
SHORT NO'IFS

Single Rogramming
PmgrammFng' a , Line to the
Line

I

1
Fig. 8. A linear select programmable cell structure.

Fig. 9. Some possible arrangements of the programming
bus in linear select scheme.

and p outputs can realize any n or less state sequential
machine with p or less inputs and q or less outputs.

The purpose of this study has been t o develop cellular
methods of synthesizing sequential machines. From the
production point of view, cellular array employing LSI
technology represents a great saving in cost, space, and
weight. From the designer's point of view, cellulariza-
tion does away with the arduous task of state assign-
ment. A further advantage of cellularization lies in i ts
programmability. This is important in designing recon-
figurable digital systems.

The author wishes to thank Dr. R. A. Short for inspir-
ing interest in this area and for his helpful guidance
throughout this work.

REFERENCES
111 K. K. Maitra, "Cascaded switching networks of two-input flex-

ible cells,'IRE Trans. Electron. Comput., vol. EC-11, pp. 136143,
Apr. 1962.

121 R. A. Short, "Two-rail cellular cascades," in 1965 Fall Joint
Comput. Conf., A F I P S Conf. Proc., vol. 27. Montvale, N. J . :
AFIPS Press, 1965, pp. 355-369.

- 0 g r - i ~ - - - -
Line

Fig. 10. A linear select programmable cellular array.

131 R. C. M~nnick, "Cutpo~nt cellular logic," IEEE Trans. Electron
Comput., vol. EC-13, pp. 685-698, Dec. 1!64.

[4] -, "Sunvey of microcellular research, Stanford Res. Inst.,
Menlo Park, Calif., Rep. AFCRL-66475, 1966.

(51 R. A. Short, "The attainment of reliable digital system through
the use of redundancy--4 survey." Cornput. Group News, vol. 2 ,
pp. 2-17, 1968.

[6] R. H. Wilcox and W. C. Mann, Ed., Redundancy Techniques for
Computer Systems Ivashington, D. C.: Spartan, 1962.

The Inhibition of Potential Parallelism
by Conditional Jumps

EDWARD M. RISEMAN AND CAXTON C. FOSTER

Abstract-This note reports the results of an examination of seven
programs originally written for execution on a conventional computer
(CDG3600). We postulate an infinite machine, one with an infinite
memory and instruction stack, infinite registers and memory, and an
infinite number of functional units. This machine will execute a pro-
gram in parallel a t maximum speed by executing each instruction a t
the earliest possible moment.

Manuscript received AIarch 24, 1972; revised June 2 1 , 1972. This
work was supported in part by a study grant from Control Data
Corporation.

The authors are with the Department of Computer and Informa-
tion Sciences, University of Massachusetts, Arnherst, Mass. 01002.

3

IEEE TRANSACTIONS OK COMPUTERS, DECEMBER 1972

The manner in which conditional jump instructions are treated is
the primary concern of this note. One possibility is to assume that
when a conditional jump is encountered, no further instructions may
be issued until that condition is resolved and the subsequent path is
determined. Under this assumption, the seven programs, even on this
infinite machine, ran only 1.72 times as fast as they did on a conven-
tional machine. On the contrary, if it is assumed that one knows in
advance which path will be taken at each branch, conditional jumps
do not impede the execution of the program. This results in the pro-
gram running 51 times as fast as in a conventional machine. The im-
plications of these results are discussed.

Index Terms--Conditional jumps, CPU design, execution speed,
multiple functional units, parallelism, pipelining.

Consider the stream of instructions presented to the
control unit of a conventional CPU. There are loads,
stores, adds, multiplies, unconditional and conditional
jumps, etc. Examples of such streams may be collected
by tracing actual programs with a suitable interpreter.
What factors limit the rate of execution of such an in-
struction stream?

In the simplest type of CPU, the time required to fetch
instructions and operands will limit the rate. Let us add
a very large (unlimited) stack or cache to the machine
so that, for all practical purposes, memory access time
goes to zero. Still the program takes a finite nonzero
time to execute. This is because it consists of a seqztence
of instructions, each consuming some time. Let us,
therefore, allow as many instructions to be executed in
parallel (at the same time) as we can. Since a t any given
moment we may wish to have several additions and

In keeping with our previous approach, we will say
that each redefinition creates ,I new destination. Ender
this assumption consider t h e following six i n ~ : r ~ i c t i ~ ~ ~ .

\
LDA 01

ADD 01 strand 1
STA YJ

STA T)

This set of instructions could be executed in any of
three ways: 1) as shown-first strand 1, then strand 2;
2) in parallel-strand 1 a t the sanie time as strand 2;
or 3) in reverse order-first strand 2 , then strand 1.

The parallel execution (case 2) can take place because
the LDA 6 and the LD.4 a are both redefinitions of the
accumulator, and each creates a new accumulator for
use by that strand independently of the one used by
the other.

There is still a limit on the speed of the program.
Clearly, an instruction cannot be dispatched (begin to
execute) until all its sources are available. Tile ADD P
instruction above must await the completion of the
LDA a and the availability of the data in /3. Even after
all its sources are available, the A D D will take a nonzero
time to execute. T o assume otherwise would imply that
all programs, regardless of their length, run in zero
seconds. Stating this somewhat more formally, we have

several multiplies executing concurrently, let us expand
the CPU so it has very many (as many as necessary)
functional units. Tha t is to say, the dispatching of an
instruction is never delayed because of lack of a piece of
hardware.

Complete parallelism is still not achieved because of
the inherently sequential nature of parts of the instruc-
tion stream. For example, the triplet "load accumu-
lator, add, store accumulatorn must be executed sequen-
tially. This condition occurs because the add instruction
needs the information fetched by the load and the store
instruction needs the sum computed by the add. hIore
formally, we may say that each instruction has a set of
Usources" on which it depends and a set of "destina-
tions" which it modifies.

For the above triplet we have the following.

