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Abstract� The speed gap between processor and memory 
continues to limit performance. To address this problem, we 
explore the potential of eliminating Zero Loads � loads 
accessing memory locations that contain the value �zero� � to 
improve performance and energy dissipation. Our study shows 
that such loads comprise as many as 18% of the total number 
of dynamic loads. We show that a significant fraction of zero 
loads ends up on the critical memory-access path in out-of-
order cores. We propose a non-speculative microarchitectural 
technique � Zero-Value Cache (ZVC) � to capitalize on zero 
loads and explore critical design options of such caches. We 
show that with modest investment, we can obtain speedups up 
to 78% and reduce the overall energy dissipation by up to 
39%. Most importantly, zero-value caches never cause 
performance loss. 

Keywords- Zero-Value Cache, Load Scheduling, Load 
Criticality, Frequent Value Locality, Zero Load 

I.  INTRODUCTION  
On-chip cache hierarchies are widely used in modern 

processors to address the gap between processor speed and 
DRAM access time. While caches are successful in reducing 
the accesses to memory, even a small fraction of the 
remaining accesses may cause substantial performance loss. 
Moreover, despite advances in cache management, load 
latency is still a limiting factor in achieving high 
performance in dynamically scheduled processors. This 
clearly calls for novel techniques to improve efficiency of 
load scheduling and cache hierarchies. 

Typically, a load accesses the first level data cache (DL1) 
and searches the load/store queue (LSQ) in parallel to find a 
matching store. If the load does not obtain its value from 
either source, it accesses the next level of cache hierarchy 
and experiences longer latency that limits performance. 
Performance and energy losses increase with the number of 
visited cache/memory levels. Ideally, if a load request could 
be satisfied without injecting it into the cache hierarchy, it 
would not result in performance or energy loss. To this end, 
we propose and evaluate a non-speculative 
microarchitectural technique to satisfy load requests as early 
as possible to reap performance gains and energy savings.  

Numerous approaches for load scheduling and execution 
to enhance performance, power, and energy efficiencies have 
been proposed. Load-value prediction schemes [4, 5, 19] aim 
to reduce average memory access time and rely heavily on 
speculation to predict load values with high accuracy. 

However, these techniques require detecting misspeculation 
and consequently, re-executions lead to performance and 
power loss. On the other hand, store-to-load forwarding 
techniques [22, 25, 26] can cancel load accesses early if there 
is an outstanding store to the same address. In contrast, we 
propose a non-speculative technique that is capable of 
cancelling load accesses that are not cancelled by store-to-
load forwarding techniques. 

Our approach leverages frequent value locality, as 
observed by Yang and Gupta [28], to track loads that access 
zero-valued memory locations. In particular, we establish 
that a significant fraction of dynamic loads read the value 
�zero� from the memory. We refer to such loads as Zero 
Loads (ZLDs). Remarkably, on average, 18% of the total 
number of executed loads are ZLDs for applications of the 
SPEC CPU2000 benchmark suite. Such loads can be 
executed without accessing the cache hierarchy, and this 
opens a number of opportunities. We contribute a new 
architectural concept referred to as Zero-Value Cache 
(ZVC). Unlike a conventional cache, a ZVC keeps track of 
zero-valued locations compactly and responds quickly to 
such load requests. We find that this simple structure can 
improve performance by up to 78% with a low additional 
complexity. 

While Frequent Value Cache (FVC) [29] can be thought 
of as a general mechanism of capturing the value zero, it 
trades energy efficiency for lower performance. The FVC 
always increases load latency of non-frequent values. In 
contrast, our proposed ZVC takes a different view on how to 
leverage frequent value locality by targeting only the value 
zero as well as ensuring that performance will never suffer 
and overall energy dissipation will diminish. Several earlier 
studies have leveraged the prevalence of the value zero for 
other purposes: Alameldeen and Wood [1], Villa et al. [31] 
and Dusser et al. [7] for cache compression, and Ekman and 
Stenstrom [8] for main memory compression. But no prior 
study has exploited this phenomenon to cancel load requests 
before they reach the memory hierarchy as done in this 
study.  

The remainder of the paper is organized as follows: We 
introduce and characterize zero loads in Section II to 
motivate the architectural innovation presented in Section III. 
We describe the experimental methodology in Section IV 
before we present and analyze the results in Section V. We 
discuss related work in Section VI and provide concluding 
remarks in Section VII. 
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II. CHARACTERIZATION OF ZERO LOADS 
We first introduce Zero Loads (ZLDs) and quantify such 

loads as fraction of the total number of executed loads. We 
then discuss the criticality and L2 miss rate of ZLDs to 
anticipate their impact on performance. This serves as 
motivation for studying opportunities to exploit ZLDs in 
terms of architectural innovations. 

