
Computer Architecture
Lecture 5: DRAM Operation,

Memory Control & Memory Latency

Prof. Onur Mutlu

ETH Zürich

Fall 2017

4 October 2017

High-Level Summary of Last Lecture

 Enabling High Bandwidth Memories

 Main Memory System: A Broad Perspective

 DRAM Fundamentals and Operation

2

Agenda for Today

 DRAM Operation Continued

 Memory Controllers

 Memory Latency

3

Lab 1 is Out

 Data Cache

 Implement a Data Cache in a Pipelined Processor

 A lot of extra credit opportunity.

 It should be a lot of fun.

 Due 18 October.

4

The Main Memory System

and DRAM

Required Readings on DRAM

 DRAM Organization and Operation Basics

 Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

 Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

 DRAM Refresh Basics

 Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware
Intelligent DRAM Refresh,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

6

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

Reading on Simulating Main Memory

 How to evaluate future main memory systems?

 An open-source simulator and its brief description

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

7

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Review: DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

 Cell

8

Review: Generalized Memory Structure

9

Review: Generalized Memory Structure

10

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

The DRAM Subsystem

The Top Down View

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

 Cell

12

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7. . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Breaking down a Chip

C
h

ip
 0

<0
:7

>

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7

>

row 0

row 16k-1

...
2kB

1B

1B (column)

1B

Row-buffer

1B

...
<0

:7
>

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

 Cell

20

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

 CPU → controller transfer time

 Controller latency

 Queuing & scheduling delay at the controller

 Access converted to basic commands

 Controller → DRAM transfer time

 DRAM bank latency

 Simple CAS (column address strobe) if row is “open” OR

 RAS (row address strobe) + CAS if array precharged OR

 PRE + RAS + CAS (worst case)

 DRAM → Controller transfer time

 Bus latency (BL)

 Controller to CPU transfer time

28

Multiple Banks (Interleaving) and Channels

 Multiple banks

 Enable concurrent DRAM accesses

 Bits in address determine which bank an address resides in

 Multiple independent channels serve the same purpose

 But they are even better because they have separate data buses

 Increased bus bandwidth

 Enabling more concurrency requires reducing

 Bank conflicts

 Channel conflicts

 How to select/randomize bank/channel indices in address?

 Lower order bits have more entropy

 Randomizing hash functions (XOR of different address bits)

29

How Multiple Banks Help

30

Address Mapping (Single Channel)

 Single-channel system with 8-byte memory bus

 2GB memory, 8 banks, 16K rows & 2K columns per bank

 Row interleaving

 Consecutive rows of memory in consecutive banks

 Accesses to consecutive cache blocks serviced in a pipelined manner

 Cache block interleaving

 Consecutive cache block addresses in consecutive banks

 64 byte cache blocks

 Accesses to consecutive cache blocks can be serviced in parallel
31

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

Bank Mapping Randomization

 DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

 Reading:

 Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

32

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index

(3 bits)

Address Mapping (Multiple Channels)

 Where are consecutive cache blocks?

33

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Interaction with VirtualPhysical Mapping

 Operating System influences where an address maps to in
DRAM

 Operating system can influence which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to

 Minimize bank conflicts

 Minimize inter-application interference [Muralidhara+ MICRO’11]

 Minimize latency in the network [Das+ HPCA’13]

34

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

More on Reducing Bank Conflicts

 Read Sections 1 through 4 of:

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism in
DRAM,” ISCA 2012.

35

Required Reading on DRAM

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

 Sections 1-2 are required

36

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

DRAM Refresh (I)

 DRAM capacitor charge leaks over time

 The memory controller needs to read each row periodically
to restore the charge

 Activate + precharge each row every N ms

 Typical N = 64 ms

 Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms
the DRAM will be unavailable until refresh ends

 Burst refresh: All rows refreshed immediately after one
another

 Distributed refresh: Each row refreshed at a different time,
at regular intervals

37

DRAM Refresh (II)

 Distributed refresh eliminates long pause times

 How else we can reduce the effect of refresh on
performance?

 Can we reduce the number of refreshes?

38

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

39

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.

Memory Controllers

DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that
need to be controlled.

 The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

 These other technologies can place other demands on the
controller

41

Flash Memory (SSD) Controllers

 Similar to DRAM memory controllers, except:

 They are flash memory specific

 They do much more: error correction, garbage collection,
page remapping, …

42Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory

Lifetime”, ICCD 2012.

