
Seminar in
Computer Architecture

Meeting R2: Current Research

Minesh Patel

Hasan Hassan

Konstantinos Kanellopoulos

ETH Zürich

25 October 2019

Understanding and Modeling

On-Die Error Correction

in Modern DRAM:

An Experimental Study Using Real Devices

Minesh Patel Jeremie S. Kim

Hasan Hassan Onur Mutlu

Presented at: Dependable Systems and Networks (DSN) 2019

3

Executive Summary
• Motivation: Experimentally studying DRAM error mechanisms

provides insights for improving performance, energy, and reliability

• Problem: on-die error correction (ECC) makes studying errors difficult

- Distorts true error distributions with unstandardized, invisible ECC functions

- Post-correction errors lack the insights we seek from pre-correction errors

• Goal: Recover the pre-correction information masked by on-die ECC

• Key Contributions:

1. Error INference (EIN): statistical inference methodology that:

• Infers the ECC scheme (i.e., type, word length, strength)

• Infers the pre-correction error characteristics beneath the on-die ECC mechanism

• Works without any hardware intrusion or insight into the ECC mechanism

2. EINSim: open-source tool for using EIN with real DRAM devices

• Available at: https://github.com/CMU-SAFARI/EINSim

3. Experimental demonstration: using 314 LPDDR4 devices

• EIN infers (i) the on-die ECC scheme and (ii) pre-correction error characteristics

We hope EIN and EINSim enable many valuable studies going forward

4

Presentation Outline

1. Error Characterization and On-Die ECC

2. EIN: Error INference
I. The Inference Problem

II. Formalization

III. EIN in Practice: EINSim

3. Demonstration Using LPDDR4 Devices

5

What is DRAM Error Characterization?

Studying how DRAM behaves

when we deliberately induce bit-flips

Error Mechanisms
& Technology Scaling

Environmental
Effects

+

-

System-Level
Interactions

CPU

Understanding

Exploitable Insights
+

Operating Timing
Constraints

6

How Do We Characterize DRAM?
DRAM Device

Error Distributions

Cell-to-cell Variation Device ComparisonsSpatial Distributions Temporal Distributions

Test Routine

1. Write data

2. Induce errors

3. Read data

4. Record errors

Tester
e.g., CPU, FPGA

7

Why Study DRAM Errors?
• Errors provide insight into how a DRAM device works

- Error mechanisms are based on physical phenomena

- Patterns in errors can indicate opportunity for improvement

e.g., Reliably reducing

conservative operating timings

Performance

e.g., Efficiently profiling for
and mitigating errors

Reliability

e.g., Defending against
vulnerabilities (e.g., RowHammer)

Security

e.g., Reducing the cost

of refresh and other operations

Energy

Characterization-Driven Insights

8

Three Key Types of DRAM
No ECC

(Standard)

Data

Tester

Rank-Level ECC

(Server-style)

On-Die ECC

(or Integrated ECC)

Tester

Data
Corrected

Data

Tester

ECC DataData

ECC Logic

Raw Data Is

Unmodified

ECC Modifies

Raw Data

ECC

Logic

Raw Data Is

Unmodified

ECC Logic

9

Three Key Types of DRAM
No ECC

(Standard)

Data

Tester

Rank-Level ECC

(Server-style)

On-Die ECC

(or Integrated ECC)

Tester

Data
Corrected

Data

Tester

ECC DataData

ECC Logic

Raw Data Is

Unmodified

ECC Modifies

Raw Data

ECC

Logic

Raw Data Is

Unmodified

ECC Logic

Unfortunately, the on-die ECC scheme:

1. Cannot be bypassed

2. Is unknown and proprietary

3. Is completely invisible

10

Encoder A Encoder B Encoder C

Scheme A Scheme B Scheme C

ECC Complicates Error Characterization

1111

Original Data

1 Error 0 Errors 2 Errors
1011 1111 1010

Decoder A (SEC) Decoder B (SEC) Decoder C (SEC)

01011101011011 001100100011001111001 0111011

11

Encoder A Encoder B Encoder C

Scheme A Scheme B Scheme C

ECC Complicates Error Characterization

1111

Original Data

1 Error 0 Errors 2 Errors
1011 1111 1010

Decoder A (SEC) Decoder B (SEC) Decoder C (SEC)

