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Agenda for Today & Next Few Lectures 
n  SIMD Processors 

n  GPUs 
 
n  Introduction to GPU Programming 

2 

Digitaltechnik (Spring 2017) YouTube videos 
Lecture 19: Beginning of SIMD 
https://youtu.be/XE9ogMPEMLw?t=1h11m42s 
Lecture 20: SIMD Processors 
https://youtu.be/hRHs7xlP0Sg?t=6m48s 
Lecture 21: GPUs 
https://youtu.be/MUPTdxl3JKs?t=3m03s 



SIMD Processing: 
Exploiting Regular (Data) Parallelism 

 
 
 
 
 
 



Flynn’s Taxonomy of Computers 

n  Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

n  SISD: Single instruction operates on single data element 
n  SIMD: Single instruction operates on multiple data elements 

q  Array processor 
q  Vector processor 

n  MISD: Multiple instructions operate on single data element 
q  Closest form: systolic array processor, streaming processor 

n  MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 
q  Multiprocessor 
q  Multithreaded processor 
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Data Parallelism 
n  Concurrency arises from performing the same operations 

on different pieces of data 
q  Single instruction multiple data (SIMD) 
q  E.g., dot product of two vectors 
 

n  Contrast with data flow 
q  Concurrency arises from executing different operations in parallel (in 

a data driven manner) 

n  Contrast with thread (“control”) parallelism 
q  Concurrency arises from executing different threads of control in 

parallel 

n  SIMD exploits instruction-level parallelism 
q  Multiple “instructions” (more appropriately, operations) are 

concurrent: instructions happen to be the same  
5 



SIMD Processing 
n  Single instruction operates on multiple data elements 

q  In time or in space 

n  Multiple processing elements  

n  Time-space duality 

q  Array processor: Instruction operates on multiple data 
elements at the same time using different spaces 

q  Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR ß A[3:0] 
ADD  VR ß VR, 1  
MUL  VR ß VR, 2 
ST     A[3:0] ß VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 
AD0 AD1 AD2 AD3 
MU0 MU1 MU2 MU3 
ST0 ST1 ST2 ST3 

LD0 
LD1 AD0 
LD2 AD1 MU0 
LD3 AD2 MU1 ST0 

AD3 MU2 ST1 
MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 
n  VLIW: Multiple independent operations packed together by the compiler 
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SIMD Array Processing vs. VLIW 
n  Array processor: Single operation on multiple (different) data elements 
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Vector Processors 
n  A vector is a one-dimensional array of numbers 
n  Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 
 C[i] = (A[i] + B[i]) / 2 

 

n  A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

n  Basic requirements 
q  Need to load/store vectors à vector registers (contain vectors) 
q  Need to operate on vectors of different lengths à vector length 

register (VLEN) 
q  Elements of a vector might be stored apart from each other in 

memory à vector stride register (VSTR) 
n  Stride: distance between two elements of a vector 
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Vector Processors (II) 
n  A vector instruction performs an operation on each element 

in consecutive cycles 
q  Vector functional units are pipelined 
q  Each pipeline stage operates on a different data element 

n  Vector instructions allow deeper pipelines 
q  No intra-vector dependencies à no hardware interlocking 

within a vector 
q  No control flow within a vector 
q  Known stride allows prefetching of vectors into registers/

cache/memory 
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Vector Processor Advantages 
+ No dependencies within a vector  

q  Pipelining. parallelization work really well 
q  Can have very deep pipelines, no dependencies!  

