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High-Level Summary of Last Lecture

 Enabling High Bandwidth Memories

 Main Memory System: A Broad Perspective

 DRAM Fundamentals and Operation
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Agenda for Today

 DRAM Operation Continued

 Memory Controllers

 Memory Latency
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Lab 1 is Out

 Data Cache

 Implement a Data Cache in a Pipelined Processor

 A lot of extra credit opportunity.

 It should be a lot of fun.

 Due 18 October.
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The Main Memory System

and DRAM



Required Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low 
Latency and Low Cost DRAM Architecture,” HPCA 2013.

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level 
Parallelism (SALP) in DRAM,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware 
Intelligent DRAM Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf
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https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf


Reading on Simulating Main Memory

 How to evaluate future main memory systems?

 An open-source simulator and its brief description

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
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Review: DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

 Cell
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Review: Generalized Memory Structure
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Review: Generalized Memory Structure
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Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.



The DRAM Subsystem

The Top Down View



DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

 Cell
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The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1
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Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>



Breaking down a Chip
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Breaking down a Bank
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DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

 Cell
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Example: Transferring a cache block
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Latency Components: Basic DRAM Operation

 CPU → controller transfer time

 Controller latency

 Queuing & scheduling delay at the controller

 Access converted to basic commands

 Controller → DRAM transfer time

 DRAM bank latency

 Simple CAS (column address strobe) if row is “open” OR

 RAS (row address strobe) + CAS if array precharged OR

 PRE + RAS + CAS (worst case)

 DRAM → Controller transfer time

 Bus latency (BL)

 Controller to CPU transfer time
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Multiple Banks (Interleaving) and Channels

 Multiple banks

 Enable concurrent DRAM accesses

 Bits in address determine which bank an address resides in

 Multiple independent channels serve the same purpose

 But they are even better because they have separate data buses

 Increased bus bandwidth

 Enabling more concurrency requires reducing

 Bank conflicts

 Channel conflicts

 How to select/randomize bank/channel indices in address?

 Lower order bits have more entropy

 Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help
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Address Mapping (Single Channel)

 Single-channel system with 8-byte memory bus

 2GB memory, 8 banks, 16K rows & 2K columns per bank

 Row interleaving

 Consecutive rows of memory in consecutive banks

 Accesses to consecutive cache blocks serviced in a pipelined manner

 Cache block interleaving

 Consecutive cache block addresses in consecutive banks

 64 byte cache blocks

 Accesses to consecutive cache blocks can be serviced in parallel
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Bank Mapping Randomization

 DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely

 Reading:

 Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.
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Address Mapping (Multiple Channels)

 Where are consecutive cache blocks?
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Interaction with VirtualPhysical Mapping

 Operating System influences where an address maps to in 
DRAM

 Operating system can influence which bank/channel/rank a 
virtual page is mapped to. 

 It can perform page coloring to 

 Minimize bank conflicts

 Minimize inter-application interference [Muralidhara+ MICRO’11]

 Minimize latency in the network [Das+ HPCA’13]
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More on Reducing Bank Conflicts

 Read Sections 1 through 4 of:

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism in 
DRAM,” ISCA 2012.
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Required Reading on DRAM

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

 Sections 1-2 are required
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx


DRAM Refresh (I)

 DRAM capacitor charge leaks over time

 The memory controller needs to read each row periodically 
to restore the charge

 Activate + precharge each row every N ms

 Typical N = 64 ms

 Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms 
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one 
another

 Distributed refresh: Each row refreshed at a different time, 
at regular intervals
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DRAM Refresh (II)

 Distributed refresh eliminates long pause times

 How else we can reduce the effect of refresh on 
performance?

 Can we reduce the number of refreshes?

38



-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling 

Downsides of DRAM Refresh

39

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.



Memory Controllers



DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that 
need to be controlled.

 The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

 These other technologies can place other demands on the 
controller
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Flash Memory (SSD) Controllers

 Similar to DRAM memory controllers, except:

 They are flash memory specific

 They do much more: error correction, garbage collection, 
page remapping, …

42Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 

Lifetime”, ICCD 2012.