T = E + mas (S1, Sz, . . , S k)

where

T Completion time of the instruction and hence the
time a t which its results (destinations) become
available as a source for further instructions.

E Execution time of the instruction.
Sj Time a t which source j becomes available.

We will say that a program is running a t "maximum
speedn when the following hold.

1) Each instruction is dispatched as soon as its
sources become available.

2) There exist sufficient resources in the machine so
that no execution of an instruction is delayed by lack
of required resources.

Instruction Meaning Sources Destination%

LDA a load accumulator memory location a accumulator
ADD B add to accumulator accumulator and memory location'@ accumulator
STA y store accumulator accumulator memory location ;

When an instruction has a destination that is not a t 3) Conditional jump instructions do not impede tile
the same time a source for that instruction, we will say flow of the program because either of the following is
that i t "redefinesn that destination. Thus, LDA redefines true.
the accumulator and STAB redefines 6. Tjaden and Flynn a) One somehow knows a prior2 ~vhich path ivill be
call this "open effectsn [5 1. taken from a branch point and can proceed only do\vn

SHORT NOTES 1407

that path (in which case the branch could effectively sumptions are somewhat different from this. The fact
be removed). that they do not correspond to present-day techniques

b) IIany tentative computational paths can be was pointed out by one of our referees.
maintained simultaneousIy, with the eventual selection We assume that when an instruction is loaded into the
of the correct path and the discarding of the incorrect stack, it already specifies exactly which registers it
paths taking place as conditional jumps become resolved. needs as sources and which it expects to modify (its

Thus, a program is running a t maximum speed when destinations). (Thus we ignore the problem of dynamic
the only remafhing constraints on its speed are the exe- remapping of register names, although it does not seem
cution times of the various instructions and any inherent as i f this would be an insuperable design problem,) The
sequential dependencies between them. Note that the dispatching hard%rare continuously monitors the state
problem is not necessarily being solved a t the maximum of all the source registers of this instruction, and when
possible speed. A different algorithm or more efficient these sources all become "valid," it issues the instruction
coding might run much faster than the program being to some functional unit and simultaneously marks all
used. By rewriting the algorithm for the type of machine of the destinations of this instruction as containing
being discussed, or even allowing redundant computa- "invalidn data-data that are in the process of changing
tions if the resources are available, a serial program and hence are unusable. As the functional unit finishes
might be modified to show a greater speed. This aspect its operation, it the results it calculated in the
has not been investigated in this note. destination registers and marks them as now containing

At various points in this note, we refer to an instruc- valid numbers. Kot all interlocking hardware can be
tion stack or dispatch stack. This stack is simiIar to the eliminated from the stack, of course, for if we look a t the
predecode stack presented in [5] . I t differs, however, in following sequence of code,
that it may be of infinite length:' the dispatching of

LDA
instructions occurs as soon as they are ready rather than 2) ADD
being clocked. and the decode and dispatch times are

3) 6
assumed to be zero. I f the length of the stack is limited
(as discussed in the latter part of this note), this last we see that when the accumulator becomes valid for the
assumption may still allow instructions to be dispatched first time, i t means that instruction 2 may be dispatched,
a t an unbounded rate. Effectively, we have assumed but not instruction 3.
that the dispatch time is a vanishingly smalI part of the However, these assumptions do mean that as soon as
execution time of any of the functional units. Therefore, an instruction is issued (dispatched), it can be removed
new instructions can be brought i n and dispatched in from the stack, making room for a new instruction t o
zero time until there is no room left in the stack to hold be inserted and analyzed. Thus, even with a very short
presently undispatchable instructions. stack (one or two slots), we are able to stream inde-

Let us consider in some detail the assumptions we pendent instructions through a t a rate limited only by
have made concerning the decoding and dispatching the decoding time, and achieve rates of parallelism that
mechanism. We assume first that there exist plenty of exceed the stack size. For convenience, we have assumed
functional units and plenty of registers, and that the that the decoding time is vanishingly small (in fact,
compiler or assembler has been clever enough to utilize equal to zero). 'This assumption is en t i r e I~ in keeping
these in such a way that there are no unnecessary con- with OUT assumptions about unlimited registers and
tention problems. This is the "renaming" or "open ef- functional units.
fects" problem, and we hereby assume it out of existence. The maximum speed of the seven programs we ex-

in a conventional machine like the 360,/91, the amined is shown in the last column of Table 11 (m

7th instruction in the stack is compared with the jumps). The average of the maximum speeds is 51.2
(i - l) th , the (i-Z)th, and so on, to see if any of the times faster than their average speed on a conventional
sources of 2 are destinations of a previous instruction. machine. As will be explained later, this maximum
It is this comparison hardware that increases as S2 speed correspo~lds to bypassing an infinite number of
where S is the stack size. Comparisons are being done conditional jumps.
an the stack. Therefore, uncompleted instructions must
be retained in the stack until they are completed in
order that their presence there may inhibit later use of
:hose registers the) are in the process of changing Under
his assumption, there cannot be more instructions in

execution than there are places In the stack to hold these
uncompleted instructions: and, therefore, t h e maximum
possible speedup is llmited to the stack size. Our as-

' Actually, i t never needs to be larger than the entire sequence of
executed instructions.

BLOCKIXG os COSDITIOXAL JUMPS

In the previous section, the concept of maximum
speed was defined, which, of course, can never be
reached in practice. Stack sizes are finite and functional
units are limited in number, as are central registers and
memory locations. An even more severe limit is the
effect of conditional branching on the parallel execution
of instructions. In the above, we were looking a t traces
of instruction streams, a t the a posteriori history of a
program. There, the choice of which path to take from

1408 IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1972

a conditional jump was already made. But in reality,
when a choice point in an instruction stream (a condi-
tional branch) is encountered, it is not known which of
the two possible paths the program is going to take until
the data upon which the choice is to be made (the
sources of the conditional jump) become available and
the instruction is actually executed-that is, until the
conditional is resolved.

