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Fig. 8. A linear select programmable cell structure. 

Fig. 9. Some possible arrangements of the programming 
bus in linear select scheme. 

and p outputs can realize any n or less state sequential 
machine with p or less inputs and q or less outputs. 

The  purpose of this study has been t o  develop cellular 
methods of synthesizing sequential machines. From the 
production point of view, cellular array employing LSI 
technology represents a great saving in cost, space, and 
weight. From the designer's point of view, cellulariza- 
tion does away with the arduous task of state assign- 
ment. A further advantage of cellularization lies in i ts  
programmability. This is important in designing recon- 
figurable digital systems. 

The  author wishes to thank Dr. R. A. Short for inspir- 
ing interest in this area and for his helpful guidance 
throughout this work. 
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The Inhibition of Potential Parallelism 
by Conditional Jumps 

EDWARD M. RISEMAN AND CAXTON C. FOSTER 

Abstract-This note reports the results of an examination of seven 
programs originally written for execution on a conventional computer 
(CDG3600). We postulate an  infinite machine, one with an infinite 
memory and instruction stack, infinite registers and memory, and an 
infinite number of functional units. This machine will execute a pro- 
gram in parallel a t  maximum speed by executing each instruction a t  
the earliest possible moment. 
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The manner in which conditional jump instructions are treated is 
the primary concern of this note. One possibility is to assume that 
when a conditional jump is encountered, no further instructions may 
be issued until that condition is resolved and the subsequent path is 
determined. Under this assumption, the seven programs, even on this 
infinite machine, ran only 1.72 times as fast as they did on a conven- 
tional machine. On the contrary, if it is assumed that one knows in 
advance which path will be taken at each branch, conditional jumps 
do not impede the execution of the program. This results in the pro- 
gram running 51 times as fast as in a conventional machine. The im- 
plications of these results are discussed. 

Index Terms--Conditional jumps, CPU design, execution speed, 
multiple functional units, parallelism, pipelining. 

Consider the stream of instructions presented to  the 
control unit of a conventional CPU. There are loads, 
stores, adds, multiplies, unconditional and conditional 
jumps, etc. Examples of such streams may be collected 
by tracing actual programs with a suitable interpreter. 
What  factors limit the rate of execution of such an in- 
struction stream? 

In the simplest type of CPU, the time required to  fetch 
instructions and operands will limit the rate. Let  us add 
a very large (unlimited) stack or cache to  the machine 
so that,  for all practical purposes, memory access time 
goes to  zero. Still the program takes a finite nonzero 
time to execute. This is because it  consists of a seqztence 
of instructions, each consuming some time. Let us, 
therefore, allow as many instructions to  be executed in 
parallel (at the same time) as we can. Since a t  any given 
moment we may wish to  have several additions and 

In keeping with our previous approach, we will say 
that  each redefinition creates ,I new destination. Ender 
this assumption consider t h e  following six i n ~ : r ~ i c t i ~ ~ ~ .  

\ 
LDA 01  

ADD 01 strand 1 
STA YJ 

STA T )  

This set of instructions could be executed in any of 
three ways: 1) as shown-first strand 1, then strand 2;  
2)  in parallel-strand 1 a t  the sanie time as strand 2;  
or 3) in reverse order-first strand 2 ,  then strand 1. 

The parallel execution (case 2)  can take place because 
the LDA 6 and the LD.4 a are both redefinitions of the 
accumulator, and each creates a new accumulator for 
use by that  strand independently of the one used by 
the other. 

There is still a limit on the speed of the program. 
Clearly, an instruction cannot be dispatched (begin to 
execute) until all its sources are available. Tile ADD P 
instruction above must await the completion of the 
LDA a and the availability of the data in /3. Even after 
all its sources are available, the A D D  will take a nonzero 
time to execute. T o  assume otherwise would imply that 
all programs, regardless of their length, run in zero 
seconds. Stating this somewhat more formally, we have 

several multiplies executing concurrently, let us expand 
the CPU so it  has very many (as many as necessary) 
functional units. Tha t  is to say, the dispatching of an 
instruction is never delayed because of lack of a piece of 
hardware. 

Complete parallelism is still not achieved because of 
the inherently sequential nature of parts of the instruc- 
tion stream. For example, the triplet "load accumu- 
lator, add, store accumulatorn must be executed sequen- 
tially. This condition occurs because the add instruction 
needs the information fetched by the load and the store 
instruction needs the sum computed by the add. hIore 
formally, we may say that  each instruction has a set of 
Usources" on which it  depends and a set of "destina- 
tions" which it modifies. 

For the above triplet we have the following. 

T = E + mas  (S1, Sz, . . , S k )  

where 

T Completion time of the instruction and hence the 
time a t  which its results (destinations) become 
available as  a source for further instructions. 

E Execution time of the instruction. 
Sj Time a t  which source j becomes available. 

We will say that  a program is running a t  "maximum 
speedn when the following hold. 

1) Each instruction is dispatched as soon as its 
sources become available. 

2) There exist sufficient resources in the machine so 
that no execution of an instruction is delayed by lack 
of required resources. 

