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Guest Lecture Next Week

◼ November 22, Friday

◼ Stephan Meier, Platform Architecture Team, Apple

◼ Topic: Prefetching
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Source Throttling: Ups and Downs

◼ Advantages

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm

+ Can be a general way of handling shared resource 
contention

+ Can reduce overall load/contention in the memory system

◼ Disadvantages

- Requires slowdown estimations → difficult to estimate

- Thresholds can become difficult to optimize 

→ throughput loss due to too much throttling

→ can be difficult to find an overall-good configuration
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More on Source Throttling (I)

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory 
Systems"
Proceedings of the 15th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf


More on Source Throttling (II)

◼ Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf


More on Source Throttling (III)

◼ George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx


Fundamental Interference Control Techniques

◼ Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each 
other to be scheduled together on cores sharing the memory 
system
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Application-to-Core Mapping to Reduce Interference

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)

◼ Key ideas:

❑ Cluster threads to memory controllers (to reduce across chip interference)

❑ Isolate interference-sensitive (low-intensity) applications in a separate 
cluster (to reduce interference from high-intensity applications)

❑ Place applications that benefit from memory bandwidth closer to the 
controller
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


Multi-Core to Many-Core

Multi-Core Many-Core
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Many-Core On-Chip Communication
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Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?
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Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications? 

How to reduce communication distance? 
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How to prioritize applications to improve throughput? 



Application-to-Core Mapping
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Step 1 — Clustering
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Step 1 — Clustering

Improved Locality
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Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3



System Performance
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System performance improves by 17%



Network Power
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More on App-to-Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


Interference-Aware Thread Scheduling

◼ An example from scheduling in compute clusters (data 
centers)

◼ Data centers can be running virtual machines
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Virtualized Cluster

20

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically 
schedule VMs onto 

hosts?

Distributed Resource Management 
(DRM) policies



Conventional DRM Policies
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Microarchitecture-level Interference
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Can operating-system-level metrics capture the 
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Microarchitecture Unawareness
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Impact on Performance
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Impact on Performance
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A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level 
shared resource interference
– Shared cache capacity

– Shared memory bandwidth

• Key Idea: 

– Monitor and detect microarchitecture-level shared 
resource interference

– Balance microarchitecture-level resource usage across 
cluster to minimize memory interference while 
maximizing system performance
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A-DRM: Architecture-aware DRM
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More on Architecture-Aware DRM
◼ Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi, 

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource 
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International 
Conference on Virtual Execution Environments (VEE), Istanbul, 
Turkey, March 2015. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf


Interference-Aware Thread Scheduling

◼ Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic 
applications” together (as opposed to just managing the 
interference)

+ Less intrusive to hardware (less need to modify the hardware 
resources)

◼ Disadvantages and Limitations

-- High overhead to migrate threads and data between cores and 
machines

-- Does not work (well) if all threads are similar and they 
interfere 
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Summary

30



Summary: Fundamental Interference Control Techniques

◼ Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling 

4. Application/thread scheduling

Best is to combine all. How would you do that?
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Summary: Memory QoS Approaches and Techniques

◼ Approaches: Smart vs. dumb resources

❑ Smart resources: QoS-aware memory scheduling

❑ Dumb resources: Source throttling; channel partitioning

❑ Both approaches are effective in reducing interference

❑ No single best approach for all workloads

◼ Techniques: Request/thread scheduling, source throttling, 
memory partitioning

❑ All approaches are effective in reducing interference

❑ Can be applied at different levels: hardware vs. software

❑ No single best technique for all workloads

◼ Combined approaches and techniques are the most powerful

❑ Integrated Memory Channel Partitioning and Scheduling [MICRO’11]
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Summary: Memory Interference and QoS

◼ QoS-unaware memory →

uncontrollable and unpredictable system

◼ Providing QoS awareness improves performance, 
predictability, fairness, and utilization of the memory system

◼ Discussed many new techniques to:

❑ Minimize memory interference

❑ Provide predictable performance

◼ Many new research ideas needed for integrated techniques 
and closing the interaction with software
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What Did We Not Cover?

