
Computer Architecture
Lecture 5: DRAM Operation,

Memory Control & Memory Latency

Prof. Onur Mutlu

ETH Z¿rich

Fall 2017

4 October 2017

High-Level Summary of Last Lecture

Â Enabling High Bandwidth Memories

Â Main Memory System: A Broad Perspective

Â DRAM Fundamentals and Operation

2

Agenda for Today

Â DRAM Operation Continued

Â Memory Controllers

Â Memory Latency

3

Lab 1 is Out

Â Data Cache

Â Implement a Data Cache in a Pipelined Processor

Â A lot of extra credit opportunity.

Â It should be a lot of fun.

Â Due 18 October.

4

The Main Memory System

and DRAM

Required Readings on DRAM

Â DRAM Organization and Operation Basics

Ç Sections 1 and 2 of: Lee et al., ñTiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,ò HPCA 2013.

https:// people.inf.ethz.ch/omutlu/pub/tldram_hpca 13.pdf

Ç Sections 1 and 2 of Kim et al., ñA Case for Subarray-Level
Parallelism (SALP) in DRAM,ò ISCA 2012.

https:// people.inf.ethz.ch/omutlu/pub/salp -dram_isca12.pdf

Â DRAM Refresh Basics

Ç Sections 1 and 2 of Liu et al., ñRAIDR: Retention-Aware
Intelligent DRAM Refresh,ò ISCA 2012.
https:// people.inf.ethz.ch/omutlu/pub/raidr -dram-
refresh_isca12.pdf

6

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

Reading on Simulating Main Memory

Â How to evaluate future main memory systems?

Â An open-source simulator and its brief description

Â Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters(CAL), March 2015.
[Source Code]

7

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Review: DRAM Subsystem Organization

Â Channel

Â DIMM

Â Rank

Â Chip

Â Bank

Â Row/Column

Â Cell

8

Review: Generalized Memory Structure

9

Review: Generalized Memory Structure

10

Kim+, ñA Case for Exploiting Subarray-Level Parallelism in DRAM,ò ISCA 2012.

The DRAM Subsystem

The Top Down View

DRAM Subsystem Organization

Â Channel

Â DIMM

Â Rank

Â Chip

Â Bank

Â Row/Column

Â Cell

12

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

Channel

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

Breaking down a Chip

C
h

ip
 0

<0
:7

>

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7

>

row 0

row 16k-1

...
2kB

1B

1B (column)

1B

Row-buffer

1B

...
<0

:7
>

DRAM Subsystem Organization

Â Channel

Â DIMM

Â Rank

Â Chip

Â Bank

Â Row/Column

Â Cell

20

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

. . .

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0ȄCCCCΧC

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6

:6
3>

Data <0:63>

8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

Â CPU Ÿ controller transfer time

Â Controller latency

Ç Queuing & scheduling delay at the controller

Ç Access converted to basic commands

Â Controller Ÿ DRAM transfer time

Â DRAM bank latency

Ç Simple CAS (column address strobe) if row is open OR

Ç RAS (row address strobe) + CAS if array precharged OR

Ç PRE + RAS + CAS (worst case)

Â DRAM Ÿ Controller transfer time

Ç Bus latency (BL)

Â Controller to CPU transfer time

28

Multiple Banks (Interleaving) and Channels

Â Multiple banks

Ç Enable concurrent DRAM accesses

Ç Bits in address determine which bank an address resides in

Â Multiple independent channels serve the same purpose

Ç But they are even better because they have separate data buses

Ç Increased bus bandwidth

Â Enabling more concurrency requires reducing

Ç Bank conflicts

Ç Channel conflicts

Â How to select/randomize bank/channel indices in address?

Ç Lower order bits have more entropy

Ç Randomizing hash functions (XOR of different address bits)

29

How Multiple Banks Help

30

Address Mapping (Single Channel)

Â Single-channel system with 8-byte memory bus

Ç 2GB memory, 8 banks, 16K rows & 2K columns per bank

Â Row interleaving

Ç Consecutive rows of memory in consecutive banks

Ç Accesses to consecutive cache blocks serviced in a pipelined manner

Â Cache block interleaving

Â Consecutive cache block addresses in consecutive banks

Â 64 byte cache blocks

Â Accesses to consecutive cache blocks can be serviced in parallel
31

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

Bank Mapping Randomization

Â DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

Â Reading:

Ç Rau, ñPseudo-randomly Interleaved Memory,ò ISCA 1991.

32

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index

(3 bits)

Address Mapping (Multiple Channels)

Â Where are consecutive cache blocks?

33

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Interaction with VirtualĄPhysical Mapping

Â Operating System influences where an address maps to in
DRAM

Â Operating system can influence which bank/channel/rank a
virtual page is mapped to.

Â It can perform page coloring to

Ç Minimize bank conflicts

Ç Minimize inter-application interference [Muralidhara + MICROô11]

Ç Minimize latency in the network [Das+ HPCAô13]

34

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

More on Reducing Bank Conflicts

Â Read Sections 1 through 4 of:

Ç Kim et al., ñA Case for Exploiting Subarray-Level Parallelism in
DRAM,ò ISCA 2012.