A. Frequency of Zero Loads 
We quantify the occurrences of dynamic zero loads for a 

set of applications of the SPEC CPU2000 benchmark suite 
using the experimental methodology presented in Section IV. 
The results are shown in Fig. 1. The Y-axis represents the 
percentage of all dynamic loads that are ZLDs. We see that 
the frequency of ZLDs lies between 5% and 55% of the total 
number of executed loads, with an arithmetic mean of 18%. 
It is noteworthy that ZLDs are indeed common in every 
application. 

 
Figure 1.  Frequency of zero loads. 

This finding provides several optimization opportunities. 
Most importantly, the latency of a ZLD can be reduced to 
provide performance and power/energy benefits if the 
request can be satisfied without issuing it to the cache 
hierarchy. The gain will be particularly high if a ZLD is not 
resident in data caches and would have to access main 
memory. A large fraction of ZLDs actually exhibits this 
behavior. 

B. Criticality of Zero Loads 
Traditionally, cache hierarchies exploit locality of 

references to increase the fraction of memory accesses that 
can be satisfied by the cache. This, in turn, reduces the 
average load latency and improves performance. However, 
Srinivasan et al. [24] show that latencies of all load 
operations do not equally penalize overall performance in a 
dynamically scheduled, out-of-order processor. Loads that 
must complete early to avoid performance degradation are 
Critical Loads (CLDs). In this study, we classify a load as 
Zero Critical Load (ZCLD) if a critical load returns zero. 
Srinivasan et al. [24] classify a load as critical if it satisfies 
any of the following criteria: 1) The load feeds into a mis-
predicted branch, 2) The load feeds into another load that 
incurs an L1 cache miss, or 3) The number of independent 
instructions issued in an N-cycle window following the load 
is below a threshold.  

We establish the relative occurrences of ZCLDs based on 
the stated criteria using a window of four cycles and a 
threshold of four instructions. We also quantify the fraction 
of L2 misses caused by ZLDs, assuming the cache hierarchy 
parameters that we present in Section IV. The Y-axis of Fig. 
2 shows the frequency of ZCLDs as percentage of the total 

number of executed ZLDs. The X-axis shows the application 
name, and the first, second and third rows below show the 
frequency of ZCLDs as percentage of all dynamic loads, L2 
miss per 1000 memory references and the percentage of L2 
misses caused by ZLDs, respectively. 
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Figure 2.  Frequency of ZCLD and L2 miss rate. 

The figure shows that about 20% of all dynamic ZLDs 
are critical and that such loads comprise about 4% of all 
executed loads. Furthermore, the figure shows that about 
14% of all L2 misses are caused by ZLDs. More detailed 
analysis reveals that (a) ZCLDs constitute a moderately large 
fraction of all dynamic loads in many applications (art, 
equake, gcc, mcf, parser, twolf, and vortex), (b) ZLDs 
contribute significantly to L2 miss rate (at least 10% of total 
number of L2 misses) in many applications (art, equake, 
mcf, parser, twolf, vortex, and vpr), and (c)  the impact of 
ZLDs on L2 miss rate and the frequency of ZCLDs are 
relatively lower in several applications (ammp, mesa, bzip2, 
and perlbmk).  

The results make ZLDs a natural target for optimization. 
However, it is important to note that the notion of criticality 
adopted in this study merely indicates that a critical load 
degrades performance, but does not quantify performance 
loss caused by such loads. In the next section, we present a 
novel, non-speculative architectural scheme to exploit ZLDs. 

III. ZERO-VALUE CACHES 
A Zero-Value Cache (ZVC) is a small, cache-like 

structure dedicated to a subset of memory locations 
guaranteed to contain the value zero. We say that a load 
request is a data hit in the ZVC if there is an entry for that 
zero-valued location. Conversely, it is a data miss if the entry 
contains a non-zero value and an entry miss if there is no 
entry for that location. We consider two placements for the 
ZVC: placed between the CPU and the L1 data cache (DL1) 
or alongside the DL1. We first present the microarchitecture 
of the baseline processor model in Section III-A. In the 
subsequent sections, we discuss the organizational issues of 
the ZVC and elaborate on its design tradeoffs. 

