches for
correlation purposes. However, in tight loops, several it-
erations can sometimes fit in the history of n branches we
are examining, so we must distinguish between multiple
instances of the same branch.

There are two straightforward methods to distinguish be-
tween multiple instances of a previous branch. For each of
these, the branch will be identified by its address along with
a “tag” that represents a particular dynamic instance of that
static branch.

One of these methods is to number the instances of a
branch starting at the current branch. So, if branch A appears
in the history 3 times, the most recent occurrence would be
A�, the second most recent would be A� and the oldest
would be A�. However, with this method there is no way to
clearly identify branch A from a specific iteration of a loop
if it does not appear in every iteration.



The other method is to number the instance of a branch
by how many backwards branches have occurred between it
and the current branch. This enables us to clearly identify
the instance of the branch from a certain number of iterations
ago. However, with this method you can not easily identify
branches from before the current loop. A branch before the
beginning of the loop will be tagged differently depending
on how many iterations of the loop have passed. �

Each of these methods of identifying the instance of a
branch have different limitations. Therefore, we tagged
all branches using both methods. We considered branches
tagged using the two different methods as distinct instances
when investigating correlation with the current branch.

3.3. Correlation in two-level branch predictors

Of the branches in the path leading up to the current
branch, there will be some that are correlated and some that
are not. Ideally, we want to build a history including the
outcomes of the branches that are correlated, but excluding
the outcomes of branches that are not correlated.

Global two-level branch predictors, such as the gshare
predictor shown in figure 3, are able to exploit correlation
by basing the prediction on the outcomes of all the recently
executed branches. The most recent branch outcomes are
recorded in the first level of history, and the second level of
history records the most likely outcome when a particular
pattern in the first level history is encountered.

. . .XOR

Branch Address

Branch History Register

Pattern History Table

Figure 3. Diagram of a gshare predictor

For each of the branches in the history, if that branch is
taken, it will generate a different pattern than if that branch
is not taken. These patterns will then use different entries in
the second level history table allowing better predictions to
be made.

However, not all of the outcomes in the branch history
register contain information that is useful for prediction.
That is, some of the branches that are recorded in the history
are not correlated to the current branch. Different outcomes

�This could be fixed byonly counting the number of backwards branches
that branched past the branch in question, but due to subroutine calls, this
is difficult to determine

of these branches will still cause different patterns to be
used, but with no beneficial effect on prediction accuracy.
However, the added noise, resulting in more interference
and longer training times, may have a negative effect.

3.4. Correlation using a selective history

To investigate how many of the entries in the history are
really needed, we defined a hypothetical predictor. This
predictor works in a manner similar to a global 2-level pre-
dictor, but only the outcomes of the 1, 2 or 3 most important
branches, tagged as described in section 3.2, are included
in the history. For this selective history, we used an oracle
mechanism to choose the set of 1, 2 or 3 most important
branches to include in the history for each branch.

The outcome of each of these branches is recorded in the
history as taken, not taken or not in the path of n branches
leading up to the current branch. The “not in path” outcome
was required in this hypothetical predictor as we are looking
at 1, 2 or 3 particular branches, and not all of these appear
in the recent path all the time.

The history with 1 branch can have 3 possible patterns
(taken, not taken or not exist), the history with 2 branches can
have �

� patterns, and the history with 3 branches can have
�
� patterns. Predicting using these history patterns is then

done identically to predicting in a global 2-level predictor.
The pattern is used to select a counter in the second level
table. The upper bit of this counter provides the prediction,
and the counter is updated with the outcome of the branch.

3.5. Simulation environment

We simulated the SPECint95 benchmarks to completion
using a trace-driven branch prediction simulator. Table 1
lists the 8 SPECint95 benchmarks, the data sets we used,
and how many dynamic conditional branches were in each
run.

Benchmark Input # of Branches
compress test.in� 10661855

gcc jump.i 25903086
go 2stone9.in� 17925171

ijpeg specmun.ppm� 20441307
m88ksim dcrand.train.big 16719523

perl scrabbl.pl� 10570887
vortex vortex.in 33853896
xlisp train.lsp 26422387

Table 1. Summary of the SPECint95 bench-
marks along with the input data sets

�Abbreviated version of the SPECint input set



3.6. Experimental results

In this section, we examine the prediction accuracy using
a selective historyof one, two, or three branches as described
in section 3.4. We show that only a few branches need
to be recorded in the history in order to achieve prediction
accuracy comparable to gshare, as long as the most important
branches are recorded. We are examining 16 prior branches
in all experiments unless otherwise noted.

