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High-Level Summary of Last Lecture

Â Enabling High Bandwidth Memories

Â Main Memory System: A Broad Perspective

Â DRAM Fundamentals and Operation
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Agenda for Today

Â DRAM Operation Continued

Â Memory Controllers

Â Memory Latency
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Lab 1 is Out

Â Data Cache

Â Implement a Data Cache in a Pipelined Processor

Â A lot of extra credit opportunity.

Â It should be a lot of fun.

Â Due 18 October.
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The Main Memory System

and DRAM



Required Readings on DRAM

Â DRAM Organization and Operation Basics

Ç Sections 1 and 2 of: Lee et al., ñTiered-Latency DRAM: A Low 
Latency and Low Cost DRAM Architecture,ò HPCA 2013.

https:// people.inf.ethz.ch/omutlu/pub/tldram_hpca 13.pdf

Ç Sections 1 and 2 of Kim et al., ñA Case for Subarray-Level 
Parallelism (SALP) in DRAM,ò ISCA 2012.

https:// people.inf.ethz.ch/omutlu/pub/salp -dram_isca12.pdf

Â DRAM Refresh Basics

Ç Sections 1 and 2 of Liu et al., ñRAIDR: Retention-Aware 
Intelligent DRAM Refresh,ò ISCA 2012. 
https:// people.inf.ethz.ch/omutlu/pub/raidr -dram-
refresh_isca12.pdf
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https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf


Reading on Simulating Main Memory

Â How to evaluate future main memory systems?

Â An open-source simulator and its brief description

Â Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters(CAL), March 2015. 
[Source Code] 
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator


Review: DRAM Subsystem Organization

Â Channel

Â DIMM

Â Rank

Â Chip

Â Bank

Â Row/Column

Â Cell
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Review: Generalized Memory Structure
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Review: Generalized Memory Structure
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Kim+, ñA Case for Exploiting Subarray-Level Parallelism in DRAM,ò ISCA 2012.



The DRAM Subsystem

The Top Down View



DRAM Subsystem Organization

Â Channel

Â DIMM

Â Rank

Â Chip

Â Bank

Â Row/Column

Â Cell
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The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

Channel



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view
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Breaking down a Chip
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Breaking down a Bank
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DRAM Subsystem Organization

Â Channel

Â DIMM

Â Rank

Â Chip

Â Bank

Â Row/Column

Â Cell
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Example: Transferring a cache block
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Example: Transferring a cache block
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Latency Components: Basic DRAM Operation

Â CPU Ÿ controller transfer time

Â Controller latency

Ç Queuing & scheduling delay at the controller

Ç Access converted to basic commands

Â Controller Ÿ DRAM transfer time

Â DRAM bank latency

Ç Simple CAS (column address strobe) if row is open OR

Ç RAS (row address strobe) + CAS if array precharged OR

Ç PRE + RAS + CAS (worst case)

Â DRAM Ÿ Controller transfer time

Ç Bus latency (BL)

Â Controller to CPU transfer time
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Multiple Banks (Interleaving) and Channels

Â Multiple banks

Ç Enable concurrent DRAM accesses

Ç Bits in address determine which bank an address resides in

Â Multiple independent channels serve the same purpose

Ç But they are even better because they have separate data buses

Ç Increased bus bandwidth

Â Enabling more concurrency requires reducing

Ç Bank conflicts

Ç Channel conflicts

Â How to select/randomize bank/channel indices in address?

Ç Lower order bits have more entropy

Ç Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help
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Address Mapping (Single Channel)

Â Single-channel system with 8-byte memory bus

Ç 2GB memory, 8 banks, 16K rows & 2K columns per bank

Â Row interleaving

Ç Consecutive rows of memory in consecutive banks

Ç Accesses to consecutive cache blocks serviced in a pipelined manner

Â Cache block interleaving

Â Consecutive cache block addresses in consecutive banks

Â 64 byte cache blocks

Â Accesses to consecutive cache blocks can be serviced in parallel
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Bank Mapping Randomization

Â DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely

Â Reading:

Ç Rau, ñPseudo-randomly Interleaved Memory,ò ISCA 1991.

32

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index 

(3 bits)



Address Mapping (Multiple Channels)

Â Where are consecutive cache blocks?
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Interaction with VirtualĄPhysical Mapping

Â Operating System influences where an address maps to in 
DRAM

Â Operating system can influence which bank/channel/rank a 
virtual page is mapped to. 

Â It can perform page coloring to 

Ç Minimize bank conflicts

Ç Minimize inter-application interference [ Muralidhara + MICROô11 ]

Ç Minimize latency in the network [Das+ HPCAô13 ]
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More on Reducing Bank Conflicts

Â Read Sections 1 through 4 of:

Ç Kim et al., ñA Case for Exploiting Subarray-Level Parallelism in 
DRAM,ò ISCA 2012.
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Required Reading on DRAM

Â Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, andOnur Mutlu,
"A Case for Exploiting Subarray -Level Parallelism (SALP) in 
DRAM"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA ), Portland, OR, June 2012. Slides (pptx)

Â Sections 1-2 are required

36

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
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DRAM Refresh (I)

Â DRAM capacitor charge leaks over time

Â The memory controller needs to read each row periodically 
to restore the charge

Ç Activate + precharge each row every N ms

Ç Typical N = 64 ms

Â Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms 
the DRAM will be unavailable until refresh ends

Â Burst refresh: All rows refreshed immediately after one 
another

Â Distributed refresh: Each row refreshed at a different time, 
at regular intervals
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DRAM Refresh (II)

Â Distributed refresh eliminates long pause times

Â How else we can reduce the effect of refresh on 
performance?