A. Baseline Microarchitectural Model 
While ZVC can be integrated in most conventional 

microarchitectural models, we assume for simplicity a 
straightforward model with six pipeline stages (fetch, 
decode, issue, execute, write back, and commit) similar to 
that of Sun Microsystems� Niagara [16]. Unlike Niagara, 
however, we assume an out-of-order core. Both instruction 
decoding and register renaming happen at the decode 
pipeline stage as in the MIPS R10000 superscalar processor 
[30]. The entries are allocated in the reorder buffer (ROB), 
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and the instructions proceed to the issue stage. Instructions 
execute as soon as dependences are resolved and the required 
functional units are available. The execution outcome is then 
broadcast to wake up other dependent instructions at the 
write back stage. Finally, the resources used by the 
instructions are reclaimed, and caches and memory are 
updated at the commit stage. 

B. Organization of the ZVC 
Each entry of the ZVC stores a tag corresponding to the 

address of a B-Byte block, a bit-vector of that entire block, a 
Cache Indicator Bit (CIB), and a valid bit, as shown in Fig. 
3. Each bit in the bit vector designates whether the 
corresponding byte or word of a block is zero (�1� represents 
zero whereas �0� represents unknown/non-zero value). A 
new design parameter is the granularity to represent zero-
valued locations. We evaluate two options: one bit per byte 
(BB), and one bit per four-byte word (BW).  

 
Figure 3.  A ZVC entry and its size. 

To exploit spatial locality offered by larger blocks for 
better cache utilization, we assume the proposed ZVC is not 
inclusive with respect to the conventional cache hierarchy. 
However, we assume inclusiveness across cache levels in the 
baseline cache hierarchy. To this end, the CIB indicates 
whether a particular block of the ZVC is present in the last 
level cache or not. If not, a load request bypasses the 
traditional cache hierarchy to reduce miss penalty and power 
consumption as proposed by Memik et al. [20]. Each ZVC 

entry may have N CIBs if the block size of the ZVC is N 
times larger than the L2 cache block size.  Finally, a valid bit 
serves the same purpose as in a conventional cache and 
similar to the CIB, each ZVC entry may have N valid bits. 

C. ZVC placed between the CPU and the DL1 
The proposed ZVC can be placed between the CPU and 

the DL1 to treat it as another level in the cache hierarchy. 
The advantage is that the load latency is completely 
eliminated if there is a data hit in the ZVC, since the load can 
be satisfied immediately. However, this design is constrained 
by the clock frequency of the pipeline and loads that miss in 
the ZVC may experience longer latency.  

Let us now explain the different possible scenarios on a 
read access in the presence of the ZVC. At the issue stage of 
the pipeline, a load request is issued to the ZVC in parallel 
with carrying out the address translation. First, if there is a 
data hit in the ZVC, the load is not issued to the cache 
hierarchy and the LSQ lookup is not done. Second, if either 
an entry miss or a data miss occurs, the request is issued to 
the LSQ and the DL1 as it happens in the baseline processor 
model. However, on a data miss, if the load is not served by 
the LSQ and the DL1, the status of the corresponding CIB in 
the ZVC dictates how the request will travel through the rest 
of the cache/memory hierarchy. If the CIB is �0�, i.e., the 
block is not present in the last level cache (L2 in the baseline 
model), the main memory is accessed directly without 
searching the next level caches, the block is installed into the 
caches and the corresponding CIB is set to �1�. This reduces 
the miss penalty. Conversely, if the CIB is �1�, the load 
traverses the cache/memory hierarchy as in the baseline 
processor model. Fig. 4(a) shows the integration of the 
proposed ZVC into the baseline processor model. In the 
figure, the additional logic and connections are shown using 
dotted rectangles and lines, respectively. 

 

 

Figure 4.  The integration of the ZVC into the baseline processor model.: (a) ZVC placed betweem the CPU and the DL1, (b) ZVC alongside the DL1.
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The allocation of a ZVC entry and the modifications of 
the corresponding bits are done at the issue stage of the 
pipeline model. First, if there is an entry miss and a miss in 
the L2, the block is fetched from the main memory at the 
ZVC block size granularity. The entire block passes through 
the zero-detection logic to create the bit vector following the 
specified granularity (BB or BW) and place it in the ZVC. 
However, only the relevant fraction (L2 block size) of the 
fetched block is placed in the L2. At this point, the CIBs and 
valid bits of the newly allocated ZVC entry are updated. This 
may increase the memory traffic on read misses if the ZVC 
block size is larger than the L2 block size. Second, if there is 
an entry miss but a hit in the L2, the block is fetched from 
the L2 and placed in the ZVC. The bit vector formation and 
the modifications of the CIBs as well as valid bits are done 
similarly as in the first case. In both cases, the ZVC stores 
only non-speculative data. Finally, as soon as an in-flight 
store completes, i.e., the effective address and the value are 
known, a new entry is allocated if it is not in the ZVC. Only 
the bytes for which the value zero is written are marked by 
�1� in the bit vector. The valid bits are set but the CIBs are 
not set. This approach allows the ZVC to hold speculative 
data and support store-to-load forwarding if the load finds a 
matching store in the ZVC with the corresponding bit(s) of 
the bit vector set. 

