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Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

a Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Recall: More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Enerqgy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Recall: End-to-End System Design

- How to communicate
Application occurrences of bulk
copy/initialization across
: ?

Operating System layers:

How to ensure cache
coherence?

How to maximize latency and

Microarchitecture :
energy savings?

DRAM (RowClone) How to handle data reuse?



Memory as an Accelerator
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In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement



In-DRAM AND/OR: Triple Row Activation
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SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 3




In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B > C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C

SAFARI ?
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
[EEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

d-wordline

dual-contact
cell (DCC)

n-wordline | Idea :

T ’ Feed the
amplifir A\ /7 negated value
in the sense amplifier
into a special row

|_ IE
bitline

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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In-DRAM NOT Operation
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Figure 5: Bitwise NOT using a dual contact capacitor
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Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: In-DRAM Bitwise Operations
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Figure 9: Throughput of bitwise operations on various systems.

SAFARI =



Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy ~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (}) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (/) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Ambit vs. DDR3: Performance and
Energy

Performance Improvement
B Energy Reduction
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Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 1)5



Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SAFAR’ [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age<18 18<age<25 25<age<60 age>60

SAFARI



Performance: Bitmap Index on Ambit
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Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

>5.4-6.6X Performance Improvement

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

16 24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
[EEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand”®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

'Microsoft Research India *NVIDIA Research “Intel *ETH Ziirich °Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

More on In-DRAM Bulk Bitwise Execution

= Vivek Seshadri and Onur Mutluy,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich

visesha@microsoft.com onur .mutlu@inf.ethz.ch
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Challenge: Intelligent Memory Device

Does memory
have to be
dumb?

SAFARI



Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



A Detour

on the Review Process

25




Ambit Sounds Good, No?

S ——— Review from ISCA 2016

The paper proposes to extend DRAM to include bulk, bit-wise
logical
operations directly between rows within the DRAM.

Strengths
- Very clever/novel idea.

- Great potential speedup and efficiency gains.

IVEedRKIE

- Probably won't ever be built. Not practical to assume DRAM
manufacturers with change DRAM in this way.

SAFARI 26




Another Review

Another Review from ISCA 2016

Strengths

The proposed mechanisms effectively exploit the operation of
the DRAM to perform efficient bitwise operations across entire
rows of the DRAM.

Weaknesses
This requires a modification to the DRAM that will only help this

type of bitwise operation. It seems unlikely that something like
that will be adopted.

SAFARI 27



Yet Another Review

Yet Another Review from ISCA 2016

Weaknesses

The core novelty of Buddy RAM is almost all circuits-related
(by exploiting sense amps). | do not find architectural

innovation even though the circuits technique benefits
architecturally by mitigating memory bandwidth and relieving
cache resources within a subarray. The only related part is the

new ISA support for bitwise operations at DRAM side and its
induced issue on cache coherence.

SAFARI 28



The Reviewer Accountability Problem

AcknowleXgments

We thank the reviewers of ISCA 2016/2017, MICRO
2016/2017, and HPCA 2017 for their valuable comments. We

SAFARI 2



We Have a Mindset Issue...

There are many other similar examples from reviews...
o For many other papers...

And, we are not even talking about JEDEC vyet...
How do we fix the mindset problem?

By doing more research, education, implementation in
alternative processing paradigms

We need to work on enabling the better future...

SAFARI 3



Aside: A Recommended Book

WILEY PROFESSIONAL COMPUTING

COMPUTER
SYSTEMS

ANALYSIS

Techniques for
Experimental Design,
Measurement, Simulation,
and Modeling

Raj Jain

SAFARI

THE ART OF

PERFORMANCE

Raj Jain, “The Art of
Computer Systems

Performance Analysis,”
Wiley, 1991.

31



pECISION MAKER'S GAMES

Evenifthe performance analysis is correctly done and presented, it may not be
enough 10 persuade your audience—the decision makers—to follow your rec-
o mmendations- The.llst shown in Box 10.2 is a compilation of reasons for re-
ction heard at various performance analysis presentations. You can use the
jist by presenting it immediately and pointing out that the reason for rejection
is not NEW and that the analysis deserves more consideration. Also, the list is
nelpful in getting the competing proposals rejected!

There is no clear end of an analysis. Any analysis can be rejected simply|

Ested in Box 10.2. The second most common reason for rejection of an anal-
ysis and for endless debate is the workload. Since workloads are always based
on the past measurements, their applicability to the current or future environ-
ment can always be questioned. Actually workload is one of the four areas of
giscussion that lead a performance presentation into an endless debate. These
«rat holes” and their relative sizes in terms of time consumed are shown in
Figure 10.26. Presenting this cartoon at the beginning of a presentation helps
to avoid these areas.