Suppose this limitation is accepted. Then no instruc-
tion can be dispatched for execution until all conditional
jumps preceding it have been resolved and its own
sources are available. We define L j (x 1 to be the j+ l t h
largest element of the set x. For example,

LO(1, 2, 3, 4, 5) = 5 is the largest element of the set

~ ' (1 , 2, 3, 4, 5) = 4 is the second largest, etc.

and when it comes to an unresolved conditional jump c
(not necessarily the same as B), it will split into two
paths A C and AC. Generalizing this concept so that up
to j conditional jumps may be unresolved along the
ancestral path of an instruction, we have

T,J = E, + rnax (s ~ , s?, . . . , L](J ,J)
and

Rj = rnax (T,')
i

where Rj is the running time of a program on an infinite
machine that can bypass j conditional jumps.

One should note that the number of paths that must
be maintained may be as large as 2j i f the program can
bypass j conditional jumps. Of course, these various
paths may represent the same written instructions or

Let the set of completion times of all conditional jumps different ones. For example, a loop ended by a condi-
preceding2 the execution of the i th instruction be J,; tional jump might generate the streams: iterate once

then the earliest possible completion time of the i th and exit; iterate twice and exit; iterate three times and
instruction will be exit; etc. Since we do not know which is going to be the

"real path" (in a real life situation), we must be pre-
TaO = E, + max (~ 1 , Sz, - - - , L O (J ~ ~) pared to explore all of them. I t is clear that the number

where the superscript 0 on T indicates that no condi- of possible paths can exceed the number of written in-

tional jumps are bypassed. Using this equation, we can structions. Since the complexity of a CPU must grow a t

compute the running time R of a program that blocks least linearly with the number of paths maintained, we

on all conditional jumps to be R = maxa T,O 1. ~h~~ is, hope to find dramatic improvements in speed for small j,

the running time will be equated to the completion time since even a j as small as 8 implies up to 2.56 ~ a t h s exe-

of the last instruction completed. The "speedup" of a cuting simultaneously.

program under a given set of conditions is defined to be PREVIOUS WORK
the ratio of the running time on a conventional machine
to the running time obtained under the given conditions. The discussion presented above is by no means new.

B~~ suppose a machine is built that could ~ b ~ ~ ~ ~ ~ , , one Hellerman [I] and Stone 121 have examined parallelism

conditional jump by beginning execution down both in higher level languages. Ramamoorthy and Gonzalez

paths leading out of the jump. once the codilional [3] review several methods of recognizing parallelism in

is resolved, the untaken path is discarded. Sometimes, programs. Flynn 141 pointed O u t in 1966 that dispatch- .

= wh;h a jump is reached, all the information ing of a single instruction per machine cycle was a seri- '

necessary for its resolution will have already been corn- OUS bottleneck1 and Tjaden and F1ynn I5 1 examined the

puted, and it can be resolved at once. ~ ~ ~ d i ~ i ~ ~ ~ l ~ that benefits of parallel execution in an IBM-7090 environ-

can be decided on the spot cause no complications, since ment. The IBhl STRETCH [6]-[8]~ aided by the pro-

they have only one path of successors. Thus the machine grammer, guessed a t which path from a conditional it

can keep going down a t most two paths. Such programs pursue* went ahead down that path, and then

may be said to 'bypassn one conditional jump. "backed upn if the guess was wrong. The I B l I 360/91

Let us consider the case of a machine that can bypass and 195 do prefetching and decode of the two possible

two conditional jumps. L~~ the first unresolved jump instruction paths but no execution beyond the condi-

be called A if the jump is taken and ;d if not. We have tional jump [91. Sfone [lo] describes a machine that

two paths that must be explored. Suppose that, upon proceed two paths. We

going down path A , another jump called B is encoun- one who has carried out experiments on deep excursions

tered. If it is unresolved also, path A will be split into the undecided future a program.

two paths: AB and AB. Each of these paths may con- t

OUR EXPERIMENT '
tinue until they reach unresolved conditional jumps
(D and E , respectively), a t which point they must wait Seven programs written for the CDC-3600 were

for the resolution of either A or B or D for path AB, traced. These included compilers, compiled code, hand-

and A or B or E for, path A S . But path may ,proceed, generated *code, numeric Programs, and symbol ma-
n ipula t i~~g programs. A total af 1 884 898 instructions

' 'Preceding" refers to the order in the original code as it would
were traced representing very nearly 7 s of real 3600

be executed by a conventional machine. time. We found no significant differences between hand-

SHORT NOTES 1409

and compiler-generated code, nor between numeric and TABLE I
RELATIVE SPEED OF VARIOUS INSTRUCTIONS I N VARIOUS MACHINES programs' Since the of these seven WTa F~XEDPOINT ADD T A a ~ AS UNITY FOR EACH ~ ~ A C H I N E

programs consumed some 40 h of machine time, i t
was decided to bring the data collection phase of out Instruction CDC-3600 re~-360 /91 CDC-6600

studies to a halt. Fixed ~ d d 1 1 1

Thc seven pr~grams traced were as follows. rixed Multiply 3-1 7-11 no such i n s t .

1) B M D O ~ : a Fortran program for the calculation of ,,xed Divide 7-8 3 6 3 7 no such insc .

means and variances. Fl.oacing ~ d d
2-3 2 1.3

2) CONCORDANCE: a Fortran program written-to an-
Floating)bl l t iply 3-1 3 3.3

a1 yze text strings for repetitions of patterns of symbols.
6 7 L 9.6 3) EIGENVALUE: a Fortran program to compute eigen- F'O*ting Divide

values of matrices.
4) COMPASS: the CohrPAss assembler itself translating ,t

a short program. An example of hand-coded symbol loo-

manipulation.
5) Fortran: the Fortran compiler itself translating a

program. Another example of hand-coded symbol ma-

,

..4f - ,

nipulating program. 50 -
6) DECALIZE: a hand-coded program to analyze pat-

terns of op-codes up to ten-tuples.
7) IXTERIT: our interpreter itself. Hand-coded.
Since we had to choose some set of execution times,

those of the 3600 itself were chosen. Table I shows tha t
their ratios are not far from the 360/91 or the CDC
6600, two of the fastest computers currently available.

il Tjaden and Flynn [S] showed that for code written $
for the 7090, a relative improvement of 1.86: 1 could be 2 13-

achieved with a stack length of 10 while blocking on all -
conditional jumps. This was considerably less than the ' 1
51: 1 improvement found with maximum speed. There-
fore, it was decided to let the stack length (and other
parameters) go to infinity and examine the effects of
bypassing various numbers of conditional jumps.