+ Each instruction generates a lot of work  
q  Reduces instruction fetch bandwidth requirements 

+ Highly regular memory access pattern  
 

+ No need to explicitly code loops  
q  Fewer branches in the instruction sequence 

12 



Vector Processor Disadvantages 
-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 
    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 
 
 
 
 

13 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Vector Processor Limitations 
-- Memory (bandwidth) can easily become a bottleneck, 

especially if 
 1. compute/memory operation balance is not maintained 
 2. data is not mapped appropriately to memory banks 
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Vector Processing in More Depth 
 

 
 
 
 
 



Vector Registers 
n  Each vector data register holds N M-bit values 
n  Vector control registers: VLEN, VSTR, VMASK 
n  Maximum VLEN can be N 

q  Maximum number of elements stored in a vector register 

n  Vector Mask Register (VMASK) 
q  Indicates which elements of vector to operate on 
q  Set by vector test instructions 

n  e.g., VMASK[i] = (Vk[i] == 0) 
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V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 
n  Use deep pipeline to execute 

element operations 
à fast clock cycle 

n  Control of deep pipeline is 
simple because elements in 
vector are independent   
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V
1 

V
2 

V
3 

V1 * V2 à V3 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 
n  CRAY-1 
n  Russell, “The CRAY-1 

computer system,” 
CACM 1978. 

n  Scalar and vector modes 
n  8 64-element vector 

registers 
n  64 bits per element 
n  16 memory banks 
n  8 64-bit scalar registers 
n  8 24-bit address registers 
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Loading/Storing Vectors from/to Memory 
n  Requires loading/storing multiple elements 

n  Elements separated from each other by a constant distance 
(stride) 
q  Assume stride = 1 for now 

n  Elements can be loaded in consecutive cycles if we can 
start the load of one element per cycle 
q  Can sustain a throughput of one element per cycle 

n  Question: How do we achieve this with a memory that 
takes more than 1 cycle to access? 

n  Answer: Bank the memory; interleave the elements across 
banks 

19 



Memory Banking 
n  Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost) 
n  Can start and complete one bank access per cycle 
n  Can sustain N parallel accesses if all N go to different banks 

20 

Bank 
0 

Bank 
1 

MDR MAR 

Bank 
2 

Bank 
15 

MDR MAR MDR MAR MDR MAR 

Data bus 

Address bus 

CPU 
Picture credit: Derek Chiou 



Vector Memory System 
n  Next address = Previous address + Stride 
n  If stride = 1 & consecutive elements interleaved across 

banks & number of banks >= bank latency, then can 
sustain 1 element/cycle throughput 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 

+

Base Stride Vector Registers 

Memory Banks 

Address 
Generator 

Picture credit: Krste Asanovic 



Scalar Code Example 
n  For I = 0 to 49 

q  C[i] = (A[i] + B[i]) / 2 

n  Scalar code (instruction and its latency) 
     MOVI R0 = 50    1 
     MOVA R1 = A    1 
     MOVA R2 = B    1 
     MOVA R3 = C    1 
X:  LD R4 = MEM[R1++]   11  ;autoincrement addressing 
     LD R5 = MEM[R2++]   11 
     ADD R6 = R4 + R5   4 
     SHFR R7 = R6 >> 1   1 
     ST MEM[R3++] = R7    11 
     DECBNZ R0, X      2   ;decrement and branch if NZ 

22 

304 dynamic instructions 



Scalar Code Execution Time (In Order) 
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n  Scalar execution time on an in-order processor with 1 bank 
q  First two loads in the loop cannot be pipelined: 2*11 cycles 
q  4 + 50*40 = 2004 cycles 

 
n  Scalar execution time on an in-order processor with 16 

banks (word-interleaved: consecutive words are stored in 
consecutive banks) 
q  First two loads in the loop can be pipelined 
q  4 + 50*30 = 1504 cycles 

n  Why 16 banks? 
q  11 cycle memory access latency 
q  Having 16 (>11) banks ensures there are enough banks to 

overlap enough memory operations to cover memory latency 



Vectorizable Loops 
n  A loop is vectorizable if each iteration is independent of any 

other 

n  For I = 0 to 49 
q  C[i] = (A[i] + B[i]) / 2 

n  Vectorized loop (each instruction and its latency): 
  MOVI VLEN = 50    1 
  MOVI VSTR = 1    1 
  VLD V0 = A     11 + VLEN - 1 
  VLD V1 = B     11 + VLEN – 1 
  VADD V2 = V0 + V1    4 + VLEN - 1 
  VSHFR V3 = V2 >> 1   1 + VLEN - 1 
  VST C = V3     11 + VLEN – 1 

