

Computer Architecture
Lecture 8: SIMD Processors and GPUs

Prof. Onur Mutlu
ETH Zürich
Fall 2017

18 October 2017

Agenda for Today & Next Few Lectures
n  SIMD Processors

n  GPUs

n  Introduction to GPU Programming

2

Digitaltechnik (Spring 2017) YouTube videos
Lecture 19: Beginning of SIMD
https://youtu.be/XE9ogMPEMLw?t=1h11m42s
Lecture 20: SIMD Processors
https://youtu.be/hRHs7xlP0Sg?t=6m48s
Lecture 21: GPUs
https://youtu.be/MUPTdxl3JKs?t=3m03s

SIMD Processing:
Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

n  Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

n  SISD: Single instruction operates on single data element
n  SIMD: Single instruction operates on multiple data elements

q  Array processor
q  Vector processor

n  MISD: Multiple instructions operate on single data element
q  Closest form: systolic array processor, streaming processor

n  MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
q  Multiprocessor
q  Multithreaded processor

4

Data Parallelism
n  Concurrency arises from performing the same operations

on different pieces of data
q  Single instruction multiple data (SIMD)
q  E.g., dot product of two vectors

n  Contrast with data flow
q  Concurrency arises from executing different operations in parallel (in

a data driven manner)

n  Contrast with thread (“control”) parallelism
q  Concurrency arises from executing different threads of control in

parallel

n  SIMD exploits instruction-level parallelism
q  Multiple “instructions” (more appropriately, operations) are

concurrent: instructions happen to be the same
5

SIMD Processing
n  Single instruction operates on multiple data elements

q  In time or in space

n  Multiple processing elements

n  Time-space duality

q  Array processor: Instruction operates on multiple data
elements at the same time using different spaces

q  Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

6

Array vs. Vector Processors

7

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW
n  VLIW: Multiple independent operations packed together by the compiler

8

SIMD Array Processing vs. VLIW
n  Array processor: Single operation on multiple (different) data elements

9

Vector Processors
n  A vector is a one-dimensional array of numbers
n  Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
 C[i] = (A[i] + B[i]) / 2

n  A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

n  Basic requirements
q  Need to load/store vectors à vector registers (contain vectors)
q  Need to operate on vectors of different lengths à vector length

register (VLEN)
q  Elements of a vector might be stored apart from each other in

memory à vector stride register (VSTR)
n  Stride: distance between two elements of a vector

10

Vector Processors (II)
n  A vector instruction performs an operation on each element

in consecutive cycles
q  Vector functional units are pipelined
q  Each pipeline stage operates on a different data element

n  Vector instructions allow deeper pipelines
q  No intra-vector dependencies à no hardware interlocking

within a vector
q  No control flow within a vector
q  Known stride allows prefetching of vectors into registers/

cache/memory

11

Vector Processor Advantages
+ No dependencies within a vector

q  Pipelining. parallelization work really well
q  Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
q  Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern

+ No need to explicitly code loops
q  Fewer branches in the instruction sequence

12

Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

 ++ Vector operations
 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

13 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations
-- Memory (bandwidth) can easily become a bottleneck,

especially if
 1. compute/memory operation balance is not maintained
 2. data is not mapped appropriately to memory banks

14

Vector Processing in More Depth

Vector Registers
n  Each vector data register holds N M-bit values
n  Vector control registers: VLEN, VSTR, VMASK
n  Maximum VLEN can be N

q  Maximum number of elements stored in a vector register

n  Vector Mask Register (VMASK)
q  Indicates which elements of vector to operate on
q  Set by vector test instructions

n  e.g., VMASK[i] = (Vk[i] == 0)

16

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units
n  Use deep pipeline to execute

element operations
à fast clock cycle

n  Control of deep pipeline is
simple because elements in
vector are independent

17

V
1

V
2

V
3

V1 * V2 à V3

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)
n  CRAY-1
n  Russell, “The CRAY-1

computer system,”
CACM 1978.

n  Scalar and vector modes
n  8 64-element vector

registers
n  64 bits per element
n  16 memory banks
n  8 64-bit scalar registers
n  8 24-bit address registers

18

Loading/Storing Vectors from/to Memory
n  Requires loading/storing multiple elements

n  Elements separated from each other by a constant distance
(stride)
q  Assume stride = 1 for now

n  Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle
q  Can sustain a throughput of one element per cycle

n  Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

n  Answer: Bank the memory; interleave the elements across
banks

19

Memory Banking
n  Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
n  Can start and complete one bank access per cycle
n  Can sustain N parallel accesses if all N go to different banks

20

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Vector Memory System
n  Next address = Previous address + Stride
n  If stride = 1 & consecutive elements interleaved across

banks & number of banks >= bank latency, then can
sustain 1 element/cycle throughput

