
Computer Architecture (263-2210-00L), Fall 2017

HW 3: Branch handling and GPU

Instructor: Prof. Onur Mutlu
TAs: Hasan Hassan, Arash Tavakkol, Mohammad Sadr, Lois Orosa, Juan Gomez Luna

Assigned: Wednesday, Oct 25, 2017
Due: Wednesday, Nov 8, 2017

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:

//safari.ethz.ch/review/architecture/. Please check your inbox. You should have
received an email with the password you can use to login to the paper review system. If you
have not received any email, please contact comparch@lists.ethz.ch. In the first page after
login, you should click in “Architecture - Fall 2017 Home”, and then go to “any submitted
paper” to see the list of papers.
• Handin - Questions (2-10). Please upload your solution to the Moodle (https:
//moodle-app2.let.ethz.ch/) as a single PDF file. Please use a typesetting soft-
ware (e.g., LaTeX) or a word processor (e.g., MS Word, LibreOfficeWriter) to
generate your PDF file. Feel free to draw your diagrams either using an ap-
propriate software or by hand, and include the diagrams into your solutions
PDF.

1 Critical Paper Reviews [150 points]

Please read the following handout on how to write critical reviews. We will give out extra credit that is
worth 0.5% of your total grade for each good review.

• Lecture slides on guidelines for reviewing papers. Please follow this format.
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-

how-to-do-the-paper-reviews.pdf

• Some sample reviews can be found here: https://safari.ethz.ch/architecture/fall2017/doku.

php?id=readings

(a) Write a one-page critical review for the following paper:
B. C. Lee, E. Ipek, O. Mutlu and D. Burger. ”Architecting phase change memory as a scalable DRAM
alternative.” ISCA 2009. https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf

(b) Write a one-page critical review for two of the following papers:

• McFarling, Scott. “Combining branch predictors”. Vol. 49. Technical Report TN-36, Digital Western
Research Laboratory, 1993. https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.

php?media=combining.pdf

• Yeh, Tse-Yu, and Yale N. Patt. “Two-level adaptive training branch prediction.” Proceedings of the
24th annual international symposium on Microarchitecture. ACM, 1991. https://safari.ethz.ch/
architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf

• Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., and Glasco, D. “GPUs and the future of
parallel computing.” IEEE Micro, 2011. https://safari.ethz.ch/architecture/fall2017/lib/

exe/fetch.php?media=ieee-micro-gpu.pdf

1/15

https://safari.ethz.ch/review/architecture/
https://safari.ethz.ch/review/architecture/
https://moodle-app2.let.ethz.ch/
https://moodle-app2.let.ethz.ch/
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-f17-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://safari.ethz.ch/architecture/fall2017/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=combining.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=combining.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=yeh_patt-adaptive-training-1991.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=ieee-micro-gpu.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=ieee-micro-gpu.pdf

2 GPUs and SIMD [100 points]

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept
busy with active threads during the run of a program. As we saw in lecture and practice exercises, the SIMD
utilization of a program is computed across the complete run of the program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown loop.
Assume that the data values of the arrays A, B, and C are already in vector registers so there are no loads
and stores in this program. (Hint: Notice that there are 6 instructions in each thread.) A warp in the GPU
consists of 64 threads, and there are 64 SIMD lanes in the GPU. Please assume that all values in array B
have magnitudes less than 10 (i.e., |B[i]| < 10, for all i).

for (i = 0; i < 1024; i++) {

A[i] = B[i] * B[i];

if (A[i] > 0) {

C[i] = A[i] * B[i];

if (C[i] < 0) {

A[i] = A[i] + 1;

}

A[i] = A[i] - 2;

}

}

Please answer the following five questions.

(a) [10 points] How many warps does it take to execute this program?

(b) [10 points] What is the maximum possible SIMD utilization of this program?

2/15

(c) [30 points] Please describe what needs to be true about array B to reach the maximum possible SIMD
utilization asked in part (b). (Please cover all cases in your answer)

B:

(d) [15 points] What is the minimum possible SIMD utilization of this program?