Instruction Meaning Sources Destination% 

LDA a load accumulator memory location a accumulator 
ADD B add to accumulator accumulator and memory location'@ accumulator 
STA y store accumulator accumulator memory location ; 

When an instruction has a destination that is not a t  3) Conditional jump instructions do not impede tile 
the same time a source for that  instruction, we will say flow of the program because either of the following is 
that  i t  "redefinesn that destination. Thus, LDA redefines true. 
the accumulator and STAB redefines 6. Tjaden and Flynn a) One somehow knows a prior2 ~vhich path ivill be 
call this "open effectsn [5 1. taken from a branch point and can proceed only do\vn 
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that path (in which case the branch could effectively sumptions are somewhat different from this. The fact 
be removed). that they do not correspond to present-day techniques 

b) IIany tentative computational paths can be was pointed out by one of our referees. 
maintained simultaneousIy, with the eventual selection We assume that when an instruction is loaded into the 
of the correct path and the discarding of the incorrect stack, it already specifies exactly which registers it 
paths taking place as conditional jumps become resolved. needs as  sources and which it expects to modify (its 

Thus, a program is running a t  maximum speed when destinations). (Thus we ignore the problem of dynamic 
the only remafhing constraints on its speed are the exe- remapping of register names, although it does not seem 
cution times of the various instructions and any inherent as  i f  this would be an insuperable design problem,) The  
sequential dependencies between them. Note that  the dispatching hard%rare continuously monitors the state 
problem is not necessarily being solved a t  the maximum of all the source registers of this instruction, and when 
possible speed. A different algorithm or more efficient these sources all become "valid," it issues the instruction 
coding might run much faster than the program being to  some functional unit and simultaneously marks all 
used. By rewriting the algorithm for the type of machine of the destinations of this instruction as containing 
being discussed, or even allowing redundant computa- "invalidn data-data that are in the process of changing 
tions if the resources are available, a serial program and hence are unusable. As the functional unit finishes 
might be modified to show a greater speed. This aspect its operation, it the results it calculated in the 
has not been investigated in this note. destination registers and marks them as now containing 

At various points in this note, we refer to an instruc- valid numbers. Kot all interlocking hardware can be 
tion stack or dispatch stack. This stack is simiIar to the eliminated from the stack, of course, for if we look a t  the 
predecode stack presented in [ 5 ] .  I t  differs, however, in following sequence of code, 
that it may be of infinite length:' the dispatching of 

LDA 
instructions occurs as soon as they are ready rather than 2) ADD 
being clocked. and the decode and dispatch times are 

3) 6 
assumed to be zero. I f  the length of the stack is limited 
(as discussed in the latter part of this note), this last we see that  when the accumulator becomes valid for the 
assumption may still allow instructions to  be dispatched first time, i t  means that  instruction 2 may be dispatched, 
a t  an unbounded rate. Effectively, we have assumed but not instruction 3. 
that  the dispatch time is a vanishingly smalI part of the However, these assumptions do mean that  as soon as 
execution time of any of the functional units. Therefore, an instruction is issued (dispatched), it can be removed 
new instructions can be brought i n  and dispatched in from the stack, making room for a new instruction t o  
zero time until there is no room left in the stack to hold be inserted and analyzed. Thus, even with a very short 
presently undispatchable instructions. stack (one or two slots), we are able to  stream inde- 

Let us consider in some detail the assumptions we pendent instructions through a t  a rate limited only by 
have made concerning the decoding and dispatching the decoding time, and achieve rates of parallelism that  
mechanism. We assume first that  there exist plenty of exceed the stack size. For convenience, we have assumed 
functional units and plenty of registers, and that  the that the decoding time is vanishingly small (in fact, 
compiler or assembler has been clever enough to  utilize equal to zero). 'This assumption is en t i r e I~  in keeping 
these in such a way that there are no unnecessary con- with OUT assumptions about unlimited registers and 
tention problems. This is the "renaming" or "open ef- functional units. 
fects" problem, and we hereby assume it out of existence. The maximum speed of the seven programs we ex- 

in a conventional machine like the 360,/91, the amined is shown in the last column of Table 11 ( m  

7th instruction in the stack is compared with the jumps). The average of the maximum speeds is 51.2 
( i - l ) th ,  the (i-Z)th, and so on, to see if  any of the times faster than their average speed on a conventional 
sources of 2 are destinations of a previous instruction. machine. As will be explained later, this maximum 
It is this comparison hardware that increases as S2 speed correspo~lds to bypassing an infinite number of 
where S is the stack size. Comparisons are being done conditional jumps. 
an the stack. Therefore, uncompleted instructions must 
be retained in the stack until they are completed in 
order that their presence there may inhibit later use of 
:hose registers the) are in the  process of changing Under 
his assumption, there cannot be more instructions in 

execution than there are places In the stack to hold these 
uncompleted instructions: and, therefore, t h e  maximum 
possible speedup is llmited to the stack size. Our as- 

' Actually, i t  never needs to be larger than the entire sequence of 
executed instructions. 

BLOCKIXG os COSDITIOXAL JUMPS 

In the previous section, the concept of maximum 
speed was defined, which, of course, can never be 
reached in practice. Stack sizes are finite and functional 
units are limited in number, as are central registers and 
memory locations. An even more severe limit is the 
effect of conditional branching on the parallel execution 
of instructions. In the above, we were looking a t  traces 
of instruction streams, a t  the a posteriori history of a 
program. There, the choice of which path to take from 
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a conditional jump was already made. But in reality, 
when a choice point in an instruction stream (a condi- 
tional branch) is encountered, it is not known which of 
the two possible paths the program is going to take until 
the data upon which the choice is to be made (the 
sources of the conditional jump) become available and 
the instruction is actually executed-that is, until the 
conditional is resolved. 