Another View of the SSD Controller

43

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

DRAM Types

 DRAM has different types with different interfaces optimized
for different purposes

 Commodity: DDR, DDR2, DDR3, DDR4, …

 Low power (for mobile): LPDDR1, …, LPDDR5, …

 High bandwidth (for graphics): GDDR2, …, GDDR5, …

 Low latency: eDRAM, RLDRAM, …

 3D stacked: WIO, HBM, HMC, …

 …

 Underlying microarchitecture is fundamentally the same

 A flexible memory controller can support various DRAM types

 This complicates the memory controller

 Difficult to support all types (and upgrades)

44

DRAM Types (circa 2015)

45

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.

DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to for high performance + QoS

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes

46

DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

+ Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request’s
importance in the processing core)

47

A Modern DRAM Controller (I)

48

49

A Modern DRAM Controller

DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

50

Review: DRAM Bank Operation

51

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

Access Address:

DRAM Scheduling Policies (II)

 A scheduling policy is a request prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

 Will it stall the processor?

 Interference caused to other cores

 …

52

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row row hit

-- Next access might need a different row row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row avoid a row conflict

-- Next access might need the same row extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

53

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

54

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 Tradeoff: State transitions incur latency during which the
chip cannot be accessed

55

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a read
command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to manage power consumption

 Need to optimize performance & QoS (in the presence of constraints)

 Reordering is not simple

 Fairness and QoS needs complicates the scheduling problem

57

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

58

More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

59

Why So Many Timing Constraints? (I)

60

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

61

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

 Heterogeneous agents: CPUs, GPUs, and HWAs

 Main memory interference between CPUs, GPUs, HWAs

 Many timing constraints for various memory types

 Many goals at the same time: performance, fairness, QoS,
energy efficiency, …

62

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream

 Reality: It difficult to optimize all these different constraints
while maximizing performance, QoS, energy-efficiency, …

 Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

63

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

65

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0 < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

 Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

 Schedule command with highest estimated long-term reward value in
each state

 Continuously update reward values for <state, action> pairs based on
feedback from system

66

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

67

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

68

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

69

Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

 Disadvantages and Limitations

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
70

More on Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

71

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Evaluating New Ideas

for New (Memory) Architectures

Potential Evaluation Methods

 How do we assess an idea will improve a target metric X?

 A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling/estimation

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation

73

The Difficulty in Architectural Evaluation

 The answer is usually workload dependent

 E.g., think caching

 E.g., think pipelining

 E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

 Workloads change

 System has many design choices and parameters

 Architect needs to decide many ideas and many parameters
for a design

 Not easy to evaluate all possible combinations!

 System parameters may change

74

Simulation: The Field of Dreams

Dreaming and Reality

 An architect is in part a dreamer, a creator

 Simulation is a key tool of the architect

 Simulation enables

 The exploration of many dreams

 A reality check of the dreams

 Deciding which dream is better

 Simulation also enables

 The ability to fool yourself with false dreams

76

Why High-Level Simulation?

 Problem: RTL simulation is intractable for design space
exploration too time consuming to design and evaluate

 Especially over a large number of workloads

 Especially if you want to predict the performance of a good
chunk of a workload on a particular design

 Especially if you want to consider many design choices

 Cache size, associativity, block size, algorithms

 Memory control and scheduling algorithms

 In-order vs. out-of-order execution

 Reservation station sizes, ld/st queue size, register file size, …

 …

 Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for

77

Different Goals in Simulation
 Explore the design space quickly and see what you want to

 potentially implement in a next-generation platform

 propose as the next big idea to advance the state of the art

 the goal is mainly to see relative effects of design decisions

 Match the behavior of an existing system so that you can

 debug and verify it at cycle-level accuracy

 propose small tweaks to the design that can make a difference in
performance or energy

 the goal is very high accuracy

 Other goals in-between:

 Refine the explored design space without going into a full
detailed, cycle-accurate design

 Gain confidence in your design decisions made by higher-level
design space exploration

78

Tradeoffs in Simulation

 Three metrics to evaluate a simulator

 Speed

 Flexibility

 Accuracy

 Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

 Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

 Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

 The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

79

Trading Off Speed, Flexibility, Accuracy

 Speed & flexibility affect:

 How quickly you can make design tradeoffs

 Accuracy affects:

 How good your design tradeoffs may end up being

 How fast you can build your simulator (simulator design time)

 Flexibility also affects:

