
ETH 263-2210-00L Computer Architecture, Fall 2019

HW 2: RowHammer, Genome Analysis, Computation in Memory

Instructor: Prof. Onur Mutlu
TAs: Mohammed Alser, Rahul Bera, Geraldo Francisco De Oliveira Junior, Can Firtina,

Juan Gomez Luna, Jawad Haj-Yahya, Hasan Hassan, Konstantinos Kanellopoulos, Jeremie Kim,
Nika Mansouri Ghiasi, Lois Orosa Nogueira, Jisung Park, Minesh Hamenbhai Patel, Abdullah Giray Yaglikci

Given: Monday, Oct 14, 2019
Due: Sunday, Oct 27, 2019

• Handin - Critical Paper Reviews (1). You need to submit your reviews to https:
//safari.ethz.ch/review/architecture19/. Please, check your inbox, you should have
received an email with the password you should use to login. If you didn’t receive any
email, contact comparch@lists.ethz.ch. In the first page after login, you should click in
“Architecture - Fall 2019 Home", and then go to “any submitted paper" to see the list of
papers.

• Handin - Questions (2-5). You should upload your answers to the Moodle Platform
(https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=382814) as a single PDF
file.

1. Critical Paper Reviews [450 points]

Please read the guidelines for reviewing papers and check the sample reviews. You may access them by
simply clicking on the QR codes below or scanning them. We will give out extra credit that is worth 0.5% of
your total grade for each good review.

Guidelines Sample reviews

Write an approximately one-page critical review for each of the following papers. A review with bullet
point style is more appreciated. Try not to use very long sentences and paragraphs. Keep your writing and
sentences simple. Make your points bullet by bullet, as much as possible.

• Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, “A scalable processing-
in-memory accelerator for parallel graph processing," in Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, 2015. https://people.inf.ethz.ch/omutlu/pub/
tesseract-pim-architecture-for-graph-processing_isca15.pdf

• Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A. Kozuch, Onur Mutlu, Phillip B. Giboos, and Todd C. Mowry, “Ambit: In-Memory Ac-
celerator for Bulk Bitwise Operations Using Commodity DRAM Technology," in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017. https://people.
inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

• Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gómez-Luna, and Onur Mutlu, “Processing-
in-Memory: A Workload-Driven Perspective," IBM Journal of Research & Development, 2019 (to
appear).https://arxiv.org/pdf/1907.12947.pdf (Preliminary axXiv version)

https://safari.ethz.ch/review/architecture19/
https://safari.ethz.ch/review/architecture19/
https://moodle-app2.let.ethz.ch/mod/assign/view.php?id=382814
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-f19-how-to-do-the-paper-reviews.pdf
https://safari.ethz.ch/architecture/fall2019/doku.php?id=readings
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://arxiv.org/pdf/1907.12947.pdf

2. RowHammer Mitigations [90 points]

One research group rigorously investigated the relationship between the DRAM refresh rate and RowHammer-
induced errors using real DRAM modules from three major memory manufacturers: A, B, and C. The fol-
lowing figure shows the characterization results of the most RowHammer-vulnerable modules of each DRAM
manufacturer A, B, and C (A23, B11, and C19, respectively). As shown in the figure below, we can achieve
an effectively-zero probability of RowHammer-induced errors when we reduce the refresh interval to 8 ms.
This is because the probability of RowHammer-induced errors becomes less than that of a random DRAM
circuit fault.

0 16 32 48 64 80 96 112 128
Refresh Interval (ms)

0
100
101
102
103
104
105
106
107
108

E
rr

or
s

yA = 4.39e-6× x6.23

yB = 1.23e-8× x7.3

yC = 8.11e-10× x7.3

As a leading computer architect of a company, you are asked to design an efficient RowHammer mitiga-
tion technique based on the characterization results.

(a) [10 points] A junior engineer suggests to simply reduce the refresh interval from the default 64 ms to
8 ms. How will the bank utilization U and the DRAM energy consumption E of all refresh operations
be changed over the current system?