Performance Analysis Rat Holes

Workload Metrics Configuration

|

FIGURE 10.26 [Four issues in performance presen
less discussion.

tations that commonly lead to end-

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.
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I ter understanding of the workload.

a bet
2. You need ce oniy for long I/O’s, packets, j

" rforman .
3 ;;Qm:ﬁg:ﬁfﬁc 1/0’s, packets, jobs, and files are shory, " fley

ly for short 1/O’s, packets, j
i Droves performance on ; jobs,
4' ll;ultn:x";lo cares for the performance of short I/O's, packey mm%

files; its the long ones that impact the sy.'stem. ag | ‘
It needs too much memory/CPU/bandwidth and memo,y,CPUM ]

5.
width isn’t free. 5
6. It only saves us memory/CPU/bandwidth and m"'“‘°’Y/CPU/hm_ -

width is cheap. g Wi
There is no point in making the networks (similarly, CPUS/dish/

faster; our CPUs/disks (any component other than the one beingj,:; |
cussed) aren’t fast enough to use them. 1

8. It improves the performance by a factor of x, but it doesp’t really
matter at the user level because everything else is 5o slow.

9. It is going to increase the complexity and cost.

10. Let us keep it simple stupid (and your idea is not stupid).

11. It is not simple. (Simplicity is in the eyes of the beholder.)

12. It requires too much state.

13. Nobody has ever done that before. (You have a new idea.)

14. It is not going to raise the price of our stock by even an eighth.
(Nothing ever does, except rumors.)

15. This will violate the IEEE, ANSI, CCITT, or ISO standard.

16. It may violate some future standard.

17. The standard says nothing about this and so it must not be impor-
tant.

18. Our competitors don’t do it. If it was a good idea, they would have
done it.

19. 9ur competition does it this way and you don’t make money by copy-
ing others.

20. It' will introduce randomness into the system and make debugginé
difficult.

20 It, is too deterministic; it may lead the system into a cycle.

22. It’s not interoperable.

23. This impacts hardware.

24. That's beyond today’s technology.

'!M v
ccepting the Results Y
Sox 103 Reasous for Not ASCRERE 2 m '
eeds more analysis. 4
'}
4

it

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.

26. Why change—it’s working OK
———___\ :




Suggestion to Community

We Need to Fix the
Reviewer Accountability
Problem

SAFARI]



Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI]



Takeaway

Research Community
Needs

Accountable Reviewers

SAFARI]



Suggestions to Reviewers

= Be fair; you do not know it all
= Be open-minded; you do not know it all

= Be accepting of diverse research methods: there is no
single way of doing research

= Be constructive, not destructive
= Do not have double standards...

Do not block or delay scientific progress for non-reasons

SAFARI]



RowClone & Bitwise Ops 1n Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/microl19-qgao.pdf 38



https://parallel.princeton.edu/papers/micro19-gao.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou*?, Jishen Zhao®, Yu Lu*, and Yuan Xie*
University of California, Santa Barbara®, Hewlett Packard Labs?

University of California, Santa Cruz?, Qualcomm Inc.%, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’

SAFARI htips://cseweb.ucsd.edu/~jzhaoffiles/Pinatubo-dac2016.pdf 39



https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Other Examples of
“Why Change? It’s Working OKI!”




Mindset Issues Are Everywhere

They limit progress
Examples of Bandwidth Waste in Real Life
Examples of Latency and Queueing Delays in Real Life

Example of Where to Build a Bridge on the Road

SAFARI 4



Another Example




Initial RowHammer Reviews

Disturbance Errors in DRAM: Demonstration,
Characterization, and Prevention

Rejected (R2) ,:_k- 863kB Friday 31 May 2013 2:00:53pm PDT

|
b9bf06021da54cddf4cd0b3565558a181868b972

You are an author of this paper.

4+ ABSTRACT 4+ AUTHORS

OveMer|Nov WriQua RevExp
Review #66A
Review #668B
Review #66C
Review #66D
Review #66E

Review #66F

P hANWLA A
hWOU S
WWhh,WwWah
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Missing the Point peyiews from Micro 2013

PAPER WEAKNESSES
his is an excellent test methodology paper, butjthere is no
miCro-architectural or architectural content.