Since the proposed scheme is non-speculative, the entries 
of the ZVC have to be validated to maintain correctness 
during program execution. During the recovery from the 
misspeculation, the ZVC is validated against each squashed 
store. This requires clearing the corresponding bit vector 
positions of a cached ZVC entry to �0�. At the commit stage 
of the pipeline, the ZVC lookup is performed for each ready-
to-commit store to detect zero silent stores � a special case of 
silent stores [17] that update zero-valued memory locations 
with the same value. Thus the proposed ZVC detects zero 
silent stores basically for free and this may reduce the overall 
write traffic. 

The virtually-indexed ZVC allows the TLB lookup to 
proceed in parallel. In the proposed placement, this will 
partially hide the additional latency of accessing the ZVC 
and the DL1 sequentially. As the ZVC size is quite small, the 
cost of dealing with virtual aliases will be low. 

D. ZVC alongside the Level-1 Cache 
The ZVC may alternatively be placed next to the first 

level data cache (DL1) to perform lookups simultaneously. 
Fig. 4(b) shows the integration of the proposed ZVC into the 
baseline processor model with the associated additional logic 
marked using dotted rectangles and lines. In this case, the 
LSQ, the ZVC and the DL1 are searched in parallel on a load 
request. If the request is satisfied by any, the L2 cache is not 
accessed. But on a ZVC data miss in addition to the LSQ and 
the DL1 miss, the CIB of the ZVC entry determines whether 
to access the L2 cache. If the CIB is �1�, the L2 cache is 
accessed as in the baseline processor model. Otherwise, the 
main memory is accessed directly to bring in the required 
block to the caches. The allocation of a new ZVC entry, 
modifications of the bit vector, CIBs and valid bits, and the 
maintenance of non-speculative nature are performed in the 

same way as done in the ZVC placed between the CPU and 
the DL1.    

The placement of the ZVC alongside the DL1, unlike the 
other approach, offers more flexibility in the design as it only 
needs to be as fast as the L1 cache and does not incur any 
performance penalty on data/entry miss. However, the 
performance and energy benefits are now limited to zero 
loads that access the L2 cache in absence of the ZVC. 

E. Threshold-based Insertion/Replacement 
We have thus far assumed that a particular block is 

placed in the ZVC without determining the relative 
frequency of zero-valued bytes/words in the block. As a 
result, in the worst case, the ZVC may entirely fill up with 
blocks that primarily consist of non-zero values. To address 
this issue, we propose and evaluate a scheme that inserts a 
block into the ZVC only if the number of zero-valued 
bytes/words is above a preset threshold. Though the 
threshold-based approach requires extra hardware to count 
the number of zero bytes/words, it may increase ZVC 
utilization. It is notable that this approach is not applicable if 
the ZVC is updated via an in-flight store. We assume the 
LRU replacement policy in all cases. 

F. Cache Coherence Issues 
Since inclusion between the ZVC and conventional cache 

hierarchy is not maintained, all cache coherence transactions 
will travel all the way to the ZVC through the cache 
hierarchy. This may pose severe performance loss in multi-
cores. However, we show in Section V that even a small 
ZVC is effective in cancelling a large number of loads 
destined to zero-valued locations. Therefore, it is reasonable 
to duplicate the ZVC at the last level private cache. We 
assume that the content of the duplicated ZVC is consistent 
with the ZVC placed between the CPU and the DL1 or next 
to the DL1. The replicated ZVC filters out all cache 
coherence transactions not involving blocks contained in the 
ZVC. However, proper actions must be taken, including 
invalidating ZVC entries for the blocks involved in a cache 
coherence transaction. Note that we do not evaluate the 
impact of the ZVC on multi-cores. 

IV. EXPERIMENTAL METHODOLOGY 
We evaluate the performance potential of the proposed 

mechanism via a modified version of sim-outorder from the 
SimpleScalar toolset [3]. The baseline processor model 
supports dynamic scheduling and speculative execution. We 
describe the pipeline model in Section III-A. We modify a 
memory implementation [10] to model SDRAM-based 
memory subsystem and integrate it into the SimpleScalar 
toolset. We model the corresponding controller and latencies, 
including contention according to JEDEC Standard No. 79-
3C [13]. We present the parameters of the baseline processor 
model and memory subsystem in Table I. In addition, we 
perform sensitivity analysis of the proposed method using a 
larger L2 cache. 
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TABLE I.  THE BASELINE PROCESSOR PARAMETERS. 