We also examine the distance to the correlated branches
that are most important to record in the history. Finally,
we demonstrate that there is a significant amount of corre-
lation that gshare, which is generally considered the best
correlation based two-level predictor, does not capture.

3.6.1 Correlation with multiple branches

Some branches are strongly correlated with one previous
branch, so only information about that branch is needed to
predict the current branch. For other branches, we need
to capture the correlation with several prior branches to
make an accurate prediction. Figure 4 shows the prediction
accuracy for each benchmark using a selective history of
only the 1, 2 or 3 most important branches. This is compared
to the prediction accuracy of an interference-free gshare
predictor using a 16 branch history. The accuracy of a
regular gshare predictor is shown for reference.
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Figure 4. Selective history vs. gshare and
interference-free gshare

Most of the benchmarks have the same trend. Even with
a selective history containing only one branch, meaning that
only correlation with that one branch could be exploited, the
prediction accuracy is at a respectable level. When using
a selective history of 3 branches, the prediction accuracy
is close to the accuracy of an interference-free gshare for
most of the benchmarks. This is an important point. The
interference-free gshare predictor is using the outcomes of
all of the 16 most recent branches to make its prediction.
However, this does not result in much better prediction ac-
curacy. Using all 16 outcomes when only a few are needed
introduces undesired noise. This noise impacts a gshare
predictor in two ways. One is added interference (obviously
not a factor in the interference-free gshare). The other is
increased training time.

The obvious conclusion that can be drawn from this ex-
periment is that the outcomes of only a very small number of
previous branches is needed to make an accurate prediction,
as long as the most important branches can be identified.

3.6.2 Distance to correlated branches

We showed in the previous section that only a small selec-
tive history is needed to make an accurate prediction. In that
experiment, the 16 most recent branches were considered in
forming the selective history. In this experiment, we exam-
ine how far back the important branches are by considering
the n most recent branches, where n is varied from 8 to 32.
We will refer to n as the history length. Clearly, the closer
the most important branches are to the current branch, the
easier it would be to exploit the correlation in a predictor
implementation. Figure 5 shows the prediction accuracy
using a selective history of 3 branches for history lengths
going from 8 to 32 branches in intervals of 4.

The figure shows that examining a history of fewer than
12 branches is limiting. There is a slow but steady growth

8 32 8 32 8 32 8 32 8 32 8 32 8 32 8 32
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Figure 5. Accuracy as a function of history
length using a 3-branch selective history



from 12 up to a history length of 20, but little gain in look-
ing farther back. This indicates that the most correlated
branches are close together. The increase in prediction ac-
curacy when going from 12 to 20 entries in the history is
approximately 0.5% for compress, gcc and go, and there is
almost no increase for m88ksim, vortex and xlisp. How-
ever, the improvement in just going from a history length
of 12 to 13 for a gshare predictor would be more than this.
This is consistent with the notion that the main effect of in-
creasing the history length in a gshare predictor is to reduce
interference.

3.6.3 Correlation not exploited by gshare

The predictor using a 1-branch selective history was less ac-
curate than gshare for half of the benchmarks. However, this
predictor uses only a single-branch selective history and still
outperforms gshare for two benchmarks and equals gshare
for the remaining two. Although gshare has the potential
to utilize correlation with 16 branches, it appears from this
result that sometimes it fails to capture the correlation with
the one branch used in the selective history.

To quantify the inability of gshare to utilize this corre-
lation, we created a hypothetical predictor. This predictor
uses the 1-branch selective history predictor for branches
where it achieves a higher accuracy than gshare. Otherwise,
gshare is used. If gshare could consistently exploit the cor-
relation with the one branch used in the selective history, the
accuracy of this hypothetical predictor should be the same
as the accuracy of gshare.

As shown in table 2, the prediction accuracy of this hy-
pothetical predictor, shown as “gshare w/ Corr” was approx-
imately 4% higher than that of gshare for gcc and go and
on average 0.23% higher for the other benchmarks. This
shows that gshare is not always able to exploit even the one
strongest correlation for each branch.