 How much human effort you need to spend modifying the
simulator

 You can trade off between the three to achieve design
exploration and decision goals

80

High-Level Simulation

 Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

 Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

 Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
81

Simulation as Progressive Refinement

 High-level models (Abstract, C)

 …

 Medium-level models (Less abstract)

 …

 Low-level models (RTL with everything modeled)

 …

 Real design

 As you refine (go down the above list)

 Abstraction level reduces

 Accuracy (hopefully) increases (not necessarily, if not careful)

 Flexibility reduces; Speed likely reduces except for real design

 You can loop back and fix higher-level models
82

Making The Best of Architecture

 A good architect is comfortable at all levels of refinement

 Including the extremes

 A good architect knows when to use what type of
simulation

 And, more generally, what type of evaluation method

 Recall: A variety of evaluation methods are available:

 Theoretical proof

 Analytical modeling

 Simulation (at varying degrees of abstraction and accuracy)

 Prototyping with a real system (e.g., FPGAs)

 Real implementation

83

Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15]

84

Ramulator Motivation

 DRAM and Memory Controller landscape is changing

 Many new and upcoming standards

 Many new controller designs

 A fast and easy-to-extend simulator is very much needed

85

Ramulator

 Provides out-of-the box support for many DRAM standards:

 DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

 ~2.5X faster than fastest open-source simulator

 Modular and extensible to different standards

86

Case Study: Comparison of DRAM Standards

87

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

 Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

 Source code is released under the liberal MIT License

 https://github.com/CMU-SAFARI/ramulator

88

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Extra Credit Assignment

 Review the Ramulator paper

 Online on our review site

 Download and run Ramulator

 Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

 Upload your brief report to Moodle

 This may become part of a future homework

89

Memory Latency:

Fundamental Tradeoffs

DRAM Module and Chip

91

Goals

• Cost

• Latency

• Bandwidth

• Parallelism

• Power

• Energy

• Reliability

• …

92

DRAM Chip

93

Row Decoder

A
rray o

f Se
n

se
 A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

Row Decoder

A
rray o

f Se
n

se
 A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

B
an

k I/O

Sense Amplifier

94

enable

top

bottom

Inverter

Sense Amplifier – Two Stable States

95

1 1

0

0VDD

VDD

Logical “1” Logical “0”

Sense Amplifier Operation

96

0

VT

VB

VT > VB1

0

VDD

DRAM Cell – Capacitor

97

Empty State Fully Charged State

Logical “0” Logical “1”

1

2

Small – Cannot drive circuits

Reading destroys the state

Capacitor to Sense Amplifier

98

1

0

VDD

1

VDD

0

DRAM Cell Operation

99

½VDD

½VDD

01

0

VDD½VDD+δ

DRAM Subarray – Building Block for
DRAM Chip

100

R
o

w
 D

e
co

d
e

r

Cell Array

Cell Array

Array of Sense Amplifiers (Row Buffer) 8Kb

DRAM Bank

101

R
o

w
 D

e
co

d
e

r

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

R
o

w
 D

e
co

d
e

r

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O (64b)

A
d

d
re

ss

Address
Data

DRAM Chip

102

Row Decoder

A
rray o

f Se
n

se
A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

Row Decoder

A
rray o

f Se
n

se
A

m
p

lifie
rs

C
e

ll A
rray

C
e

ll A
rray

B
an

k I/O

Row Decoder

A
rray o

f Se
n

se

A
m

p
lifie

rs

C
e

ll A
rray

C
e

ll A
rray

Row Decoder

A
rray o

f Se
n

se

A
m

p
lifie

rs

C
e

ll A
rray

C
e

ll A
rray

B
an

k I/O

Row Decoder

A
rray o

f Sen
se

A
m

p
lifie

rs

C
e

ll A
rray

C
ell A

rray

Row Decoder

A
rray o

f Sen
se

A
m

p
lifie

rs

C
e

ll A
rray

C
ell A

rray

B
an

k I/O

Row Decoder

A
rray o

f Sen
se

A
m

p
lifiers

C
ell A

rray

C
ell A

rray

Row Decoder

A
rray o

f Sen
se

A
m

p
lifiers

C
ell A

rray

C
ell A

rray

B
an

k I/O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

B
an

k
I/

O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
el

l A
rr

ay

C
el

l A
rr

ay

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
el

l A
rr

ay

C
el

l A
rr

ay

B
an

k
I/

O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

B
an

k
I/

O

Row Decoder

A
rr

ay
 o

f
Se

n
se

A

m
p

lif
ie

rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

Row Decoder
A

rr
ay

 o
f

Se
n

se

A
m

p
lif

ie
rs

C
e

ll
A

rr
ay

C
e

ll
A

rr
ay

B
an

k
I/

O

Shared internal bus

Memory channel - 8bits

DRAM Operation

103

R
o

w
 D

e
co

d
e

r
R

o
w

 D
e

co
d

e
r

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O

Data

1

2

ACTIVATE Row

READ/WRITE Column

3 PRECHARGE

R
o

w
 A

d
d

re
ss

Column Address

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

e
n
t

(l
o
g)