01011101011011 001100100011001111001 0111011

Observed errors can change

depending on the ECC scheme

12

• ECC causes two key problems:

ECC Makes Error Characterization Difficult

Pre-ECC Error

Distribution

Unknown

ECC Scheme A

Unknown

ECC Scheme B

Unknown

ECC Scheme C

Post-ECC Error

Distribution

Based on a physical

DRAM error mechanism

ECC-scheme specific;

Error mechanism influence lost

Prevents comparing error characteristics between devices

Obfuscates the well-studied error distributions we expect

13

Example: Technology Scaling Study
• Goal: study how errors evolve over technology generations

0.0

1.0

0.4

0.2

0.6

0.8

Te
st

 P
a
ra

m
e
te

r
V

a
lu

e
(e

.g
.,

te
m

p
e
ra

tu
re

,
v
o

lt
a
g

e
)

Technology Generation

Distribution of

all bit-errors

Consistent with a physical phenomenon

(e.g., process scaling)

EIN

ECC artifact

Post-ECC error

distributions

Pre-ECC error distributions

14

Example: Technology Scaling Study
• Goal: study how errors evolve over technology generations

0.0

1.0

0.4

0.2

0.6

0.8 Distribution of

all bit-errors

Consistent with a physical phenomenon

(e.g., process scaling)

EIN

ECC artifact

Post-ECC error

distributions

Pre-ECC error distributions

Our goal:

Recover pre-correction error characteristics

obfuscated by on-die ECC

15

Presentation Outline

1. Error Characterization and On-Die ECC

2. EIN: Error INference
I. The Inference Problem

II. Formalization

III. EIN in Practice: EINSim

3. Demonstration Using LPDDR4 Devices

16

Key Observation

DRAM error mechanisms have
predictable characteristics

that are intrinsic to DRAM technology

17

Example: Data-Retention Errors

DRAM encodes data
in leaky capacitors

Leakage rates differ due
to process variation

• By disabling refresh, we induce data-retention errors

• Well-studied and fundamental to DRAM technology

• Errors exhibit predictable statistical characteristics
- Exponential bit-error rate (BER) with respect to temperature

- Uniform-random spatial distribution

Necessitates periodic
refresh operations

C
h

a
rg

e

Time

REF

18

Inferring the ECC Scheme
• Exploit error characteristics to infer the ECC scheme

- Works for any DRAM susceptible to the error mechanism

- Independent of any particular device or manufacturer

Data

Store

ECC Encoder

ECC Decoder

CPU DRAM

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅

Predictable

Inferable

Observable

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅′ 𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅′

19

Inferring the ECC Scheme
• Exploit error characteristics to infer the ECC scheme

- Works for any DRAM susceptible to the error mechanism

- Independent of any particular device or manufacturer

Data

Store

ECC Encoder

ECC Decoder

CPU DRAM

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅

Predictable

Inferable

Observable

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅′ 𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅′

EIN’s key idea: use predictable

error characteristics to infer:

(i) the ECC scheme

(ii) the pre-correction error rate

20

Presentation Outline

1. Error Characterization and On-Die ECC

2. EIN: Error INference
I. The Inference Problem

II. Formalization

III. EIN in Practice: EINSim

3. Demonstration Using LPDDR4 Devices

21

Formalizing the Inference Problem

• Model the entire DRAM transformation as a function:

Data

Store

ECC Scheme

(𝑺)

CPU DRAM

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅′ ← 𝒘′

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅′

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅←𝒘

𝜽

Distribution

of outputs

𝒘′ = 𝒇 𝒘 𝑺, 𝜽)

We want to infer {𝑺, 𝜽} given observed {𝒘,𝒘′}

Distribution

of inputs
ECC Scheme

Error Distribution

Random variables

22

Formalizing the Inference Problem

• 𝑺: ECC encoding/decoding algorithms

• 𝜽: Spatial distribution of errors (e.g., uniform-random)

• 𝒘,𝒘′: Probability of each value (i.e., 0x0, 0x1, …)
- 𝒘 is typically defined by the data pattern we write

𝒘′ = 𝒇 𝒘 𝑺,𝜽)

Data

Store

ECC Scheme

(𝑺)

CPU DRAM

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅′ ← 𝒘′

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅′

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅←𝒘

𝜽

23

Formalizing the Inference Problem

• Unfortunately: 𝒘′ is hard to measure
- 64-bit 𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅 → 264 possible values

- Typical 8GiB DRAM only has ~230 𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅𝒔 (<< 264)

- Hard to get a representative sample of 𝒘′ even with all 8GiB

• 𝒘𝑵
′: Probability that 𝒘′ has 𝑵 ∈ [𝟎, 𝟏,… , 𝒏] errors

- Easy to experimentally measure: simply count errors

- Meaningful in the context of ECC (e.g., 𝒏–error correction)

Data

Store

ECC Scheme

(𝑺)

CPU DRAM

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅′ ← 𝒘′

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅′

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅←𝒘

𝜽

𝒘′ = 𝒇 𝒘 𝑺,𝜽)

24

Inferring the ECC Scheme
Want the most likely ECC scheme given an experiment

argmax
𝑺

argmax
𝑺

𝑷 𝑿 𝑺] ∗ 𝑷[𝑺]

Experiment
𝜽: error distribution

𝒘,𝒘𝑵′: inputs/outputs

Likelihood
Are these results reasonable?

Prior
How likely is S?

• This is a maximum-a-posteriori (MAP) estimation

• We provide a rigorous derivation in the paper
- Full optimization objective function

- Extension for inferring error distribution characteristics 𝜽

Bayes’

Theorem

ECC Scheme

𝑷 𝑺 𝑿]

25

Error INference (EIN) Methodology

Define experimental inputs
(i.e., data pattern, error mechanism)

Identify candidate ECC Schemes

Compute MAP estimation

1

2

3

4

Run Experiments

Most likely ECC scheme

26

Presentation Outline

1. Error Characterization and On-Die ECC

2. EIN: Error INference
I. The Inference Problem

II. Formalization

III. EIN in Practice: EINSim

3. Demonstration Using LPDDR4 Devices

27

MAP Estimation in Practice

Observations
(# errors per word)

Experiment

Outputs
(# errors per word)

Calculation

Input
(i.e., data pattern,

error distribution)

1

Suspected

ECC Schemes
{A, B, C, D, …}

2

Device to Test
(unknown ECC scheme)

3

A B C D …

Likelihood per Scheme

4

Hard to

calculate

analytically

Monte-Carlo

Simulation

(EINSim)

Most Likely

ECC Scheme

28

EINSim: A Tool for Using EIN
• Evaluates MAP estimation via Monte-Carlo simulation

- Simulates the life of a dataword through a real experiment

- Configuration knobs to replicate the experimental setup

• Flexible and extensible to apply to a wide variety of:
- DRAM devices

- Error mechanisms

- ECC schemes

Open-source C++/Python project

https://github.com/CMU-SAFARI/EINSim

• Example datasets provided (same as used in paper)

https://github.com/CMU-SAFARI/EINSim

29

EINSim: A Tool for Using EIN
• Evaluates MAP estimation via Monte-Carlo simulation

- Simulates the life of a dataword through a real experiment

- Configuration knobs to replicate the experimental setup

• Flexible and configurable to apply to a wide variety of:
- DRAM devices

- Error mechanisms

- ECC schemes

Open-source C++/Python project

https://github.com/CMU-SAFARI/EINSim

• Example datasets provided (same as used in paper)

Give EINSim a try at:
https://github.com/CMU-SAFARI/EINSim

https://github.com/CMU-SAFARI/EINSim
https://github.com/CMU-SAFARI/EINSim

30

Presentation Outline

1. Error Characterization and On-Die ECC

2. EIN: Error INference
I. The Inference Problem

II. Formalization

III. EIN in Practice: EINSim

3. Demonstration Using LPDDR4 Devices

31

Methodology
• We experimentally test LPDDR4 DRAM devices

- 232 with on-die ECC (one major manufacturer)

- 82 without on-die ECC (three major manufacturers)

• Thermally controlled testing chamber
- 55oC - 70oC

- Tolerance of ±1oC

• Precise control over the commands sent to DRAM
- Ability to enable/disable self-/auto-refresh

- Control over CAS (i.e., read/write) commands

32

Experimental Design

Goal: infer which ECC scheme is used

in real LPDDR4 devices with on-die ECC

Parameter Experiment Simulation (EINSim)

ECC Schemes Unknown

Hamming (32, 64, 128, 256)