We also performed the same experiment with a similar

gshare IF gshare
Benchmark gshare

w/ Corr
IF gshare

w/ Corr
compress 92.16 92.40 92.25 92.41
gcc 92.27 95.95 96.23 96.73
go 84.11 88.54 91.53 92.14
ijpeg 92.56 93.12 93.22 93.31
m88ksim 98.44 98.58 98.51 98.59
perl 97.84 98.29 98.18 98.34
vortex 98.98 99.29 99.28 99.32
xlisp 95.37 95.52 95.47 95.52

Table 2. Accuracy of gshare w/ and w/o addi-
tional correlation

hypothetical predictor using an interference-free gshare. As
shown in table 2, the prediction accuracy of this hypothetical
predictor was 0.5-0.6% higher than that of interference-free
gshare for gcc and go (representing 13% of the mispredic-
tions for gcc and 7% of the mispredictions for go) and on
average 0.1% higher for the other benchmarks. This indi-
cates that although interference limits the ability of gshare to
exploit available correlation, other factors such as increased
training time are also keeping gshare from fully exploiting
even the one strongest correlation for each branch.

4. Per-address predictability

This section discusses branches that are predictable based
on the recent outcomes of the branch itself.

4.1. Classes of per-address predictability

We identified three classes of per-address based pre-
dictability: loop-type branches, branches having repeating
patterns, and branches having non-repeating patterns.

For each of these three classes, we used a predictor based
on the premise of that class. It follows that any branch
having behavior indicative of one of these classes will be
very well predicted by the predictor for that class. Therefore,
it is reasonable to use the prediction accuracies of these
predictors to classify branches. We consider a branch as
belonging to the class for which the prediction accuracy
was the highest. The specific predictors for the classes are
described in the sections below.

However, there are some branches that are either very
strongly biased or do not exhibit the characteristics of any
of these classes. For these branches, using the predictors
based on the premises of these classes does no better than
predicting a single direction throughout the program, where
that direction is the direction taken most often by the branch
during the run. This is the best one can achieve with a
static predictor, hence we refer to it as the “ideal” static
predictor. Branches for which the ideal static predictor is
best are not considered to belong to any of the classes. It is
not necessarily true that these branches can not be predicted
better by a different dynamic predictor. However, they can
not be predicted better using the methods described here.

4.1.1 Branches having loop-type behavior

The loop-type class contains “for-type” and “while-type”
branches. For-type branches are taken n times followed by
not-taken once. While-type branches are not-taken n times
followed by taken once. n is expected to stay the same or
change infrequently.

We designed a predictor that captures this loop-type be-
havior. It makes n predictions in a row of one direction,



then a single prediction of the opposite direction. The value
of n is determined from the previous number of consecutive
same-direction outcomes. Since the for-type and while-
type branches only differ in the directions predicted, the
predictor maintains a direction bit to differentiate between
the two. The counts of n are kept in a perfect BTB to pre-
vent interference from affecting our classification. For these
experiments, we assumed n � ���.

4.1.2 Branches having repeating patterns

The repeating pattern class consists of branches that fol-
low a repeating pattern of outcomes, but are more general
than loop branches. We group this class of branches into
two subsets. The first subset, “fixed-length patterns”, con-
tains branches repeating any arbitrary pattern of outcomes
of length k. The second subset, “block patterns”, contains
branches that are taken n times, then not-taken m times,
then taken n times, and so on.

To capture the fixed-length pattern subset, we constructed
a set of predictors. Since a fixed length pattern of length k

repeats every k branches, then each branch should have
the same outcome as k times ago. A predictor based on
capturing this type of behavior need only predict the same
direction as the branch took k times ago. We simulated 32
different variations of this predictor that each predicts using
a different value of k between 1 and 32. For each branch,
the best prediction accuracy of these 32 predictors was used
as the fixed-length prediction accuracy.

The predictor for the block pattern subset was imple-
mented similarly to the loop predictor in the previous sec-
tion. It predicts that, after the nth consecutive taken branch,
the branch will be not-taken the same number of times (m)
as before the first of these taken branches. Similarly, after
the mth consecutive not-taken branch, the prediction is that
the branch will be taken the same number of times (n) as
before the first of these not-taken branches. For these ex-
periments, we assumed n � ���, m � ���, and stored the
counts in a perfect BTB.

When comparing against the other classes, we used the
higher accuracy of the subset predictors.