Parameter Value 
Decode, Issue and 
Commit Width 

4 instructions/cycle, out-of-order issue and 
execution 

Register Update 
Unit (RUU), LSQ 

(128, 64) instructions 

L1 Instruction 
Cache 

32KB, block size 32 bytes, 4-way set-associative, 
256 sets, LRU replacement policy, 2 cycles 
latency 

L1 Data Cache 32KB, block size 32 bytes, 4-way set-associative, 
256 sets, LRU replacement policy, 2 cycles 
latency 

Unified L2 Cache 512KB, block size 64 bytes, 8-way set-
associative, 1024 sets, LRU replacement policy, 
10 cycles latency 

Branch Predictor Combined: 2K-entry Bimodal + gshare with 2K 
entries in 2nd level; RAS: 8-entry; BTB: 4-way, 
512 sets  

Memory  
subsystem  

Number of banks: 8, DIMM width: 64 bits, 
Number of SDRAM chips: 8, Capacity: 2 Gbits, 
Memory clock speed: 200 MHz, Bus clock speed: 
800 MHz, Address map: interleaved, Control 
signals: pipelined, Latencies: 9-9-9-24 in the 
format �tCAS-tRCD-tRP-tRAS�  

 
We use nine applications (bzip2, gcc, gzip, mcf, parser, 

perlbmk, vortex, vpr, and twolf) from the SPEC CINT2000 
and four applications (ammp, art, equake, and mesa) from 
the SPEC CFP2000 of the SPEC CPU2000 benchmark suite. 
We compile each with optimization level �O3 and gcc 
version 2.7.2 for a MIPS-compatible processor. We omit two 
remaining C applications (gap and crafty) due to compilation 
problems. We use the reference inputs for all the selected 
applications. We use SimPoint3.2 to quickly simulate parts 
of a program�s execution (100M instructions) to represent 
the entire execution [23]. Table II shows each selected 
application, the simulation point and the input set used in this 
study. 

TABLE II.  APPLICATIONS AND INPUT SETS. 

Application SimPoint Input 

ammp 846 ammp-ref 

ert 257 art-470 

equake 985 equake-ref 

mesa 3909 mesa-ref 

bzip2 384 bzip2-program 

gzip 567 gzip-source 

gcc 116 gcc-166 

mcf 321 mcf-ref 

parser 24 parser-ref 

perlbmk 64 perlbmk-diffmail 

twolf 1402 twolf-ref 

vortex 696 vortex-lendian1 

vpr 368 vpr-route 

 
We incorporate the proposed ZVC designs into our 

processor model and evaluate their impact on performance, 

power, energy, chip-area and memory traffic. We evaluate 
many configurations of the ZVC, as shown in Table III. In 
the table, the ZVC size includes CIB and valid bit. In each 
case, the ZVC is 4-way set-associative with the LRU 
replacement policy. 

TABLE III.  CONFIGURATIONS OF THE ZVC. 

Bit-vector Block Size 
(in byte) Threshold ZVC Size 

(in byte) 

BB, BW 64, 128, 256 0%, 50%, 100% 576, 2112, 4224 

 
We use CACTI 5.3 [27] to estimate power consumption, 

access latency, and chip-area overhead of the ZVC, 
assuming a 2-GHz processor clock speed and 45nm 
technology. We present the estimated access time of the 
various configurations of the ZVC in Table IV. Note that all 
designs are accommodated within a single cycle for a 2-GHz 
processor core. We use Wattch [2] to estimate dynamic 
power and energy dissipation. We assume 1-cycle latency for 
each of zero-detection logic and the counter used in the 
threshold-based approach. 

TABLE IV.  ACCESS TIME (IN NS) OF THE ZVC. 

Block 
Size 

Bit-vector Number 
of Sets 

ZVC Size 
( in byte) 

Access 
Time 

64 BB 64 2112 0.481577 

128 BB 32 2112 0.476364 
256 BB 16 2112 0.476364 
256 BB 32 4224 0.476364 

256 BW 16 576 0.447053 

V. RESULTS AND ANALYSIS 
In this section, we present and discuss the results that we 

obtain through systematic exploration of the ZVC design 
space. Our default ZVC is four-way set-associative and 
assumes LRU replacement policy.  

A. Impact of Placement on Performance 
We evaluate the impact of ZVC placement and lookup on 

speedup using three different configurations and present the 
results in Fig. 5. There are three bars for each application in 
the figure and from left to right, they represent the speedup 
obtained using a 2KB ZVC with 128-byte blocks placed 
between the CPU and the first level cache (L0, 2KB), a 2KB 
ZVC with 128-byte blocks (L1, 2KB) and a 4KB ZVC with 
256-byte blocks (L1, 4KB) alongside the L1. The estimated 
access latency is one cycle in the first case whereas it is two 
cycles in the other cases. Each ZVC model forms bit vector 
using byte granularity (BB).  