Capacity Bandwidth Latency

Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

What Causes

the Long DRAM Latency?

Why the Long Latency?

 Reason 1: Design of DRAM Micro-architecture

 Goal: Maximize capacity/area, not minimize latency

 Reason 2: “One size fits all” approach to latency specification

 Same latency parameters for all temperatures

 Same latency parameters for all DRAM chips (e.g., rows)

 Same latency parameters for all parts of a DRAM chip

 Same latency parameters for all supply voltage levels

 Same latency parameters for all application data

 …

108

109

DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

b
ar

ra
y

I/
O

110

Why is the Subarray So Slow?

Subarray

ro
w

 d
ec

o
d

er

sense amplifier

ca
p

ac
it

o
r

access
transistor

wordline

b
it

lin
e

Cell

large sense amplifier

b
it

lin
e:

 5
1

2
 c

el
ls

cell

• Long bitline
– Amortizes sense amplifier cost Small area

– Large bitline capacitance High latency & power

se
n

se
 a

m
p

lif
ie

r

ro
w

 d
ec

o
d

er

111

Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency

112

Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128

256 512 cells/bitline

Commodity
DRAM

Long Bitline

C
h

e
ap

e
r

Faster

Fancy DRAM
Short Bitline

113

Short Bitline

Low Latency

Approximating the Best of Both Worlds

Long Bitline

Small Area

Long Bitline

Low Latency

Short BitlineOur Proposal

Small Area

Short Bitline Fast

Need
Isolation

Add Isolation
Transistors

High Latency

Large Area

114

Approximating the Best of Both Worlds

Low Latency

Our Proposal

Small Area
Long Bitline
Small Area

Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

115

Latency, Power, and Area Evaluation
• Commodity DRAM: 512 cells/bitline

• TL-DRAM: 512 cells/bitline
– Near segment: 32 cells

– Far segment: 480 cells

• Latency Evaluation
– SPICE simulation using circuit-level DRAM model

• Power and Area Evaluation
– DRAM area/power simulator from Rambus

– DDR3 energy calculator from Micron

116

0%

50%

100%

150%

0%

50%

100%

150%

Commodity DRAM vs. TL-DRAM [HPCA 2013]
La

te
n

cy

P
o

w
e

r

–56%

+23%

–51%

+49%

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM

Near Far Commodity
DRAM

Near Far

TL-DRAM

(52.5ns)

117

Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128
256 512 cells/bitline

C
h

e
ap

e
r

Faster

Near Segment Far Segment

118

Leveraging Tiered-Latency DRAM

• TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

119

subarray

Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel

120

Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination

• Goal: Migrate source row into destination row

• Naïve way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte

→ High latency

121

Inter-Segment Migration
• Our way:

– Source and destination cells share bitlines

– Transfer data from source to destination across
shared bitlines concurrently

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination

122

Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

• Our way:
– Source and destination cells share bitlines

– Transfer data from source to destination across
shared bitlines concurrently

Step 2: Activate destination
row to connect cell and bitline

Step 1: Activate source row

Additional ~4ns over row access latency

Migration is overlapped with source row access

123

subarray

Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel

124

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

Performance & Power Consumption

11.5%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Core-Count (Channel)
N

o
rm

al
iz

e
d

 P
o

w
e

r
Core-Count (Channel)

10.7%12.4%
–23% –24% –26%

Using near segment as a cache improves
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

125

0%

2%

4%

6%

8%

10%

12%

14%

1 2 4 8 16 32 64 128 256

Single-Core: Varying Near Segment Length

By adjusting the near segment length, we can
trade off cache capacity for cache latency

Larger cache capacity

Higher cache access latency

Maximum IPC
Improvement

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t

Near Segment Length (cells)

More on TL-DRAM

 Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

126

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Computer Architecture
Lecture 5: DRAM Operation,

Memory Control & Memory Latency

Prof. Onur Mutlu

ETH Zürich

Fall 2017

4 October 2017

Why the Long Latency?