4.1.3 Branches having non-repeating patterns

The non-repeating pattern class consists of branches that do
not have a repeating pattern, but are still predictable based on
their previous outcomes. These are branches with outcomes
that can be predicted based on specific previous outcomes
in the history. Many data dependent branches fall into this
category, as the input to a program commonly has some
pattern to it. PAs is a predictor that works on this premise.
To prevent interference from affecting our classification, we
used an interference-free PAs predictor with a very large
BTB as a predictor for this class.

com gcc go ijp m88 per vor xli
Benchmark

0

20

40

60

80

100

P
er

ce
nt

ag
e 

B
es

t 
(D

yn
am

ic
)

Ideal Static

Loop 

Repeating Pattern

Non-Repeating Pattern

Figure 6. Fraction of branches each per-
address class was dominant weighted by
the dynamic execution frequencies of the
branches

4.2. Experimental results

4.2.1 Distribution of per-address predictability classes

In figure 6, we show how branches fall into each class of
per-address predictability. We also show the set of branches
where the accuracy of an ideal static predictor is greater than
or equal to the predictability of any of the classes.

Figure 6 shows that about half of the branches, those
at least equally well predicted using an ideal static predic-
tor, were not classified as belonging to any of the specific
classes of per-address predictability. 88% of these branches
are more than 99% biased, while the rest are simply not
predictable using any of the per-address based methods de-
scribed in this paper.

Approximately a third of the branches were classified as
having non-repeating patterns, meaning that a 2-level per
address predictor is needed to predict them. Most of the
remaining branches, about a sixth, were classified as loop-
type. Repeating patterns that were not captured in the two
loop-type categories were infrequent.

4.2.2 Unexploited per-address predictability in PAs

We showed in the previous experiment that loop-type
branches accounted for almost one sixth of the branches



in the SPECint95 benchmarks. These branches are pre-
dicted better by a loop predictor than PAs, but the previous
experiment does not show how much better.

To examine whether the behavior of these loop-type
branches is captured sufficiently well by PAs, we created
a hypothetical predictor. This hypothetical predictor uses
the loop predictor described earlier for all branches in the
loop class, and PAs for all other branches.

As shown in table 3, the prediction accuracy of this hy-
pothetical predictor, shown as “PAs w/ Loop”, was 0.8 and
1.4% higher than that of PAs for gcc and go respectively
and 0.1-0.6% higher for the other benchmarks. This shows
that PAs is not necessarily the best choice for all per-address
predictable branches.

PAs IF PAsBenchmark PAs
w/ Loop

IF PAs
w/ Loop

compress 93.46 93.49 94.41 94.42
gcc 92.08 92.91 91.86 93.20
go 82.16 83.53 84.81 85.84
ijpeg 94.87 95.50 95.86 96.28
m88ksim 98.58 99.14 99.09 99.35
perl 96.83 96.96 97.79 97.87
vortex 98.86 99.14 99.03 99.23
xlisp 95.46 95.54 96.70 96.73

Table 3. Prediction accuracy of PAs w/ and
w/o loop enhancement

We also performed the same experiment with a similar
hypothetical predictor using an interference-free PAs. As
shown in table 2, the predictionaccuracy of this hypothetical
predictor was 0.3 and 1.0% higher than that of interference-
free gshare for gcc and go respectively (representing 4% of
the mispredictions for gcc and 7% of the mispredictions for
go) and on average 0.2% higher for the other benchmarks.
Although interference limits the ability of PAs to predict
loops, an interference free PAs will still not be able to predict
the exits of loops longer than its history length.

5. Branch correlation vs. per-address pre-
dictability

We have examined the behavior of branches both in
terms of branch correlation based and per-address based pre-
dictability. However, the highest performance is achieved
by hybrid predictors, typically consisting of a global com-
ponent and a per-address component. To better understand
the cooperation between the component predictors that takes
place in a hybrid, we would like to know the individualbene-
fits of both global and per-address predictors in that context.

In this section, we examine this both using the classes of
global and per-address predictability defined earlier, and us-
ing PAs and gshare.

5.1. Global / per-address distribution

We have examined branch correlation (section 3) and
classes of per-address based predictability (section 4). In
this section, we present a distribution showing how many
branches fall into each of these categories, weighted by ex-
ecution frequency. Once again, we do not classify branches
which are predicted at least as accurately with an ideal static
predictor.