For zero jumps bypassed, we found an average im-
provement of 1.72 to 1 (see Fi,g. 1 and Table 11). That is,
the average program examined ran 1.72 times as fast
with an infinite stack, infinite registers, infinite storage,
and infinite functional units as it did in an ordinary
everyday 3600. Clearly, conditional jumps were pre-
venting any substantial amounts of parallelism. If we
allow bypassing of one conditional, the average program '

0 1

I
I

L
S-nmhs- of d t i o n a l junps bypassed

: 2 8 32 118 'v
runs 2.72 times as fast as when run sequentially.

Fig. 1. Average speed as a function of number of conditional jumps
The relative speed increases as the ~ ' j where j is the that are bypassed-infinite stack machine.

number of junips bypassed. That is, if \ve bypass four
jumps, the program runs twice as fast as if we bypass TABLE I 1
only one jump. Similarly, 16 jumps bypassed is twice sPEEDrrp OF SEVEN PROGRAMS A MACHINE WyITH AN INFINITE
as fast as four jumps. The square-root relation holds STACK) AS A FUNCTION OF THE NUMBER OF

quite well up to 32 jumps (some four billion paths). We CONDITIONAL JUMPS PASSABLE

have no theoretical justification of this relationship a t 11, '8 ,ap9 ,2 ,,,,, ,,, ,,,,, a
:he present time. FORTRAU 1.40 2.03 2.38 3.14 b.02 5.86 32.4

COWASS 1.22 2.10 2.74 4.28 5.55 7.17 27.2

DISCLTSSIOY
CONCORDMCE 1.53 2.27 3.45 8.50 20.20 47.30 100.3

If we can assume that the programs examined are IXTERIT 2.98 5.11 6.60 15.10 36.70 37.70 39.8

representative of programs in general, then an average EICEXYALUE 1.72 2.40 3.14 6.60 14.20 22.40 29.7

program will run 1.72 times as fast (0 jumps in Table DECAL1rE 1 . 7 9 2.7b 3.44 5.21 6.15 6.53 1 . 0

11) on a machine with infinite resources as on a conven- BmOID 1.43 2.38 3.32 7.56 16.80 L3.50 120.5

tional machine. The observed range is between 1.22: 1 1.72 2.72 3.62 7.21 14.8 24.4 51.1

1410 IEEE TRANSACTIONS ON COMPUTERS, DECEMBER 1972

and 2.98:l. While it must be admitted that there is
some improvement, and while it may be a cost-effective
idea to apply to designing large-scale machines, it is not
the sort of dramatic breakthrough one might have
hoped to find. Indeed, Goode [l l] used to urge that
system engineers not concern themselves with redesigns
that promise a payoff of less than a hemibel (factor of 3)
and should preferably look first for order of magnitude
(factor of 10) improvements. On his scale, this repre-
sents barely a hemi-semi-bel.

The relative speed of execution goes up only as the
square root of j , the number of conditional jumps by-
passed, and the number of paths that must be main-
tained simultaneously may go up as fast as 2j. The
authors' attention has been drawn to recent work by
Kuck et al. [13]. By substantial preprocessing of pro-
grams during compilation, several levels of conditional
jumps can be collapsed into one level, and their results
are comparable to ours.

Naturally, the reader may be concerned with the fact
that the code we examined was written for a sequential
machine and not a parallel one. However, we have pro-
vided for as much renaming as is necessary and, aside
from recasting the algorithm completely, the only real
improvement that could be made would be to eliminate
conditional jumps. But Flynn [12] has mentioned an
unpublished study in which fewer than half of the condi-
tional jumps were removable even after extensive hand
tailoring.

One mechanical aid in this latter direction is a "re-
peat" instruction for those loops where the number of
iterations is known before entry (non-data-dependent
exits), which would not be "conditionaln in the normal
sense of the word. In a very brief examination of this
approach, we effectively "unfoldedn all the loops in
B ~ D O I and reran the program on our hypothetical ma-
chine with infinite resources, but blocking on condi-
tional jumps. We found that with DO-loop generated
jumps eliminated, i t ran almost exactly 1 percent faster
than with them left in. Thus, we conclude on the basis
of this very limited experiment that this approach does
not appear to offer much help.

An investigation was carried out to determine how
long a stack would be required to reach the theoretical
speedup of 51 times if we ignored the problem of condi-
tional jumps. Fig. 2 and Table 111 show the average
speed of our seven programs as a function of the dis-
patch stack length under the assump'tion that any
number of conditional jumps may be bypassed. The
important things to be noted in Fig. 2 are, first, that
even with a stack length as short as two, bypassing all
conditional jumps allows a program to run twice as fast
as if it had an infinite stack and blocked on conditionals.
I t appears that stack length is not nearly as important
as the effect of conditional jumps. Second, it should be
noted that even with a stack of length 64, the machine
is still a factor of four slower than with an infinite stack.
This implies that instructions must be moved a long

Fig. 2. Average speed as a function of stack length assuming all
conditional jumps can be bypassed.