Suppose this limitation is accepted. Then no instruc- 
tion can be dispatched for execution until all conditional 
jumps preceding it have been resolved and its own 
sources are available. We define L j ( x  1 to be the j+ l t h  
largest element of the set x. For example, 

LO( 1, 2, 3, 4, 5 )  = 5 is the largest element of the set 

~ ' ( 1 ,  2, 3, 4, 5) = 4 is the second largest, etc. 

and when it comes to an unresolved conditional jump c 
(not necessarily the same as B), it will split into two 
paths A C  and AC. Generalizing this concept so that up 
to j conditional jumps may be unresolved along the 
ancestral path of an instruction, we have 

T,J = E, + rnax ( s ~ ,  s?, . . . , L](  J ,J  ) 
and 

Rj = rnax (T,') 
i 

where Rj is the running time of a program on an infinite 
machine that  can bypass j conditional jumps. 

One should note that  the number of paths that must 
be maintained may be as large as 2j i f  the program can 
bypass j conditional jumps. Of course, these various 
paths may represent the same written instructions or 

Let the set of completion times of all conditional jumps different ones. For example, a loop ended by a condi- 
preceding2 the execution of the i th  instruction be J,; tional jump might generate the streams: iterate once 

then the earliest possible completion time of the i th  and exit; iterate twice and exit; iterate three times and 
instruction will be exit; etc. Since we do not know which is going to be the 

"real path" (in a real life situation), we must be pre- 
TaO = E, + max ( ~ 1 ,  Sz, - - - , L O ( J ~ ~  ) pared to  explore all of them. I t  is clear that the number 

where the superscript 0 on T indicates that no condi- of possible paths can exceed the number of written in- 

tional jumps are bypassed. Using this equation, we can structions. Since the complexity of a CPU must grow a t  

compute the running time R of a program that blocks least linearly with the number of paths maintained, we 

on all conditional jumps to be R = maxa T,O 1. ~h~~ is, hope to  find dramatic improvements in speed for small j, 

the running time will be equated to  the completion time since even a j as small as  8 implies up to 2.56 ~ a t h s  exe- 

of the last instruction completed. The  "speedup" of a cuting simultaneously. 

program under a given set of conditions is defined to  be PREVIOUS WORK 
the ratio of the running time on a conventional machine 
to  the running time obtained under the given conditions. The  discussion presented above is by no means new. 

B~~ suppose a machine is built that could ~ b ~ ~ ~ ~ ~ , ,  one Hellerman [ I ]  and Stone 121 have examined parallelism 

conditional jump by beginning execution down both in higher level languages. Ramamoorthy and Gonzalez 

paths leading out of the jump. once the codilional [3] review several methods of recognizing parallelism in 

is resolved, the untaken path is discarded. Sometimes, programs. Flynn 141 pointed O u t  in 1966 that dispatch- . 

= wh;h a jump is reached, all the information ing of a single instruction per machine cycle was a seri- ' 

necessary for its resolution will have already been corn- OUS bottleneck1 and Tjaden and F1ynn I5 1 examined the 

puted, and it can be resolved at once. ~ ~ ~ d i ~ i ~ ~ ~ l ~  that  benefits of parallel execution in an IBM-7090 environ- 

can be decided on the spot cause no complications, since ment. The IBhl STRETCH [6]-[8]~ aided by the pro- 

they have only one path of successors. Thus the machine grammer, guessed a t  which path from a conditional it 

can keep going down a t  most two paths. Such programs pursue* went ahead down that path, and then 

may be said to  'bypassn one conditional jump. "backed upn if the guess was wrong. The  I B l I  360/91 

Let us consider the case of a machine that  can bypass and 195 do prefetching and  decode of the two possible 

two conditional jumps. L~~ the first unresolved jump instruction paths but no execution beyond the condi- 

be called A if the jump is taken and ;d if not. We have tional jump [91. Sfone [lo] describes a machine that 

two paths that  must be explored. Suppose that,  upon proceed two paths. We 

going down path A ,  another jump called B is encoun- one who has carried out experiments on deep excursions 

tered. If it is unresolved also, path A will be split into the undecided future a program. 

two paths: AB and AB. Each of these paths may con- t 

OUR EXPERIMENT ' 
tinue until they reach unresolved conditional jumps 
(D and E ,  respectively), a t  which point they must wait Seven programs written for the CDC-3600 were 

for the resolution of either A or B or D for path AB,  traced. These included compilers, compiled code, hand- 

and A or B or  E for, path A S .  But path may ,proceed, generated *code, numeric Programs, and symbol ma- 
n ipula t i~~g programs. A total af 1 884 898 instructions 

' 'Preceding" refers to the order in the original code as it would 
were traced representing very nearly 7 s of real 3600 

be executed by a conventional machine. time. We found no significant differences between hand- 
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and compiler-generated code, nor between numeric and TABLE I 
RELATIVE SPEED OF VARIOUS INSTRUCTIONS I N  VARIOUS MACHINES programs' Since the of these seven WTa F~XEDPOINT ADD T A a ~  AS UNITY FOR EACH ~ ~ A C H I N E  

programs consumed some 40 h of machine time, i t  
was decided to bring the data collection phase of out Instruction CDC-3600 re~-360 /91  CDC-6600 

studies to a halt. Fixed ~ d d  1 1 1 

Thc seven pr~grams traced were as follows. rixed Multiply 3-1 7-11 no such i n s t .  

