
Computer Architecture
Lecture 16a: Memory Interference and

Quality of Service Wrap Up

Prof. Onur Mutlu

ETH Zürich

Fall 2019

15 November 2019

Guest Lecture Next Week

◼ November 22, Friday

◼ Stephan Meier, Platform Architecture Team, Apple

◼ Topic: Prefetching

2

Source Throttling: Ups and Downs

◼ Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

◼ Disadvantages

- Requires slowdown estimations → difficult to estimate

- Thresholds can become difficult to optimize

→ throughput loss due to too much throttling

→ can be difficult to find an overall-good configuration

3

More on Source Throttling (I)

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems"
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

4

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

More on Source Throttling (II)

◼ Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

5

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (III)

◼ George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

6

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques

◼ Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

7

Application-to-Core Mapping to Reduce Interference

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

◼ Key ideas:

❑ Cluster threads to memory controllers (to reduce across chip interference)

❑ Isolate interference-sensitive (low-intensity) applications in a separate
cluster (to reduce interference from high-intensity applications)

❑ Place applications that benefit from memory bandwidth closer to the
controller

8

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

Multi-Core Many-Core

9

Many-Core On-Chip Communication

10

Memory
Controller

Shared
Cache Bank$

$

Light

Heavy

Applications

Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?

11

Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications?

How to reduce communication distance?

12

How to prioritize applications to improve throughput?

Application-to-Core Mapping

13

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

Step 1 — Clustering

14

Inefficient data mapping to memory and caches

Memory

Controller

Step 1 — Clustering

Improved Locality

15

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
o

rm
a

li
z
e

d
 W

e
ig

h
te

d

S
p

e
e

d
u

p
BASE BASE+CLS A2C

16

System performance improves by 17%

Network Power

17

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
o

rm
a

li
z
e

d
 N

o
C

P

o
w

e
r

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

More on App-to-Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

18

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling

◼ An example from scheduling in compute clusters (data
centers)

◼ Data centers can be running virtual machines

19

Virtualized Cluster

20

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

How to dynamically
schedule VMs onto

hosts?

Distributed Resource Management
(DRM) policies

Conventional DRM Policies

21

Core0 Core1

Host

LLC

DRAM

App App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM

App

Memory Capacity

CPU

Based on operating-system-level metrics
e.g., CPU utilization, memory capacity
demand

Microarchitecture-level Interference

22

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

• VMs within a host compete for:

– Shared cache capacity

– Shared memory bandwidth

Can operating-system-level metrics capture the
microarchitecture-level resource interference?

Microarchitecture Unawareness

23

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

VM
Operating-system-level metrics

CPU Utilization Memory Capacity

92% 369 MB

93% 348 MBApp

App

STREAM

gromacs

Microarchitecture-level metrics

LLC Hit Ratio Memory Bandwidth

2% 2267 MB/s

98% 1 MB/s

VM

App

Memory Capacity

CPU

Impact on Performance

24

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU SWAP

Impact on Performance

25

0.0

0.2

0.4

0.6

IPC
(Harmonic

Mean)

Conventional DRM with Microarchitecture Awareness

49%

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

Core0 Core1

Host

LLC

DRAM

VM

App

VM

App

App

STREAM

gromacs

VM

App

Memory Capacity

CPU

We need microarchitecture-
level interference awareness in

DRM!

A-DRM: Architecture-aware DRM

• Goal: Take into account microarchitecture-level
shared resource interference
– Shared cache capacity

– Shared memory bandwidth

• Key Idea:

– Monitor and detect microarchitecture-level shared
resource interference

– Balance microarchitecture-level resource usage across
cluster to minimize memory interference while
maximizing system performance

26

A-DRM: Architecture-aware DRM

27

OS+Hypervisor

VM

App

VM

App

A-DRM: Global Architecture –
aware Resource Manager

Profiling Engine

Architecture-aware
Interference Detector

Architecture-aware
Distributed Resource
Management (Policy)