24 

7 dynamic instructions 



Basic Vector Code Performance 
n  Assume no chaining (no vector data forwarding) 

q  i.e., output of a vector functional unit cannot be used as the 
direct input of another  

q  The entire vector register needs to be ready before any 
element of it can be used as part of another operation 

n  One memory port (one address generator) 
n  16 memory banks (word-interleaved) 

 

n  285 cycles 
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 
n  Vector chaining: Data forwarding from one vector 

functional unit to another 

26 

Memory 

V1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 
MULV v3,v1,v2 
ADDV v5, v3, v4 

Slide credit: Krste Asanovic 



Vector Code Performance - Chaining 
n  Vector chaining: Data forwarding from one vector 

functional unit to another 

n  182 cycles 

27 

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  
pipelined. WHY? 

VLD and VST cannot be  
pipelined. WHY? 

Strict assumption: 
Each memory bank  
has a single port  
(memory bandwidth 
bottleneck) 



Vector Code Performance – Multiple Memory Ports 

n  Chaining and 2 load ports, 1 store port in each bank 

 
n  79 cycles 
n  19X perf. improvement! 
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I) 
n  What if # data elements > # elements in a vector register? 

q  Idea: Break loops so that each iteration operates on # 
elements in a vector register 
n  E.g., 527 data elements, 64-element VREGs 
n  8 iterations where VLEN = 64 
n  1 iteration where VLEN = 15 (need to change value of VLEN) 

q  Called vector stripmining 
 
n  What if vector data is not stored in a strided fashion in 

memory? (irregular memory access to a vector) 
q  Idea: Use indirection to combine/pack elements into vector 

registers 
q  Called scatter/gather operations 

29 



Gather/Scatter Operations 

30 

Want to vectorize loops with indirect accesses: 
for (i=0; i<N; i++) 
    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 
LV vD, rD       # Load indices in D vector 
LVI vC, rC, vD  # Load indirect from rC base 
LV vB, rB       # Load B vector 
ADDV.D vA,vB,vC # Do add 
SV vA, rA       # Store result 
 



Gather/Scatter Operations 
n  Gather/scatter operations often implemented in hardware 

to handle sparse vectors (matrices) 
n  Vector loads and stores use an index vector which is added 

to the base register to generate the addresses 
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Index Vector                 Data Vector (to Store)            Stored Vector (in Memory) 
 
        0           3.14     Base+0      3.14 
        2           6.5          Base+1      X 
        6         71.2         Base+2      6.5 
        7           2.71         Base+3      X 

      Base+4      X 
       Base+5      X 

         Base+6    71.2 
      Base+7      2.71   



Conditional Operations in a Loop 
n  What if some operations should not be executed on a vector 

(based on a dynamically-determined condition)? 
 

loop:  for (i=0; i<N; i++) 
    if (a[i] != 0) then b[i]=a[i]*b[i] 

n  Idea: Masked operations  
q  VMASK register is a bit mask determining which data element 

should not be acted upon 
  VLD V0 = A 
  VLD V1 = B 
  VMASK = (V0 != 0) 
  VMUL V1 = V0 * V1 
  VST B = V1 

q  This is predicated execution.  Execution is predicated on mask bit. 
32 



Another Example with Masking 
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for (i = 0; i < 64; ++i) 
 if (a[i] >= b[i])  

          c[i] = a[i] 
 else  

          c[i] = b[i] 

A  B  VMASK     
1  2     0                  
2  2     1 
3  2     1 
4  10     0 
-5  -4     0 
0  -3     1 
6  5     1 
-7  -8     1 

Steps to execute the loop in SIMD code 
 
1. Compare A, B to get  

 VMASK 
 
2. Masked store of A into C 
 
3. Complement VMASK 
 
4. Masked store of B into C 



Masked Vector Instructions 
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C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

      Density-Time Implementation 
–  scan mask vector and only execute 

elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

     Simple Implementation 
–  execute all N operations, turn off 

result writeback according to mask 

Slide credit: Krste Asanovic 

Which one is better? 