PAPER WEAKNESSES

- Wheresz NE NOW (i Nance mav hannen in DRAM Arra
authorsjdon't show it can be an issue in realistic DRAM usage

scenaric
- Lacks architectural/microarchitectural impact on the DRAM

disturbance analysis

PAPER WEAKNESSES

he mechanism investigated by the authors is one of many well
nown disturb mechanisms. The paper does not discuss the root
causes to sufricient depth and the importance of this

mechanism compared to others. Overall the length of the
sections restating known information is much too long in
relation to new work.



Experimental DRAM Testing Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 15
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



Tested
DRAM
Modules

(129 total)

SAFARI

Date* Timing¥ Organization Chip Victims-per-Module Rl (ms)
Manufacturer Module
(yy-ww) Freq (MT]s) tgcns) Size (GB) Chips Size (Gb)*  Pins DieVersion® Average  Minimum Maximum — Min
A 10-08 1066 50625 0S5 4 1 x16 B 0 0 0 -
A, 10-20 1066  50.625 1 8 1 *8 F 0 0 0 -
As 10-20 1066 50625 0S5 4 1 x16 B 0 0 0 -
Asq 11-24 1066 49.125 1 4 2 %16 D 7.8x 10" 52x10' 1L.0x10° 213
B 11-26 1066  49.125 1 4 2 %16 D 24x10° 54x 10" 4.4x10° 164
Aige  11-50 1066 49.125 1 4 2 %16 D 8.8x 10" L7x10' 1.6x10° 26.2
A Ay 1222 1600 50.625 1 4 2 x16 D 9.5 9 Lox 10" 344
Ag 1226 1600 49.125 2 8 2 %8 M 1.2x10° 3.7x10' 20x10° 213
e Agap 1240 1600 48125 2 8 B x8 K 86x10° 7.0x10° LOx107 8.2
WS AL 1302 1600 48125 2 8 2 %8 - L8 10° LOx10° 3.5x10° 115
Ay 1314 1600 48125 2 8 2 %8 - 40x 10" 1.9x 10" 6.1x10' 213
Ay 1320 1600 48125 2 8 2 %8 K L7x10° L4x10° 20x10° 9.8
Ay 1328 1600 48125 2 8 2 x8 K 5.7%10* 54x10* 6.0x10° 164
Ay 14-04 1600 49.125 2 8 2 %8 - 27x10° 27x10° 27x10°  18.0
Apys 1404 1600 48.125 2 8 2 x8 K 0.5 0 1 62.3
B, 08-49 1066  50.625 1 8 1 x8 D 0 0 0 -
B, 09-49 1066  50.625 1 8 1 x8 £ 0 0 0 -
B, 10-19 1066  50.625 1 8 1 x8 F 0 0 0 -
B, 10-31 1333 49.125 2 8 2 x8 G 0 0 0 -
B, 11-13 1333 49.125 2 8 2 x8 c 0 0 0 -
B, 11-16 1066  50.625 1 8 1 x8 F 0 0 0 -
B, 11-19 1066  50.625 1 8 1 x8 F 0 0 0 -
B, 11-25 1333 49.125 2 8 2 x8 G 0 0 0 -
B B, 11-37 1333 49.125 2 8 2 *8 D L9x 105 1.9x 105 1.9x10° 1L5
By 11446 1333 49.125 2 8 2 %8 D 22x10° 1.5x 10° 2.7x 105 1L5
Totalof g - 11-49 1333 49125 2 8 2 X8 ¢ 0 0 0 -
54 Modules g - 1201 1866  47.125 2 8 2 x8 D 91x10° 9.1x10° 9.1x10°5 9.8
Bisy 1210 1866  47.125 2 8 2 x8 D 9.8x 10° 7.8x10° 1.2x10° 1L5
o 12-25 1600 48.125 2 8 2 x8 £ 7.4x 105 74x10° 7.4x10° 1LS
By, 1228 1600 48125 2 8 2 %8 £ 52x10° 1.9x10° 7.3x10°  1L5
By 1231 1600 48125 2 8 2 %8 2 4.0x10° 29x10° 5.5x10°  13.1
Bys  13-19 1600 48125 2 8 2 %8 £ LIx10° 7.4x10° L4x10° 147
5253 13-40 1333 49.125 2 8 2 %8 D 2.6x 10° 2.3x10* 29x10* 213
B., 14-07 1333 49.125 2 8 2 %8 D 7.5%10° 7.5x10° 7.5x 1070 262
c, 10-18 1333 49.125 2 8 2 x8 A 0 0 0 -
C, 10-20 1066  50.625 2 8 2 x8 A 0 0 0 -
C, 10-22 1066  50.625 2 8 2 x8 A 0 0 0 -
Cys 10-26 1333 49.125 2 8 2 x8 B 8.9x 10° 6.0x10° 1.2x10° 29.5
Cq 10-43 1333 49.125 1 8 1 x8 T 0 0 0 -
o 10-51 1333 49.125 2 8 2 x8 B 4.0x 102 4.0x 107 4.0x 102 29.5
Cq 11-12 1333 46.25 2 8 2 x8 B 6.9x10° 6.9x10° 6.9x 107 213
C, 11-19 1333 46.25 2 8 2 x8 B 9.2x 102 9.2x 102 9.2x 102 27.9
Cp 11-31 1333 49.125 2 8 2 x8 B 3 3 3 39.3
C Cy, 11-42 1333 49.125 2 8 2 %8 B L6x 10° L6x 107 1.6x10° 393
Cp, 11-48 1600 48.125 2 8 2 x8 E TIx10* T.Ux10* 7.0x10°  19.7
Totalof  Cis 12-08 1333 49.125 2 8 2 x8 c 3.9x10* 39x10* 39x 10 213
32 Modules Ciars 12712 1333 49.125 2 8 2 x8 G 3.7x10* 2.1x10* 54x10* 213
Cis 1220 1600 48125 2 8 2 %8 c 35x10° 1.2x10° 7.0x10° 279
Cpo 12-23 1600 48.125 2 8 2 x8 £ LAX 105 14x 105 1.4x10° 18.0
Cyy 12-24 1600 48125 2 8 2 %8 c 6.5x 10* 6.5x 10* 6.5x10* 213
ES 12-26 1600 48.125 2 8 2 x8 E 23x 10* 23x 10° 23x10° 246
C,, 12-32 1600 48125 2 8 2 %8 c L7x 10* L7x10% 1.7x10° 229
Cpipy 1237 1600 48.125 2 8 2 x8 E 23x10* L1x10* 3.4x10* 18.0
Cosap 1241 1600 48125 2 8 2 %8 c 20x 10* L1x10* 3.2x10* 197
En 13-11 1600 48.125 2 8 2 x8 E 3.3x 105 33x10° 3.3x 105 147
Cs, 13-35 1600 48125 2 8 2 %8 c 3.7x10* 3.7x10* 37x 10 213