1) B M D O ~ :  a Fortran program for the calculation of ,,xed Divide 7-8 3 6 3 7  no such insc .  

means and variances. Fl.oacing ~ d d  
2-3 2 1.3 

2) CONCORDANCE: a Fortran program written-to an- 
Floating )bl l t iply  3-1 3 3.3 

a1 yze text strings for repetitions of patterns of symbols. 
6 7  L 9.6 3) EIGENVALUE: a Fortran program to compute eigen- F'O*ting Divide 

values of matrices. 
4) COMPASS: the CohrPAss  assembler itself translating ,t 

a short program. An example of hand-coded symbol loo- 

manipulation. 
5) Fortran: the Fortran compiler itself translating a 

program. Another example of hand-coded symbol ma- 

, 

..4f - , 

nipulating program. 50 - 
6) DECALIZE: a hand-coded program to  analyze pat- 

terns of op-codes up to ten-tuples. 
7) IXTERIT:  our interpreter itself. Hand-coded. 
Since we had to choose some set of execution times, 

those of the 3600 itself were chosen. Table I shows tha t  
their ratios are not far from the 360/91 or the CDC 
6600, two of the fastest computers currently available. 

il Tjaden and Flynn [ S ]  showed that  for code written $ 
for the 7090, a relative improvement of 1.86: 1 could be 2 13- 

achieved with a stack length of 10 while blocking on all - 
conditional jumps. This was considerably less than the ' 1 
51: 1 improvement found with maximum speed. There- 
fore, it was decided to let the stack length (and other 
parameters) go to infinity and examine the effects of 
bypassing various numbers of conditional jumps. 

For zero jumps bypassed, we found an average im- 
provement of 1.72 to 1 (see Fi,g. 1 and Table 11). That  is, 
the average program examined ran 1.72 times as fast 
with an infinite stack, infinite registers, infinite storage, 
and infinite functional units as it did in an ordinary 
everyday 3600. Clearly, conditional jumps were pre- 
venting any substantial amounts of parallelism. If we 
allow bypassing of one conditional, the average program ' 

0 1 

I 
I 

L 
S-nmhs- of d t i o n a l  junps bypassed 

: 2 8 32 118 'v 
runs 2.72 times as fast as when run sequentially. 

Fig. 1. Average speed as a function of number of conditional jumps 
The relative speed increases as the ~ ' j  where j is the that are bypassed-infinite stack machine. 

number of junips bypassed. That  is, if \ve bypass four 
jumps, the program runs twice as fast as if we bypass TABLE I 1  
only one jump. Similarly, 16 jumps bypassed is twice sPEEDrrp OF SEVEN PROGRAMS A MACHINE WyITH AN INFINITE 
as fast as four jumps. The square-root relation holds STACK) AS A FUNCTION OF THE NUMBER OF 

quite well up to 32 jumps (some four billion paths). We CONDITIONAL JUMPS PASSABLE 

have no theoretical justification of this relationship a t  11, '8 ,ap9 ,2 ,,,,, ,,, ,,,,, a 
:he present time. FORTRAU 1.40 2.03 2.38 3.14 b.02 5.86 32.4 

COWASS 1.22 2.10 2.74 4.28 5.55 7.17 27.2 

DISCLTSSIOY 
CONCORDMCE 1.53 2.27 3.45 8.50 20.20 47.30 100.3 

If we can assume that the programs examined are IXTERIT 2.98 5.11 6.60 15.10 36.70 37.70 39.8 

representative of programs in general, then an average EICEXYALUE 1.72 2.40 3.14 6.60 14.20 22.40 29.7 

program will run 1.72 times as fast (0 jumps in Table DECAL1rE 1 . 7 9  2.7b 3.44 5.21 6.15 6.53 1 . 0  

11) on a machine with infinite resources as on a conven- BmOID 1.43 2.38 3.32 7.56 16.80 L3.50 120.5 

tional machine. The observed range is between 1.22: 1 1.72 2.72 3.62 7.21 14.8 24.4 51.1 
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and 2.98:l. While it must be admitted that there is 
some improvement, and while it may be a cost-effective 
idea to apply to designing large-scale machines, it is not 
the sort of dramatic breakthrough one might have 
hoped to find. Indeed, Goode [ l l ]  used to urge that 
system engineers not concern themselves with redesigns 
that promise a payoff of less than a hemibel (factor of 3) 
and should preferably look first for order of magnitude 
(factor of 10) improvements. On his scale, this repre- 
sents barely a hemi-semi-bel. 

The relative speed of execution goes up only as the 
square root of j ,  the number of conditional jumps by- 
passed, and the number of paths that  must be main- 
tained simultaneously may go up as fast as  2j. The 
authors' attention has been drawn to recent work by 
Kuck et al. [13]. By substantial preprocessing of pro- 
grams during compilation, several levels of conditional 
jumps can be collapsed into one level, and their results 
are comparable to ours. 