35

Required Reading on DRAM

Â Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, andOnur Mutlu,
"A Case for Exploiting Subarray -Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

Â Sections 1-2 are required

36

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

DRAM Refresh (I)

Â DRAM capacitor charge leaks over time

Â The memory controller needs to read each row periodically
to restore the charge

Ç Activate + precharge each row every N ms

Ç Typical N = 64 ms

Â Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

Â Burst refresh: All rows refreshed immediately after one
another

Â Distributed refresh: Each row refreshed at a different time,
at regular intervals

37

DRAM Refresh (II)

Â Distributed refresh eliminates long pause times

Â How else we can reduce the effect of refresh on
performance?

Ç Can we reduce the number of refreshes?

38

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

39

Liu et al., ñRAIDR: Retention-aware Intelligent DRAM Refresh,ò ISCA 2012.

Memory Controllers

DRAM versus Other Types of Memories

Â Long latency memories have similar characteristics that
need to be controlled.

Â The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

Ç Flash memory

Ç Other emerging memory technologies

Â Phase Change Memory

Â Spin-Transfer Torque Magnetic Memory

Ç These other technologies can place other demands on the
controller

41

Flash Memory (SSD) Controllers

Â Similar to DRAM memory controllers, except:

Ç They are flash memory specific

Ç They do much more: error correction, garbage collection,
page remapping, é

42Cai+, ñFlash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory

Lifetimeò, ICCD 2012.

Another View of the SSD Controller

43

Cai+, ñError Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,ò Proc. IEEE 2017.

DRAM Types

Â DRAM has different types with different interfaces optimized
for different purposes

Ç Commodity: DDR, DDR2, DDR3, DDR4, é

Ç Low power (for mobile): LPDDR1, é, LPDDR5, é

Ç High bandwidth (for graphics): GDDR2, é, GDDR5, é

Ç Low latency: eDRAM, RLDRAM, é

Ç 3D stacked: WIO, HBM, HMC, é

Ç é

Â Underlying microarchitecture is fundamentally the same

Â A flexible memory controller can support various DRAM types

Â This complicates the memory controller

Ç Difficult to support all types (and upgrades)

44

DRAM Types (circa 2015)

45

Kim et al., ñRamulator: A Fast and Extensible DRAM Simulator,ò IEEE Comp Arch Letters 2015.

DRAM Controller: Functions

Â Ensure correct operation of DRAM (refresh and timing)

Â Service DRAM requests while obeying timing constraints of
DRAM chips

Ç Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

Ç Translate requests to DRAM command sequences

Â Buffer and schedule requests to for high performance + QoS

Ç Reordering, row-buffer, bank, rank, bus management

Â Manage power consumption and thermals in DRAM

Ç Turn on/off DRAM chips, manage power modes

46

DRAM Controller: Where to Place

Â In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

Â On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

Â More information can be communicated (e.g. request s
importance in the processing core)

47

A Modern DRAM Controller (I)

48

49

A Modern DRAM Controller

DRAM Scheduling Policies (I)

Â FCFS(first come first served)

Ç Oldest request first

Â FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate Ą maximize DRAM throughput

Ç Actually, scheduling is done at the command level

Â Column commands (read/write) prioritized over row commands
(activate/precharge)

Â Within each group, older commands prioritized over younger ones

50

Review: DRAM Bank Operation

51

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

DRAM Scheduling Policies (II)

Â A scheduling policy is a request prioritization order

Â Prioritization can be based on

Ç Request age

Ç Row buffer hit/miss status

Ç Request type (prefetch, read, write)

Ç Requestor type (load miss or store miss)

Ç Request criticality

Â Oldest miss in the core?

Â How many instructions in core are dependent on it ?

Â Will it stall the processor?

Ç Interference caused to other cores

Ç é

52

Row Buffer Management Policies

Â Open row
Ç Keep the row open after an access

+ Next access might need the same row Ą row hit

-- Next access might need a different row Ą row conflict, wasted energy

Â Closed row
Ç Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row Ą avoid a row conflict

-- Next access might need the same row Ą extra activate latency

Â Adaptive policies

Ç Predict whether or not the next access to the bank will be to
the same row

53

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 ïaccess in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 ïaccess not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

54

DRAM Power Management

Â DRAM chips have power modes

Â Idea: When not accessing a chip power it down

Â Power states

Ç Active (highest power)

Ç All banks idle

Ç Power-down

Ç Self-refresh (lowest power)

Â Tradeoff: State transitions incur latency during which the
chip cannot be accessed

55

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

Â Need to obey DRAM timing constraints for correctness

Ç There are many (50+) timing constraints in DRAM

Ç tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

Ç tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

Ç é

Â Need to keep track of many resources to prevent conflicts

Ç Channels, banks, ranks, data bus, address bus, row buffers

Â Need to handle DRAM refresh

Â Need to manage power consumption

Â Need to optimize performance & QoS (in the presence of constraints)

Ç Reordering is not simple

Ç Fairness and QoS needs complicates the scheduling problem

57

Many DRAM Timing Constraints

Â From Lee et al., DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems, HPS Technical Report,
April 2010.

58

More on DRAM Operation

Â Kim et al., ñA Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,òISCA 2012.

Â Lee et al., ñTiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,òHPCA 2013.

59

Why So Many Timing Constraints? (I)

60

Kim et al., ñA Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,òISCA 2012.

Why So Many Timing Constraints? (II)

61

Lee et al., ñTiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,òHPCA 2013.

