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• Motivation: DRAM refresh energy/performance overhead is high

• Problem: DRAM retention failure profiling is hard 

– Complicated by cells changing retention times dynamically

– Current profiling methods are unreliable or too slow

• Goals: 

1. Thoroughly analyze tradeoffs in retention failure profiling

2. Develop a fast and reliable profiling mechanism

• Key Contributions:

1. First detailed characterization of 368 LPDDR4 DRAM chips

2. Reach profiling: Profile at an longer refresh interval and/or 
higher temperature, where cells are more likely to fail

• Evaluation:

– 2.5x faster profiling with 99% coverage and 50% false positives

– Enables longer refresh intervals that were previously unreasonable

Executive Summary
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1. DRAM Refresh Background

2. Failure Profiling Challenges

4. LPDDR4 Characterization

5. Reach Profiling

3. Current Approaches

REAPER Outline

6. End-to-end Evaluation
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DRAM Cell Leakage
DRAM encodes information in leaky capacitors
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DRAM Cell Retention

Retention failure – when leakage corrupts stored data
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DRAM Cell Retention

Retention failure – when leakage corrupts stored data
Retention time – how long a cell holds its value
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DRAM refresh periodically restores leaked charge

• Every cell every refresh interval (default = 64ms)
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DRAM Refresh
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• Every cell every refresh interval (default = 64ms)

• Significant system performance/energy overhead
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Decreasing Refresh Overhead
Most cells do not fail at a longer refresh interval
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Retention Failure Mitigation
• Prior works handle these few failures to allow 

reliable operation at a longer refresh interval
- RAIDR [Liu+, ISCA’12]

- SECRET [Lin+, ICCD’12]

- ArchShield [Nair+, ISCA’13]

- DTail [Cui+, SC’14]

- AVATAR [Qureshi+, DSN’15]

- …
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Retention Failure Mitigation
• Prior works handle these few failures to allow 

reliable operation at a longer refresh interval
- RAIDR [Liu+, ISCA’12]

- SECRET [Lin+, ICCD’12]

- ArchShield [Nair+, ISCA’13]

- DTail [Cui+, SC’14]

- AVATAR [Qureshi+, DSN’15]

- …

• However, they assume they can perfectly identify 
the set of failing cells to handle

Need a fast and reliable
profiling mechanism 

to find the set of retention failures!
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4. LPDDR4 Characterization

5. Reach Profiling

3. Current Approaches
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Refresh Counter
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Idealized DRAM Refresh Operation

- Here, all cells have identical retention times
- All cells require the same short refresh interval

However, real DRAM cells
exhibit variation in retention times
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Sources of Retention Time Variation

•Process/voltage/temperature

•Data pattern dependence (DPD)
- Retention times change with data in cells/neighbors

- e.g., all 1’s vs. all 0’s

•Variable retention time (VRT)
- Retention time changes randomly (unpredictably)

- Due to a combination of various circuit effects
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3 retention failuresHow can we quickly and reliably
determine the failing cells

at an increased refresh interval T?

Long ShortModerate
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1. DRAM Refresh Background

2. Failure Profiling Challenges

4. Individual Bit Failures

5. Reach Profiling

3. Current Approaches

REAPER Outline

6. End-to-end Evaluation
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Key idea: leverage error-correcting codes 
(ECC) by periodically accessing all ECC 
words to continuously detect new failures 

(e.g., AVATAR [Qureshi+, DSN’15])
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Solution #1: ECC-Scrubbing

•Pros
- Simple: read accesses to all DRAM locations

- Low overhead: DRAM is available during scrubs

•Cons
- Unreliable: does not account for changes in data 

pattern, which changes cell retention times
• Can potentially miss failures between scrubs

Key idea: leverage error-correcting codes 
(ECC) by periodically accessing all ECC 
words to continuously detect new failures 

(e.g., AVATAR [Qureshi+, DSN’15])
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Key idea: for {N data patterns} * {M test rounds}: 

1) Write data pattern to DRAM

2) Wait for the refresh interval
3) Check for errors
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Solution #2: Brute-force Profiling

• Pros
- More reliable: finds a higher percentage of all 

possible failures using many different data patterns

• Cons
- Slow: many test rounds required for reliability

- High overhead: DRAM is unavailable for a long time

Key idea: for {N data patterns} * {M test rounds}: 

1) Write data pattern to DRAM

2) Wait for the refresh interval
3) Check for errors

(e.g., RAPID [Venkatesan+, HPCA’06], RAIDR [Liu+, ISCA’12])Our goals: 
1) study profiling tradeoffs 