TABLE I11
SPEEDUP OF SEVEN PROGRAMS AS A FUNCTION OF LENGTH OF THE

DISPATCH STACK WHEN ALL CONDITIONAL JUMPS ARE PASSABLE

* Stack Length

2 8 16 - - - - 32 - 64 -
FURTUN 2.44 2.71 2 . 8 1 3 . 2 6 3.63 L . 0 8

COWASS 3.14 3.78 4.00 4.59 5.06 5.64

CONCORDANCE 4.22 6.50 9.33 11.95 15.80 20.0

I K n R I T 4.43 5.63 7.39 10.59 15.80 24.6

way from their original locations (past more than 64
instructions) in order to achieve maximum speed.

Within the programs that were examined, there is a
potential parallelism of 51 : 1. Even given all the re-
sources they might conceivably need,, thkse programs
were severely inhibited by the presence of conditional
jumps. Limiting them to bypassing no more than two
conditionals, we could extract less than a 4: 1 improve-
ment in speed. To run ten times as fast as a one-instruc-
tion-at-a-time machine, 16 jumps must be bypassed.
This implies up to 65 000 paths being explored simul-
taneously. Obviously, a machine with 65 000 instruc-
tions executing a t once is a bit impractical.

A

SHORT NOTES 1411

Therefore, we must reject the possibility of bypassing
conditional jumps as being of substantial help in speed-
ing up the execution of programs. In fact, our results
seem to indicate that even very large amounts of hard-
jvare applied to programs a t run time do not generate
henlibel improvements in execution speed.

N'e are left, then, ~vith three alternatives: extensive
preprocessing of programs as suggested by Kuck et al.
1131; recasting algorithms to take advantage of machine
parallelism as, for example, in the Goodyear STARAN or
the Illiac IV; or just plain speeding up a conventional
monoprocessor so it gets the job done faster.

dispatched until all preceding conditional branches are resolved,
stack sizes as small as 2 or 4 achieve most of the parallelism that a
hypothetically infinite stack would. .

An algorithm is described that can be used to replace the look-
ahead hardware of the stack by reordering the squence of instruc-
tions prior to execution. The transformed sequence has the property
that, if the instruction at the top of the stack canriot be dispatched
immediately, there will be no instruction below it that is ready for
dispatching. Experimental results demonstrate that this method
achieves 93.5 percent of the parallelism obtained if an infinite dis-
patch stack were available under the assumption that it takes zero
time to decode and dispatch an instruction.

Index Terms-Dispatch stack, lookahead hardware, parallel exe-
cution, parallelism, percolation of code, software lookahead.

The problem of detecting and utilizing parallelism in

The authors wish to express their appreciation to programs has been extensively studied. A review of some

J . Vervaert and F. Pirz for their help in collecting and of the techniques developed to detece parallelism in

analyzing the data presented in this note. higher level languages, particularly in arithmetic expres-
sions, appears in [I] . There have been a number of

REFERENCES proposals for FORK and JOIN type instructions for the

[I] H. Hellerman, "Parallel processing of algebraic instructions," programmer 'pecify lvhere and how Or
I E E E Trans. Cornput., vol. C-15, pp. 82-91, Feb. 1966. more sequences of instructions are executed sirnultane-

121 H. S. Stone, "One-panss compilation of arithmetic expressions for
a parcillel processor, Commun. ~ s s . Cornput h ~ a c h . , pp. 220- 0 ~ s ' ~ L2 J. The huge 'iliac IV has been imp1emented
223. Apr. 1967. take advantage in hardware of array operations that

131 C. V. Ramamoorthy and M. J. Gonzalez, 'A survey of tech-
niques for recognizing parallel processable streams in computer can be executed in parallel [3]. However, this type of
programs," in Proc. 1969 Fnll Joint Comput. Conf., A F I P S machine is used effectively only on a restricted class of
Conf. Proc., vol. 35. Montvale, S. J.: AFIPS Press, 1969, pp. problems, 1-15.

[4] M. J. Flynn, "Very high-speed computing systems," Proc. A different approach is the design of a general-purpose
IEEE, vol 54, pp. 1901-1909, Dec 1966. a] G. S. Tjaden and M. J. Flynn, 'Detection and parallel execa- detect myhen than One

tion of tndependent instructions," I E E E Trans. Cornput., vol. instruction in the instruction stream can be executed
C-19, pp. 889-895, Oct 1970.

(61 E. Bloch, engineering design of the Stretch computer,n i n simultaneo~sly in ~ara l le l . In the case of a single instruc-
Proc. 1959 Easfern Joint Cornput. Conf., p. 48. tion stream-single data stream machine, Flynn points

[7] R. T. Blosk, "The instructions unit of the Stretch computer," in ou t that the bottleneck is the decoding and dispatching Proc. 1960 Eastern Jotnt Comput. Conf., pp. 299-325.
181 J. Cocke a;d H. J. Kolsky, 'The virtual memory of the Stretch of a single instruction per machine cycle [4]. Thus, in-

computer, in Proc. 1959 Easlern Jornl Compur Conf., pp. 8:-94.
[9] D. W. Anderson, F. J Sparacio, and R M. Tomasulo~ The ma). be executed in parallel, but are

model 91: Machine philosophy and instruction handling, TBAf dispatched sequentially as in a number of current com-
J . Res Develop., vol. 11, Jan. 1967.

[lo] H. S. Stone, "A pipeline pushdown-stack computer," in Parallel puters: IBA1 360/85p 917 1 9 j and CDC 6600 and 7600.
Processor Systems, Technologies, and Applications, L C Hobbs, The process of dispatching instructions a t the maxi-
Ed. Washington, D. C.: Spartan, 1970, pp 235-249

[I l] H. H. Goode, notes from a course on system design, Univ. Michi- mum rate is complicated further by the presence con-
gan, Ann Arbor, spring 1957. ditional branches. Until the conditional is resolved, it is

1121 M. J. Flynn, personal communications.
1131 D. J. Kuck, Y. Muraoka, and S. C. Chen, "On the nunlber of not known which of the turo instruction paths proceed-

operations simultaneously executable jn FORTRAN-like pro- ing from the coIlditionaI be fetched and executed.
grams and their result~ng speed-up, IEEE Comput. Soc.
Repository. Pr~bl. R72-109, May/June 1972. This problem is considered in a companion note to

this one; Riseman and Foster [jJ examine the relative
increase in execution rate as a function of the number of
conditional jumps "bypassed;" N conditional jumps can
be bypassed by the execution of 2.Y simultaneous parallel
instruction streams.