(e) [35 points] Please describe what needs to be true about array B to reach the minimum possible SIMD
utilization asked in part (d). (Please cover all cases in your answer)

B:

3/15

3 AoS vs. SoA on GPU [50 points]

The next figure shows the execution time for processing an array of data structures on a GPU. Abscissas
represent the number of members in a data structure. Consecutive GPU threads read consecutive structures,
and compute the sum reduction of their members. The result is stored in the first member of the structure.

0"

2"

4"

6"

8"

10"

12"

14"

16"

18"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

A
ve
ra
ge
'a
cc
es
s'
*
m
e'
pe

r'
flo

at
'(n

s)
'

Structure'size'(number'of'floats)'

Array0of0Structure"

Discrete"Arrays"

(a) NVIDIA

0"

2"

4"

6"

8"

10"

12"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

A
ve
ra
ge
'a
cc
es
s'
*
m
e'
pe

r'
flo

at
'(n

s)
'

Structure'size'(number'of'floats)'

Array,of,Structure"

Discrete"Arrays"

(b) ATI

Figure 1: Speedup of Discrete-Array over AoS layout on a simple reduction kernel

for the next mapping. For example, we can use a column-
majored 3 ⇥ 5 matrix transposition example shown in Fig-
ure 3. We start with k1 = 1 (the location of A(1, 0)) and
map it to k0

1 = 5 (the location of A0(0, 1)). We can then use
k2 = 5 (the location of A(2, 1)) and map it to k0

2 = 11 (the
location of A0(1, 2)); the chain element at location 5 will be
shifted to location 11, and the element at location 11 will be
shifted to location 13, and so on. Eventually, we will return
to the original o↵set 1. This gives a cycle of (1 5 11 13 9

3 1). For brevity, we will omit the second occurrence of 1
and show the cycle as (1 5 11 13 9 3). The reader should
verify that there are five such cycles in transposing a 5 ⇥ 3
column-majored matrix: (0) (1 5 11 13 9 3)(7)(2 10 8

12 4 6)(14).

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 14"13"

A

A’ (0,0) (1,0) (2,0) (3,0) (2,1) (0,1) (1,1) (4,0) (3,1) (0,2) (4,1) (2,2) (1,2) (3,2) (4,2)

(0,0) (1,0) (2,0) (0,1) (1,2) (2,1) (0,2) (1,1) (2,2) (1,3) (0,3) (0,4) (2,3) (1,4) (2,4)

Figure 3: Converting Layout of Array F

An important observation is that an in-place transpose
algorithm can perform the data movement for these five sets
of o↵set locations independently. This means that we only
need to synchronize the data movement within each cycle.

Unfortunately, the number of cycles and the length of each
cycle vary with problem size and there is in general no lo-
cality between elements in a cycle [13] in in-place transposi-
tion. Note for square matrices, the size of a cycle is either 1
(diagonal) or 2 (other elements), but in the case of Array-of-
Structure, the aspect ratio is usually not 1:1, as the number
of elements in a structure is usually much smaller than the
total number of structure instances. We will address this
point further in Section 4.4.

4. APPROACH
The proposed approach consists of three parts: the ASTA

layout, in-place marshaling from AoS and DA to ASTA,
and the design of a dynamic runtime marshaling library for
OpenCL.

4.1 The ASTA Layout
Given an AoS layout, we can convert T adjacent structure

instances into a mini SoA. We call this scheme Array-of-
Structure-of-Tiled-Array (ASTA). In Listing 1, the structure
type in Lines 15–18 and kernel ASTA shown in line 20 is an
example of ASTA. Note the struct foo_2 is derived from
struct foo by merging 4 instances of struct foo and gen-
erate a “mini SoA” out of each merged section. E↵ectively,
each scalar member in struct foo is expanded to a short
vector in struct foo_2. We call the length of this short
vector (T) the coarsening factor of the ASTA type. The
short vector is called a tile. Usually the coarsening factor is
at least the number of work-items participating in memory
coalescing. ASTA improves memory coalescing while keep-
ing the field members of the same original instance more
closely stored, and is thus potentially useful to reduce mem-
ory channel partition camping due to large strides [16, 15].

The AoS layout can be considered as an M ⇥ S array
where S is a small integer in row-major layout. In this way,
DA is S ⇥M . Similarly, ASTA is similar to M 0 ⇥ S ⇥ T
where M = M 0T .