+ We report the manufacture date marked on the chip packages. which is more accurate than other dates that can be gleaned from a module.
+ We report timing constraints stored in the module's on-board ROM [33], which is read by the system BIOS to calibrate the memory controller.
} The maximum DRAM chip size supported by our testing platform is 2Gb.
§ We report DRAM die versions marked on the chip packages, which typically progress in the following manner: M - A =B —=(C - ---

Table 3. Sample population of 129 DDR3 DRAM modules, categorized by manufacturer and sorted by manufacture date



Fast Forward 6 Months




More Reviews... peviews from ISCA 2014

PAPER WEAKNESSES

1) The disturbance error (a.k.a coupling or cross-talk
noise induced error) is a known problem to the DRAM
circuit community.

2) What you demonstrated in this paper is so called
DRAM row hamjmering issue - you can even find a

Youtube video showing this! - http://www.youtube.com
/watch?v=i3-gQSnBcdo

insignificant.

PAPER WEAKNESSES
- Row Hammering appears to be well-known, and

solutions have already been proposed by industry to
address the issue.

- he paper only provides a qualitative analysis o
solutions to the problem. A more robust evaluation is
really needed to know whether the proposed solution is

S A Fa necessary.




Final RowHammer Reviews

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors

Accepted A 639kB 21 Nov 2013 10:53:11pm CST |
f039be2735313b39304ae1c6296523867a485610

You are an author of this paper.

OveMer Nov WriQua RevConAnd

Review #41A 8
Review #41B 7
Review #41C 6
2
3
7

Review #41D
Review #41E
Review #41F
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RowHammer: Hindsight & Impact (I)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an daccess to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P roject Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer: Hindsight & Impact (II)

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu$*  Jeremie S. Kim?*3
SETH Ziirich tCarnegie Mellon University
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed
by naysayers)




Suggestion to Researchers: Principle: Resilience

Be Resilient




Principle: Learning and Scholarship

Focus on
learning and scholarship

SAFARI



Principle: Learning and Scholarship

The quality of your work
defines your impact

SAFARI



Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 20



We Need to Think Ditterently
from the Past Approaches




Memory as an Accelerator

mini-CPU g GPU GPU :
&Py CPU core : |(throughput)] |(throughput)
core core : | core core 1

video

core :
CPU U |  feroan GPU I

. . : [(throughput)] [(throughput)] :
core core 'mc"i)%g‘g core core |

LLC

| |

Nemory Controller

Memory Bus

Memory

Specialized
compute-capability
In_ memory

Memory similar to a "conventional” accelerator



Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Logic

Other “True 3D" technologies
under development
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1&]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [28], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [¢]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 62