2) develop a fast and reliable 
profiling mechanism
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•368 2y-nm LPDDR4 DRAM chips 
- 4Gb chip size

- From 3 major DRAM manufacturers

•Thermally controlled testing chamber
- Ambient temperature range: {40°C – 55°C} ± 0.25°C

- DRAM temperature is held at 15°C above ambient

Experimental Infrastructure
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4. Variable Retention Time

5. Individual Cell Characterization

LPDDR4 Studies
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LPDDR4 Studies

1. Temperature

2. Data Pattern Dependence

3. Retention Time Distributions

4. Variable Retention Time

5. Individual Cell Characterization



59/159

Representative chip from Vendor B, 2048ms, 45°C

#
 N

ew
 F

ai
li

n
g 

C
el

ls

Time (days)

Long-term Continuous Profiling



60/159

• New failing cells continue to appear over time
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• New failing cells continue to appear over time
- Attributed to variable retention time (VRT)

• The set of failing cells changes over time

Representative chip from Vendor B, 2048ms, 45°C
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Error correction codes (ECC)
and online profiling are necessary

to manage new failing cells

Long-term Continuous Profiling
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easy 
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at a longer refresh interval
OR a higher temperature
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Reach Profiling
Key idea: profile at a longer refresh interval 
and/or a higher temperature
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Reach Profiling
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•Pros
- Fast + Reliable: reach profiling searches 

for cells where they are most likely to fail

Reach Profiling
Key idea: profile at a longer refresh interval 
and/or a higher temperature
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•Pros
- Fast + Reliable: reach profiling searches 

for cells where they are most likely to fail

•Cons
- False Positives: profiler may identify 

cells that fail under profiling conditions, 
but not under operating conditions

Reach Profiling
Key idea: profile at a longer refresh interval 
and/or a higher temperature
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Towards an Implementation
Reach profiling is a general methodology

3 key questions for an implementation:

What are desirable profiling conditions?

How often should the system profile?

What information does the profiler need?
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Three Key Profiling Metrics

1. Runtime: how long profiling takes

2. Coverage: portion of all possible 
failures discovered by profiling

3. False positives: number of cells 
observed to fail during profiling but 
never during actual operation

We explore how these three metrics
change under many different

profiling conditions
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Q1: Desirable Profiling Conditions

• Similar trends across chips and vendors!

•For 99% coverage, we find on average:
- 2.5x speedup by profiling at +250ms at a cost 

of a 50% false positive rate
- >3.5x speedup by profiling at + >500ms at a 

cost of a >75% false positive rate

•More examples and detail in the paper
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Q2: How Often to Profile
•Estimation using a probabilistic model

- Can use our empirical data for estimates
- Details are in the paper

• e.g., Need to reprofile every 2.3 days for a:
- 2GB ECC DRAM
- 1024ms refresh interval at 45°C
- Profiling with 99% coverage
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Q3: Necessary Information
•The cost of handling identified failures

- Determines how many errors we can mitigate
- e.g., error-correction codes (ECC)

•Empirical per-chip characterization data
- Used to reliably estimate profiling parameters
- Details are in the paper
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1. DRAM Refresh Background

2. Failure Profiling Challenges

4. LPDDR4 Characterization

5. Reach Profiling

3. Current Approaches

REAPER Outline

6. End-to-end Evaluation
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• Simple implementation of reach profiling
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Our Mechanism: REAPER
• Simple implementation of reach profiling

•Pessimistic assumptions
- Whole system pauses during profiling 

• Firmware executes profiling routine

• Exclusive DRAM access

- Only manipulates refresh interval, not temperature
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Evaluation Methodology
• Simulators

- Performance: Ramulator [Kim+, CAL’15]

- Energy: DRAMPower [Chandrasekar+, DSD’11]

•Configuration
- 4-core (4GHz), 8MB LLC

- LPDDR4-3200, 4 channels, 1 rank/channel

•Workloads
- 20 random 4-core benchmark mixes

- SPEC CPU2006 benchmark suite
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Simulated End-to-end Performance
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Simulated End-to-end Performance

Reprofile
often

Reprofile
rarely

refresh interval (ms)

On average, REAPER enables:
16.3% system performance improvement

36.4% DRAM power reduction

REAPER enables longer refresh intervals, 
which are unreasonable 

using brute-force profiling
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Other Analyses in the Paper
• Detailed LPDDR4 characterization data

- Temperature dependence effects

- Retention time distributions

- Data pattern dependence

- Variable retention time

- Individual cell failure distributions

• Profiling tradeoff space characterization
- Runtime, coverage, and false positive rate