21

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride Vector Registers

Memory Banks

Address
Generator

Picture credit: Krste Asanovic

Scalar Code Example
n  For I = 0 to 49

q  C[i] = (A[i] + B[i]) / 2

n  Scalar code (instruction and its latency)
 MOVI R0 = 50 1
 MOVA R1 = A 1
 MOVA R2 = B 1
 MOVA R3 = C 1
X: LD R4 = MEM[R1++] 11 ;autoincrement addressing
 LD R5 = MEM[R2++] 11
 ADD R6 = R4 + R5 4
 SHFR R7 = R6 >> 1 1
 ST MEM[R3++] = R7 11
 DECBNZ R0, X 2 ;decrement and branch if NZ

22

304 dynamic instructions

Scalar Code Execution Time (In Order)

23

n  Scalar execution time on an in-order processor with 1 bank
q  First two loads in the loop cannot be pipelined: 2*11 cycles
q  4 + 50*40 = 2004 cycles

n  Scalar execution time on an in-order processor with 16

banks (word-interleaved: consecutive words are stored in
consecutive banks)
q  First two loads in the loop can be pipelined
q  4 + 50*30 = 1504 cycles

n  Why 16 banks?
q  11 cycle memory access latency
q  Having 16 (>11) banks ensures there are enough banks to

overlap enough memory operations to cover memory latency

Vectorizable Loops
n  A loop is vectorizable if each iteration is independent of any

other

n  For I = 0 to 49
q  C[i] = (A[i] + B[i]) / 2

n  Vectorized loop (each instruction and its latency):
 MOVI VLEN = 50 1
 MOVI VSTR = 1 1
 VLD V0 = A 11 + VLEN - 1
 VLD V1 = B 11 + VLEN – 1
 VADD V2 = V0 + V1 4 + VLEN - 1
 VSHFR V3 = V2 >> 1 1 + VLEN - 1
 VST C = V3 11 + VLEN – 1

24

7 dynamic instructions

Basic Vector Code Performance
n  Assume no chaining (no vector data forwarding)

q  i.e., output of a vector functional unit cannot be used as the
direct input of another

q  The entire vector register needs to be ready before any
element of it can be used as part of another operation

n  One memory port (one address generator)
n  16 memory banks (word-interleaved)

n  285 cycles

25

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining
n  Vector chaining: Data forwarding from one vector

functional unit to another

26

Memory

V1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1
MULV v3,v1,v2
ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining
n  Vector chaining: Data forwarding from one vector

functional unit to another

n  182 cycles

27

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be
pipelined. WHY?

VLD and VST cannot be
pipelined. WHY?

Strict assumption:
Each memory bank
has a single port
(memory bandwidth
bottleneck)

Vector Code Performance – Multiple Memory Ports

n  Chaining and 2 load ports, 1 store port in each bank

n  79 cycles
n  19X perf. improvement!

28

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)
n  What if # data elements > # elements in a vector register?

q  Idea: Break loops so that each iteration operates on #
elements in a vector register
n  E.g., 527 data elements, 64-element VREGs
n  8 iterations where VLEN = 64
n  1 iteration where VLEN = 15 (need to change value of VLEN)

q  Called vector stripmining

n  What if vector data is not stored in a strided fashion in

memory? (irregular memory access to a vector)
q  Idea: Use indirection to combine/pack elements into vector

registers
q  Called scatter/gather operations

29

Gather/Scatter Operations

30

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)
LV vD, rD # Load indices in D vector
LVI vC, rC, vD # Load indirect from rC base
LV vB, rB # Load B vector
ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

Gather/Scatter Operations
n  Gather/scatter operations often implemented in hardware

to handle sparse vectors (matrices)
n  Vector loads and stores use an index vector which is added

to the base register to generate the addresses

31

Index Vector Data Vector (to Store) Stored Vector (in Memory)

 0 3.14 Base+0 3.14
 2 6.5 Base+1 X
 6 71.2 Base+2 6.5
 7 2.71 Base+3 X

 Base+4 X
 Base+5 X

 Base+6 71.2
 Base+7 2.71

Conditional Operations in a Loop
n  What if some operations should not be executed on a vector

(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
 if (a[i] != 0) then b[i]=a[i]*b[i]

n  Idea: Masked operations
q  VMASK register is a bit mask determining which data element

should not be acted upon
 VLD V0 = A
 VLD V1 = B
 VMASK = (V0 != 0)
 VMUL V1 = V0 * V1
 VST B = V1

q  This is predicated execution. Execution is predicated on mask bit.
32

Another Example with Masking

33

for (i = 0; i < 64; ++i)
 if (a[i] >= b[i])

 c[i] = a[i]
 else

 c[i] = b[i]

A B VMASK
1 2 0
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get

 VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

34

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

 Density-Time Implementation
–  scan mask vector and only execute

elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

 Simple Implementation
–  execute all N operations, turn off

result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?