BCH-2EC (32, 64, 128, 256)

BCH-3EC (32, 64, 128, 256)

Repetition (3, 5, 7)

Data Pattern RANDOM RANDOM, 0xFF

Error

Mechanism
Data-Retention Data-Retention

Word Size 256 bits 256 bits

33

MAP Estimation Methodology
• Assume a uniform prior distribution

- Avoids biasing results towards our preconceptions

- Demonstrates EIN in the worst case

• Simulate 106 256-bit words per ECC scheme

• Error estimation using bootstrapping (104 samples)

34

B
C

H
(7

8
,
6
4
,
2
)

B
C

H
(1

4
4
,
1
2
8
,
2
)

B
C

H
(2

7
4
,
2
5
6
,
2
)

H
a
m

(3
8
,
3
2
,
1
)

H
a
m

(7
1
,
6
4
,
1
)

H
a
m

(1
3
6
,
1
2
8
,
1
)

H
a
m

(2
6
5
,
2
5
6
,
1
)

B
C

H
(4

4
,
3
2
,
2
)

ECC Schemes
(#code bits, #data bits, #errors correctable)

MAP Estimation Results

Most Likely

ECC Scheme

Confidence

interval is

extremely tight

Lower is

MORE Likely

35

B
C

H
(7

8
,
6
4
,
2
)

B
C

H
(1

4
4
,
1
2
8
,
2
)

B
C

H
(2

7
4
,
2
5
6
,
2
)

H
a
m

(3
8
,
3
2
,
1
)

H
a
m

(7
1
,
6
4
,
1
)

H
a
m

(1
3
6
,
1
2
8
,
1
)

H
a
m

(2
6
5
,
2
5
6
,
1
)

B
C

H
(4

4
,
3
2
,
2
)

ECC Schemes
(#code bits, #data bits, #errors correctable)

MAP Estimation Results

Most Likely

ECC Scheme

Less Likely

Models

Confidence

interval is

extremely tight

Lower is

MORE Likely

36

B
C

H
(7

8
,
6
4
,
2
)

B
C

H
(1

4
4
,
1
2
8
,
2
)

B
C

H
(2

7
4
,
2
5
6
,
2
)

H
a
m

(3
8
,
3
2
,
1
)

H
a
m

(7
1
,
6
4
,
1
)

H
a
m

(1
3
6
,
1
2
8
,
1
)

H
a
m

(2
6
5
,
2
5
6
,
1
)

B
C

H
(4

4
,
3
2
,
2
)

ECC Schemes
(#code bits, #data bits, #errors correctable)

MAP Estimation Results

Most Likely

ECC Scheme

Less Likely

Models

Confidence

interval is

extremely tight

Lower is

MORE Likely

EIN effectively infers the ECC scheme

in LPDDR4 devices with on-die ECC

to be a (128 + 8) Hamming Code

EIN infers the ECC scheme without:

- Visibility into the ECC mechanism

- Disabling ECC

- Tampering with the hardware

37

EIN Applies Beyond On-Die ECC
• EIN technically applies for any device for which:

- Communication channel protected by ECC

- Can induce uncorrectable errors

- Errors follow predictable statistical characteristics

Flash Memory ECC

NAND

Flash

DRAM Rank-Level ECC

CPU

ECC

Data

Normal

Data

38

Other Contributions in our Paper
• Two error-characterization studies showing EIN’s value

1. EIN enables comparing BERs of the DRAM technology itself

2. EIN recovers expected distributions that ECC obfuscates

• Using EIN to infer additional information:
- The data pattern written to DRAM

- The pre-correction error characteristics (e.g., pre-ECC BER)

• Formal derivation of EIN + discussion of its limitations

• Verify uniform-randomly spaced data-retention errors
- Reverse-engineering DRAM design characteristics that affect

uniformness (e.g., true-/anti-cell layout)

39

Talk & Paper Recap
• Motivation: Experimentally studying DRAM error mechanisms

provides insights for improving performance, energy, and reliability

• Problem: on-die error correction (ECC) makes studying errors difficult

- Distorts true error distributions with unstandardized, invisible ECC functions

- Post-correction errors lack the insights we seek from pre-correction errors

• Goal: Recover the pre-correction information masked by on-die ECC

• Key Contributions:

1. Error INference (EIN): statistical inference methodology that:

• Infers the ECC scheme (i.e., type, word length, strength)

• Infers the pre-correction error characteristics beneath the on-die ECC mechanism

• Works without any hardware intrusion or insight into the ECC mechanism

2. EINSim: open-source tool for using EIN with real DRAM devices

• Available at: https://github.com/CMU-SAFARI/EINSim

3. Experimental demonstration: using 314 LPDDR4 devices

• EIN infers (i) the on-die ECC scheme and (ii) pre-correction error characteristics

We hope EIN and EINSim enable many valuable studies going forward

Understanding and Modeling

On-Die Error Correction

in Modern DRAM:

An Experimental Study Using Real Devices

Minesh Patel Jeremie S. Kim

Hasan Hassan Onur Mutlu

Presented at: Dependable Systems and Networks (DSN) 2019

Backup
Slides

42

EIN: 3 Concrete Use Cases
1. Rapid error profiling using statistical distributions

- Use properties of the error mechanisms to model errors

- Use EIN to determine model parameters at runtime

- Replacement for laborious, per-device characterization

2. Comparison studies (e.g., technology scaling)
- Use EIN to compare pre-correction error rates

- Study + predict industry and future technology trends

3. Reverse-engineering proprietary ECC schemes
- Applies beyond just DRAM with on-die ECC

- Can be useful for security research

- E.g., vulnerability evaluation, patent infringement,
competitive analysis, forensic analysis

43

Observed BER Depends on ECC

Assume errors occur independently, uniform-randomly
- Fixed per-bit 𝑷 𝒆𝒓𝒓𝒐𝒓 = “bit error rate” (BER)

𝑬𝑪𝑪 𝒌, 𝒕 :
𝒌 = # 𝒅𝒂𝒕𝒂 𝒃𝒊𝒕𝒔
𝒕 = # 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒂𝒃𝒍𝒆 𝒆𝒓𝒓𝒐𝒓𝒔

BCH(64, 2)

BCH(128, 2)

BCH(256, 2)

Hamming(32, 1)

Hamming(64, 1)

Hamming(128, 1)

Hamming(256, 1)

3-Repetition

None

44

A Closer Look at On-Die ECC

Primarily mitigates technology scaling issues [1]
- Transparently mitigates random single-bit errors (e.g., VRT)

- Fully backwards compatible (no changes to DDRx interface)

Unfortunately, has side-effects for error characterization
- Unspecified, black-box implementation

- Obfuscates errors in an ECC-specific manner

Input

(writes)
ECC Encoder

Data Storage

ECC StorageECC Decoder
Output

(reads)

DRAM with on-die ECC

[1] “ECC Brings Reliability and Power Efficiency to Mobile Devices,” Micron Technology, Inc, Whitepaper, 2017

45

On-Die ECC in Literature
• Two types of ECC mentioned

- (128 + 8) Hamming code

- (64 + 7) Hamming code

• Paper contains references to both of these

46

On-Die ECC Research Challenge
Good for DRAM manufacturers:

✓ Transparently improves reliability

✓ Decreases power required for data retention

✓ Low latency/power overhead

✓ No changes to DRAM interface (i.e., backwards compatible)

Bad for researchers studying DRAM errors:

✘ Hides errors in a black-box, device-specific way

✘ Distorts well-understood statistical distributions

✘ Prevents fairly comparing BER of the DRAM itself

47

EINSim Functional Description
• Simulates the dataflow through a real experiment

- Configuration parameters replicate experimental setup

- Simulate enough words to resolve the output distribution

Error

Injector

ECC Encoder

ECC Decoder

Word

Generator

Error

Checker

Output Distribution
(i.e., 𝒘𝑵)

Input Configuration
(i.e., 𝒘, 𝑺, 𝜽)

Tester DRAM

48

EINSim Configuration + Features

Error

Injector

ECC Encoder

ECC Decoder

Word

Generator

Error

Checker

Output Distribution
(i.e., 𝒘𝑵)

Input Configuration
(i.e., 𝒘, 𝑺, 𝜽)

Word Generator
Word length

Data Pattern

ECC Encoder,

ECC Decoder

ECC code {type, length, strength}

code details (e.g., generator polynomial)

Error Injector Spatial error distribution

Error Checker Measurement (e.g., #errors per word)