Migration Engine

Hosts Controller

CPU/Memory
Capacity

Profiler

Architectural
Resource

•••

Architectural
Resources

More on Architecture-Aware DRM
◼ Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,

Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters"
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

28

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling

◼ Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (less need to modify the hardware
resources)

◼ Disadvantages and Limitations

-- High overhead to migrate threads and data between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere

29

Summary

30

Summary: Fundamental Interference Control Techniques

◼ Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

31

Summary: Memory QoS Approaches and Techniques

◼ Approaches: Smart vs. dumb resources

❑ Smart resources: QoS-aware memory scheduling

❑ Dumb resources: Source throttling; channel partitioning

❑ Both approaches are effective in reducing interference

❑ No single best approach for all workloads

◼ Techniques: Request/thread scheduling, source throttling,
memory partitioning

❑ All approaches are effective in reducing interference

❑ Can be applied at different levels: hardware vs. software

❑ No single best technique for all workloads

◼ Combined approaches and techniques are the most powerful

❑ Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

32

Summary: Memory Interference and QoS

◼ QoS-unaware memory →

uncontrollable and unpredictable system

◼ Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

◼ Discussed many new techniques to:

❑ Minimize memory interference

❑ Provide predictable performance

◼ Many new research ideas needed for integrated techniques
and closing the interaction with software

33

What Did We Not Cover?

◼ Prefetch-aware shared resource management

◼ DRAM-controller co-design

◼ Cache interference management

◼ Interconnect interference management

◼ Write-read scheduling

◼ DRAM designs to reduce interference

◼ Interference issues in near-memory processing

◼ …

34

What the Future May Bring

◼ Memory QoS techniques for heterogeneous SoC systems

❑ Many accelerators, processing in/near memory, better
predictability, higher performance

◼ Combinations of memory QoS/performance techniques

❑ E.g., data mapping and scheduling

◼ Fundamentally more intelligent designs that use machine
learning

◼ Real prototypes

35

SoftMC: Open Source DRAM Infrastructure

◼ Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source

github.com/CMU-SAFARI/SoftMC

36

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

◼ https://github.com/CMU-SAFARI/SoftMC

37

https://github.com/CMU-SAFARI/SoftMC

Computer Architecture
Lecture 16a: Memory Interference and

Quality of Service Wrap Up

Prof. Onur Mutlu

ETH Zürich

Fall 2019

15 November 2019

Backup Slides:

Some Other Ideas …

39

MISE:

Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,

Yoongu Kim, Ben Jaiyen, Onur Mutlu

40

Unpredictable Application Slowdowns

41

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n
An application’s performance depends on

which application it is running with

Need for Predictable Performance

◼ There is a need for predictable performance

❑ When multiple applications share resources

❑ Especially if some applications require performance
guarantees

◼ Example 1: In mobile systems

❑ Interactive applications run with non-interactive applications

❑ Need to guarantee performance for interactive applications

◼ Example 2: In server systems

❑ Different users’ jobs consolidated onto the same server

❑ Need to provide bounded slowdowns to critical jobs

42

Our Goal: Predictable performance
in the presence of memory interference

Outline

43

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

Outline

44

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown

Slowdown: Definition

45

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown =

Key Observation 1

For a memory bound application,
Performance  Memory request service rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

46

Shared

Alone

 Rate ServiceRequest

 Rate ServiceRequest
Slowdown=

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown =

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

Key Observation 2

Request Service Rate Alone (RSRAlone) of an application can be
estimated by giving the application highest priority in

accessing memory

Highest priority → Little interference

(almost as if the application were run alone)