Some Issues
n  Stride and banking

q  As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

n  Storage of a matrix
q  Row major: Consecutive elements in a row are laid out

consecutively in memory
q  Column major: Consecutive elements in a column are laid out

consecutively in memory
q  You need to change the stride when accessing a row versus

column

35

36

Minimizing Bank Conflicts
n  More banks

n  Better data layout to match the access pattern
q  Is this always possible?

n  Better mapping of address to bank
q  E.g., randomized mapping
q  Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

37

Array vs. Vector Processors, Revisited
n  Array vs. vector processor distinction is a “purist’s”

distinction

n  Most “modern” SIMD processors are a combination of both
q  They exploit data parallelism in both time and space
q  GPUs are a prime example we will cover in a bit more detail

38

Remember: Array vs. Vector Processors

39

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

40

VADD A,B à C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Vector Unit Structure

41

Lane

Functional Unit

Partitioned
Vector
Registers

Memory Subsystem

Elements
0, 4, 8, …

Elements
1, 5, 9, …

Elements
2, 6, 10, …

Elements
3, 7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism
Can overlap execution of multiple vector instructions

q  Example machine has 32 elements per vector register and 8 lanes
q  Completes 24 operations/cycle while issuing 1 vector instruction/cycle

42

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

43

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
⇒ requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary
n  Vector/SIMD machines are good at exploiting regular data-

level parallelism
q  Same operation performed on many data elements
q  Improve performance, simplify design (no intra-vector

dependencies)

n  Performance improvement limited by vectorizability of code
q  Scalar operations limit vector machine performance
q  Remember Amdahl’s Law
q  CRAY-1 was the fastest SCALAR machine at its time!

n  Many existing ISAs include (vector-like) SIMD operations
q  Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

44

SIMD Operations in Modern ISAs

SIMD ISA Extensions
n  Single	Instruc.on	Mul.ple	Data	(SIMD)	extension	instruc.ons	

q  Single	instruc.on	acts	on	mul.ple	pieces	of	data	at	once	
q  Common	applica.on:	graphics	
q  Perform	short	arithme.c	opera.ons	(also	called	packed	

arithme-c)	
n  For	example:	add	four	8-bit	numbers	
n  Must	modify	ALU	to	eliminate	carries	between	8-bit	values	

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

Intel Pentium MMX Operations
n  Idea: One instruction operates on multiple data elements

simultaneously
q  Ala array processing (yet much more limited)
q  Designed with multimedia (graphics) operations in mind

47

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)
n  Goal: Overlay the human in image 1 on top of the background in image 2

48 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

MMX Example: Image Overlaying (II)

49 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath
n  The instruction pipeline operates like a SIMD pipeline (e.g.,

an array processor)

n  However, the programming is done using threads, NOT
SIMD instructions

n  To understand this, let’s go back to our parallelizable code
example

n  But, before that, let’s distinguish between
q  Programming Model (Software)

 vs.
q  Execution Model (Hardware)

51

Programming Model vs. Hardware Execution Model

n  Programming Model refers to how the programmer expresses
the code
q  E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,

Multi-threaded (MIMD, SPMD), …

n  Execution Model refers to how the hardware executes the
code underneath
q  E.g., Out-of-order execution, Vector processor, Array processor,

Dataflow processor, Multiprocessor, Multithreaded processor, …

n  Execution Model can be very different from the Programming
Model
q  E.g., von Neumann model implemented by an OoO processor
q  E.g., SPMD model implemented by a SIMD processor (a GPU)

52

How Can You Exploit Parallelism Here?

53

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

54

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n  Can be executed on a:

n  Pipelined processor

n  Out-of-order execution processor
q  Independent instructions executed

when ready
q  Different iterations are present in the

instruction window and can execute in
parallel in multiple functional units

q  In other words, the loop is dynamically
unrolled by the hardware

n  Superscalar or VLIW processor
q  Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

55

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A à V1

VLD B à V2

VADD V1 + V2 à V3

VST V3 à C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

56

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

57

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machine Can be executed on a SIMT machine
Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine
n  Except it is not programmed using SIMD instructions

n  It is programmed using threads (SPMD programming model)
q  Each thread executes the same code but operates a different

piece of data
q  Each thread has its own context (i.e., can be treated/restarted/

executed independently)

n  A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware
q  A warp is essentially a SIMD operation formed by hardware!

58

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

59

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machine A GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)

We did not cover the following slides in lecture.
These are for your preparation for the next lecture.