At a high level, marshaling from AoS to ASTA is similar
to transpose M 0 instances of small T ⇥S matrices. Whereas
marshaling from DA to ASTA is similar to transpose a ma-
trix of S ⇥M 0 of T -sized tiles.

We propose three algorithms here to facilitate e�cient
in-place marshaling. For AoS to ASTA, when T ⇥ S is
small enough, a barrier-synchronization-based approach is
proposed. When T ⇥ S is larger (but still not as large as
a full matrix transposition), a fast cycle-following approach
that exploits locality within an ASTA instance is proposed.
For DA to ASTA, we exploit the fact that the T can cover
one or more cache lines, so there is good locality when mov-
ing tiles.

4.2 In-place Conversion from AoS

The green line is the time for a kernel that accesses an array that is stored as discrete sub-arrays, that is,
all i-th members of all array elements are stored in the i-th sub-array, in consecutive memory locations. The
red line is the kernel time with an array that contains members of the same structure in consecutive memory
locations.

• Why does the red line increase linearly? Why not the green line?

• How can the effect on the red line be alleviated?

• How would both kernels perform on a single-core CPU with one level of cache? And on a dual-core
CPU with individual caches? And on a dual-core CPU with a shared cache?

4/15

4 SIMD Processing [50 points]

Suppose we want to design a SIMD engine that can support a vector length of 16. We have two options: a
traditional vector processor and a traditional array processor.

Which one is more costly in terms of chip area (circle one)?

The traditional vector processor The traditional array processor Neither

Explain:

Assuming the latency of an addition operation is five cycles in both processors, how long will a VADD (vector
add) instruction take in each of the processors (assume that the adder can be fully pipelined and is the same
for both processors)?

For a vector length of 1:

The traditional vector processor:

The traditional array processor:

For a vector length of 4:

The traditional vector processor:

The traditional array processor:

For a vector length of 16:

The traditional vector processor:

The traditional array processor:

5/15

5 Fine-Grained Multithreading [100 points]

Consider a design “Machine I” with five pipeline stages: fetch, decode, execute, memory and writeback.
Each stage takes 1 cycle. The instruction and data caches have 100% hit rates (i.e., there is never a stall for
a cache miss). Branch directions and targets are resolved in the execute stage. The pipeline stalls when a
branch is fetched, until the branch is resolved. Dependency check logic is implemented in the decode stage
to detect flow dependences. The pipeline does not have any forwarding paths, so it must stall on detection
of a flow dependence.

In order to avoid these stalls, we will consider modifying Machine I to use fine-grained multithreading.

(a) In the five stage pipeline of Machine I shown below, clearly show what blocks you would need to add in
each stage of the pipeline, to implement fine-grained multithreading. You can replicate any of the blocks
and add muxes. You don’t need to implement the mux control logic (although provide an intuitive name
for the mux control signal, when applicable).

Register

 File
ALU

Address

Data

Cache

Data

Address

Instruction

Instruction

Cache

PC

Fetch Decode Execute Mem Writeback

(b) The machine’s designer first focuses on the branch stalls, and decides to use fine-grained multithreading
to keep the pipeline busy no matter how many branch stalls occur. What is the minimum number of
threads required to achieve this?

Why?

(c) The machine’s designer now decides to eliminate dependency-check logic and remove the need for flow-
dependence stalls (while still avoiding branch stalls). How many threads are needed to ensure that no
flow dependence ever occurs in the pipeline?

Why?

A rival designer is impressed by the throughput improvements and the reduction in complexity that
FGMT brought to Machine I. This designer decides to implement FGMT on another machine, Machine
II. Machine II is a pipelined machine with the following stages.

6/15

Fetch 1 stage
Decode 1 stage
Execute 8 stages (branch direction/target are resolved in the first execute stage)
Memory 2 stages

Writeback 1 stage

Assume everything else in Machine II is the same as in Machine I.

(d) Is the number of threads required to eliminate branch-related stalls in Machine II the same as in Machine
I?

YES NO (Circle one)

If yes, why?

If no, how many threads are required?