(b) [10 points] A DRAM manufacturer releases a higher capacity version of the same DRAM module (4x
the total capacity). After rigorously reverse-engineering, you determine that the manufacturer doubles
both the (1) number of rows in a bank, and (2) number of banks in a module without changing any
other aspects (e.g., row size, bus rate, and timing parameters). Your company considers upgrading the
current system with the higher-capacity DRAM module and asks your opinion. In the current system,
the bank utilization of refresh operations is 0.05 when the refresh interval is 64 ms. Would reducing
the refresh interval to 8-ms refresh interval still be applicable (in terms of RowHammer protection
capability and performance overheads) in a module with 2x the number of rows per bank and number
of banks per module? How about in a module with 4x the number of rows per bank and the number
of banks per module?

A B C 23 11 19

(c) [10 points] Due to significant overheads of reducing the refresh interval, your team decides to find other
RowHammer mitigation techniques with lower overhead. The junior engineer proposes a counter-based
approach as follows:

In this approach, the memory controller maintains a counter for each row R, which increments when an ad-
jacent row is activated, and resets when Row R is activated or refreshed. If the value of a row R’s counter
exceeds a threshold value, T , the memory controller activates row R and resets its respective counter.

Here are some specifications on the current memory system:
• Interface: DDR3-1333
• CL = 7
• tRCD = 13.5 ns
• tRAS = 35 ns
• tWR = 15 ns
• tRP = 13.5 ns
• tRFC = 120 ns
• Configuration: Per-channel memory controller deals with 2 ranks, each of which has 8 banks. The

number of rows per bank is 215. Each row in one bank is 8 KiB.
Are the given specifications enough to implement the proposed approach? If no, list the specifications
additionally required.

(d) [20 points] Suppose that all the necessary specifications for implementing the proposed approach are
known. Calculate the maximum value of T that can guarantee the same level of security against
RowHammer attacks over when adopting 8-ms refresh interval?

(e) [10 points] Calculate the number of bits required for counters in each memory controller. How does it
change when the number of rows per bank and the number of banks per chip are doubled?

(f) [10 points] Obviously, we can reduce the size of counters in each memory controller, if we use a smaller
value for T . What are its drawbacks?

(g) [20 points] You recall PARA (Probabilistic Adjacent Row Activation) which is proposed in the first
RowHammer paper. Here is how a PARA-enabled memory controller works (for more details, see
Section 8.2 in the paper1):

Whenever a row is closed, the controller flips a biased coin with a probability p of turning up heads, where
p << 1. If the coin turns up heads, the controller opens one of its adjacent rows where either of the two
adjacent rows are chosen with equal probability (p/2). Due to its probabilistic nature, PARA does not guaran-
tee that the adjacent will always be refreshed in time. Hence, PARA cannot prevent disturbance errors with
absolute certainty. However, its parameter p can be set so that disturbance errors occur at an extremely low
probability — many orders of magnitude lower than the failure rates of other system components (e.g., more
than 1% of hard-disk drives fail every year.)

Suppose that the probability of experiencing an error for PARA in 64 ms is 1.9×10−22 when p = 0.001
at the worst operating conditions. How can we estimate the probability of experiencing an error in one
year based on that value? Show your work. (If you just put an answer, you will get no points for this
problem.)

1Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu, "Flipping Bits in Memory without Accessing Them: an Experimental Study of DRAM Disturbance Errors," in Pro-
ceedings of the 41st Annual International Sympoisum on Computer Architecture, 2014. https://people.inf.ethz.ch/omutlu/
pub/dram-row-hammer_isca14.pdf

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf

3. Genome Analysis [60 points]

3.1. Edit Distance [15 points]

One of the most fundamental computational steps in most bioinformatics analyses is the detection of
the differences between two DNA or protein sequences. Edit distance is one way to measure the differences
between two genomic sequences. Edit distance algorithm calculates the minimum number of edit operations
needed to convert one sequence into the other. Allowed edit operations are: (1) substitution, (2) insertion,
and (3) deletion of a character. The notion of edit distance is also useful for spell checking and pattern
recognition applications.