Another Example: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

csoo IR §

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128 . _ +420/0—

0 1 2 3 4
Speedup

63



Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank | | 0 T e e -

nk>»

w.edges

2. Little amount of computation
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Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped
Accelerator Interface

Noncacheable, Physically Addressed)

iy

iy iy

/]
’
| ’

I

Crossbar Network

\
<>

ot

+t +f

ot

In-Order Core

LP PF Buffer

MTP

Message Queue

49[|03U0) INVHA

[

E

SAFAR]I Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.




Communications via

Remote Function Calls

Message Queue




Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI
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Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;

Vault #1 Vault #2
- ——p
Y/ > &w
// | \
- \
«— \
\\
‘‘‘‘‘‘‘‘ — —
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Communications In Tesseract (I11)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y &w
1——-*"’,// I‘\
put \\\
S~ put
\____\\\H '-—-_.___________b W
put | ]
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

Store the incoming message to the message queue
3. Flush the message queue when itis full or a

synchronization barrier is reached

Local
Core

[

NI

&func, &w, value

NI

>

Remote
Core b
MQ o

put(w.id, function() { w.next_rank += value; })

SAFARI
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 HMC-000 HMC-MC Tesseract

| | | | | | | | | | | E
: I : : I : : I : : I : i y ¥ y ¥ y ¥ x i x y ¥ y ¥ y ¥ i 32
| ! | | ! | ! | | ! | i . . Tesseract
? ? i 7y 7y 7y 2 i 2 7y 7y 7y i Cores
A\ 4 \ 4 \ 4 A\ 4 : vy vy vy vy : \A 4 \A 4 \A 4 \A 4 :
8000 | 8000 | 8000 | 8000 | 128 128 | L
<> | > | In-Order [« In-Order | .. R N
4GHz 4GHz i 4GHz 4GHz i 2GHz 2GHz i
¥ v v v v
A 4 A 4 i \ 4 v i v \ 4 PR PR
128 128
8000 8000 | 8000 8000 | oo | | oo Td T
4GHz | | 4GHz |  4GHz  4GHz | | ey e || N
X X i i 'Y Y /Y S Y i # t t #
| wlr r wlr o wlr r Vlr | ! | ] > ]
I | | | | |
| | | | v 4 4 v ' v 4 4 4
| | | | | | | |
[ [ [ [
| | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR]I Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

>13X Performance Improvement

16
” On five graph processing algorithms 13.8x
1 11.6x
o 10 9.0x
>
D 8
(b}
Q.
Y 6
4
5 +56%  1+259%
, == I
DDR3-000 HMC-O000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFAR]I Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




_|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) ] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3x v

-
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)

SAFARI 7>



Tesseract Graph Processing System Energy

B Memory Layers [ Logic Layers [ Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM

+ Large system performance and energy benefits

+ Takes advantage of 3D stacking for an important workload
+ More general than just graph processing

Disadvantages
- Changes a lot in the system
- New programming model
- Specialized Tesseract cores for graph processing
- Cost
- Scalability limited by off-chip links or graph partitioning
SAFARI 77



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Chaoi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $0Oracle Labs TCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

a | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 7



3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,

'Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"

Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand! Saugata Ghose! Youngsok Kim?

Rachata Ausavarungnirun'  Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”"!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI



Four Important Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
© OVoulube © O YouTube
Vldeo Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Energy Cost of Data Movement

It key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI



Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI



Workload Analysis

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
© OVoulube © O YouTube
Vldeo Playback Video Capture
Google’s video codec Google’s video codec
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TensorFlow Mobile

Prediction
9

Inference
>

57.3% of the inference energy is spent on
data movement

v

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI



Packing

Matrix Packed Matrix
. Packing ;

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI



Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI



Normalized Energy

CPU-Only EPIM-Core OPIM-Acc

>

20

08 AW W OUOW W

c

Ll

-0 IN N N N

()

.E

Té o4 Nm- NN N

“ 07 |- -NU LN LN

2 0.2

0 _ N N _ N

Texture Color Com- Decom-
Tiling Blitting pression pression

Chrome Browser

N

Packing Quantizatior‘

TensorFlow
Mobile

Sub-Pixel Deblocking  Motion

Interpolation  Filter Estimation

Video Playback and
Capture

PIM core and PIM accelerator reduce
energy consumption on average by 49.1% and 55.4%
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Normalized Runtime

CPU-Only B PIM-Core O PIM-Acc
N

=
o

00

Normalized Runtime
Y

o

5 .