(e) What is the minimum CPI (i.e., maximum performance) of each thread in Machine II when this mini-
mum number of threads is used?

(f) Now consider flow-dependence stalls. Does Machine II require the same minimum number of threads as
Machine I to avoid the need for flow-dependence stalls?

YES NO (Circle one)

If yes, why?

If no, how many threads are required?

(g) What is the minimum CPI of each thread when this number of threads (to cover flow-dependence stalls)
is used?

(h) After implementing fine grained multithreading, the designer of Machine II optimizes the design and
compares the pipeline throughput of the original Machine II (without FGMT) and the modified Ma-
chine II (with FGMT) both machines operating at their maximum possible frequency, for several code
sequences. On a particular sequence that has no flow dependences, the designer is surprised to see that
the new Machine II (with FGMT) has lower overall throughput (number of instructions retired by the
pipeline per second) than the old Machine II (with no FGMT). Why could this be? Explain concretely.

7/15

6 Multithreading [50 points]

Suppose your friend designed the following fine-grained multithreaded machine:

• The pipeline has 22 stages and is 1 instruction wide.

• Branches are resolved at the end of the 18th stage and there is a 1 cycle delay after that to communicate
the branch target to the fetch stage.

• The data cache is accessed during stage 20. On a hit, the thread does not stall. On a miss, the thread
stalls for 100 cycles, fixed. The cache is non-blocking and has space to accommodate 16 outstanding
requests

• The number of hardware contexts is 200

Assuming that there are always enough threads present, answer the following questions:

(a) Can the pipeline always be kept full and non-stalling? Why or why not? (Hint: think about the worst
case execution characteristics)

Circle one: YES NO

(b) Can the pipeline always be kept full and non-stalling if all accesses hit in the cache? Why or why not?
Circle one: YES NO

(c) Assume that all accesses hit in the cache and your friend wants to keep the pipeline always full and
non-stalling. How would you adjust the hardware resources (if necessary) to satisfy this while minimizing
hardware cost? You cannot change the latencies provided above. Be comprehensive and specific with
numerical answers. If nothing is necessary, justify why this is the case.

(d) Assume that all accesses miss in the cache and your friend wants to keep the pipeline always full and
non-stalling. How would you adjust the hardware resources (if necessary) to satisfy this while minimizing
hardware cost? You cannot change the latencies provided above. Be comprehensive and specific with
numerical answers. If nothing is necessary, justify why this is the case.

8/15

7 Branch Prediction [100 points]

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */

val = array[i]; /* TAKEN PATH for B1 */

if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */

}

if (val % 3 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */

}

if (val % 6 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */

}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

Now assume that the above piece of code is running on a processor that has a global branch predictor. The
global branch predictor has the following characteristics.

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–1023)

• Before the code is run, all PHTEs are initially set to 0.

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

9/15

(d) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the
shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE? Then
consider...

Show your work.

1 0

GHR

O
ld
e
r

Y
o
u
n
g
e
r

PHT

TT

NN

TN

NT

1
st
PHTE

2
nd
PHTE

3
rd
PHTE

4
th
PHTE

10/15

8 Branch Prediction [100 points]

Suppose we have the following loop executing on a pipelined MIPS machine.

DOIT SW R1, 0(R6)

ADDI R6, R6, 2

AND R3, R1, R2

BEQ R3, R0 EVEN

ADDI R1, R1, 3

ADDI R5, R5, -1

BGTZ R5 DOIT

EVEN ADDI R1, R1, 1

ADDI R7, R7, -1

BGTZ R7 DOIT

Assume that before the loop starts, the registers have the following decimal values stored in them:

Register Value

R0 0
R1 0
R2 1
R3 0
R4 0
R5 5
R6 4000
R7 5

The fetch stage takes one cycle, the decode stage also takes one cycle, the execute stage takes a variable
number of cycles depending on the type of instruction (see below), and the store stage takes one cycle.

All execution units (including the load/store unit) are fully pipelined and the following instructions that use
these units take the indicated number of cycles:

Instruction Number of Cycles
SW 3

ADDI 2
AND 3

BEQ/BGTZ 1

Data forwarding is used wherever possible. Instructions that are dependent on the previous instructions
can make use of the results produced right after the previous instruction finishes the execute stage.