Another View of the SSD Controller

43

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



DRAM Types

 DRAM has different types with different interfaces optimized 
for different purposes

 Commodity: DDR, DDR2, DDR3, DDR4, …

 Low power (for mobile): LPDDR1, …, LPDDR5, …

 High bandwidth (for graphics): GDDR2, …, GDDR5, …

 Low latency: eDRAM, RLDRAM, …

 3D stacked: WIO, HBM, HMC, …

 …

 Underlying microarchitecture is fundamentally the same

 A flexible memory controller can support various DRAM types 

 This complicates the memory controller

 Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)
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Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.



DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of 
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to for high performance + QoS

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes
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DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request’s 
importance in the processing core)
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A Modern DRAM Controller (I)
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A Modern DRAM Controller



DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands 
(activate/precharge)

 Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation
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DRAM Scheduling Policies (II)

 A scheduling policy is a request prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

 Will it stall the processor?

 Interference caused to other cores

 …
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Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row  row hit

-- Next access might need a different row  row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row  avoid a row conflict

-- Next access might need the same row  extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to 
the same row
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge

54



DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 Tradeoff: State transitions incur latency during which the 
chip cannot be accessed
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Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read 
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize performance & QoS (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
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Why So Many Timing Constraints? (I)
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Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.



Why So Many Timing Constraints? (II)

61

Lee et al., “Tiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,” HPCA 2013.



DRAM Controller Design Is Becoming More Difficult

 Heterogeneous agents: CPUs, GPUs, and HWAs 

 Main memory interference between CPUs, GPUs, HWAs

 Many timing constraints for various memory types

 Many goals at the same time: performance, fairness, QoS, 
energy efficiency, …
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Reality and Dream

 Reality: It difficult to optimize all these different constraints 
while maximizing performance, QoS, energy-efficiency, … 

 Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design  It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning.

 Observation: Reinforcement learning maps nicely to memory 
control.

 Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy.



Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.
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Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … ( 0   < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime 

 Associate system states and actions (commands) with long term 
reward values: each action at a given state leads to a learned reward

 Schedule command with highest estimated long-term reward value in 
each state

 Continuously update reward values for <state, action> pairs based on 
feedback from system
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Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results
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Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages and Limitations

-- Black box: designer much less likely to implement what she  
cannot easily reason about

-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
70



More on Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Evaluating New Ideas 

for New (Memory) Architectures



Potential Evaluation Methods

 How do we assess an idea will improve a target metric X?

 A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling/estimation

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation
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The Difficulty in Architectural Evaluation

 The answer is usually workload dependent

 E.g., think caching

 E.g., think pipelining

 E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

 Workloads change

 System has many design choices and parameters

 Architect needs to decide many ideas and many parameters 
for a design

 Not easy to evaluate all possible combinations!

 System parameters may change
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Simulation: The Field of Dreams



Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams
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Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space 
exploration  too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good 
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on 
the workloads we are designing the platform for
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Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in 
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full 
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level 
design space exploration
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Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

 Flexibility: How quickly one can modify the simulator to 
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers 
the simulator generates are vs. a real design (Simulation 
error)

 The relative importance of these metrics varies depending 
on where you are in the design process (what your goal is)
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Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the 
simulator

 You can trade off between the three to achieve design 
exploration and decision goals
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High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up 
some accuracy to enable speed & flexibility (and quick 
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can 
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not 
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
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Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with everything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Flexibility reduces; Speed likely reduces except for real design

 You can loop back and fix higher-level models
82



Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of 
simulation 

 And, more generally, what type of evaluation method

 Recall: A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed
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Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


Extra Credit Assignment

 Review the Ramulator paper

 Online on our review site

 Download and run Ramulator

 Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

 Upload your brief report to Moodle

 This may become part of a future homework
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Memory Latency: 

Fundamental Tradeoffs



DRAM Module and Chip
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Goals

• Cost

• Latency

• Bandwidth

• Parallelism

• Power

• Energy

• Reliability

• …
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DRAM Chip
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Sense Amplifier
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Sense Amplifier – Two Stable States
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Sense Amplifier Operation

96

0

VT

VB

VT  > VB1

0

VDD



DRAM Cell – Capacitor
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Empty State Fully Charged State

Logical “0” Logical “1”
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Reading destroys the state



Capacitor to Sense Amplifier
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DRAM Cell Operation
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DRAM Subarray – Building Block for 
DRAM Chip
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DRAM Bank
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DRAM Chip
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DRAM Operation
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Memory latency remains almost constant



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck



What Causes 

the Long DRAM Latency?