Compute the Edit distance for each of the following string pairs and provide the list of the edit operations
(e.g., delete character ‘F’ from string “Friday” to be “riday”) used to convert the first string into the second
string.
(a) [5 points] Montag & Donnerstag

(b) [5 points] Freitag & Samstag

(c) [5 points] Donnerstag & “” (where “” is an empty string)

3.2. Read Mapping [45 points]

During a process called read mapping in genome analysis, each genomic read is mapped onto one or more
possible locations in the reference genome based on the similarity between the read and the reference genome
segment at that location. Suppose that you would like to map the following reads to the human reference
genome sequence.

read 1 = AAAAA_AAAAC_GGGGG
read 2 = AAAAT_GGCCT_AAAAA
read 3 = AAAAT_AGCGG_GCGCT
read 4 = AAAAC_AAAAT_GGCCT
read 5 = AAAAA_GGCCT_AAAAC

And suppose that you need to use the following 3-step hash-based mapping method:
(1) Hash-based read mapper first constructs hash table to rapidly examine whether or not a short segment

(called k-mers, where k is length of the segment) exists in the reference sequence.
(2) The mapper extracts 3 consecutive non-overlapping 5-mers from a read (5-mers are separated by ‘_’

sign in each read) and uses them to query the hash table. The hash table returns all the occurrence
hits of each k-mer in the reference genome.

(3) For each hit, the mapper examines the differences between the entire read that includes the k-mer and
the extracted reference segment (starting from the returned location of the k-mer from the hash table)
using dynamic-programming edit distance function (edit_distance()).

The hash table (Step 1) is provided below, which includes a list of 5-mers extracted from the human
reference genome and their location list (each number represents the starting location of that k-mer in the
reference genome sequence). Answer the following questions:

A A A A A 10 60 625 710 830 930

A A A A C 15 610 720

A A A A T 50 615

G G G G G

K-length sequences
(k-mers)

G G C C T 55 620 650 715 900

20 600 780

Location list where k-mer occurs
in the reference genome

(a) [15 points] How many times in total the edit distance function, edit_distance(), will be invoked using
the 3-step hash-based mapping method described above?

(b) [15 points] Suppose you want to change Step 3 to include “Adjacency Filtering”. This means that all k-
mers extracted from a read should be adjacent in the reference genome before calling the edit_distance()
function once for that read. For example, if the first k-mer extracted from the read exists in the reference
genome at location x, then the second k-mer and the third k-mer should also exist in the reference
genome at location x+k and x+2k, respectively.
How many times in total the edit distance function, edit_distance(), will be invoked?

(c) [15 points] Suppose now you want to change Step 3 to include “Cheap K-mer Selection”, where the
threshold is 4. This means that the edit_distance() function will be invoked for each k-mer that occurs
less frequently (less than a threshold) in the reference genome.
How many times in total the edit distance function, edit_distance(), will be invoked?

4. Processing in Memory: Ambit [135 points]

4.1. In-DRAM Bitmap Indices I [70 points]

Recall that in class we discussed Ambit, which is a DRAM design that can greatly accelerate bulk bitwise
operations by providing the ability to perform bitwise AND/OR of two rows in a subarray.

One real-world application that can benefit from Ambit’s in-DRAM bulk bitwise operations is the
database bitmap index, as we also discussed in the lecture. By using bitmap indices, we want to run the
following query on a database that keeps track of user actions: “How many unique users were active every
week for the past w weeks?" Every week, each user is represented by a single bit. If the user was active a
given week, the corresponding bit is set to 1. The total number of users is u.

We assume the bits corresponding to one week are all in the same row. If u is greater than the total
number of bits in one row (the row size is 8 kilobytes), more rows in different subarrays are used for the
same week. We assume that all weeks corresponding to the users in one subarray fit in that subarray.

We would like to compare two possible implementations of the database query:
• CPU-based implementation: This implementation reads the bits of all u users for the w weeks. For

each user, it ands the bits corresponding to the past w weeks. Then, it performs a bit-count operation
to compute the final result.
Since this operation is very memory-bound, we simplify the estimation of the execution time as the
time needed to read all bits for the u users in the last w weeks. The memory bandwidth that the CPU
can exploit is X bytes/s.