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model
n  SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q  [VLD, VLD, VADD, VST], VLEN

n  SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q  [LD, LD, ADD, ST], NumThreads

n  Two Major SIMT Advantages:
q  Can treat each thread separately à i.e., can execute each thread

independently (on any type of scalar pipeline) à MIMD processing
q  Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

62

Multithreading of Warps

63

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

n  Assume a warp consists of 32 threads
n  If you have 32K iterations, and 1 iteration/thread à 1K warps
n  Warps can be interleaved on the same pipeline à Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT
n  Warp: A set of threads that execute the same instruction

(on different data elements) à SIMT (Nvidia-speak)
n  All threads run the same code
n  Warp: The threads that run lengthwise in a woven fabric …

64

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp
Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

High-Level View of a GPU

65

Latency Hiding via Warp-Level FGMT
n  Warp: A set of threads that

execute the same instruction
(on different data elements)

n  Fine-grained multithreading
q  One instruction per thread in

pipeline at a time (No
interlocking)

q  Interleave warp execution to
hide latencies

n  Register values of all threads stay
in register file

n  FGMT enables long latency
tolerance
q  Millions of pixels

66

Decode

R F

R F

R F

A L U

A L U

A L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

67

32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

68

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q  Example machine has 32 threads per warp and 8 lanes
q  Completes 24 operations/cycle while issuing 1 warp/cycle

69

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

n  Same instruction in different threads uses thread id to index
and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

72 Slide credit: Hyesoon Kim

Warp-based SIMD vs. Traditional SIMD
n  Traditional SIMD contains a single thread

q  Sequential instruction execution; lock-step operations in a SIMD instruction
q  Programming model is SIMD (no extra threads) à SW needs to know

vector length
q  ISA contains vector/SIMD instructions

n  Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
q  Does not have to be lock step
q  Each thread can be treated individually (i.e., placed in a different warp)

à programming model not SIMD
n  SW does not need to know vector length
n  Enables multithreading and flexible dynamic grouping of threads

q  ISA is scalar à SIMD operations can be formed dynamically
q  Essentially, it is SPMD programming model implemented on SIMD

hardware
73

SPMD
n  Single procedure/program, multiple data

q  This is a programming model rather than computer organization

n  Each processing element executes the same procedure, except on
different data elements
q  Procedures can synchronize at certain points in program, e.g. barriers

n  Essentially, multiple instruction streams execute the same
program
q  Each program/procedure 1) works on different data, 2) can execute a

different control-flow path, at run-time
q  Many scientific applications are programmed this way and run on MIMD

hardware (multiprocessors)
q  Modern GPUs programmed in a similar way on a SIMD hardware

74

SIMD vs. SIMT Execution Model
n  SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q  [VLD, VLD, VADD, VST], VLEN

n  SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q  [LD, LD, ADD, ST], NumThreads

n  Two Major SIMT Advantages:
q  Can treat each thread separately à i.e., can execute each thread

independently on any type of scalar pipeline à MIMD processing
q  Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

75

Threads Can Take Different Paths in Warp-based SIMD

n  Each thread can have conditional control flow instructions
n  Threads can execute different control flow paths

76

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
n  A GPU uses a SIMD

pipeline to save area
on control logic.
q  Groups scalar threads

into warps

n  Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

77

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Remember: Each Thread Is Independent
n  Two Major SIMT Advantages:

q  Can treat each thread separately à i.e., can execute each thread
independently on any type of scalar pipeline à MIMD processing

q  Can group threads into warps flexibly à i.e., can group threads
that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

n  If we have many threads
n  We can find individual threads that are at the same PC
n  And, group them together into a single warp dynamically
n  This reduces “divergence” à improves SIMD utilization

q  SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

78

Dynamic Warp Formation/Merging
n  Idea: Dynamically merge threads executing the same

instruction (after branch divergence)
n  Form new warps from warps that are waiting

q  Enough threads branching to each path enables the creation
of full new warps

79

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging
n  Idea: Dynamically merge threads executing the same

instruction (after branch divergence)

n  Fung et al., “Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow,” MICRO 2007.
80

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

81

A A B B G G A A C C D D E E F F

Time
A A B B G G A A C D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar
threads of both Warp x and y
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
A A

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

82

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread
flexibly to any lane?

An Example GPU

NVIDIA GeForce GTX 285
n  NVIDIA-speak:

q  240 stream processors
q  “SIMT execution”

n  Generic speak:
q  30 cores
q  8 SIMD functional units per core

84 Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

85

…

= instruction stream decode = SIMD functional unit, control
 shared across 8 units
 = execution context storage = multiply-add

= multiply

64 KB of storage
for thread contexts
(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

86

…
64 KB of storage
for thread contexts
(registers)

n  Groups of 32 threads share instruction stream (each group is
a Warp)

n  Up to 32 warps are simultaneously interleaved
n  Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

87

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

Computer Architecture
Lecture 8: SIMD Processors and GPUs

Prof. Onur Mutlu
ETH Zürich
Fall 2017

18 October 2017