Percolation of Code to Enhance Parallel Recently, Tjaden and Flynn [6] examined the payoff
Dispatching and Execution in using a hardware stack to dispatch and execute in-

structions in parallel. They examined the speedup in
CASTON C. FOSTER AKD EDU'ARD hI. RISEXI.4h

execution as a function of the stack size under the con-
Abstracl-Thisnoteinvestigatestheincreaseinparallelexecution straint that instructions are not dispatched until all

rate as a function of the size of an instruction dispatch stack with
lookahead hardware. Under the constraint that instructions are not preceding conditional branches are resolved. This note

is a continuation of that work. Jt accepts the restric-
tions imposed by branching and explores the limit of

Manuscript received November 11, 1971; revised June 21, 1972.
This work was supported in part by a study grant from Control Data parallelism obtained by parallel dispatching using such
Corporation.

The authors are with the Department of Computer and Informa- a hardware stack.
tionSc~e~ices, University of hlassachusetts, Amherst, Mass 01002. The resultant of seven programs written

3 ADD a

5 STA 6

IEEE TRAKSACTIONS O N COMPUTERS. DECEMBER 1972

Fig. 1. Two strands of independent code-instructions 1, 3, 5
and instructions 2, 4, 6.

for a CDC-3600 is presented as a function of stack sizes with constraints upon the time a t which instructions
ranging to infinity. An algorithm will also bedescribed can be executed. The registers (both "high speedn and
to replace the lookahead hardware of the stack by re- "storage") containing the information that will be
ordering the sequence of instructions prior to execution. needed during execution of the instruction x i 1 1 be re-
We refer to this process as "percolation." The trans- ferred to as the sources of the instruction; the ~.egisters
formed sequence will have the property that , i f the in- tha t must be available to store the results of the instruc.
struction a t the top of the stack cannot be dispatched tion are called the des t i na t ions .
immediately, there will be no instruction below it tha t Let us examine the constraints upon the dispatching
is ready for dispatching. of an instruction. I t is clear that nn instruction can

begin execution until all its sources are available. If
sufficient resources are provided, an instruction need not PARALLELISM
be delayed because its destination is not available. This

The average amount of parallelism will be defined to situation has been discussed as "open effectsn instruc-
be the ratio of the normal sequential execution time to tions [6]. Each time a register is referenced as a destina-
the parallel execution time. Thus, i f on the average, two tion but not a source for an instruction, this can be con-
instructions are executing a t the same time, the parallel strued as a "renaming" of that register; this generates a
execution time would be half tha t of the sequential time, "new editionn of the register and hence eliminates re-
and the parallelism would be 2. This measure is com- source dependencies. There are still two types of de-
parable t o that used by Tjaden and Flynn [6]. They pendency that prevent us from dispatching all the in-
counted the average number of instructions that could structions in a program simultaneously and completing
be dispatched in parallel during each cycle of their pre- the program in one instruction execution time. These
decode stack. We differ in tha t we are letting the system are the dependency of da ta and the dependency of Ao\v
run asynchronously; each instruction has an execution of control.
time and is dispatched as soon as there are no depen- Data dependencies \\.ill cause a program to consist of
dencies. subsections we will call "strands of code," in ~vhich an

The above measures and assumptions appear to be on-going manipulation of da ta is accomplished. These
equivalent. We also assume tha t the dispatching interval strands involve a sequence of instructions in which the
takes zero time.' Since instructions are dispatched asyn- destinations of one instruction affect the source of a fol-
chronously, many instructions can be dispatched during lowing instruction. For example, in Fig. 1, instructions
the execution of a single instruction. One should note the 1, 3, and 5 belong to one strand, while 2 , 4 , and 6 belong
implications of this assumption. Suppose we have ten to another. These two strands may or may not be sub-
instructions in a row tha t could be dispatched and exe- parts of some superstrand. At least locally they are
cuted in parallel and a stack of size one; all the instruc- independent and may be executed in any convenient
tions would be executed in parallel because they would order provided only tha t the within-strand-ordering is
be sequentially brought into the stack and dispatched in preserved.
zero time. Clearly, this is an impossible condition t o Fig. 2 shows a block diagram of a small program that
achieve. Nevertheless, i t is a desirable goal to approach displays typical flow of control dependencies (also re-
this assumption by decreasing the dispatch time, and ferred to as procedural dependencies [6]). Blocks labeled
we do determine a limit on the parallel execution speed P are processes, while diamonds represent conditional
in this structure. One should still keep in mind tha t this jumps or branch points within the prograih. conditional
will tend to result in a larger amount of the potential jumps are handled in this note as they are in [6],
parallelism being achieved by shorter stacks. namely, blocking the execution of further instructions

Suppose we consider a program not as a set of instruc- until the conditional jumps are resolved. ~ o n s e ~ u e n t l l ' ~
tions that must be executed in some sequential order; one can think of a program decomposed into linear (non-
rather we will look a t a program as a set of instructions branching) chunks. A linear chunk begins with an entry

statement or an instruction tha t is a target of a c o d -

' For a more complete discussion of this assumption, refer to the tional jump. I t terminates with an exit statement or a

companion note [5] in this issue. conditional jump. \i'e assume non-self-modifying code

SHORT NOTES

Fig. 2 . Block diagram showing a small program with typical flow of
control dependencies. Blocks labeled P are processes, while
diamonds represent branch points.

throughout. Fig. 3 shows the example program divided
into linear chunks. So t e that P3 and P4 appear twice
because there are two different chunks that might in-
volve them. This is a helpful way of looking a t the pro-
gram; if one blocks on conditionals, it is within these
chunks that strands are executed in parallel by dynami-
cally dispatching the instructions in a different order.
No instruction from one chunk can be dispatched before
the conditional terminating a previous chunk. Otherlvise
an instruction will be executed that might not be in the
instruction stream when the previous conditional is
resolved.