Tradeoffs? 



Some Issues 
n  Stride and banking 

q  As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput 

n  Storage of a matrix 
q  Row major: Consecutive elements in a row are laid out 

consecutively in memory 
q  Column major: Consecutive elements in a column are laid out 

consecutively in memory 
q  You need to change the stride when accessing a row versus 

column 
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Minimizing Bank Conflicts 
n  More banks 

n  Better data layout to match the access pattern 
q  Is this always possible? 

n  Better mapping of address to bank 
q  E.g., randomized mapping 
q  Rau, “Pseudo-randomly interleaved memory,” ISCA 1991. 
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Array vs. Vector Processors, Revisited 
n  Array vs. vector processor distinction is a “purist’s” 

distinction 

n  Most “modern” SIMD processors are a combination of both 
q  They exploit data parallelism in both time and space 
q  GPUs are a prime example we will cover in a bit more detail 

38 



Remember: Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR ß A[3:0] 
ADD  VR ß VR, 1  
MUL  VR ß VR, 2 
ST     A[3:0] ß VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 
AD0 AD1 AD2 AD3 
MU0 MU1 MU2 MU3 
ST0 ST1 ST2 ST3 

LD0 
LD1 AD0 
LD2 AD1 MU0 
LD3 AD2 MU1 ST0 

AD3 MU2 ST1 
MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



Vector Instruction Execution 
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VADD A,B à C 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 



Vector Unit Structure 
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Lane 

Functional Unit 

Partitioned 
Vector 
Registers 

Memory Subsystem 

Elements 
0, 4, 8, … 

Elements 
1, 5, 9, … 

Elements 
2, 6, 10, … 

Elements 
3, 7, 11, … 

Slide credit: Krste Asanovic 



Vector Instruction Level Parallelism 
Can overlap execution of multiple vector instructions 

q  Example machine has 32 elements per vector register and 8 lanes 
q  Completes 24 operations/cycle while issuing 1 vector instruction/cycle 
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load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Slide credit: Krste Asanovic 



Automatic Code Vectorization 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a compile-time reordering of 
operation sequencing 
⇒ requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

Ti
m

e 

Slide credit: Krste Asanovic 



Vector/SIMD Processing Summary 
n  Vector/SIMD machines are good at exploiting regular data-

level parallelism 
q  Same operation performed on many data elements 
q  Improve performance, simplify design (no intra-vector 

dependencies) 

n  Performance improvement limited by vectorizability of code 
q  Scalar operations limit vector machine performance 
q  Remember Amdahl’s Law 
q  CRAY-1 was the fastest SCALAR machine at its time! 

n  Many existing ISAs include (vector-like) SIMD operations 
q  Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD 
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SIMD Operations in Modern ISAs 

 
 
 
 
 
 



SIMD ISA Extensions 
n  Single	Instruc.on	Mul.ple	Data	(SIMD)	extension	instruc.ons	

q  Single	instruc.on	acts	on	mul.ple	pieces	of	data	at	once	
q  Common	applica.on:	graphics	
q  Perform	short	arithme.c	opera.ons	(also	called	packed	

arithme-c)	
n  For	example:	add	four	8-bit	numbers	
n  Must	modify	ALU	to	eliminate	carries	between	8-bit	values	

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+



Intel Pentium MMX Operations 
n  Idea: One instruction operates on multiple data elements 

simultaneously 
q  Ala array processing (yet much more limited) 
q  Designed with multimedia (graphics) operations in mind 

47 

Peleg and Weiser, “MMX Technology 
Extension to the Intel Architecture,” 
IEEE Micro, 1996. 

No VLEN register 
Opcode determines data type: 
8 8-bit bytes 
4 16-bit words 
2 32-bit doublewords 
1 64-bit quadword 
 
Stride is always equal to 1. 
 