 Design of DRAM uArchitecture

 Goal: Maximize capacity/area, not minimize latency

 “One size fits all” approach to latency specification

 Same latency parameters for all temperatures

 Same latency parameters for all DRAM chips (e.g., rows)

 Same latency parameters for all parts of a DRAM chip

 Same latency parameters for all supply voltage levels

 Same latency parameters for all application data

 …

129

Latency Variation in Memory Chips

130

HighLow

DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions →
latency variation in timing parameters

What Else Causes the Long Memory Latency?

 Conservative timing margins!

 DRAM timing parameters are set to cover the worst case

 Worst-case temperatures

 85 degrees vs. common-case

 to enable a wide range of operating conditions

 Worst-case devices

 DRAM cell with smallest charge across any acceptable device

 to tolerate process variation at acceptable yield

 This leads to large timing margins for the common case

131

Understanding and Exploiting

Variation in DRAM Latency

133

DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM Cell

Sense-Amplifier

Three steps of
charge movement

134

Data 0

Data 1

Cell

time

ch
ar

ge

Sense-Amplifier

DRAM Charge over Time

Sensing Restore

Why does DRAM need the extra timing margin?

Timing Parameters
In theory

In practice
margin

Cell

Sense-Amplifier

135

1. Process Variation
– DRAM cells are not equal

– Leads to extra timing margin for cell that can
store small amount of charge

`2. Temperature Dependence
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin when operating at
low temperature

Two Reasons for Timing Margin

1. Process Variation
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can
store a large amount of charge

1. Process Variation
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can
store a large amount of charge

136

DRAM Cells are Not Equal
RealIdeal

Same Size
Same Charge

Different Size
Different Charge

Largest Cell

Smallest Cell

Same Latency Different Latency

Large variation in cell size
Large variation in charge

Large variation in access latency

137

Contact

Process Variation

Access Transistor

Bitline

Capacitor

Small cell can store small
charge

• Small cell capacitance
• High contact resistance
• Slow access transistor

❶ Cell Capacitance

❷ Contact Resistance

❸ Transistor Performance

ACCESS

DRAM Cell

 High access latency

138

Two Reasons for Timing Margin

1. Process Variation
– DRAM cells are not equal

– Leads to extra timing margin for a cell that can
store a large amount of charge

`2. Temperature Dependence
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that
operate at the high temperature

2. Temperature Dependence
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that
operate at the high temperature

2. Temperature Dependence
– DRAM leaks more charge at higher temperature

– Leads to extra timing margin for cells that
operate at low temperature

139

Charge Leakage Temperature

Room Temp. Hot Temp. (85°C)

Small Leakage Large LeakageCells store small charge at high temperature
and large charge at low temperature
 Large variation in access latency

140

DRAM Timing Parameters

• DRAM timing parameters are dictated by
the worst-case

– The smallest cell with the smallest charge in
all DRAM products

– Operating at the highest temperature

• Large timing margin for the common-case

Adaptive-Latency DRAM [HPCA 2015]

 Idea: Optimize DRAM timing for the common case

 Current temperature

 Current DRAM module

 Why would this reduce latency?

 A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

 More charge in a DRAM cell

 Faster sensing, charge restoration, precharging

 Faster access (read, write, refresh, …)

141Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,”
HPCA 2015.

142

Extra Charge Reduced Latency

1. Sensing

2. Restore

3. Precharge

Sense cells with extra charge faster
 Lower sensing latency

No need to fully restore cells with extra charge
 Lower restoration latency

No need to fully precharge bitlines for cells with
extra charge
 Lower precharge latency

DRAM Characterization Infrastructure

143Kim+, “Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Characterization Infrastructure

 Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

 Flexible

 Easy to Use (C++ API)

 Open-source

github.com/CMU-SAFARI/SoftMC

144

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

 https://github.com/CMU-SAFARI/SoftMC

145

https://github.com/CMU-SAFARI/SoftMC

146

Typical DIMM at
Low Temperature

Observation 1. Faster Sensing

More Charge

Strong Charge
Flow

Faster Sensing

Typical DIMM at Low Temperature
More charge Faster sensing

Timing
(tRCD)