We see from Fig. 5 that four applications (art, gcc, mcf, 
and twolf) achieve significant speedup (between 12% and 
80%), three applications (equake, parser, and vortex) obtain 
moderate speedup (between 3% and 7%), and most 
importantly, no application experiences performance 
degradation. We observe that the ZVC placed alongside the 
L1, in general, performs slightly better than the ZVC placed 
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between the CPU and the L1 in all applications except 
vortex. 

 
Figure 5.  Impact of ZVC placement on speedup. 

We observe that the speedup obtained is in line with the 
expectation if we recall the results on criticality and L2 miss 
rate of ZLDs presented in Fig. 2 in Section II-B. For 
example, in mcf, critical ZLDs constitute 9.4% of all 
dynamic loads and ZLDs contribute 13.3% to the overall L2 
miss rate, and those are only 0.3% and 0.5%, respectively in 
ammp. We look into the data hit rate of the critical zero loads 
(ZCLD) of the 4KB ZVC placed alongside the L1 to 
understand the observed trend and present the results in Fig. 
6. In the figure, the solid line represents the speedup in 
percentage and the dotted line represents the data hit rate of 
the ZCLDs as percentage of the total number of executed 
loads. In the X-axis, the row below the application name 
shows the data hit rate of the ZCLDs as percentage of all 
dynamic ZCLDs. We see from Fig. 6 that the higher data hit 
rate of ZCLDs leads to higher gains in performance and the 
proposed ZVC tracks majority of the executed ZCLDs in 
most applications (mesa, gcc, gzip, mcf, parser, perlbmk, 
twolf, vortex, and vpr). 

 
Figure 6.  Data hit rate of the ZCLD. 

The results discussed in this section reveal that the ZVC 
placed next to the L1 to perform lookups simultaneously, in 
general, performs better. More importantly, this design 
ensures that non-zero loads � about 82% of all dynamic 
loads � do not suffer from any performance penalty. 

B. Impact of ZVC Block Size on Performance 
We assume that the ZVC is searched in parallel with the 

L1 and evaluate the impact of its block size on speedup. We 
use BB to form bit vectors. Fig. 7 shows the results. In the 
figure, the three bars from left to right correspond to the 
obtained speedup in percentage for block sizes of 64, 128, 
and 256 bytes, respectively for a 2KB ZVC. 

It is evident from Fig. 7 that the speedup increases in 
several applications (art, equake, gcc, parser, and vortex) as 
we increase the block size. However, we do not observe any 
noticeable impact on speedup in most of the applications 

(ammp, mesa, bzip2, gzip, perlbmk, twolf, and vpr) and 
observe a slight decrease in speedup in mcf. In general, the 
ZVC with 256-byte block size performs the best. 

 
Figure 7.  Impact of ZVC block size on speedup. 

C. Impact of Bit-vector Granularity  
We assess the impact of the granularity to represent zero-

valued locations in the bit vector on speedup by considering 
byte (BB � 1 bit/byte) and word (BW � 1 bit/word) 
granularities. We assume that the ZVC is placed next to the 
L1 and uses 256-byte blocks. In Fig. 8, the left and the right 
bars correspond to the speedup obtained using BB and BW, 
respectively.  The results in the figure reveal that speedup is 
almost entirely independent of the granularity. 

 
 

Figure 8.  Speedup and bit-vector granularity. 

To understand this trend, we quantify the relative 
occurrences of different granularities (byte, half-word, word) 
of ZLDs and present the results in Fig. 9. In the figure, the 
three bars from bottom to top correspond to the relative 
occurrences of byte (1-byte), half-word (2-byte) and word 
(>=4-byte) ZLDs, respectively as percentage of all dynamic 
ZLDs. We find that byte-ZLDs are dominant � at least 60% 
of all dynamic ZLDs � only in three applications (bzip2, 
gzip, and twolf). The results suggest that we use BW because 
it reduces the ZVC size by a factor of four with respect to 
BB and provides almost same performance benefit as BB. 
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Figure 9.  Granularity of dynamic zero loads. 