◼ Prefetch-aware shared resource management

◼ DRAM-controller co-design

◼ Cache interference management

◼ Interconnect interference management

◼ Write-read scheduling

◼ DRAM designs to reduce interference

◼ Interference issues in near-memory processing

◼ …
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What the Future May Bring

◼ Memory QoS techniques for heterogeneous SoC systems

❑ Many accelerators, processing in/near memory, better 
predictability, higher performance

◼ Combinations of memory QoS/performance techniques

❑ E.g., data mapping and scheduling

◼ Fundamentally more intelligent designs that use machine 
learning

◼ Real prototypes
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SoftMC: Open Source DRAM Infrastructure

◼ Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

◼ https://github.com/CMU-SAFARI/SoftMC
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Backup Slides: 

Some Other Ideas … 
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MISE: 

Providing Performance Predictability 

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri, 

Yoongu Kim, Ben Jaiyen, Onur Mutlu
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Unpredictable Application Slowdowns
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Need for Predictable Performance

◼ There is a need for predictable performance

❑ When multiple applications share resources 

❑ Especially if some applications require performance 
guarantees

◼ Example 1: In mobile systems

❑ Interactive applications run with non-interactive applications

❑ Need to guarantee performance for interactive applications

◼ Example 2: In server systems

❑ Different users’ jobs consolidated onto the same server

❑ Need to provide bounded slowdowns to critical jobs 

42

Our Goal: Predictable performance 
in the presence of memory interference



Outline
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1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown



Outline
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1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown



Slowdown: Definition
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Key Observation 1
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Key Observation 2

Request Service Rate Alone (RSRAlone) of an application can be 
estimated by giving the application highest priority in 

accessing memory 

Highest priority → Little interference

(almost as if the application were run alone)
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Key Observation 2
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications
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Key Observation 3

◼ Memory-bound application
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Key Observation 3

◼ Non-memory-bound application
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Outline
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1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown



Interval Based Operation
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Measuring RSRShared and α

◼ Request Service Rate Shared (RSRShared)

❑ Per-core counter to track number of requests serviced

❑ At the end of each interval, measure

◼ Memory Phase Fraction (  )

❑ Count number of stall cycles at the core

❑ Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber 
  RSRShared =

a
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Estimating Request Service Rate Alone (RSRAlone)

◼ Divide each interval into shorter epochs

◼ At the beginning of each epoch

❑ Memory controller randomly picks an application as the 
highest priority application

◼ At the end of an interval, for each application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone =
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Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 



Inaccuracy in Estimating RSRAlone
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Accounting for Interference in RSRAlone Estimation

◼ Solution: Determine and remove interference cycles from 
RSRAlone calculation

◼ A cycle is an interference cycle if

❑ a request from the highest priority application is 
waiting in the request buffer and

❑ another application’s request was issued previously
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Outline
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1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown



MISE Model: Putting it All Together 
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Outline
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1. Estimate Slowdown

❑ Key Observations
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❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown
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Previous Work on Slowdown Estimation

◼ Previous work on slowdown estimation

❑ STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07] 

❑ FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

❑ Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

◼ Basic Idea:
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Two Major Advantages of MISE Over STFM

◼ Advantage 1:

❑ STFM estimates alone performance while an 
application is receiving interference → Hard

❑ MISE estimates alone performance while giving an 
application the highest priority → Easier

◼ Advantage 2:

❑ STFM does not take into account compute phase for 
non-memory-bound applications 

❑ MISE accounts for compute phase → Better accuracy
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Methodology

◼ Configuration of our simulated system

❑ 4 cores

❑ 1 channel, 8 banks/channel

❑ DDR3 1066 DRAM 

❑ 512 KB private cache/core

◼ Workloads

❑ SPEC CPU2006 

❑ 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM
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Outline
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1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown



Providing “Soft” Slowdown Guarantees

◼ Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

◼ Basic Idea

❑ Allocate just enough bandwidth to QoS-critical 
application

❑ Assign remaining bandwidth to other applications
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MISE-QoS: Mechanism to Provide Soft QoS

◼ Assign an initial bandwidth allocation to QoS-critical application

◼ Estimate slowdown of QoS-critical application using the MISE 
model

◼ After every N intervals

❑ If slowdown > bound B +/- ε, increase bandwidth allocation

❑ If slowdown < bound B +/- ε, decrease bandwidth allocation

◼ When slowdown bound not met for N intervals

❑ Notify the OS so it can migrate/de-schedule jobs
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Methodology

◼ Each application (25 applications in total) considered the 
QoS-critical application

◼ Run with 12 sets of co-runners of different memory 
intensities

◼ Total of 300 multiprogrammed workloads

◼ Each workload run with 10 slowdown bound values

◼ Baseline memory scheduling mechanism

❑ Always prioritize QoS-critical application 

[Iyer+, SIGMETRICS 2007]

❑ Other applications’ requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]
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A Look at One Workload
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Effectiveness of MISE in Enforcing QoS
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Performance of Non-QoS-Critical Applications
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Outline
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1. Estimate Slowdown

❑ Key Observations
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❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown



Other Results in the Paper

◼ Sensitivity to model parameters

❑ Robust across different values of model parameters

◼ Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees

❑ MISE significantly more effective in enforcing guarantees

◼ Minimizing maximum slowdown

❑ MISE improves fairness across several system configurations
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Summary

◼ Uncontrolled memory interference slows down  
applications unpredictably

◼ Goal: Estimate and control slowdowns

◼ Key contribution
❑ MISE: An accurate slowdown estimation model 

❑ Average error of MISE: 8.2%

◼ Key Idea
❑ Request Service Rate is a proxy for performance

❑ Request Service Rate Alone estimated by giving an application highest 
priority in accessing memory

◼ Leverage slowdown estimates to control slowdowns
❑ Providing soft slowdown guarantees

❑ Minimizing maximum slowdown
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MISE: Pros and Cons

◼ Upsides:

❑ Simple new insight to estimate slowdown

❑ Much more accurate slowdown estimations than prior 
techniques (STFM, FST)

❑ Enables a number of QoS mechanisms that can use slowdown 
estimates to satisfy performance requirements

◼ Downsides:

❑ Slowdown estimation is not perfect - there are still errors

❑ Does not take into account caches and other shared resources 
in slowdown estimation
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More on MISE

◼ Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)

77

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Extending MISE to Shared Caches: ASM

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


Decoupled DMA w/ Dual-Port DRAM

[PACT 2015]
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Isolating CPU and IO Traffic by 
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee

Lavanya Subramanian, Rachata Ausavarungnirun, 
Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access
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processor

Logical System Organization

main 
memory

IO devices

CPU access

IO access

Main memory connects processor and IO devices   
as an intermediate layer
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Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports
→Dual-Data-Port DRAM

– Connect one port to CPU and the other port to IO devices
→Decouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)  
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system) 
– CPU pin count reduction (4.5%)
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Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

1. Problem
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Integrating IO interface on the processor chip     
leads to high area cost

Processor Pin Count
(w/o power pins)

power
memory

(2 ch)

IO interface
(10.6%)

IO interface
(28.4%)

others

memory
(2 ch)

(w/ power pins)
Processor Pin Count

959 pins in total 359 pins in total

Problem 2: High Cost for IO Interfaces



89

Shared Memory Channel

• Memory channel contention for IO access 
and CPU access

• High area cost for integrating IO interfaces 
on processor chip
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Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA 

2. Our Approach
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Our Approach
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Our Approach
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Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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Problem: Single Data Port

RD

DATA

RD

DATA

Control Port

Data Port

time

RD

DATA

RDControl Port

Data Port 1

time

DATAData Port 2

What about a DRAM with two data ports?



97

bank

periphery

twice the bandwidth & independent data ports  
with low overhead

data channel control channel

data 
port 1

bank

bank

co
nt

ro
l 

po
rt

to Port 1 (upper)

to Port 2 (lower)

bank 
data bus

p
or

t 
se

le
ct

 s
ig

n
a

l

data 
port 2

data channel

mux

mux

Overhead
Area: 1.6% ↑
Pins: 20 ↑ 

Dual-Data-Port DRAM



98

DDP-DRAM Memory System
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Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection
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2. IO Access Mode
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3. Port Bypass Mode
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Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach
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Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write
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Outline

1. Problem
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5. Evaluation
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Evaluation Methods
• System

– Processor: 4 – 16 cores

– LLC: 16-way associative, 512KB private cache-slice/core

– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:                                                           

SPEC CPU2006, TPC, stream (31 benchmarks)

– CPU-GPU communication intensive:                                                                                
polybench (8 benchmarks)

– In-memory communication intensive:                           
apache, bootup, compiler, filecopy, mysql, fork, 
shell, memcached (8 in total)
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Performance on Various Systems
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More on Decoupled DMA

◼ Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and 
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), San 
Francisco, CA, USA, October 2015. 
[Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf


Interconnect QoS/Performance Ideas
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Application-Aware Prioritization in NoCs

◼ Das et al., “Application-Aware Prioritization Mechanisms for 
On-Chip Networks,” MICRO 2009.

❑ https://users.ece.cmu.edu/~omutlu/pub/app-aware-
noc_micro09.pdf
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https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf


Slack-Based Packet Scheduling

◼ Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer 
Architecture (ISCA), pages 106-116, Saint-Malo, France, June 
2010. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx


Low-Cost QoS in On-Chip Networks (I)

◼ Boris Grot, Stephen W. Keckler, and Onur Mutlu,
"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 268-279, New York, NY, December 
2009. Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf


Low-Cost QoS in On-Chip Networks (II)

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for 
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx


Throttling Based Fairness in NoCs

◼ Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip 
Networks"
Proceedings of the 24th International Symposium on Computer 
Architecture and High Performance Computing (SBAC-PAD), New 
York, NY, October 2012. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf


Scalability: Express Cube Topologies

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174, 
Raleigh, NC, February 2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt


Scalability: Slim NoC

◼ Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, 
Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology 
for High Energy Efficiency and Scalability"
Proceedings of the 23rd International Conference on 
Architectural Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] 
[Poster (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf


Bufferless Routing in NoCs

◼ Moscibroda and Mutlu, “A Case for Bufferless Routing in On-
Chip Networks,” ISCA 2009.