In summary, the machine that was simulated by
Tjaden and Flynn [6] was an IBM 7094 with the follow-
ing characteristics: 1) there is a stack of finite length;
2) there are infinitely many copies of the high-speed
registers, such as the accumulator; 3) no instruction will
be dispatched before any conditional instruction pre-
ceding it in the stack is resolved. The machine that has
been described here and that was simulated is a CDC-
3600 with the same characteristics as above, except that
the stack is possibly of infinite length and there are
infinitely many registers and functional units of all
types so that no instruction is delayed due to the avail-
ability of any hardware. Further details of this simula-
tion are available in [7].

Fig. 3. Linear chunk decomposition of the example in Fig. 2.

Data were collected by tracing seven programs tha t
included both compiled code and hand-generated code
and amounted to almost 2 million instructions (see [5]
for a description of these programs).

First we examined the increase in execution rate as a
function of stack size. Table I presents the resultant
parallelism for stack sizes varying from 2 to 64. The
parallelism that would be obtained from an infinite size
stack is also included. These data are not graphed be-
cause of the very slight increase in parallelism as a func-
tion of stack size. On the average, a sizeable portion of
the parallelism obtained with an infinite stack is realized
by a stack of size two; almost all the potential paral-
lelism is obtained by a stack size 8. Stack sizes tha t
would be necessary to achieve 90, 99, and 100 percent
of the parallelism of an infinite stack are given in Table
11. The limit on the parallelism that is achieved with an

1414 ~ E E E TRANSACTIONS ON COMPUTERS, DECEMBER 1972

TABLE I
PARALLEL~~M AS A FUNCTION OF VARIOUS STACK SIZES

Two factors that limit the length of the dispatch stack
stack sires involve the lookahead hardware: the square law increase

2 4 8 1 6 3 2 64 - of the circuitry, and the increasing delay due to the
W W ~ 1 . 3 6 8 1 . 4 0 1 1 .417 1 . 4 2 9 1 . 4 3 0 1 . 4 3 1 1 . ~ 3 1 increasing number of logical levels as fan-in and fln-out

CMC. 1 . 4 3 1 1 . ~ 0 0 1 . 5 1 6 1 . 5 2 3 1 . 5 2 7 1 .527 1 . 5 2 7 limits are exceeded.

The lookahead hardware in the dispatch stack is
necessary to determine dependencies in the stack. If an
instruction has a source that is a destination of an in.-
struction above it in the stack, this instruction must be
delayed until the instruction it is dependent upon corn-
pletes execution. However, i t is possible to reorder Dro-
gram-code-as-written so that interlocking hardware in
the stack will not be required. That is, the code will be

TABLE 11 reordered such that, i f the instruction a t the top cf the
STACK SIZES NECESSARY TO ACHIEVE PERCENTAGES

OF THE PARALLELISM I N A N INFINITE STACK stack cannot be dispatched (because it is waiting for
com~uta t ion of one of its requisite sources), then there

100% 99% 90Z
is no instruction below it in the stack that could be dis-
patched a t this time. If this is achieved, then each in-

BMDO1 64 8 2 struction w-ill be dispatched as early as possible, and
CONC . 32 8 2 hence the program will finish as soon as possible, and it

EIG. 64 16 4 will be done without the expense of any interlock hard-

COPIPASS 32 2 ware.

~ 6 4 4 2
We are going to do this reordering prior to execution, m. C M P .

so we must not move instructions from one linear chunk
DECALIZE 32 16 to another, for we are uncertain of the order of execution

INTWIT 16 16 8 of the different chunks. Further, the reordering inside a
given chunk must be done so that it preserves the logic
of the original code.

infinitely large stack was found to be slightly more than A one-pass algorithm can accomplish this by assigning
1.72; this means that the usual sequential machines an "earliest possible dispatch timen to each instruction
would take 72 percent longer to execute the set of 7 test that is not less than the time a t which the sources of
programs than this parallel machine. These results are that instruction become available and not less than the
somewhat worse than those given by Tjaden and Flynn time a t which that linear chunk is entered. Instructions

[6], 86 percent for a stack size of 10. This difference is are then sorted into ascending "earliest possible dis-
hot great considering that a different set of 'programs for patch timesn and the reordering is complete. Details of
different machines were used. Also, as expected, short this straightforward process are available in [7], but
stacks in our simulation achieve relatively larger amounts perhaps a brief description here might be of interest.
of parallelism than they obtained, since in effect they We begin by examining the object code in the form
assumed a dispatch time of 1/S (S being the stack size); that would normally be generated by a compiler or
and our zero dispatch time allows a string of inde- assembler ready for execution. The first task is to recog-
pendent instructions to "flush throughn the stack as nize the linear chunk boundaries. We assume that we
long as there is one stack position that is available that are within a chunk. If the next statement is not a condi-
is no/ holding some delayed instruction. tional branch, we continue within the chunk. Uncondi-,

All of our experimental results discussed so far were tional branches are ignored, and the chunk continues a t
carried out under the assumption that there are as many the destination of the unconditional branch, perhaps
extra copies of all types of registers as needed. Experi- requiring duplication or reduplication of code (see, for
ments were run to determine whether this was a neces- example, P3 and P 4 of Fig. 3). A conditional branch
sary assumption by examining the effect upon para]- ends this chunk, and the next instruction begihs a new
lelism of limiting registers to a single copy each. There one.
was an insignificant decrease in the resultant parallelism As each instruction is added to a chunk, we update a
if memory registers were limited to a single copy each, table called the "Most Recent Change Table." The
If the number of special high registers (A , Q, and D entry in this table for each source of the current instruc-
registers in the CDC-3600) are limited to a single copy tion is examined, and the largest value so found is as-
of each type, the parallelism was reduced by slightly signed to the "earliest possible dispatch timen of this
more than 10 percent with a stack of size 32. This effect instruction. This time plus the execution time of the
appears to be somewhat less than that reported by instruction is used to update the most recent change
Tjaden and Flynn. entry of all the destinations of this instruction. I t is

SHORT NOTES 1415

TABLE I11 average) ran 1.51 times as fast as they would have in a

Program Name Relative Speed

Em01 , 9 5 5

CONC . .947

EIG. .q

COPIP ASS

m. cm.