Ç Can we reduce the number of refreshes?
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-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling 

Downsides of DRAM Refresh
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Liu et al., ñRAIDR: Retention-aware Intelligent DRAM Refresh,ò ISCA 2012.



Memory Controllers



DRAM versus Other Types of Memories

Â Long latency memories have similar characteristics that 
need to be controlled.

Â The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories

Ç Flash memory

Ç Other emerging memory technologies

Â Phase Change Memory

Â Spin-Transfer Torque Magnetic Memory

Ç These other technologies can place other demands on the 
controller
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Flash Memory (SSD) Controllers

Â Similar to DRAM memory controllers, except:

Ç They are flash memory specific

Ç They do much more: error correction, garbage collection, 
page remapping, é

42Cai+, ñFlash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 

Lifetimeò, ICCD 2012.



Another View of the SSD Controller
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Cai+, ñError Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,ò Proc. IEEE 2017.



DRAM Types

Â DRAM has different types with different interfaces optimized 
for different purposes

Ç Commodity: DDR, DDR2, DDR3, DDR4, é

Ç Low power (for mobile): LPDDR1, é, LPDDR5, é

Ç High bandwidth (for graphics): GDDR2, é, GDDR5, é

Ç Low latency: eDRAM, RLDRAM, é

Ç 3D stacked: WIO, HBM, HMC, é

Ç é

Â Underlying microarchitecture is fundamentally the same

Â A flexible memory controller can support various DRAM types 

Â This complicates the memory controller

Ç Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)
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Kim et al., ñRamulator: A Fast and Extensible DRAM Simulator,ò IEEE Comp Arch Letters 2015.



DRAM Controller: Functions

Â Ensure correct operation of DRAM (refresh and timing)

Â Service DRAM requests while obeying timing constraints of 
DRAM chips

Ç Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays

Ç Translate requests to DRAM command sequences

Â Buffer and schedule requests to for high performance + QoS

Ç Reordering, row-buffer, bank, rank, bus management

Â Manage power consumption and thermals in DRAM

Ç Turn on/off DRAM chips, manage power modes
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DRAM Controller: Where to Place

Â In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

Â On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

Â More information can be communicated (e.g. request s 
importance in the processing core)
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A Modern DRAM Controller (I)
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A Modern DRAM Controller



DRAM Scheduling Policies (I)

Â FCFS(first come first served)

Ç Oldest request first

Â FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate Ą maximize DRAM throughput

Ç Actually, scheduling is done at the command level

Â Column commands (read/write) prioritized over row commands 
(activate/precharge)

Â Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation
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DRAM Scheduling Policies (II)

Â A scheduling policy is a request prioritization order

Â Prioritization can be based on

Ç Request age

Ç Row buffer hit/miss status

Ç Request type (prefetch, read, write)

Ç Requestor type (load miss or store miss)

Ç Request criticality

Â Oldest miss in the core?

Â How many instructions in core are dependent on it ?

Â Will it stall the processor?

Ç Interference caused to other cores

Ç é
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Row Buffer Management Policies

Â Open row
Ç Keep the row open after an access

+ Next access might need the same row Ą row hit

-- Next access might need a different row Ą row conflict, wasted energy

Â Closed row
Ç Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row Ą avoid a row conflict

-- Next access might need the same row Ą extra activate latency

Â Adaptive policies

Ç Predict whether or not the next access to the bank will be to 
the same row
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 ïaccess in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 ïaccess not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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DRAM Power Management

Â DRAM chips have power modes

Â Idea: When not accessing a chip power it down

Â Power states

Ç Active (highest power)

Ç All banks idle

Ç Power-down

Ç Self-refresh (lowest power)

Â Tradeoff: State transitions incur latency during which the 
chip cannot be accessed
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Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

Â Need to obey DRAM timing constraints for correctness

Ç There are many (50+) timing constraints in DRAM

Ç tWTR: Minimum number of cycles to wait before issuing a read 
command after a write command is issued

Ç tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank

Ç é

Â Need to keep track of many resources to prevent conflicts

Ç Channels, banks, ranks, data bus, address bus, row buffers

Â Need to handle DRAM refresh

Â Need to manage power consumption

Â Need to optimize performance & QoS (in the presence of constraints)

Ç Reordering is not simple

Ç Fairness and QoS needs complicates the scheduling problem

57



Many DRAM Timing Constraints

Â From Lee et al., DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems, HPS Technical Report, 
April 2010.
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More on DRAM Operation

Â Kim et al., ñA Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,òISCA 2012.

Â Lee et al., ñTiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,òHPCA 2013.

59



Why So Many Timing Constraints? (I)
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Kim et al., ñA Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,òISCA 2012.



Why So Many Timing Constraints? (II)
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Lee et al., ñTiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,òHPCA 2013.