❑ https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
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https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf


CHIPPER: Low-Complexity Bufferless

◼ Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection 
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155, 
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.
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https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html


Minimally-Buffered Deflection Routing

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on 
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides 
(pptx) (pdf)
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https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf


“Bufferless” Hierarchical Rings

◼ Ausavarungnirun et al., “Design and Evaluation of Hierarchical 
Rings with Deflection Routing,” SBAC-PAD 2014.

❑ http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-
deflection_sbacpad14.pdf

◼ Discusses the design and implementation of a mostly-
bufferless hierarchical ring
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http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf


“Bufferless” Hierarchical Rings (II)

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, 
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An 
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.

❑ arXiv.org version, February 2016.

126

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf


Summary of Six Years of Research

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 
241-275, Springer, 2014.
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https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4


On-Chip vs. Off-Chip Tradeoffs

◼ George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, 
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective: 
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM 
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides 
(pptx)
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https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx


Slowdown Estimation in NoCs

◼ Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,
"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System 
Fairness and Performance"
Proceedings of the 34th IEEE International Conference on 
Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf


Handling Multicast and Hotspot Issues

◼ Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu, 
and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting 
Adaptive Multicast and Hotspot Alleviation"
Proceedings of the International Conference on Supercomputing 
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17.pdf
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pdf


Predictable Performance Again: 

Strong Memory Service Guarantees

131



Remember MISE?

◼ Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 
and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


Extending Slowdown Estimation to Caches

◼ How do we extend the MISE model to include shared cache 
interference?

◼ Answer: Application Slowdown Model

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code]
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


Quantifying and Controlling Impact of 
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, 

Arnab Ghosh, Samira Khan, Onur Mutlu
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Application Slowdown Model



Shared Cache and Memory Contention
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Cache Capacity Contention
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Estimating Cache and Memory Slowdowns
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Service Rates vs. Access Rates
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Request service and access rates 
are tightly coupled 
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The Application Slowdown Model

139

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown=

Cache Access 
Rate



Real System Studies:
Cache Access Rate vs. Slowdown 
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Challenge

How to estimate alone cache access rate?
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Auxiliary Tag Store
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Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not 

count as high priority cycles
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 CyclesPriority High  #

EpochsPriority High  During Requests #

nApplicatioan  of Rate ServiceRequest  Alone

           

=



Alone Cache Access Rate Estimation
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Cycles Contention Cache# - CyclesPriority High  #

EpochsPriority High  During Requests #

nApplicatioan  of  Rate Access Cache                  

           

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory  Average                                            

 x Misses Contention #  Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given 
high priority



Application Slowdown Model (ASM)
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution 

 TimeExecution 
 Slowdown =

Count interference experienced by each request → Difficult

146

ASM’s estimates are much more coarse grained → Easier



Model Accuracy Results

Average error of ASM’s slowdown estimates: 10% 
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Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high 
performance and fairness

• Slowdown-aware resource allocation to bound 
application slowdowns

• VM migration and admission control schemes 
[VEE ’15]

• Fair billing schemes in a commodity cloud
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Cache Capacity Partitioning
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Cache Capacity Partitioning
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ASM-Cache: Slowdown-aware 
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all 
possible way partitions

• Extend ASM to estimate slowdown for all 
possible cache way allocations

• Key Idea: Allocate each way to the application 
whose slowdown reduces the most
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Memory Bandwidth Partitioning
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ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to 
an application’s slowdown

• Application i’s requests given highest priority 
at the memory controller for its fraction
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Coordinated Resource 
Allocation Schemes
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1. Employ ASM-Cache to partition cache capacity 
2. Drive ASM-Mem with slowdowns from ASM-Cache 



Fairness and Performance Results
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16-core system 
100 workloads

Significant fairness benefits across different channel counts
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Summary

• Problem: Uncontrolled memory interference cause high 
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory 

interference and quantifying cache interference

• Applications of Our Model
– Slowdown-aware cache and memory management to achieve 

high performance, fairness and performance guarantees

• Source Code Released in January 2016
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More on Application Slowdown Model

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