DECALIZE

possible to view this as a graph theoretic procedure in
which the instructions form the nodes of the graph.

Gonzelez and Ramamoorthy [8] found that a very
large amount of time was necessary to discover poten-
tial parallelism in Fortran source programs. I t appears
that the time they require to detect parallelism goes up
as the cube of the number of statements involved (50
statements require 2 s , 100 require 8 s). In the first place,
our chunks are quite small, due to the high frequency of
conditional jumps; and, in the second place, we do not
attempt to discover potential parallelism between chunks,
only within them, and it is phase I1 of their analysis
(the construction of the pernlissible transition graph)
that is the lengthiest. Thus our algorithm should be
considerably faster than theirs. Nonetheless, it is clear
that this form of preprocessing of programs would be
worthwhile only for those cases in which many execu-
tions may be expected.

The reader's attention is directed to the following phe-
nomenon. Suppose we have a chunk of code such tha t
the conditional jump that ends the chunk is resolvable

- .
conventional sequential machine. Using the percolation
algorithm in place of most of the decoding hardware,
programs ran 1.41 times as fast as in a conventional
machine. These values are somewhat lower than they
might have been because the program that was not run
had the largest values of parallelism.

Under the assumption of a zero dispatching interval,
we have determined the upper bound on the parallelism
derived for various stack sizes. hfost of the parallelism
achieved by using a stack to decode and dispatch in-
structions is obtained with very short stacks. In all bu t
one case, a stack size of 4 \\~ould achieve 90 percent of
the parallelism of an infinite stack. Little parallelism is
gained by supplying extra copies of registers. These
results imply tha t parallelism between conditional
branches is quite limited in the object and hand code of
typical programs run on current machines.

One may still feel tha t there are cases in which the
additional expense that is required to achieve this
parallelism is justified. This note has described an alter-
native to achieving this parallelism strictly in hardware.
The percolation algorithm presented in this note ap-
proximates the dispatch stack b]. reordering instructions
prior to execution. This method achieves 93.5 percent
of the parallelism of an infinite stack. Thus, one can
effectively replace the hardware stack by additional
processing during compilation.

The critical factor in the limitation of parallelism is
not the stack size or multiple copies of functional units
and registers. Rather, the limiting factor to be focused
upon is the problem of conditional branches, or addi-
tional processing to convert the code to a form tha t
takes advantage of this parallel processing structure.

early in the execution of the chunk. Then in an infinite
stack machine, the new chunk can be started as soon as
this conditional is resolved. But in our software percola-
tion scheme, we cannot allon any percolation across
chunk boundaries. Thus, some potential parallelism is
lost but, as we shall see beloa., this is quite small in
magnitude.

The speed of percolated code relative to unpercolated
code with an infinite dispatching stack is sholvn in
Table 111. These numbers are found by dividing the
execution time of the program with an infinite stack by
the execution time of the percolated program \vith a dis-
patching stack of length 1. S o t e that the assumption of
zero dispatch time affects the percolated code in the
same manner that was discussed previouslj.. This experi-
ment Itas not run for one of the programs, ISTERIT, be-
cause the information on one of the tapes was acci-
dentally destroyed. For the six programs analyzed this
way, the average speed of the percolated program was
93.5 percent of the speed of the unpercolated program
dispatched from an infinite stack. Stating this another
way, with an infinite stack, the six programs (on the

The authors \vish to express their appreciation to
J . I'ervaert and F, Pirz for their help in collecting and
analyzing the data presented in this note.

[I] C,. L'. Ramamoorthy and X I . J . Gonzalez, 'l.4 survey of tech-
nrques for recogn~zing parallel processable streams in computer
programs," in Proc. 1969 Fall Joint Comput. Conf., A FIPS Conf.
Proc., vol. 35. hlontvale, S. J : AFJPS Press, 1,869, pp. 1-15.

[2] 11. E. Conaay, "A multi-processor system design, in Proc. 1963
Fall Joint Comput. Conf., A FIPS Conf. Proc., vol. 23, 196.3, pp.
139-146.

[3] G. H . Barnes, R. 11. Brown, >I. Kato. D. J . Kuck, D. ,L. Slot-
nick, and R. A. S.tokes, "The ILLIAC I\ ' computer, IEEE
Trans. Comp$l., vol. C-17, pp. 746757, Xug. 1968,:

[I] M. J. Flynn, L'ery high-speed computing systems, Proc. IEEE,
vol. 51, pp. 1901-1909, Dec. 1966.

[5] E. hl. Riseman and C. C. Foster: "The inhibition of potential
parallelism by conditional jumps, this issue, p p 1405-1411.

[6] G. S. Tjaden and hl. J . Flyn;, "Detection and parallel execution
of independent instructions, IEEE Trans. Contpuf., vol. C-19,
pp. 889-895, Oct. 1970.

[7] C. C. Foster and E . 11. Riseman, "A study of the constraints
uuon the uarallel disoatchinr and execution of machine code in-
s;ructions:" Dep. cdrnput. and Infcrm. Sci., Lniv. hlassachu-
setts, Amherst, Rep TR724-1, Feb. 1972.

[8] 11. J . Gonzalez, Jr . , and C.)'. Ramamoorthy, "Program suita-
bility for parallel processing, IEEE Trans. Comput., vol. C-20,
pp. 647-654, June 1971