Module Parameters

49

Word Generator

• Creates an 𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅
- Commonly used data patterns (e.g., 0xFF, RANDOM)

- Effectively sampling the 𝒘 distribution

• N may be multiple 𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅𝒔 long
- Useful if we don’t know how 𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅𝒔 are laid out

- Split into 𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅𝒔 according to a configurable mapping

- More details about this in the paper

Error

Injector

ECC Encoder

ECC Decoder

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅
Word

Generator

Error

Checker

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅

50

ECC Encoder/Decoder

Error

Injector

• EINSim implements ECC algorithms
- Currently supports common codes (e.g., Hamming, BCH)

- Modularly designed and easily extensible to others

- Validated by hand + using unit tests (available on GitHub)

• Configurable parameters for:
- Number of data bits, correction capability

- Details of implementation (e.g., generator polynomials)

ECC Encoder

ECC Decoder

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅
Word

Generator

Error

Checker

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅

51

Error Injector

Error

Injector

• Injects errors according to a spatial error distribution
- Configurable parameters depend on particular distribution

- Extensible to many different error distributions

• Uniform-random for data-retention errors
- We experimentally validate this using real LPDDR4 devices

- Experiment and analysis discussed in detail in the paper

ECC Encoder

ECC Decoder

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅
Word

Generator

Error

Checker

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅

52

Error Checker

Error

Injector

• Computes a configurable output distribution
- Corresponds to the experimental measurement we make

- E.g., number of errors per 𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅 (i.e., 𝒘𝑵)

ECC Encoder

ECC Decoder

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝒄𝒐𝒅𝒆𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅
Word

Generator

Error

Checker

𝒅𝒂𝒕𝒂𝒘𝒐𝒓𝒅(𝒔)

𝑵−𝒃𝒊𝒕 𝒘𝒐𝒓𝒅

53

Validating Uniform-Randomness
• We model data-retention errors as uniform random

- Well-studied throughout prior work

- Error count per N-bit word follows a binomial distribution

• We experimentally validate uniform-randomness
- 82 LPDDR4 devices without on-die ECC

- Disable refresh operations for 20s @ 60oC

54

Anatomy of a DRAM Bank
• DRAM cells can encode data in two ways:

- Data ‘1’ as ‘charged’ -> “True-cell”

- Data ‘1’ as ‘discharged’ -> “Anti-cell”

• Retention errors typically “charged” -> “discharged”

55

Incidence of “Outlier Rows”
• Some rows do not follow the true-/anti-cell layout

• Appear to follow typical “remapped row” distributions
- Extra memory rows used for post-manufacturing repair

56

MAP Estimation Shown Graphically

Low sample

count

Non-uniformities

(details in paper)

57

Example Error-Characterization Studies

1. BER vs. refresh rates
- We compare devices with on-die ECC to those without it

- EIN infers the pre-correction BER beneath on-die ECC

- Enables comparing BER of the DRAM technology itself

2. BER vs. temperature
- On-die ECC distorts the expected exponential relationship

- EIN recovers the obfuscated statistical distribution

• We provide two studies to demonstrate EIN’s value
- Measure data-retention error rates

- Have 314 LPDDR4 devices (with + without on-die ECC)

58

Finding the “Right” Answer
• MAP estimation selects between suspected models

- EIN cannot tell if the MAP estimate is “right”

- “Likelihood” is a relative measure

1. Techniques for gaining confidence in the answer:
- Using confidence intervals (e.g., statistical bootstrap)

- Testing across many different error conditions

2. Unlikely that the ECC scheme used is unknown
- ECC is a well-studied area

- Manufacturers are unlikely to a completely unknown code

3. Typically we may suspect some schemes already
- Academic/industry papers, datasheets, etc.

59

Control of Errors
• EIN requires knowledge and control of errors

1. Understand the spatial distribution of errors

2. Be able to induce uncorrectable errors

• Not a limitation in practice for DRAM
- Many well-studied easily-controlled error mechanisms exist

• E.g., data retention

• E.g., access-latency reduction (i.e., tRCD, tRP, etc.)

• E.g., RowHammer

60

Error Localization
• EIN cannot identify bit-exact error locations

- ECC decoding function is lossy (i.e., many-to-one)

- We are unaware of a way to reverse the decoding function

• Not a limitation in practice since we can still infer:
- The ECC scheme

- Pre-correction error rates