• Ambit-based implementation: This implementation takes advantage of bulk and operations of Ambit.
In each subarray, we reserve one Accumulation row and one Operand row (besides the control rows
that are needed for the regular operation of Ambit). Initially, all bits in the Accumulation row are
set to 1. Any row can be moved to the Operand row by using RowClone (recall that RowClone is a
mechanism that enables very fast copying of a row to another row in the same subarray). trc and tand
are the latencies (in seconds) of RowClone’s copy and Ambit’s and respectively.
Since Ambit does not support bit-count operations inside DRAM, the final bit-count is still executed
on the CPU. We consider that the execution time of the bit-count operation is negligible compared to
the time needed to read all bits from the Accumulation rows by the CPU.

(a) [15 points] What is the total number of DRAM rows that are occupied by u users and w weeks?

(b) [20 points] What is the throughput in users/second of the Ambit-based implementation?

(c) [20 points] What is the throughput in users/second of the CPU implementation?

(d) [15 points] What is the maximum w for the CPU implementation to be faster than the Ambit-based
implementation? Assume u is a multiple of the row size.

4.2. In-DRAM Bitmap Indices II [65 points]

You have been hired to accelerate ETH’s student database. After profiling the system for a while, you
found out that one of the most executed queries is to "select the hometown of the students that are from
Switzerland and speak German". The attributes hometown, country, and language are encoded using a four-
byte binary representation. The database has 32768 (215) entries, and each attribute is stored contiguously
in memory. The database management system executes the following query:

1 bool position_hometown[entries];
2 for(int i = 0; i < entries; i++){
3 if(students.country[i] == "Switzerland" && students.language[i] == "German"){
4 position_hometown[i] = true;
5 }
6 else{
7 position_hometown[i] = false;
8 }
9 }

(a) [25 points] You are running the above code on a single-core processor. Assume that:
• Your processor has an 8 MiB direct-mapped cache, with a cache line of 64 bytes.
• A hit in this cache takes one cycle and a miss takes 100 cycles for both load and store operations.
• All load/store operations are serialized, i.e., the latency of multiple memory requests cannot be

overlapped.
• The starting addresses of students.country, students.language, and position_hometown are 0x05000000,

0x06000000, 0x07000000, respectively.
• The execution time of a non-memory instruction is zero (i.e., we ignore its execution time).

How many cycles are required to run the query? Show your work.

(b) Recall that in class we discussed Ambit, which is a DRAM design that can greatly accelerate bulk
bitwise operations by providing the ability to perform bitwise AND/OR/XOR of two rows in a subarray.
Ambit works by issuing back-to-back ACTIVATE (A) and PRECHARGE (P) operations. For example,
to compute AND, OR, and XOR operations, Ambit issues the sequence of commands described in
the table below (e.g., AAP (X,Y) represents double row activation of rows X and Y followed by a
precharge operation, AAAP (X,Y, Z) represents triple row activation of rows X, Y , and Z followed by
a precharge operation). In those instructions, Ambit copies the source rows Di and Dj to auxiliary
rows (Bi). Control rows Ci dictate which operation (AND/OR) Ambit executes. The DRAM rows
with dual-contact cells (i.e., rows DCCi) are used to perform the bitwise NOT operation on the data
stored in the row. Basically, copying a source row to DCCi flips all bits in the source row and stores
the result in both the source row and DCCi. Assume that:

• The DRAM row size is 8 Kbytes.
• An ACTIVATE command takes 50 cycles to execute.
• A PRECHARGE command takes 20 cycles to execute.
• DRAM has a single memory bank.
• The syntax of an Ambit operation is: bbop_[and/or/xor] destination, source_1, source_2.
• Addresses 0x08000000 and 0x09000000 are used to store partial results.
• The rows at addresses 0x0A000000 and 0x0B00000 store the codes for "Switzerland" and "Ger-
man", respectively, in each four bytes throughout the entire row.