Naturally, the reader may be concerned with the fact 
that the code we examined was written for a sequential 
machine and not a parallel one. However, we have pro- 
vided for as  much renaming as is necessary and, aside 
from recasting the algorithm completely, the only real 
improvement that could be made would be to eliminate 
conditional jumps. But Flynn [12]  has mentioned an 
unpublished study in which fewer than half of the condi- 
tional jumps were removable even after extensive hand 
tailoring. 

One mechanical aid in this latter direction is a "re- 
peat" instruction for those loops where the number of 
iterations is known before entry (non-data-dependent 
exits), which would not be "conditionaln in the normal 
sense of the word. In a very brief examination of this 
approach, we effectively "unfoldedn all the loops in 
B ~ D O I  and reran the program on our hypothetical ma- 
chine with infinite resources, but blocking on condi- 
tional jumps. We found that  with DO-loop generated 
jumps eliminated, i t  ran almost exactly 1 percent faster 
than with them left in. Thus, we conclude on the basis 
of this very limited experiment that this approach does 
not appear to offer much help. 

An investigation was carried out to determine how 
long a stack would be required to reach the theoretical 
speedup of 51 times if we ignored the problem of condi- 
tional jumps. Fig. 2 and Table 111 show the average 
speed of our seven programs as a function of the dis- 
patch stack length under the assump'tion that any 
number of conditional jumps may be bypassed. The 
important things to be noted in Fig. 2 are, first, that 
even with a stack length as  short as two, bypassing all 
conditional jumps allows a program to run twice as  fast 
as  if it had an infinite stack and blocked on conditionals. 
I t  appears that stack length is not nearly as  important 
as the effect of conditional jumps. Second, it should be 
noted that even with a stack of length 64, the machine 
is still a factor of four slower than with an infinite stack. 
This implies that instructions must be moved a long 

Fig. 2. Average speed as a function of stack length assuming all 
conditional jumps can be bypassed. 

TABLE I11 
SPEEDUP OF SEVEN PROGRAMS AS A FUNCTION OF LENGTH OF THE 

DISPATCH STACK WHEN ALL CONDITIONAL JUMPS ARE PASSABLE 

* Stack Length 

2 8 16 - - - - 32 - 64 - 
FURTUN 2.44  2.71 2 . 8 1  3 . 2 6  3.63 L . 0 8  

COWASS 3.14  3.78 4.00  4.59 5.06 5.64 

CONCORDANCE 4.22 6.50 9.33 11.95 15.80 20.0 

I K n R I T  4.43 5.63 7.39 10.59 15.80 24.6 

way from their original locations (past more than 64 
instructions) in order to achieve maximum speed. 

Within the programs that were examined, there is a 
potential parallelism of 51 : 1. Even given all the re- 
sources they might conceivably need,, thkse programs 
were severely inhibited by the presence of conditional 
jumps. Limiting them to bypassing no more than two 
conditionals, we could extract less than a 4: 1 improve- 
ment in speed. To  run ten times as fast as a one-instruc- 
tion-at-a-time machine, 16 jumps must be bypassed. 
This implies up to 65 000 paths being explored simul- 
taneously. Obviously, a machine with 65 000 instruc- 
tions executing a t  once is a bit impractical. 

A 
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Therefore, we must reject the possibility of bypassing 
conditional jumps as being of substantial help in speed- 
ing up the execution of programs. In fact, our results 
seem to indicate that even very large amounts of hard- 
jvare applied to programs a t  run time do not generate 
henlibel improvements in execution speed. 

N'e are left, then, ~vith three alternatives: extensive 
preprocessing of programs as suggested by Kuck et al. 
1131; recasting algorithms to take advantage of machine 
parallelism as, for example, in the Goodyear STARAN or 
the Illiac IV; or just plain speeding up a conventional 
monoprocessor so it gets the job done faster. 

dispatched until all preceding conditional branches are resolved, 
stack sizes as small as 2 or 4 achieve most of the parallelism that a 
hypothetically infinite stack would. . 

An algorithm is described that can be used to replace the look- 
ahead hardware of the stack by reordering the squence  of instruc- 
tions prior to execution. The transformed sequence has the property 
that, if the instruction at  the top of the stack canriot be dispatched 
immediately, there will be no instruction below it that is  ready for 
dispatching. Experimental results demonstrate that this method 
achieves 93.5 percent of the parallelism obtained if an infinite dis- 
patch stack were available under the assumption that it takes zero 
time to decode and dispatch an instruction. 

Index Terms-Dispatch stack, lookahead hardware, parallel exe- 
cution, parallelism, percolation of code, software lookahead. 