22222222

Y
Y

0 N N
Texture Color Comp- Decomp- | Sub-Pixel Deblocking  Motion |[TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback TensorFlow
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%



Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework
© O Yoilube Q D YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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How Chrome Renders a Web Page

HTML
Parser

HTML

Render Rasteriza- Composi-
Tree tion ting

SAFARI 14



Loading and Layouting Painting
|

Parsing : |
|
| assembles all layers
| into a final screen image
l '
HTML HTML : ;
Parser : : SS
| Render | Rasteriza- Composi-
Layout . .
1 Tree I tion ting
CSS €SS 1 P N
Parser 1 ] e I RS
1 ! ,” I R
I " ,, | !.\
. Y

paints those objects
calculates the

and generates the bitmaps

visual elements and
position of each object




Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:
1) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI
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SAFARI

Tab Switching
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What Happens During Tab Switching?

* Chrome employs a multi-process architecture

— Each tab is a separate process

| Chrome Process t
| _I —————

(L (L
1 €83 11 528
I_\_ I_\_
\ \

\——-

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch

— Load the new page

SAFARI 27



Memory Consumption

* Primary concerns during tab switching:
— How fast a new tab loads and becomes interactive

— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI 28



Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI
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Can We Use PIM to Mitigate the Cost?

CPU -Only time CPU + PIM

Memory IM
Swap out N pages Swap out N pages

o | Compress |

P
**
A d
‘

hlgh
data movement | No Off"Ch'P data
: movement

compression

\ "

Other tasks

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression
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Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic
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More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand' Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun'  Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel( uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-staCked memory size t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<« Logic layer

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl

Main GPU




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

'Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim*  Niladrish Ch::l‘[terjee]L Mike O’Connor’
Nandita Vij aykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt  Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University ~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich °Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Accelerating Runahead Execution

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu8, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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Several Questions in 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming
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PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur @cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

a

O 0O 0O O

e.g., _ pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

a

Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Host Processor Main Memory

© w.next_rank
= 64 bytes out | |

w.next_rank

Conventional Architecture
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Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

Main Memory

w.next_rank

8 bytes in e
O bytes out | |

In-Memory Addition
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Always Executing in Memory? Not A Good Idea
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PEI: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfence e .
-byte integer increment O O  Obytes Obytes AT
pfe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
’ Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1lbyte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision

o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI
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PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
o Each PEI can access at most one /last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic
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PEI: Initial Evaluation Results

Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

- i Table 2: Baseline Simulation Configuration
o In-memory data analytics
. . _ C Configurati
o Machine learning and data mining omponent  Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
D Th ree In pUt SetS (Sma l ll med Iu ml la rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the Im paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB, § HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD =tRP = 13.75ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

Pin-based cycle-level x86-64 simulation

Performance Improvement and Energy Reduction:
47% average speedup with large input data sets
32% speedup with small input data sets
25% avg. energy reduction in a single node with large input data sets
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Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality
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PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

60%

50%
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Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
M Host-Only B PIM-Only [ Locality-Aware




PEI Performance Delta: Small Data Sets

(Small Inputs, Baseline: Host-Only)
60%

40%

20%

0% [ [ [
| I I . . . r I

-20%

-40%

-60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
M PIM-Only [ Locality-Aware
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Normalized Amount of Off-chip Transfer
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PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
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PEI Energy Consumption

15 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
M Cache M HMC Link I DRAM
[0 Host-side PCU [JMemory-side PCU [PMU
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PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting
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Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur @cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

'Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim*  Niladrish Ch::l‘[terjee]L Mike O’Connor’
Nandita Vij aykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich
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Automatic Offloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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Automatic Oftloading of Prefetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu8, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
[EEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*?

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutly,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 20109.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand” Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University ¥Samsung Semiconductor, Inc.
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
SAFARI 136



We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step
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PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan G6mez-Luna?, Rachata Ausavarungnirun®*

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation”

Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (II)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand”™  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University ETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Haradware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]
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Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs. in CPU? ey

void applyScaleFactorsKernel( uint8 T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

{

L // Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
EEEEEEEEREN const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element
size t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)

?