47

Key Observation 2

48

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State

Main
Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State

Main
Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

49

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest

)(RSR Rate ServiceRequest
Slowdown

SharedShared

AloneAlone
=

Key Observation 3

◼ Memory-bound application

50

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req

Key Observation 3

◼ Non-memory-bound application

51

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

−1



−1

Shared

Alone

RSR

RSR


Shared

Alone

RSR

RSR
) - (1 Slowdown  +=

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

Outline

52

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown

Interval Based Operation

53

time

Interval



Estimate

slowdown

Interval

Estimate

slowdown

◼ Measure RSRShared,

◼ Estimate RSRAlone

◼ Measure RSRShared,

◼ Estimate RSRAlone

Measuring RSRShared and α

◼ Request Service Rate Shared (RSRShared)

❑ Per-core counter to track number of requests serviced

❑ At the end of each interval, measure

◼ Memory Phase Fraction ()

❑ Count number of stall cycles at the core

❑ Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber
 RSRShared =

a

54

Estimating Request Service Rate Alone (RSRAlone)

◼ Divide each interval into shorter epochs

◼ At the beginning of each epoch

❑ Memory controller randomly picks an application as the
highest priority application

◼ At the end of an interval, for each application, estimate

PriorityHigh Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone =

55

Goal: Estimate RSRAlone

How: Periodically give each application
highest priority in accessing memory

Inaccuracy in Estimating RSRAlone

56

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

◼ When an application has highest priority

❑ Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Time units Service order

Main
Memory

123

Interference Cycles

High Priority

Main
Memory

Time units Service order

Main
Memory

123

Request Buffer
State

Accounting for Interference in RSRAlone Estimation

◼ Solution: Determine and remove interference cycles from
RSRAlone calculation

◼ A cycle is an interference cycle if

❑ a request from the highest priority application is
waiting in the request buffer and

❑ another application’s request was issued previously

57

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone =

Outline

58

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown

MISE Model: Putting it All Together

59

time

Interval



Estimate

slowdown

Interval

Estimate

slowdown

◼ Measure RSRShared,

◼ Estimate RSRAlone

◼ Measure RSRShared,

◼ Estimate RSRAlone

Outline

60

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown

Previous Work on Slowdown Estimation

◼ Previous work on slowdown estimation

❑ STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]

❑ FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

❑ Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

◼ Basic Idea:

61

Shared

Alone

 Time Stall

 Time Stall
 Slowdown =

Hard

Easy

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

◼ Advantage 1:

❑ STFM estimates alone performance while an
application is receiving interference → Hard

❑ MISE estimates alone performance while giving an
application the highest priority → Easier

◼ Advantage 2:

❑ STFM does not take into account compute phase for
non-memory-bound applications

❑ MISE accounts for compute phase → Better accuracy

62

Methodology

◼ Configuration of our simulated system

❑ 4 cores

❑ 1 channel, 8 banks/channel

❑ DDR3 1066 DRAM

❑ 512 KB private cache/core

◼ Workloads

❑ SPEC CPU2006

❑ 300 multi programmed workloads

63

Quantitative Comparison

64

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

SPEC CPU 2006 application
leslie3d

Comparison to STFM

65

cactusADM

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

0

1

2

3

4

0 50 100
S

lo
w

d
o

w
n

GemsFDTD

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

soplex

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

wrf

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

calculix

0

1

2

3

4

0 50 100
S

lo
w

d
o

w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

Outline

66

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown

Providing “Soft” Slowdown Guarantees

◼ Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

◼ Basic Idea

❑ Allocate just enough bandwidth to QoS-critical
application

❑ Assign remaining bandwidth to other applications

67

MISE-QoS: Mechanism to Provide Soft QoS

◼ Assign an initial bandwidth allocation to QoS-critical application

◼ Estimate slowdown of QoS-critical application using the MISE
model

◼ After every N intervals

❑ If slowdown > bound B +/- ε, increase bandwidth allocation

❑ If slowdown < bound B +/- ε, decrease bandwidth allocation

◼ When slowdown bound not met for N intervals

❑ Notify the OS so it can migrate/de-schedule jobs

68

Methodology

◼ Each application (25 applications in total) considered the
QoS-critical application