The problem of detecting and utilizing parallelism in 

The authors wish to express their appreciation to programs has been extensively studied. A review of some 

J .  Vervaert and F. Pirz for their help in collecting and of the techniques developed to  detece parallelism in 

analyzing the data presented in this note. higher level languages, particularly in arithmetic expres- 
sions, appears in [ I ] .  There have been a number of 
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Percolation of Code to Enhance Parallel Recently, Tjaden and Flynn [6] examined the payoff 
Dispatching and Execution in using a hardware stack to dispatch and execute in- 

structions in parallel. They examined the speedup in 
CASTON C. FOSTER AKD EDU'ARD hI. RISEXI.4h 

execution as a function of the stack size under the con- 
Abstracl-Thisnoteinvestigatestheincreaseinparallelexecution straint that instructions are not dispatched until all 

rate as a function of the size of an instruction dispatch stack with 
lookahead hardware. Under the constraint that instructions are not preceding conditional branches are resolved. This note 

is a continuation of that work. Jt accepts the restric- 
tions imposed by branching and explores the limit of 
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Fig. 1. Two strands of independent code-instructions 1, 3, 5 
and instructions 2, 4, 6.  

for a CDC-3600 is presented as  a function of stack sizes with constraints upon the time a t  which instructions 
ranging to infinity. An algorithm will also bedescribed can be executed. The  registers (both "high speedn and 
to replace the lookahead hardware of the stack by re- "storage") containing the information that will be 
ordering the sequence of instructions prior to execution. needed during execution of the instruction x i 1 1  be re- 
We refer to this process as  "percolation." The trans- ferred to as the sources of the instruction; the ~.egisters 
formed sequence will have the property that ,  i f  the in- tha t  must be available to store the results of the instruc. 
struction a t  the top of the stack cannot be dispatched tion are called the des t i na t ions .  
immediately, there will be no instruction below it tha t  Let us examine the constraints upon the dispatching 
is ready for dispatching. of an instruction. I t  is clear that nn instruction can 

begin execution until all its sources are available. If  
sufficient resources are provided, an instruction need not PARALLELISM 
be delayed because its destination is not available. This 

The average amount of parallelism will be defined to  situation has been discussed as "open effectsn instruc- 
be the ratio of the normal sequential execution time to tions [6]. Each time a register is referenced as a destina- 
the  parallel execution time. Thus,  i f  on the average, two tion but not a source for an instruction, this can be con- 
instructions are executing a t  the same time, the parallel strued as a "renaming" of that  register; this generates a 
execution time would be half tha t  of the sequential time, "new editionn of the register and hence eliminates re- 
and the parallelism would be 2. This measure is com- source dependencies. There are still two types of de- 
parable t o  that  used by Tjaden and Flynn [6]. They pendency that  prevent us from dispatching all the in- 
counted the average number of instructions that  could structions in a program simultaneously and completing 
be dispatched in parallel during each cycle of their pre- the program in one instruction execution time. These 
decode stack. We differ in tha t  we are letting the system are the dependency of da ta  and the dependency of Ao\v 
run asynchronously; each instruction has an execution of control. 
time and is dispatched as  soon as there are no depen- Data  dependencies \\.ill cause a program to consist of 
dencies. subsections we will call "strands of code," in ~vhich an 

The  above measures and assumptions appear to be on-going manipulation of da ta  is accomplished. These 
equivalent. We also assume tha t  the dispatching interval strands involve a sequence of instructions in which the 
takes zero time.' Since instructions are dispatched asyn- destinations of one instruction affect the source of a fol- 
chronously, many instructions can be dispatched during lowing instruction. For example, in Fig. 1,  instructions 
the execution of a single instruction. One should note the 1, 3, and 5 belong to one strand, while 2 , 4 ,  and 6 belong 
implications of this assumption. Suppose we have ten to  another. These two strands may or may not be sub- 
instructions in a row tha t  could be dispatched and exe- parts of some superstrand. At least locally they are 
cuted in parallel and a stack of size one; all the instruc- independent and may be executed in any convenient 
tions would be executed in parallel because they would order provided only tha t  the within-strand-ordering is 
be sequentially brought into the stack and dispatched in preserved. 
zero time. Clearly, this is an impossible condition t o  Fig. 2 shows a block diagram of a small program that 
achieve. Nevertheless, i t  is a desirable goal to  approach displays typical flow of control dependencies (also re- 
this assumption by decreasing the dispatch time, and ferred to as procedural dependencies [6]). Blocks labeled 
we do determine a limit on the parallel execution speed P are processes, while diamonds represent conditional 
in this structure. One should still keep in mind tha t  this jumps or branch points within the prograih. conditional 
will tend to result in a larger amount of the potential jumps are handled in this note as they are in [6], 
parallelism being achieved by shorter stacks. namely, blocking the execution of further instructions 

Suppose we consider a program not as a set of instruc- until the conditional jumps are resolved. ~ o n s e ~ u e n t l l ' ~  
tions that must be executed in some sequential order; one can think of a program decomposed into linear (non- 
rather we will look a t  a program as a set of instructions branching) chunks. A linear chunk begins with an entry 

statement or an instruction tha t  is a target of a c o d -  

' For a more complete discussion of this assumption, refer to  the  tional jump. I t  terminates with an exit statement or a 

companion note [5] in this issue. conditional jump. \i'e assume non-self-modifying code 
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Fig. 2 .  Block diagram showing a small program with typical flow of 
control dependencies. Blocks labeled P are processes, while 
diamonds represent branch points. 

throughout. Fig. 3 shows the example program divided 
into linear chunks. So t e  that P3 and P4 appear twice 
because there are two different chunks that  might in- 
volve them. This is a helpful way of looking a t  the pro- 
gram; if one blocks on conditionals, it is within these 
chunks that strands are executed in parallel by dynami- 
cally dispatching the instructions in a different order. 
No instruction from one chunk can be dispatched before 
the conditional terminating a previous chunk. Otherlvise 
an instruction will be executed that  might not be in the 
instruction stream when the previous conditional is 
resolved. 