The target instruction after a branch can be fetched when the branch instruction is in ST stage. For example,
the execution of an AND instruction followed by a BEQ would look like:

ADD F | D | E1 | E2 | E3 | ST

BEQ F | D | - | - | E1 | ST

TARGET F | D

A scoreboarding mechanism is used.

11/15

Answer the following questions:

1. How many cycles does the above loop take to execute if no branch prediction is used (the pipeline
stalls on fetching a branch instruction, until it is resolved)?

2. How many cycles does the above loop take to execute if all branches are predicted with 100% accuracy?

3. How many cycles does the above loop take to execute if a static BTFN (backward taken-forward not
taken) branch prediction scheme is used to predict branch directions? What is the overall branch
prediction accuracy? What is the prediction accuracy for each branch?

12/15

9 Interference in Two-Level Branch Predictors [50 points]

Assume a two-level global predictor with a global history register and a single pattern history table shared
by all branches (call this “predictor A”).

1. We call the notion of different branches mapping to the same locations in a branch predictor ”branch
interference”. Where do different branches interfere with each other in these structures?

2. Compared to a two-level global predictor with a global history register and a separate pattern history
table for each branch (call this “predictor B”),

(a) When does predictor A yield lower prediction accuracy than predictor B? Explain. Give a concrete
example. If you wish, you can write source code to demonstrate a case where predictor A has
lower accuracy than predictor B.

(b) Could predictor A yield higher prediction accuracy than predictor B? Explain how. Give a
concrete example. If you wish, you can write source code to demonstrate this case.

(c) Is there a case where branch interference in predictor structures does not impact prediction accu-
racy? Explain. Give a concrete example. If you wish, you can write source code to demonstrate
this case as well.

13/15

10 Branch Prediction vs Predication [100 points]

Consider two machines A and B with 15-stage pipelines with the following stages.

• Fetch (one stage)

• Decode (eight stages)

• Execute (five stages).

• Write-back (one stage).

Both machines do full data forwarding on flow dependences. Flow dependences are detected in the last stage
of decode and instructions are stalled in the last stage of decode on detection of a flow dependence.

Machine A has a branch predictor that has a prediction accuracy of P%. The branch direction/target is
resolved in the last stage of execute.

Machine B employs predicated execution, similar to what we saw in lecture.

1. Consider the following code segment executing on Machine A:

add r3 ← r1, r2

sub r5 ← r6, r7

beq r3, r5, X

addi r10 ← r1, 5

add r12 ← r7, r2

add r1 ← r11, r9

X: addi r15 ← r2, 10

.....

When converted to predicated code on machine B, it looks like this:

add r3 ← r1, r2

sub r5 ← r6, r7

cmp r3, r5

addi.ne r10 ← r1, 5

add.ne r12 ← r7, r2

add.ne r14 ← r11, r9

addi r15 ← r2, 10

.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 40% of the time
and not taken 60% of the time. On an average, for what range of P would you expect machine A to
have a higher instruction throughput than machine B?

2. Consider another code segment executing on Machine A:

add r3 ← r1, r2

sub r5 ← r6, r7

beq r3, r5, X

addi r10 ← r1, 5

add r12 ← r10, r2

add r14 ← r12, r9

X: addi r15 ← r14, 10

.....

14/15

When converted to predicated code on machine B, it looks like this:

add r3 ← r1, r2

sub r5 ← r6, r7

cmp r3, r5

addi.ne r10 ← r1, 5

add.ne r12 ← r10, r2

add.ne r14 ← r12, r9

addi r15 ← r14, 10

.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 40% of the time
and not taken 60% of the time. On an average, for what range of P would you expect machine A to
have a higher instruction throughput than machine B?

15/15

	Critical Paper Reviews [150 points]
	GPUs and SIMD [100 points]
	AoS vs. SoA on GPU [50 points]
	 SIMD Processing [50 points]
	Fine-Grained Multithreading [100 points]
	Multithreading [50 points]
	Branch Prediction [100 points]
	Branch Prediction [100 points]
	Interference in Two-Level Branch Predictors [50 points]
	Branch Prediction vs Predication [100 points]