Dk = Di AND Dj Dk = Di OR Dj Dk = Di XOR Dj

AAP (Di, B0)
AAP (Dj , B1)
AAP (C0, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (Di, DCC0)
AAP (Dj , DCC1)
AAP (C0, B2)
AAAP (B0, DCC1, B2)
AAP (C0, B2)
AAAP (B1, DCC0, B2)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP (B0, Dk)

i) [20 points] The following code aims to execute the query "select the hometown of the students that
are from Switzerland and speak German" in terms of Boolean operations to make use of Ambit.
Fill in the blank boxes such that the algorithm produces the correct result. Show your work.

1 for(int i = 0; i < ; i++){
2

3 bbop_ 0x08000000 , 0x05000000 + i*8192, 0x0A000000;
4

5 bbop_ 0x09000000 , 0x06000000 + i*8192, 0x0B000000;
6

7 bbop_ 0x07000000 , 0x08000000 , 0x09000000;
8 }

ii) [20 points] How much speedup does Ambit provide over the baseline processor when executing
the same query? Show your work.

5. Caching vs. Processing-in-Memory [90 points]

We are given the following piece of code that makes accesses to integer arrays A and B. The size of each
element in both A and B is 4 bytes. The base address of array A is 0x00001000, and the base address of B
is 0x00008000.

movi R1, #0x1000 // Store the base address of A in R1
movi R2, #0x8000 // Store the base address of B in R2
movi R3, #0

Outer_Loop:
movi R4, #0
movi R7, #0
Inner_Loop:

add R5, R3, R4 // R5 = R3 + R4
// load 4 bytes from memory address R1+R5
ld R5, [R1, R5] // R5 = Memory[R1 + R5],
ld R6, [R2, R4] // R6 = Memory[R2 + R4]
mul R5, R5, R6 // R5 = R5 * R6
add R7, R7, R5 // R7 += R5
inc R4 // R4++
bne R4, #2, Inner_Loop // If R4 != 2, jump to Inner_Loop

//store the data of R7 in memory address R1+R3
st [R1, R3], R7 // Memory[R1 + R3] = R7,
inc R3 // R3++
bne R3, #16, Outer_Loop // If R3 != 16, jump to Outer_Loop

You are running the above code on a single-core processor. For now, assume that the processor does
not have caches. Therefore, all load/store instructions access the main memory, which has a fixed 50-
cycle latency, for both read and write operations. Assume that all load/store operations are serialized, i.e.,
the latency of multiple memory requests cannot be overlapped. Also assume that the execution time of a
non-memory-access instruction is zero (i.e., we ignore its execution time).
(a) [15 points] What is the execution time of the above piece of code in cycles? Show your work.

(b) [30 points] Assume that a 128-byte private cache is added to the processor core in the next-generation
processor. The cache block size is 8-byte. The cache is direct-mapped. On a hit, the cache services
both read and write requests in 5 cycles. On a miss, the main memory is accessed and the access fills
an 8-byte cache line in 50 cycles. Assuming that the cache is initially empty, what is the new execution
time on this processor with the described cache? Show your work.

(c) [15 points]You are not satisfied with the performance after implementing the described cache. To
do better, you consider utilizing a processing unit that is available close to the main memory. This
processing unit can directly interface to the main memory with a 10-cycle latency, for both read and
write operations. How many cycles does it take to execute the same program using the in-memory
processing units? Show your work. (Assume that the in-memory processing unit does not have a cache,
and the memory accesses are serialized like in the processor core. The latency of the non-memory-access
operations is ignored.)

(d) [15 points] You friend now suggests that, by changing the cache capacity of the single-core processor
(in part (b)), she could provide as good performance as the system that utilizes the memory processing
unit (in part (c)). Is she correct? What is the minimum capacity required for the cache of the single-
core processor to match the performance of the program running on the memory processing unit? Show
your work.

(e) [15 points] What other changes could be made to the cache design to improve the performance of the
single-core processor on this program?

	Critical Paper Reviews [450 points]
	RowHammer Mitigations [90 points]
	Genome Analysis [60 points]
	Edit Distance [15 points]
	Read Mapping [45 points]

	Processing in Memory: Ambit [135 points]
	In-DRAM Bitmap Indices I [70 points]
	In-DRAM Bitmap Indices II [65 points]

	Caching vs. Processing-in-Memory [90 points]