- Temperature and refresh interval

• Probabilistic model for tolerable failure rates

• Detailed results for end-to-end evaluations
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Motivation: DRAM refresh performance/energy overhead is high

Problem: Current retention failure profiling is unreliable or slow

Goals: 

1. Thoroughly analyze profiling tradeoffs

2. Develop a fast and reliable profiling mechanism

Key Contributions:
1. First detailed characterization of 368 LPDDR4 DRAM chips

2. Reach profiler: Profile at a longer refresh interval and/or higher 
temperature, where cells are more likely to fail

Evaluation:
•2.5x faster profiling with 99% coverage and 50% false positives

•REAPER enables 16.3% system performance improvement and 36.4% 
DRAM power reduction

•Enables longer refresh intervals that were previously unreasonable

Summary
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The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures

via Profiling at Aggressive Conditions

Minesh Patel Jeremie S. Kim

Onur Mutlu
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Temperature Relationship
•Well-fitting exponential relationship:

•E.g., 10°C ~ 10x more failures 
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Retention Failures @ 45°C
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VRT Failure Accumulation Rate
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Individual Cell Failure Probabilities

• Single representative chip of Vendor B at 40° C

• Refresh intervals ranging from 64ms to 4096ms
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Individual Cell Failure Distributions



130/159

Single-cell Failures With Temperature

• Single representative chip of Vendor B

• {mean, std} for cells between 64ms and 4096ms
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Example experimental analysis

{+125ms, +1.0C}
5x speedup

Runtime for 95% coverage of {2048ms, 50C}
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Example experimental analysis

{+125ms, +1.0C}
5x speedup

Runtime for 95% coverage of {2048ms, 50C}

{+0ms, +0C}
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Q2: How often must we re-profile?
Raw Bit Error Rate (RBER) – ratio of actual failing 
DRAM cells

Uncorrectable Bit Error Rate (UBER) – error rate 
observed by the system

We can compute the maximum tolerable RBER for a given 
UBER and ECC strength

No ECC SECDED ECC-2

Max RBER for UBER = 10-15 1e-15 3.8e-9 6.9e-7

Equivalent # bits in 2GB DRAM < 1 65 12,000

Without ECC, we can’t 
tolerate even one failure!
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Probabilistic Failure Model
k = ECC strength (e.g., SECDED = 1)

w = ECC word size (e.g., SECDED 64/72 word = 72 bits)
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Probabilistic Failure Model
k = ECC strength (e.g., SECDED = 1)

w = ECC word size (e.g., SECDED 64/72 word = 72 bits)

Binomial distribution of errors in an n-bit word:
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Allowable Errors
•Tolerable RBER and tolerable number of 

bit errors for UBER = 10-15 across different 
ECC strengths for selected DRAM sizes
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Tradeoff Space Exploration
• We explore:

- 368 LPDDR4 chips

- Refresh intervals from 64ms – 4096ms 

- Temperatures from 40C – 55C
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Evaluation Configuration Details
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Profiling Performance Overhead
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Profiling Performance Overhead

REAPER significantly improves
profiling performance

for any profiling interval/DRAM size
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Profiling Energy Overhead
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End-to-end Performance/Energy
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Evaluation Caveat
•Profiling tradeoff space is enormous

- Temperature
- Refresh interval
- Desired coverage
- etc.
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Evaluation Caveat
•Profiling tradeoff space is enormous

- Temperature
- Refresh interval
- Desired coverage
- etc.

•Results depend on specific choices
- We’re making worst-case assumptions
- Other choices could be even better
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With a Mitigation Mechanism

- RAIDR [Liu+, ISCA’12]

- SECRET [Lin+, ICCD’12]

- ArchShield [Nair+, ISCA’13]

- DTail [Cui+, SC’14]

- AVATAR [Qureshi+, DSN’15]
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With a Mitigation Mechanism
•REAPER can be combined with most 

mitigation mechanisms
- RAIDR [Liu+, ISCA’12]

- SECRET [Lin+, ICCD’12]

- ArchShield [Nair+, ISCA’13]

- DTail [Cui+, SC’14]

- AVATAR [Qureshi+, DSN’15]

- …

•REAPER periodically profiles, and 
mitigation takes care of discovered failures
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We explore in detail the effect of
different reach conditions on

1) Runtime
2) Coverage

3) False positives
for different target conditions
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A Complex Tradeoff Space
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A Complex Tradeoff Space

refresh interval
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Profile 
here?

Target
Faster

More reliable
More false positives

Profile 
here?

Slower
Less reliable

Fewer false positives