MMX Example: Image Overlaying (I) 
n  Goal: Overlay the human in image 1 on top of the background in image 2 

48 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 



MMX Example: Image Overlaying (II) 

49 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 



GPUs (Graphics Processing Units)   

 
 
 
 
 
 



GPUs are SIMD Engines Underneath 
n  The instruction pipeline operates like a SIMD pipeline (e.g., 

an array processor) 

n  However, the programming is done using threads, NOT 
SIMD instructions 

n  To understand this, let’s go back to our parallelizable code 
example 

n  But, before that, let’s distinguish between  
q  Programming Model (Software) 

       vs. 
q  Execution Model (Hardware) 

51 



Programming Model vs. Hardware Execution Model 

n  Programming Model refers to how the programmer expresses 
the code 
q  E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 

Multi-threaded (MIMD, SPMD), … 

n  Execution Model refers to how the hardware executes the 
code underneath 
q  E.g., Out-of-order execution, Vector processor, Array processor, 

Dataflow processor, Multiprocessor, Multithreaded processor, … 

n  Execution Model can be very different from the Programming 
Model 
q  E.g., von Neumann model implemented by an OoO processor 
q  E.g., SPMD model implemented by a SIMD processor (a GPU) 

52 



How Can You Exploit Parallelism Here? 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code  
 

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code: 

1. Sequential (SISD) 
 

2. Data-Parallel (SIMD) 
 

3. Multithreaded (MIMD/SPMD) 



Prog. Model 1: Sequential (SISD) 
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load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code n  Can be executed on a: 

n  Pipelined processor 

n  Out-of-order execution processor 
q  Independent instructions executed 

when ready 
q  Different iterations are present in the 

instruction window and can execute in 
parallel in multiple functional units 

q  In other words, the loop is dynamically 
unrolled by the hardware 

n  Superscalar or VLIW processor 
q  Can fetch and execute multiple 

instructions per cycle 

for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 



load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Prog. Model 2: Data Parallel (SIMD) 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

Realization: Each iteration is independent 
 
Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data 
 
Best executed by a SIMD processor (vector, array) 

VLD     A à V1 

VLD     B à V2 

VADD     V1 + V2 à V3 

VST     V3 à C 



load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Prog. Model 3: Multithreaded 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 Realization: Each iteration is independent 

 
Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data) 
 
Can be executed on a MIMD machine 



Prog. Model 3: Multithreaded 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 Realization: Each iteration is independent 

 
Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data) 
 
Can be executed on a MIMD machine 

This particular model is also called: 
 

SPMD: Single Program Multiple Data 

Can be executed on a SIMD machine Can be executed on a SIMT machine 
Single Instruction Multiple Thread 



A GPU is a SIMD (SIMT) Machine 
n  Except it is not programmed using SIMD instructions 

n  It is programmed using threads (SPMD programming model) 
q  Each thread executes the same code but operates a different 

piece of data 
q  Each thread has its own context (i.e., can be treated/restarted/

executed independently) 

n  A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware 
q  A warp is essentially a SIMD operation formed by hardware! 
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Warp 0 at PC X+3 

Warp 0 at PC X+2 

Warp 0 at PC X+1 

SPMD on SIMT Machine 
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Realization: Each iteration is independent 
 
Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data) 
 
Can be executed on a MIMD machine 

This particular model is also called: 
 

SPMD: Single Program Multiple Data 

Can be executed on a SIMD machine A GPU executes it using the SIMT model: 
Single Instruction Multiple Thread 

Warp 0 at PC X 

Warp: A set of threads that execute 
the same instruction (i.e., at the same PC) 



We did not cover the following slides in lecture. 
These are for your preparation for the next lecture.  



Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 
 
 
 
 
 



SIMD vs. SIMT Execution Model 
n  SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs 
q  [VLD, VLD, VADD, VST], VLEN 

n  SIMT: Multiple instruction streams of scalar instructions à 
threads grouped dynamically into warps 
q  [LD, LD, ADD, ST], NumThreads 

n  Two Major SIMT Advantages:  
q  Can treat each thread separately à i.e., can execute each thread 

independently (on any type of scalar pipeline) à MIMD processing 
q  Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à 
dynamically obtain and maximize benefits of SIMD processing 
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Multithreading of Warps  
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for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Warp 0 at PC X 

n  Assume a warp consists of 32 threads 
n  If you have 32K iterations, and 1 iteration/thread à 1K warps 
n  Warps can be interleaved on the same pipeline à Fine grained 

multithreading of warps 

Warp 1 at PC X 

Iter. 
33 

Iter. 
34 

Warp 20 at PC X+2 

Iter. 
20*32 + 1 

Iter. 
20*32 + 2 



Warps and Warp-Level FGMT 
n  Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak) 
n  All threads run the same code 
n  Warp: The threads that run lengthwise in a woven fabric … 
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Thread Warp 3 
Thread Warp 8 