17% ↓
No Errors

115 DIMM
Characterization

147

Observation 2. Reducing Restore Time

Less Leakage
Extra Charge

No Need to Fully
Restore Charge

Typical DIMM at lower temperature
More charge Restore time reduction

Typical DIMM at
Low Temperature

Read (tRAS)

37% ↓
Write (tWR)

54% ↓
No Errors

115 DIMM
Characterization

148

AL-DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters at different
temperatures for each DIMM

– System monitors DRAM temperature & uses
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

149

DRAM Temperature
• DRAM temperature measurement

• Server cluster: Operates at under 34°C
• Desktop: Operates at under 50°C
• DRAM standard optimized for 85°C

• Previous works – DRAM temperature is low
• El-Sayed+ SIGMETRICS 2012
• Liu+ ISCA 2007

• Previous works – Maintain low DRAM temperature
• David+ ICAC 2011
• Liu+ ISCA 2007
• Zhu+ ITHERM 2008

DRAM operates at low temperatures
in the common-case

150

Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%

– Write Latency: 55.1%

• Latency reduction for each timing
parameter (55°C)
– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.

151

AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

152

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

1.4%

6.7%

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

5.0%

AL-DRAM: Single-Core Evaluation

AL-DRAM improves performance on a real system

Pe
rf

or
m

an
ce

 Im
p

ro
ve

m
en

t Average
Improvement

al
l-

3
5

-w
o

rk
lo

ad

153

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
p

le
x

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
p

y

s.
cl

u
st

er

gu
p

s

n
o

n
-i

n
te

n
si

ve

in
te

n
si

ve

al
l-

w
o

rk
lo

ad
s

Single Core Multi Core

10.4%

AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance for
multi-programmed & multi-threaded workloads

Pe
rf

or
m

an
ce

 Im
p

ro
ve

m
en

t Average
Improvement

al
l-

3
5

-w
o

rk
lo

ad

Reducing Latency Also Reduces Energy

 AL-DRAM reduces DRAM power consumption by 5.8%

 Major reason: reduction in row activation time

154

More on AL-DRAM

 Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

155

http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Heterogeneous Latency within A Chip

156

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

o
rm

a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

40 Workloads

Baseline (DDR3)

FLY-DRAM (D1)

FLY-DRAM (D2)

FLY-DRAM (D3)

Upper Bound

17.6%
19.5%

19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Analysis of Latency Variation in DRAM Chips

 Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

157

https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

158

Inherently fast

inherently slow

What Is Design-Induced Variation?
slowfast

slo
w

fast

Systematic variation in cell access times
caused by the physical organization of DRAM

sense amplifiers

w
o

rd
lin

e
d

rivers

across row

distance from
sense amplifier

across column

distance from
wordline driver

159

DIVA Online Profiling

inherently slow

Profile only slow regions to determine min. latency
Dynamic & low cost latency optimization

sense amplifier

w
o

rd
lin

e
d

river

Design-Induced-Variation-Aware

160

inherently slow

DIVA Online Profiling

slow cells

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting
code

Combine error-correcting codes & online profiling
 Reliably reduce DRAM latency

sense amplifier

w
o

rd
lin

e
d

river

Design-Induced-Variation-Aware

161

DIVA-DRAM Reduces Latency
Read Write

31.2%

25.5%

35.1%34.6%36.6%35.8%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling
+ Shuffling

La
te

n
cy

 R
ed

u
ct

io
n

DIVADIVA

36.6%

27.5%

39.4%38.7%
41.3%40.3%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA Profiling AVA Profiling
+ Shuffling

DIVADIVA

DIVA-DRAM reduces latency more aggressively
and uses ECC to correct random slow cells

Design-Induced Latency Variation in DRAM

 Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

162

https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Voltron: Exploiting the

Voltage-Latency-Reliability

Relationship

163

Executive Summary

• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of

real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:

– Huge voltage margin -- Errors occur beyond some voltage

– Errors exhibit spatial locality

– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism

– Reduce DRAM voltage without introducing errors

– Use a regression model to select voltage that does not degrade

performance beyond a chosen target 7.3% system energy reduction

164

Analysis of Latency-Voltage in DRAM Chips

 Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

165

https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

And, What If …

 … we can sacrifice reliability of some data to access it with
even lower latency?

166

Challenge and Opportunity for Future

Fundamentally

Low Latency

Computing Architectures

167

Computer Architecture
Lecture 5: DRAM Operation,

Memory Control & Memory Latency

Prof. Onur Mutlu

ETH Zürich

Fall 2017

4 October 2017