<« Logic layer

L 4

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl




Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

SM

Logic layer

I

Crossbar switch

[
R Vault
Ctrl

Vault
Ctrl




How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

'Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim*  Niladrish Ch::l‘[terjee]L Mike O’Connor’
Nandita Vij aykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich
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How to Schedule Code? (I)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang* Adwait Jog> Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt  Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University ~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich °Carnegie Mellon University
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How to Schedule Code? (1)

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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How to Schedule Code? (111)

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu8, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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Coherence for Hybrid CPU-PIM Apps
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How to Maintain Coherence? (I)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
[EEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*?

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherencer? (I1)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutly,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 20109.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand” Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University ¥Samsung Semiconductor, Inc.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Zirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

= Ramulator extended for PIM

Q

Q

Q

Flexible and extensible DRAM simulator
Can model many different memory standards and proposals

Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

https://github.com/CMU-SAFARI/ramulator-pim

https://github.com/CMU-SAFARI/ramulator

[Source Code for Ramulator-PIM]

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang!?  Onur Mutlu!
ICarnegie Mellon University  2Peking University

SAFARI =


https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

Pertformance & Energy Models for PIM

= Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning”

Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.

Slides (pptx) (pdf)]

Poster (pptx) (pdf)]

[Source Code for Ramulator-PIM]

NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning

Gagandeep Singh*¢ Juan Gémez-Luna® Giovanni Mariani® Geraldo F. Oliveira®
Stefano Corda®¢ Sander Stuijk® Onur Mutlu® Henk Corporaal®
“Eindhoven University of Technology bETH Ziirich “IBM Research - Zurich
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https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A v HTe*a.t/ .

Flexible and Practical Open- Chamber |

Source Infrastructure for | | ;— |

Enabling Experimental DRAM
Studies HPCA 2017.

Machme
Flexible =
. R -Eemp ’;
= Easy to Use (C++ API) ' Controller
= Open-source Heater j - ?‘Ei

\‘” '\ >

github.com/CMU-SAFARL/SoftMC
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures tor PIM (in SSDs)

= Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutluy,
"MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage

Technologies (FAST), Oakland, CA, USA, February 2018.
Slides (pptx) (pdf)]
[Source Code]

MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices

Arash Tavakkol”, Juan Gémez-Luna’, Mohammad Sadrosadati’, Saugata Ghose*, Onur Mutlu*
YETH Ziirich *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies™

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®”", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose’,
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf
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Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon




Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon Google
RS SEOUL
JP i) o ETH :iicr
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PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan G6mez-Luna?, Rachata Ausavarungnirun®*

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation”

Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.orq/pdf/1903.03988.pdf 159



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (II)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand”™  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University ETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Haradware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 160



https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



One Important Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI



Enabling the Paradigm Shift




Recall: Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined
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Recall: Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can .il’  STRLK II‘H‘i_ll

SCIENTIFIK
REVOLU TIONS
Yoinp Coemiow

WITH AN INTRODUCTORY ESSAY BY AN HACKING

Q PI’E'paI’E THOMAS S-KUH? T e | eld

anomalies

o Revoluti examined
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GE/128xDPU FIM R-DIMM Module

LIPMEM UPMERA LIPRAE M LIPMEN LIPMERA LIPRAE N UPRER UPMEM
ER Pk 1] Pkl PImA [N ] PliM FIkA
chip chip thip chip chip ehig chiip chip

htips:/lwww.anandiech.com/show/T4750/hot-chips-3T-analysiS-iInmemory-processing-by-upmem 168
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” _actualization:

Book, 1954-1970. S p ee d

achvities
p‘tl Speed plli hmel \ Psychological
e — ~ \{ needs
Belongi needs:

mim Speed nd |
Speed A\ Basic

f Speed AN

SA FA R’ Source: https://www.simplypsychology.org/maslow.html 170




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



PIM: Concluding Remarks




A Quote from A Famous Architect

= architecture [...] based upon principle, and not upon
precedent”

176



Precedent-Based Design?

= architecture [...] based upon principle, and not upon
precedent




Principled Design

= “architecture [...] based upon principle, and not upon
precedent”
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The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.
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Another Example: Precedent-Based Design
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Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



LTINS

O
n
o~
N
[<]
o
<

lgﬁ

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid
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Another Principled Design

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source; http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/




Another Principled Design

Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107 184
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https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!®!
186




Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
a Enable better understanding of nature
a
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The Future of Processing in Memory i1s Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to

- Orders of magnitude Program/Language - Think across the stack
improvements System Software
SW/HW Interface - Design enabling systems

- New applications and
computing systems
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We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 190