Thread Warp 7 

Thread Warp 
Scalar 
Thread 

W 

Scalar 
Thread 

X 

Scalar 
Thread 

Y 

Scalar 
Thread 

Z 

Common PC 

SIMD Pipeline 



High-Level View of a GPU 
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Latency Hiding via Warp-Level FGMT 
n  Warp: A set of threads that 

execute the same instruction 
(on different data elements) 

n  Fine-grained multithreading 
q  One instruction per thread in 

pipeline at a time (No 
interlocking) 

q  Interleave warp execution to 
hide latencies 

n  Register values of all threads stay 
in register file 

n  FGMT enables long latency 
tolerance 
q  Millions of pixels  
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Decode 

R F 

R F 

R F 

A L U 

A L U 

A L U 

D-Cache 

Thread Warp 6 

Thread Warp 1 
Thread Warp 2 Data All Hit? 

Miss? 

Warps accessing 
memory hierarchy 

Thread Warp 3 
Thread Warp 8 

Writeback 

Warps available 
for scheduling 

Thread Warp 7 

I-Fetch 

SIMD Pipeline 

Slide credit: Tor Aamodt 



Warp Execution (Recall the Slide) 
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32-thread warp executing ADD A[tid],B[tid] à C[tid] 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 
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A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 
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Lane 

Functional Unit 

 
Registers 
for each  
Thread 

Memory Subsystem 

Registers for 
thread IDs 
0, 4, 8, … 

Registers for 
thread IDs 
1, 5, 9, … 

Registers for 
thread IDs 
2, 6, 10, … 

Registers for 
thread IDs 
3, 7, 11, … 

Slide credit: Krste Asanovic 

SIMD Execution Unit Structure 



Warp Instruction Level Parallelism 
Can overlap execution of multiple instructions 

q  Example machine has 32 threads per warp and 8 lanes 
q  Completes 24 operations/cycle while issuing 1 warp/cycle 
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W3 

W0 
W1 

W4 

W2 

W5 

Load Unit Multiply Unit Add Unit 

time 

Warp issue 

Slide credit: Krste Asanovic 



n  Same instruction in different threads uses thread id to index 
and access different data elements 

SIMT Memory Access 

Let’s assume N=16, 4 threads per warp à 4 warps  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 

Threads 

Data elements 

Warp 0 Warp 1 Warp 2 Warp 3 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100000; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100000 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 

72 Slide credit: Hyesoon Kim 



Warp-based SIMD vs. Traditional SIMD 
n  Traditional SIMD contains a single thread  

q  Sequential instruction execution; lock-step operations in a SIMD instruction 
q  Programming model is SIMD (no extra threads) à SW needs to know 

vector length 
q  ISA contains vector/SIMD instructions 

n  Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads) 
q  Does not have to be lock step 
q  Each thread can be treated individually (i.e., placed in a different warp) 

à programming model not SIMD 
n  SW does not need to know vector length 
n  Enables multithreading and flexible dynamic grouping of threads 

q  ISA is scalar à SIMD operations can be formed dynamically 
q  Essentially, it is SPMD programming model implemented on SIMD 

hardware 
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SPMD 
n  Single procedure/program, multiple data  

q  This is a programming model rather than computer organization 

n  Each processing element executes the same procedure, except on 
different data elements 
q  Procedures can synchronize at certain points in program, e.g. barriers 

n  Essentially, multiple instruction streams execute the same 
program 
q  Each program/procedure 1) works on different data, 2) can execute a 