Why the Long Latency?

 Reason 1: Design of DRAM Micro-architecture

 Goal: Maximize capacity/area, not minimize latency

 Reason 2: “One size fits all” approach to latency specification

 Same latency parameters for all temperatures

 Same latency parameters for all DRAM chips (e.g., rows)

 Same latency parameters for all parts of a DRAM chip

 Same latency parameters for all supply voltage levels

 Same latency parameters for all application data 

 …
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DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

b
ar

ra
y

I/
O
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Why is the Subarray So Slow?
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 d
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– Amortizes sense amplifier cost  Small area

– Large bitline capacitance  High latency & power
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Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds

Long Bitline

Small Area 

Long Bitline

Low Latency 

Short BitlineOur Proposal

Small Area 

Short Bitline Fast

Need 
Isolation

Add Isolation 
Transistors

High Latency

Large Area
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Approximating the Best of Both Worlds

Low Latency 

Our Proposal

Small Area 
Long Bitline
Small Area 

Long Bitline

High Latency

Short Bitline

Low Latency 

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area 
using long 

bitline
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Latency, Power, and Area Evaluation
• Commodity DRAM: 512 cells/bitline

• TL-DRAM: 512 cells/bitline
– Near segment: 32 cells

– Far segment: 480 cells

• Latency Evaluation
– SPICE simulation using circuit-level DRAM model

• Power and Area Evaluation
– DRAM area/power simulator from Rambus

– DDR3 energy calculator from Micron
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• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
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Near       Far

TL-DRAM

(52.5ns)
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM 

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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subarray

Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between 
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel
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Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination

• Goal: Migrate source row into destination row

• Naïve way: Memory controller reads the source row 
byte by byte and writes to destination row byte by byte

→ High latency
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Inter-Segment Migration
• Our way: 

– Source and destination cells share bitlines

– Transfer data from source to destination across 
shared bitlines concurrently

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination
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Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

• Our way: 
– Source and destination cells share bitlines

– Transfer data from source to destination across
shared bitlines concurrently

Step 2: Activate destination 
row to connect cell and bitline

Step 1: Activate source row

Additional ~4ns over row access latency

Migration is overlapped with source row access
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subarray

Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between 
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel
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Using near segment as a cache improves 
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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More on TL-DRAM

 Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya 
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost 
DRAM Architecture"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx


We did not cover the following slides in lecture. 

These are for your preparation for the next lecture. 



Computer Architecture
Lecture 5: DRAM Operation, 

Memory Control & Memory Latency

Prof. Onur Mutlu

ETH Zürich

Fall 2017

4 October 2017



Why the Long Latency?

 Design of DRAM uArchitecture

 Goal: Maximize capacity/area, not minimize latency

 “One size fits all” approach to latency specification

 Same latency parameters for all temperatures

 Same latency parameters for all DRAM chips (e.g., rows)

 Same latency parameters for all parts of a DRAM chip

 Same latency parameters for all supply voltage levels

 Same latency parameters for all application data 

 …
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Latency Variation in Memory Chips

130

HighLow

DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions → 
latency variation in timing parameters



What Else Causes the Long Memory Latency?

 Conservative timing margins! 

 DRAM timing parameters are set to cover the worst case

 Worst-case temperatures 

 85 degrees vs. common-case

 to enable a wide range of operating conditions

 Worst-case devices 

 DRAM cell with smallest charge across any acceptable device

 to tolerate process variation at acceptable yield

 This leads to large timing margins for the common case

131



Understanding and Exploiting

Variation in DRAM Latency
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DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM Cell

Sense-Amplifier

Three steps of 
charge movement
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Data 0

Data 1

Cell

time

ch
ar

ge

Sense-Amplifier

DRAM Charge over Time

Sensing Restore

Why does DRAM need the extra timing margin?