◼ Run with 12 sets of co-runners of different memory
intensities

◼ Total of 300 multiprogrammed workloads

◼ Each workload run with 10 slowdown bound values

◼ Baseline memory scheduling mechanism

❑ Always prioritize QoS-critical application

[Iyer+, SIGMETRICS 2007]

❑ Other applications’ requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

69

A Look at One Workload

70

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

QoS-critical non-QoS-critical

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications

Slowdown Bound = 10
Slowdown Bound = 3.33

Slowdown Bound = 2

Effectiveness of MISE in Enforcing QoS

71

Predicted
Met

Predicted
Not Met

QoS Bound
Met

78.8% 2.1%

QoS Bound
Not Met

2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

72

Higher performance when bound is looseWhen slowdown bound is 10/3
MISE-QoS improves system performance by 10%

Outline

73

1. Estimate Slowdown

❑ Key Observations

❑ Implementation

❑ MISE Model: Putting it All Together

❑ Evaluating the Model

2. Control Slowdown

❑ Providing Soft Slowdown Guarantees

❑ Minimizing Maximum Slowdown

Other Results in the Paper

◼ Sensitivity to model parameters

❑ Robust across different values of model parameters

◼ Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

❑ MISE significantly more effective in enforcing guarantees

◼ Minimizing maximum slowdown

❑ MISE improves fairness across several system configurations

74

Summary

◼ Uncontrolled memory interference slows down
applications unpredictably

◼ Goal: Estimate and control slowdowns

◼ Key contribution
❑ MISE: An accurate slowdown estimation model

❑ Average error of MISE: 8.2%

◼ Key Idea
❑ Request Service Rate is a proxy for performance

❑ Request Service Rate Alone estimated by giving an application highest
priority in accessing memory

◼ Leverage slowdown estimates to control slowdowns
❑ Providing soft slowdown guarantees

❑ Minimizing maximum slowdown

75

MISE: Pros and Cons

◼ Upsides:

❑ Simple new insight to estimate slowdown

❑ Much more accurate slowdown estimations than prior
techniques (STFM, FST)

❑ Enables a number of QoS mechanisms that can use slowdown
estimates to satisfy performance requirements

◼ Downsides:

❑ Slowdown estimation is not perfect - there are still errors

❑ Does not take into account caches and other shared resources
in slowdown estimation

76

More on MISE

◼ Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

77

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending MISE to Shared Caches: ASM

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

78

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Decoupled DMA w/ Dual-Port DRAM

[PACT 2015]

79

Isolating CPU and IO Traffic by
Leveraging a Dual-Data-Port DRAM

Donghyuk Lee

Lavanya Subramanian, Rachata Ausavarungnirun,
Jongmoo Choi, Onur Mutlu

Decoupled Direct Memory Access

81

processor

Logical System Organization

main
memory

IO devices

CPU access

IO access

Main memory connects processor and IO devices
as an intermediate layer

82

processor

Physical System Implementation

main
memory

IO devices

CPU access

IO access

IO access

High Pin Cost
in Processor

High Contention
in Memory Channel

83

processor

Our Approach

main
memory

IO devices

CPU access

Enabling IO channel,
decoupled & isolated from CPU channel

IO access

IO access

84

Executive Summary
• Problem

– CPU and IO accesses contend for the shared memory channel

• Our Approach: Decoupled Direct Memory Access (DDMA)
– Design new DRAM architecture with two independent data ports
→Dual-Data-Port DRAM

– Connect one port to CPU and the other port to IO devices
→Decouple CPU and IO accesses

• Application
– Communication between compute units (e.g., CPU – GPU)
– In-memory communication (e.g., bulk in-memory copy/init.)
– Memory-storage communication (e.g., page fault, IO prefetch)

• Result
– Significant performance improvement (20% in 2 ch. & 2 rank system)
– CPU pin count reduction (4.5%)