different control-flow path, at run-time 
q  Many scientific applications are programmed this way and run on MIMD 

hardware (multiprocessors) 
q  Modern GPUs programmed in a similar way on a SIMD hardware 
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SIMD vs. SIMT Execution Model 
n  SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs 
q  [VLD, VLD, VADD, VST], VLEN 

n  SIMT: Multiple instruction streams of scalar instructions à 
threads grouped dynamically into warps 
q  [LD, LD, ADD, ST], NumThreads 

n  Two Major SIMT Advantages:  
q  Can treat each thread separately à i.e., can execute each thread 

independently on any type of scalar pipeline à MIMD processing 
q  Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à 
dynamically obtain and maximize benefits of SIMD processing 
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Threads Can Take Different Paths in Warp-based SIMD 

n  Each thread can have conditional control flow instructions 
n  Threads can execute different control flow paths 
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Slide credit: Tor Aamodt 



Control Flow Problem in GPUs/SIMT 
n  A GPU uses a SIMD 

pipeline to save area 
on control logic. 
q  Groups scalar threads 

into warps 

n  Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch 

Path A 

Path B 

Branch 

Path A 

Path B 

Slide credit: Tor Aamodt 

This is the same as conditional/predicated/masked execution.  
Recall the Vector Mask and Masked Vector Operations? 



Remember: Each Thread Is Independent 
n  Two Major SIMT Advantages:  

q  Can treat each thread separately à i.e., can execute each thread 
independently on any type of scalar pipeline à MIMD processing 

q  Can group threads into warps flexibly à i.e., can group threads 
that are supposed to truly execute the same instruction à 
dynamically obtain and maximize benefits of SIMD processing 

n  If we have many threads 
n  We can find individual threads that are at the same PC 
n  And, group them together into a single warp dynamically 
n  This reduces “divergence” à improves SIMD utilization 

q  SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread) 
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Dynamic Warp Formation/Merging 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 
n  Form new warps from warps that are waiting 

q  Enough threads branching to each path enables the creation 
of full new warps 
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Warp X 

Warp Y 

Warp Z 



Dynamic Warp Formation/Merging 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 

 
n  Fung et al., “Dynamic Warp Formation and Scheduling for 

Efficient GPU Control Flow,” MICRO 2007. 
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Dynamic Warp Formation Example 
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A A B B G G A A C C D D E E F F 

Time 
A A B B G G A A C D E E F 

Time 

A x/1111 
y/1111 

B x/1110 
y/0011 

C x/1000 
y/0010 D x/0110 

y/0001 F x/0001 
y/1100 

E x/1110 
y/0011 

G x/1111 
y/1111 

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D 

D 

Execution of Warp x 
at Basic Block A 

Execution of Warp y 
at Basic Block A 

Legend 
A A 

Baseline 

Dynamic 
Warp 
Formation 

Slide credit: Tor Aamodt 



Hardware Constraints Limit Flexibility of Warp Grouping 
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Lane 

Functional Unit 
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Thread 

Memory Subsystem 

Registers for 
thread IDs 
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Registers for 
thread IDs 
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Registers for 
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Registers for 
thread IDs 
3, 7, 11, … 

Slide credit: Krste Asanovic 

Can you move any thread  
flexibly to any lane? 



An Example GPU 

 
 
 
 
 
 



NVIDIA GeForce GTX 285 
n  NVIDIA-speak: 

q  240 stream processors 
q  “SIMT execution” 

  

n  Generic speak: 
q  30 cores 
q  8 SIMD functional units per core 
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NVIDIA GeForce GTX 285 “core” 
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… 

= instruction stream decode = SIMD functional unit, control  
   shared across 8 units 
    = execution context storage  = multiply-add 

= multiply 

64 KB of storage  
for thread contexts 
(registers) 

Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  
for thread contexts 
(registers) 

n  Groups of 32 threads share instruction stream (each group is 
a Warp) 

n  Up to 32 warps are simultaneously interleaved 
n  Up to 1024 thread contexts can be stored    
 
Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 
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30 cores on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 
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