If In Doubt, See Other Doubtful Technologies

A very “doubtful” emerging technology
a for at least two decades

§+|+H‘ Sl Proceedings of the IEEE, Sept, 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SauGaTAa GHOSE, ErRicH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https://arxiv.org/pdf/1706.08642 ol



https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Flash Memory Timeline

British scientist and SEEQ Technology Intel introduces 2817A
inventor Kane Kramer 1t 5 160 EEPROM ash EE
designs first digital t presented by Fujo
audio player (X based  on-chip charge pump Masuoka of To
‘on magnetic bubble for in-system write and m
memory chips erase, an invention used

in all flash memory

devices

Wroduces fi
NOVRAM bit chip
non-volatile SRAM!

employing

e :
Flash Memory Summit

SAFARI




Flash Memory Timeline

FM5 2000 Augst 4.6
Sarta Clars Convention
Center

Email your suggested
additions and changes to
timeline@FlashMemorySummit.com
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PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan G6mez-Luna?, Rachata Ausavarungnirun®*

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation”

Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.orq/pdf/1903.03988.pdf 194



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (II)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand”™  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University ETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Haradware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

SAFARI https:/ /arxiv.org/pdf/1907.12947.pdf 195



https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Computer Architecture
Lecture 7: Computation in Memory 11

Prof. Onur Mutlu
ETH Zurich
Fall 2019
10 October 2019




Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table in logic layer

* Key Results:

* 1.2X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
198



Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value "
Data Storane 11

Linked data structures are
connected by pointers

— oo
ey 1»—
Key 2»—— §_—>| g

el vl —=an [
Hash Table

N/

B-Tree
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The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

Serialized and irregular access pattern
6X cycles per instruction in real workloads
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Our Goal

Accelerating pointer chasing
inside main memory

Logic layer 201



Parallelism Challenge

: > Time
CPU core {CompI Memory Icomp]
access |
CPU core {COmpI Memory ICoinp]
access
In-Memory .| Memory | 1. _ Memory - :
Accelerator acCess p D éccess , I
—

slower for two operatlons
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Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

e

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{CompI Memory access (10-15X of Comp) ICompJ
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Our Solution:
Address-Access Decoupling

» Time

CPU core {CompI Memory ICompJ

dCCesSs

\/ Y \i
CPU core (an"T e Ii ables
ng en
Address-access decoupll gth 'ow cost

Addr ara“ehsm in both englnes wi
Engin P T
Memory
Access access —
Engine Memory | |

dCCesSs
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IMPICA Core Architecture

DRAM
|
DRAM Layers
Logic Layer Memory
IMPICA Controller
Cache
Access Queue t
Request Queue —_— —
‘ », Address ‘ Access
Engine | \ «— Engine
Traversal
B T Response Queve
Tc Travzersal CPU



Address Translation Challenge

The page ¢able walk requires
multiple memory accesses

----------------------------------------------------------------------------------------------------------------------------
* L4
* *

Virtual Address
"1 __#pPMid | __#FPDPT

PML4 PDPT PGD PGT

.
-“’

*
L 4
--------------------------------------------------------------------------------------------------------------------------



Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
IMEROARP g dablele

d data structure ‘nto IMPICA regions

Map linke e is a partial-to-any mapping

IMPICA page tabl

] 7\

Virtual Page i Physical Page

Virtual Address Space = Physical Address Space
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IMPICA Page Table: Mechanism

Virtual Address
Bit [47:4 . bage table Bit [11:0]

L saves one memory access

jon table is almost;
h;e cache :

Tiny reg
always in t

: : Small Page Table
(2MB) [ (4KB)

*

0. ‘O
--------------------------

Physical Address



Evaluation Methodology

* Simulator: gem5

* System Configuration

 CPU
* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2
* IMPICA
* 1 core, 500MHz, 32KB Cache
* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
* https://github.com/CMU-SAFARI/IMPICA
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Result = Microbenchmark Performance

W Baseline + extra 128KB L2 m IMPICA

1.9X

2.0
g. 1.5 1.3X 1.9X
; .
@ 1.0 ——‘———— e —
Q
o
m 0.5 l

0.0

Linked List Hash Table B-Tree
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Result — Database Performance

1.20
1.10

8 1.00
| -

-|E 0.90

ghput

Database

1.00
0.95
0.90
0.85
0.80

Database
Latency

+16%

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2
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System Energy Consumption

M Baseline + extra 128KB L2 = IMPICA

=
o

Normalized Energy
o o
o U

Linked Hash B-Tree DBx1000
List Table
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Area and Power Overhead

CPU (Cortex-A57)

5.85 mm? per core

L2 Cache 5 mm? per MB
Memory Controller 10 mm?
IMPICA (+32KB cache) |0.45 mm?

* Power overhead: average power

increases by 5.6%
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