In summary, the machine that was simulated by 
Tjaden and Flynn [ 6 ]  was an IBM 7094 with the follow- 
ing characteristics: 1) there is a stack of finite length; 
2)  there are infinitely many copies of the high-speed 
registers, such as the accumulator; 3) no instruction will 
be dispatched before any conditional instruction pre- 
ceding it in the stack is resolved. The machine that  has 
been described here and that was simulated is a CDC- 
3600 with the same characteristics as above, except that  
the stack is possibly of infinite length and there are 
infinitely many registers and functional units of all 
types so that no instruction is delayed due to the avail- 
ability of any hardware. Further details of this simula- 
tion are available in [7]. 

Fig. 3. Linear chunk decomposition of the example in Fig. 2.  

Data were collected by tracing seven programs tha t  
included both compiled code and hand-generated code 
and amounted to almost 2 million instructions (see [ 5 ]  
for a description of these programs). 

First we examined the increase in execution rate as  a 
function of stack size. Table I presents the resultant 
parallelism for stack sizes varying from 2 to 64. The 
parallelism that would be obtained from an infinite size 
stack is also included. These data  are not graphed be- 
cause of the very slight increase in parallelism as  a func- 
tion of stack size. On the average, a sizeable portion of 
the parallelism obtained with an infinite stack is realized 
by a stack of size two; almost all the potential paral- 
lelism is obtained by a stack size 8. Stack sizes tha t  
would be necessary to achieve 90, 99, and 100 percent 
of the parallelism of an infinite stack are given in Table 
11. The limit on the parallelism that  is achieved with an 
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TABLE I 
PARALLEL~~M AS A FUNCTION OF VARIOUS STACK SIZES 

Two factors that limit the length of the dispatch stack 
stack sires involve the lookahead hardware: the square law increase 

2 4 8 1 6  3 2  64  - of the circuitry, and the increasing delay due to the 
W W ~  1 . 3 6 8  1 . 4 0 1  1 .417 1 . 4 2 9  1 . 4 3 0  1 . 4 3 1  1 . ~ 3 1  increasing number of logical levels as fan-in and fln-out 

CMC. 1 . 4 3 1  1 . ~ 0 0  1 . 5 1 6  1 . 5 2 3  1 . 5 2 7  1 .527 1 . 5 2 7  limits are exceeded. 

The lookahead hardware in the dispatch stack is 
necessary to determine dependencies in the stack. If an 
instruction has a source that is a destination of an in.- 
struction above it in the stack, this instruction must be 
delayed until the instruction it is dependent upon corn- 
pletes execution. However, i t  is possible to  reorder Dro- 
gram-code-as-written so that interlocking hardware in 
the stack will not be required. That  is, the code will be 

TABLE 11 reordered such that,  i f  the instruction a t  the top cf the 
STACK SIZES NECESSARY TO ACHIEVE PERCENTAGES 

OF THE PARALLELISM I N  A N  INFINITE STACK stack cannot be dispatched (because it is waiting for 
com~uta t ion  of one of its requisite sources), then there 

100% 99% 90Z 
is no instruction below it in the stack that could be dis- 
patched a t  this time. If this is achieved, then each in- 

BMDO1 64 8 2 struction w-ill be dispatched as early as possible, and 
CONC . 32 8 2 hence the program will finish as soon as possible, and it 

EIG. 64 16 4 will be done without the expense of any interlock hard- 

COPIPASS 32 2 ware. 

~ 6 4  4 2 
We are going to  do this reordering prior to execution, m. C M P .  

so we must not move instructions from one linear chunk 
DECALIZE 32 16 to another, for we are uncertain of the order of execution 

INTWIT 16 16 8 of the different chunks. Further, the reordering inside a 
given chunk must be done so that it preserves the logic 
of the original code. 

infinitely large stack was found to be slightly more than A one-pass algorithm can accomplish this by assigning 
1.72; this means that the usual sequential machines an "earliest possible dispatch timen to each instruction 
would take 72 percent longer to execute the set of 7 test that  is not less than the time a t  which the sources of 
programs than this parallel machine. These results are that instruction become available and not less than the 
somewhat worse than those given by Tjaden and Flynn time a t  which that  linear chunk is entered. Instructions 

[6], 86 percent for a stack size of 10. This difference is are then sorted into ascending "earliest possible dis- 
hot great considering that a different set of 'programs for patch timesn and the reordering is complete. Details of 
different machines were used. Also, as expected, short this straightforward process are available in [7], but 
stacks in our simulation achieve relatively larger amounts perhaps a brief description here might be of interest. 
of parallelism than they obtained, since in effect they We begin by examining the object code in the form 
assumed a dispatch time of 1/S (S being the stack size); that would normally be generated by a compiler or 
and our zero dispatch time allows a string of inde- assembler ready for execution. The first task is to recog- 
pendent instructions to  "flush throughn the stack as  nize the linear chunk boundaries. We assume that we 
long as there is one stack position that  is available that  are within a chunk. If the next statement is not a condi- 
is no/ holding some delayed instruction. tional branch, we continue within the chunk. Uncondi-, 