D. Impact of the Zero-Count Threshold 
In this section, we assume that a particular block is 

placed in the ZVC only if it satisfies a certain threshold of 
zero-count and evaluate the impact on speedup. For example, 
when the threshold is N, a block is placed in the ZVC if the 
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block contains N% zero words. The ZVC with 256-byte 
blocks is searched in parallel with the L1 and uses BW to 
form bit vectors. We apply three different thresholds and 
present the results in Fig. 10. In the figure, there are three 
bars for each application and from left to right, they 
correspond to the achieved speedup by applying no threshold 
(0%), thresholds of 50%, and 100%, respectively. Note that a 
threshold of 0% means that we do not count the number of 
zero-valued words in a particular block before placing it in 
the ZVC. We see from Fig. 10 that speedup decreases in 
most applications as we increase the threshold from 0% to 
100%.  

 
Figure 10.  Impact of threshold on speedup. 

E. Energy, Power and Area of the ZVC 
We estimate the efficiency of our proposed ZVC in terms 

of energy, power and chip-area. We evaluate a ZVC that sits 
alongside the L1, applies no zero-count threshold, is 4-way 
set-associative with 16 sets, and uses 256-byte blocks. We 
assume that BW is used to create bit vectors. Thus, the size 
of the ZVC is 576 bytes including CIB and valid bit. We use 
CACTI 5.3 [27] to obtain the results and present those in 
Table V. We see from the table that the ZVC increases 
leakage power only by 0.18% and chip-area only by 0.15% 
with respect to data caches. 

TABLE V.  THE OVERHEAD OF THE ZVC. 

Parameter DL1 L2 ZVC Overhead 
Dynamic read 
energy (nJ) 0.0163 0.0903 0.0024 2.25% 

Dynamic write 
energy (nJ) 0.0134 0.0444 0.0026 4.5% 

Dynamic read 
power (nW) 46.872 74.048 16.209 13.4% 

Leakage per 
bank (mW) 66.27 855.14 1.7037 0.18% 

Area (mm2) 0.288 3.621 0.0057 0.15% 
 

We also use Wattch [2] to estimate the impact of the 
ZVC on the overall dynamic power consumption and energy 
dissipation. The proposed ZVC reduces the power 
consumption in two ways: (a) the L2 cache is not accessed 
on a read request if it is a data hit in the ZVC but misses in 
the L1, and (b) data caches are not accessed on a write 
request if the ZVC detects the store as a zero silent store. 

However, the ZVC itself consumes power. In addition, the 
ZVC accesses the L2 cache to maintain CIB, and fetch the 
required block on entry miss and L2 hit. This may increase 
the overall power consumption. We estimate that the 
dynamic power consumption of the baseline processor model 
increases by 3%. The ZVC may reduce the overall energy 
dissipation in the applications that achieve speedup and 
increase it in the other applications. We estimate the total 
dynamic energy dissipation and show the results in Fig. 11. 
We see from the figure the total energy usage of the 
processor is reduced in many applications (art, equake, gcc, 
mcf, parser, twolf, and vortex) and increased slightly (about 
1%) in some applications (ammp, bzip2, gzip, perlbmk, and 
vpr). 

 
Figure 11.  Impact of the ZVC on dynamic energy. 

F. Impact of the ZVC on Memory Traffic 
Memory bandwidth is a bottleneck in current and future 

processors [9]. This motivates us to evaluate the impact of 
the proposed ZVC on memory traffic. If the ZVC blocks are 
larger than the L2 blocks, we expect that the read traffic may 
increase as an entry miss in the ZVC along with L2 miss 
fetches additional data from the memory. In contrast, the 
write traffic may decrease as the ZVC is capable of detecting 
zero silent stores. We observe that such stores, on average, 
constitute about 11% of the total committed stores. It is 
important to note that only a critical silent store  a specific 
dynamic silent store that, if not squashed, will cause a cache 
line to be marked as dirty and, hence, require a writeback 
[17]  suppresses write traffic. 

We assume the ZVC is placed next to the L1, is 4-way 
set-associative with 16 sets and 256-byte blocks, uses BW to 
form bit vectors and applies no threshold on zero-count. The 
L2 block size is 64 bytes. We present the results in Table VI. 
Note that a particular number following the �-� sign implies 
increase in traffic. We see from Table VI that memory read 
traffic increases up to 33% and all applications except gcc 
experience increase in the read traffic. We also observe that 
the memory write traffic decreases between 1% and 66% in 
seven applications (art, mesa, gcc, gzip, mcf, parser, and 
vortex) and remains unaffected in the remaining six 
applications. We find that the proposed ZVC detects about 
62% of the total number of committed zero silent stores, i.e., 
about 9% of all committed stores. 

TABLE VI.  IMPACT OF THE ZVC ON MEMORY TRAFFIC (READ AND WRITE). 