Timing Parameters
In theory

In practice
margin

Cell

Sense-Amplifier
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1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for cell that can 
store small amount of charge

`2. Temperature Dependence
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at 
low temperature 

Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can 
store a large amount of charge

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can 
store a large amount of charge
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DRAM Cells are Not Equal
RealIdeal

Same Size 
Same Charge 

Different Size 
Different Charge 

Largest Cell

Smallest Cell

Same Latency Different Latency

Large variation in cell size 
Large variation in charge 

Large variation in access latency
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Contact

Process Variation

Access Transistor

Bitline

Capacitor

Small cell can store small 
charge

• Small cell capacitance
• High contact resistance
• Slow access transistor

❶ Cell Capacitance

❷ Contact Resistance

❸ Transistor Performance

ACCESS

DRAM Cell

 High access latency 
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Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can 
store a large amount of charge

`2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that 
operate at the high temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that 
operate at the high temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that 
operate at low temperature 
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Charge Leakage  Temperature

Room Temp. Hot Temp. (85°C)

Small Leakage Large LeakageCells store small charge at high temperature
and large charge at low temperature 
 Large variation in access latency
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DRAM Timing Parameters

• DRAM timing parameters are dictated by 
the worst-case 

– The smallest cell with the smallest charge in 
all DRAM products

– Operating at the highest temperature

• Large timing margin for the common-case



Adaptive-Latency DRAM [HPCA 2015] 

 Idea: Optimize DRAM timing for the common case

 Current temperature

 Current DRAM module

 Why would this reduce latency?

 A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case

 More charge in a DRAM cell

 Faster sensing, charge restoration, precharging

 Faster access (read, write, refresh, …)

141Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” 
HPCA 2015.
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Extra Charge  Reduced Latency

1. Sensing

2. Restore

3. Precharge

Sense cells with extra charge faster 
 Lower sensing latency

No need to fully restore cells with extra charge
 Lower restoration latency

No need to fully precharge bitlines for cells with 
extra charge
 Lower precharge latency



DRAM Characterization Infrastructure

143Kim+, “Flipping Bits in Memory Without Accessing Them: An 

Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



DRAM Characterization Infrastructure

 Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies, HPCA 2017.

 Flexible

 Easy to Use (C++ API)

 Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC: Open Source DRAM Infrastructure

 https://github.com/CMU-SAFARI/SoftMC
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https://github.com/CMU-SAFARI/SoftMC


146

Typical DIMM at 
Low Temperature

Observation 1. Faster Sensing

More Charge

Strong Charge
Flow

Faster Sensing

Typical DIMM at Low Temperature
More charge  Faster sensing

Timing
(tRCD)

17% ↓
No Errors

115 DIMM 
Characterization
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Observation 2. Reducing Restore Time

Less Leakage 
Extra Charge

No Need to Fully
Restore Charge

Typical DIMM at lower temperature
More charge  Restore time reduction

Typical DIMM at 
Low Temperature

Read (tRAS)

37% ↓
Write (tWR)

54% ↓
No Errors

115 DIMM 
Characterization
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AL-DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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DRAM Temperature
• DRAM temperature measurement

• Server cluster: Operates at under 34°C
• Desktop: Operates at under 50°C
• DRAM standard optimized for 85°C

• Previous works – DRAM temperature is low
• El-Sayed+ SIGMETRICS 2012
• Liu+ ISCA 2007

• Previous works – Maintain low DRAM temperature 
• David+ ICAC 2011
• Liu+ ISCA 2007
• Zhu+ ITHERM 2008

DRAM operates at low temperatures   
in the common-case
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Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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Reducing Latency Also Reduces Energy

 AL-DRAM reduces DRAM power consumption by 5.8%

 Major reason: reduction in row activation time
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More on AL-DRAM

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015. 
[Slides (pptx) (pdf)] [Full data sets] 
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
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Heterogeneous Latency within A Chip
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Analysis of Latency Variation in DRAM Chips
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Onur Mutlu,
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DIVA Online Profiling
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Design-Induced Latency Variation in DRAM

 Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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Voltron: Exploiting the 

Voltage-Latency-Reliability 

Relationship
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Executive Summary

• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of 

real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:

– Huge voltage margin -- Errors occur beyond some voltage

– Errors exhibit spatial locality

– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism 

– Reduce DRAM voltage without introducing errors 

– Use a regression model to select voltage that does not degrade 

performance beyond a chosen target  7.3% system energy reduction
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Analysis of Latency-Voltage in DRAM Chips

 Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 

165

https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


And, What If …

 … we can sacrifice reliability of some data to access it with 
even lower latency?
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Challenge and Opportunity for Future

Fundamentally

Low Latency

Computing Architectures
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