Figure 7 shows the distributionof branches best predicted
by gshare and PAs. The proportion of branches that were
predicted at least as accurately with an ideal static predictor,
55% on average, is also shown for reference. In this case,
83% of these branches were more than 99% biased. On
average, gshare was best for 29% of the branches, and PAs
was best for 16% of the branches.
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Figure 7. Distribution of branches best pre-
dicted using gshare, PAs, and an ideal static
predictor, weighted by execution frequency

Figure 8 shows the distributionof branches best predicted
using the branch correlation and per-address based predic-
tors given in this paper. In this case, the branch correlation
fraction included branches best predicted using interference-
free gshare or using a 3-branch selective history (see sec-
tion 3.4). The per-address fraction included branches best
predicted using any of the per-address based predictors de-
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Figure 8. Distribution of branches best pre-
dicted using global correlation, per-address
based predictors, and an ideal static predic-
tor, weighted by execution frequency

scribed in section 4.1. The proportion of branches that were
predicted at least as accurately with an ideal static predictor,
40% on average, is also shown for reference. 92% of these
were more than 99% biased. 38% of the branches were best
predicted using branch correlation. 22% of the branches
were best predicted using per-address based predictors.

Two conclusions that can be drawn from figure 7 and 8
is that (1) there is a significant set of branches for which we
can do better than PAs and gshare, and (2) there are 40% of
the branches for which we are still unable to do better than
an ideal static predictor. However, of these, on average 92%
are more than 99% biased. For the other 8%, more research
is needed to discover better dynamic predictors.

5.2. Individual importance of gshare and PAs

We showed in the previous section that there is a large
number of branches for which gshare is the better predictor,
and a large number of branches for which PAs is better. To
fully understand the importance of having both a global and
a per-address predictor, we need to know how much better
each predictor is for the set of branches where it is best.

Therefore, we studied the difference in prediction accu-
racy between gshare and PAs for all branches. For branches
where the difference is small, either of the predictors could
be used without a significant loss in prediction accuracy.
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Figure 9. Difference between gshare and PAs
accuracy

However, for branches where the difference is large, it is
important to use the better predictor for that branch.

Figure 9 shows the distribution of the difference between
the accuracy of gshare and PAs for gcc and perl. The curve
for go is very similar to that of gcc, while perl is representa-
tive of the other benchmarks. For gcc, we see from the left
end of the figure that for 10% of the dynamic branches, PAs
is more than 7.0 percentage points better than gshare. Simi-
larly, we see from the right end of the figure that for 10% of
the dynamic branches, gshare is more than 10.4 percentage
points better than PAs.

The area between the curve and the horizontal line in
the “PAs Better” region indicates the amount of prediction
accuracy that would be lost if gshare were the only predictor.
The area between the curve and the horizontal line in the
“Gshare Better” region indicates the amount of prediction
accuracy that would be lost if PAs were the only predictor.

We can see from figure 9 that there is a large number
of branches for which PAs is much better than gshare, and
there is a large number of branches for which gshare is much
better than PAs. This explains why hybrid predictors are ca-
pable of achieving much higher performance than individual
predictors.

6. Conclusions

In this paper, we have explained and quantified reasons
why global two-level branch predictors work. We showed
that only information about a very few previous branches
is needed for a correlation based predictor to be accurate,
and that these branches can generally be found close to the
branch that is being predicted. We further showed that the
gshare two-level predictor is not fully exploiting this cor-
relation. Capturing correlation with two or three branches



was needed to in most cases surpass the prediction accu-
racy of gshare. However, if gshare could take advantage
of only the single strongest correlation for each branch, it
would achieve a 3.7% higher prediction accuracy for gcc,
and 1.2% higher accuracy on average.

We also examined per-address predictability. We identi-
fied three classes of per-address predictability and showed
how often each of these occurred. We showed that there is a
large set of branches with loop-type behavior in the bench-
marks. A PAs predictor using a separate loop predictor
for these branches would achieve a 0.8% higher prediction
accuracy than PAs for gcc, and 0.5% better on average.

Furthermore, we showed the frequency of branches for
which each type of predictability was best. We presented
this both using the two-level predictors gshare and PAs,
and using the classes of predictability defined in this paper.
We showed that 55% of the branches were at least equally
well predicted with an ideal static predictor as with PAs or
gshare. For the 17% of these branches that are not heavily
biased, more accurate dynamic predictors are still needed.
However, when using our classes, we identified that several
of these had higher predictability, and could potentially be
improved beyond the accuracy of an ideal static predictor.
Of the branches that were still at least equally well predicted
with a static predictor, 92% were more than 99% biased.

Finally, we showed that there is a large set of branches
for which PAs is significantly better than gshare, and a large
set for which gshare is significantly better than PAs, con-
firming the importance of using both global and per-address
predictors in hybrid branch predictors.
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