85

Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

1. Problem

86

main
memory

CPU

DMA

graphics

network

storage

USB

IO interface
memory

controller

Memory Channel Contention

DRAM
Chip

Processor
Chip

Problem 1: Memory Channel Contention

DMA

IO interface

87

0%

20%

40%

60%

80%

100%

Time Spent on CPU-GPU Communication

Benchmarks

33.5%
on average

Fr
ac

ti
o

n
 o

f
Ex

ec
u

ti
o

n
 T

im
e

A large fraction of the execution time
is spent on IO accesses

Problem 1: Memory Channel Contention

88

Integrating IO interface on the processor chip
leads to high area cost

Processor Pin Count
(w/o power pins)

power
memory

(2 ch)

IO interface
(10.6%)

IO interface
(28.4%)

others

memory
(2 ch)

(w/ power pins)
Processor Pin Count

959 pins in total 359 pins in total

Problem 2: High Cost for IO Interfaces

89

Shared Memory Channel

• Memory channel contention for IO access
and CPU access

• High area cost for integrating IO interfaces
on processor chip

90

Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

91

Our Approach

CPU

DMA

graphics

network

storage

USB

DRAM
Chip

main
memory

?

DMA
CTRL.

D
M

A
 c

on
tr

ol

Processor
Chip

co
nt

ro
l c

h
a

n
n

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory
controller IO interface

DMA
Chip

DMA IO interface

92

Our Approach

?

CPU

graphics

network

storage

USB

DRAM
Chip

DMA
CTRL.

D
M

A
 c

on
tr

ol

Processor
Chip

co
nt

ro
l c

h
a

n
n

el
Dual-Data-
Port DRAM

Port 1

Port 2

memory
controller

DMA
Chip

DMA IO interface

IO ACCESS

Decoupled Direct Memory Access

CPU ACCESS

93

Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

94

peripheral
logic

bank

Background: DRAM Operation

m
em

or
y

ch
an

ne
l

data channel control channel

co
nt

ro
l

po
rt

data
port

co
nt

ro
l

po
rt

data
port

bank

activateread

bankbank
READY

DRAM peripheral logic: i) controls banks, and
ii) transfers data over memory channel

memory controller at CPU

95

bank

Problem: Single Data Port

periphery

Requests are served serially
due to single data port

data channel control channel

co
nt

ro
l

po
rt

data
port

read

co
nt

ro
l

po
rt

data
port

bank
READY

bank
READY

data
port

read

Many
Banks

Single
Data Port

memory controller at CPU

96

Problem: Single Data Port

RD

DATA

RD

DATA

Control Port

Data Port

time

RD

DATA

RDControl Port

Data Port 1

time

DATAData Port 2

What about a DRAM with two data ports?

97

bank

periphery

twice the bandwidth & independent data ports
with low overhead

data channel control channel

data
port 1

bank

bank

co
nt

ro
l

po
rt

to Port 1 (upper)

to Port 2 (lower)

bank
data bus

p
or

t
se

le
ct

 s
ig

n
a

l

data
port 2

data channel

mux

mux

Overhead
Area: 1.6% ↑
Pins: 20 ↑

Dual-Data-Port DRAM

98

DDP-DRAM Memory System

bank

periphery

CPU channel control channel
with port selectdata

port 1

bank

bank

co
nt

ro
l

po
rt

data
port 2

IO channel

mux

mux

DDMA IO interface

memory controller at CPU

99

Three Data Transfer Modes

• CPU Access: Access through CPU channel
– DRAM read/write with CPU port selection

• IO Access: Access through IO channel
– DRAM read/write with IO port selection

• Port Bypass: Direct transfer between channels
– DRAM access with port bypass selection