All of our experimental results discussed so far  were tional branches are ignored, and the chunk continues a t  
carried out under the assumption that  there are as  many the destination of the unconditional branch, perhaps 
extra copies of all types of registers as needed. Experi- requiring duplication or reduplication of code (see, for 
ments were run to determine whether this was a neces- example, P3 and P 4  of Fig. 3). A conditional branch 
sary assumption by examining the effect upon para]- ends this chunk, and the next instruction begihs a new 
lelism of limiting registers to a single copy each. There one. 
was an insignificant decrease in the resultant parallelism As each instruction is added to a chunk, we update a 
if memory registers were limited to  a single copy each, table called the "Most Recent Change Table." The 
If the number of special high registers ( A ,  Q, and D entry in this table for each source of the current instruc- 
registers in the CDC-3600) are limited to a single copy tion is examined, and the largest value so found is as- 
of each type, the parallelism was reduced by slightly signed to  the "earliest possible dispatch timen of this 
more than 10 percent with a stack of size 32. This effect instruction. This time plus the execution time of the 
appears to be somewhat less than that reported by instruction is used to update the most recent change 
Tjaden and Flynn. entry of all the destinations of this instruction. I t  is 
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TABLE I11 average) ran 1.51 times as fast as they would have in a 

Program Name Relative Speed 

Em01 , 9 5 5  

CONC . .947 

EIG. .q 

COPIP ASS 

m. cm. 

DECALIZE 

possible to view this as a graph theoretic procedure in 
which the instructions form the nodes of the graph. 

Gonzelez and Ramamoorthy [8] found that  a very 
large amount of time was necessary to  discover poten- 
tial parallelism in Fortran source programs. I t  appears 
that  the time they require to  detect parallelism goes up 
as the cube of the number of statements involved (50 
statements require 2 s ,  100 require 8 s). In the first place, 
our chunks are quite small, due to  the high frequency of 
conditional jumps; and, in the second place, we do  not 
attempt to discover potential parallelism between chunks, 
only within them, and it is phase I1 of their analysis 
(the construction of the pernlissible transition graph) 
that  is the lengthiest. Thus our algorithm should be 
considerably faster than theirs. Nonetheless, it is clear 
that  this form of preprocessing of programs would be 
worthwhile only for those cases in which many execu- 
tions may be expected. 

The reader's attention is directed to the following phe- 
nomenon. Suppose we have a chunk of code such tha t  
the conditional jump that  ends the chunk is resolvable 

- .  
conventional sequential machine. Using the percolation 
algorithm in place of most of the decoding hardware, 
programs ran 1.41 times as  fast as in a conventional 
machine. These values are somewhat lower than they 
might have been because the program that  was not run 
had the largest values of parallelism. 

Under the assumption of a zero dispatching interval, 
we have determined the upper bound on the parallelism 
derived for various stack sizes. hfost of the parallelism 
achieved by using a stack to decode and dispatch in- 
structions is obtained with very short stacks. In  all bu t  
one case, a stack size of 4 \\~ould achieve 90 percent of 
the parallelism of an infinite stack. Little parallelism is 
gained by supplying extra copies of registers. These 
results imply tha t  parallelism between conditional 
branches is quite limited in the object and hand code of 
typical programs run on current machines. 

One may still feel tha t  there are cases in which the 
additional expense that  is required to achieve this 
parallelism is justified. This note has described an alter- 
native to achieving this parallelism strictly in hardware. 
The  percolation algorithm presented in this note ap- 
proximates the dispatch stack b]. reordering instructions 
prior to execution. This method achieves 93.5 percent 
of the parallelism of an  infinite stack. Thus, one can 
effectively replace the hardware stack by additional 
processing during compilation. 

The  critical factor in the  limitation of parallelism is 
not the stack size or multiple copies of functional units 
and registers. Rather, the limiting factor to be focused 
upon is the problem of conditional branches, or addi- 
tional processing to convert the code to a form tha t  
takes advantage of this parallel processing structure. 

early in the execution of the chunk. Then in an infinite 
stack machine, the new chunk can be started as soon as  
this conditional is resolved. But in our software percola- 
tion scheme, we cannot allon any percolation across 
chunk boundaries. Thus, some potential parallelism is 
lost but, as we shall see beloa., this is quite small in 
magnitude. 

The speed of percolated code relative to unpercolated 
code with an infinite dispatching stack is sholvn in 
Table 111. These numbers are found by dividing the 
execution time of the program with an infinite stack by 
the execution time of the percolated program \vith a dis- 
patching stack of length 1. S o t e  that  the assumption of 
zero dispatch time affects the percolated code in the 
same manner that was discussed previouslj.. This experi- 
ment Itas not run for one of the programs, ISTERIT,  be- 
cause the information on one of the tapes was acci- 
dentally destroyed. For the six programs analyzed this 
way, the average speed of the percolated program was 
93.5 percent of the speed of the unpercolated program 
dispatched from an infinite stack. Stating this another 
way, with an infinite stack, the six programs (on the 

The  authors \vish to express their appreciation to  
J .  I'ervaert and F, Pirz for their help in collecting and 
analyzing the data presented in this note. 
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