Application ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr 
Read Traffic -29 -17 -6 -14 -20 14 -11 -33 -4 -22 -25 -26 -31 

Write Traffic 0 29 0 1 0 66 5 57 12 0 0 17 0 
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G. Sensitivity Analysis 
Processor vendors such as IBM and Intel are 

incorporating large on-chip L2 cache [11, 18]. This 
motivates us to appraise our proposed ZVC in relation to the 
size of the L2 (last level) cache. We use a 4MB L2 cache that 
is 8-way set-associative with 128-byte blocks and 10-cycle 
access latency. The 576-byte ZVC placed next to the L1 is 4-
way set-associative and uses 256-byte blocks with BW to 
create bit vectors. Fig. 12 shows the results. We see from 
Fig. 12 that the speedup is reduced if we use a 4MB L2 
cache. In particular, the performance advantage disappears 
completely in art. We analyze the miss rates of both L2 
caches to understand the observed differences in speedup 

and present the results in Table VII. We see from Table VII 
that the miss rate is reduced significantly in the 4-MByte L2 
cache and in fact, it goes down to almost zero in art. This 
justifies the observed drop in speedup. 

 
 

Figure 12.  Sensitivity analysis of the ZVC. 

TABLE VII.  THE MISS RATE (MISS PER MEMORY REFERENCE) OF 512KB L2 (BASE) AND 4MB L2. 

Application ammp art equake mesa bzip2 gcc gzip mcf parser perlbmk twolf vortex vpr 
Base L2 0.08 0.56 0.22 0.00 0.03 0.04 0.01 0.45 0.06 0.00 0.08 0.01 0.10 

4MB L2 0.02 0.00 0.14 0.00 0.00 0.03 0.01 0.28 0.01 0.00 0.01 0.00 0.02 
 

VI. RELATED WORK 
Previous research focuses on efficient techniques to 

improve memory performance. Lipasti et al. [19] recognize 
that load instructions exhibit value locality and conclude that 
there is potential for prediction. Last-value predictors, stride 
predictors, context predictors, and hybrid predictors have 
been proposed to predict load values [4, 5, 19]. Calder and 
Reinman perform a comparative study of load speculation 
techniques such as value prediction, address prediction, 
dependence prediction, and memory renaming [5]. Roth [21] 
proposes a filtering mechanism to reduce the re-execution 
overhead of a given speculative technique. Ceze et al. [6] 
and Kirman et al. [15] propose checkpointing to 
speculatively retire long-latency load accesses and unclog 
the ROB. On the other hand, store-to-load forwarding 
techniques [22, 25, 26] address non-scalability and power 
inefficiency of conventional LSQ designs. Unlike load 
speculation, checkpoint assisted load retirement, and store-
to-load forwarding schemes, our proposed ZVC is non-
speculative, simpler in terms of hardware resources, and 
efficient from performance and energy perspectives.  

Kin and Mangione-Smith [14] introduce the filter cache, 
a small cache placed in between CPU and L1, to achieve 
power reduction. This, however, increases the execution time 
of programs in contrast to our proposed ZVC. The Frequent 
Value Cache (FVC) presented by Yang and Gupta [29] 
encodes frequent values in a compressed format. While 
frequent values are accessed directly, accessing a non-
frequent value results in performance loss. In contrast, the 
ZVC proposed in this study is sufficiently small to be 
accessed in parallel with the L1 or even before the L1. The 
non-zero loads do not suffer from any speedup penalty. This 
is important because about 82% of all dynamic loads return 
non-zero values. 

Several recent techniques exploit the potential of zero-
valued memory locations [7, 12]. In our previous work [12], 
we observe that zero loads are common in certain integer 

applications, and study the upper limit of potential benefits 
of exploiting such loads. Concurrently, Dusser et al. [7] 
propose Zero-Content Augmented (ZCA) cache to avoid 
storing a block in conventional caches if the entire block 
contains zero values. While their proposal can improve cache 
utilization, it cuts down the load latency only if the entire 
block contains zero values. On the other hand, our proposed 
ZVC can be placed close to the pipeline allowing loads to be 
cancelled immediately. 

VII. CONCLUSION 
In this paper, we introduce the notion of Zero Loads to 

improve load scheduling and cache hierarchy efficiency to 
achieve performance and energy benefits. We observe that 
Zero Loads, on average, comprise about 18% of the total 
number of executed loads and about one fifth of them appear 
on the critical memory-access path of out-of-order cores. We 
propose and evaluate a novel, non-speculative micro-
architectural technique � Zero-Value Caches � to exploit 
such loads. We find that our proposed scheme with 
additional storage of only about 576 bytes improves 
performance by up to 78% and reduces the overall energy 
dissipation of the processor core by up to 39%. Most 
importantly, the concept of zero-value cache requires only 
modest resources and never causes performance loss. 
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