100

1. CPU Access Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

data
port 2

IO channel

DDMA IO interface

control channel
with port select

mux

mux

data
port

bank
READY

memory controller at CPU

read

co
nt

ro
l

po
rt

CPU channel

data
port 1

control channel
with CPU channel

101

2. IO Access Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

IO channel

DDMA IO interface

control channel
with port select

mux

mux

data
port 1

control channel
with IO channel

memory controller at CPU

IO channel

data
port
data

port 2

bank
READY

read

co
nt

ro
l

po
rt

102

3. Port Bypass Mode

bank

periphery

CPU channel

bank

co
nt

ro
l

po
rt

IO channel

control channel
with port select

mux

mux

control channel
with port bypass

IO channel

bank

data
port

data
port

data
port 2

data
port 1

CPU channel

DDMA IO interface

memory controller at CPU

103

Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

104

Three Applications for DDMA

• Communication b/w Compute Units
– CPU-GPU communication

• In-Memory Communication and Initialization
– Bulk page copy/initialization

• Communication b/w Memory and Storage
– Serving page fault/file read & write

105

ct
rl

. c
h

a
n

n
el

D
D

M
A

 c
tr

l.

re
a

d
w

it
h

IO
 s

el
.

C
P

U
 →

 G
P

U

1. Compute Unit ↔ Compute Unit

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

GPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

ct
rl

. c
h

a
n

n
el

D
D

M
A

 c
tr

l.

destination

DDMA IO interface

source A
ck

.

destination

DDMA IO interface

w
ri

te
w

it
h

IO
 s

el
.

Transfer data through DDMA
without interfering w/ CPU/GPU memory accesses

CPU

memory
controller

GPU

memory
controller

106

ct
rl

. c
h

a
n

.
re

a
d

w
it

h
IO

 s
el

.
w

ri
te

w
it

h
IO

 s
el

.

2. In-Memory Communication

D
D

M
A

 c
tr

l.

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface

source

destination

Transfer data in DRAM through DDAM
without interfering with CPU memory accesses

CPU

memory
controller

107

D
D

M
A

 c
tr

l.
A

cc
. S

to
ra

g
e

A
ck

.

3. Memory ↔ Storage

ct
rl

. c
h

a
n

.
w

ri
te

w
it

h
IO

 s
el

.

CPU

DDMA
ctrl.

memory
controller

DDP-DRAM

DDMA IO interface StorageStorage (source)

destination

DDMA IO interface

Transfer data from storage through DDMA
without interfering with CPU memory accesses

destination

CPU

memory
controller

108

Outline

1. Problem

3. Dual-Data-Port DRAM

5. Evaluation

4. Applications for DDMA

2. Our Approach

109

Evaluation Methods
• System

– Processor: 4 – 16 cores

– LLC: 16-way associative, 512KB private cache-slice/core

– Memory: 1 – 4 ranks and 1 – 4 channels

• Workloads
– Memory intensive:

SPEC CPU2006, TPC, stream (31 benchmarks)

– CPU-GPU communication intensive:
polybench (8 benchmarks)

– In-memory communication intensive:
apache, bootup, compiler, filecopy, mysql, fork,
shell, memcached (8 in total)

110

0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-Core
0%

5%

10%

15%

20%

25%

4-Core 8-Core 16-Core

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t
CPU-GPU Comm.-Intensive In-Memory Comm.-Intensive

More performance improvement at higher core count
High performance improvement

Performance (2 Channel, 2 Rank)

111

Performance on Various Systems

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 rank 2 rank 4 rank
0%

5%

10%

15%

20%

25%

30%

35%

40%

1 ch 2 ch 4 ch

Channel Count Rank Count

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t

Performance increases with rank count

112

0

200

400

600

800

1000

1200

1 ch 1 ch
DDMA

2 ch
0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1 ch 1 ch
DDMA

2 ch

Pe
rf

o
rm

an
ce

Pr
o

ce
ss

o
r

P
in

 C
o

u
n

t

DDMA achieves higher performance
at lower processor pin count

959 915

1103

DDMA vs. Dual Channel

More on Decoupled DMA

◼ Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and
IO Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Techniques (PACT), San
Francisco, CA, USA, October 2015.
[Slides (pptx) (pdf)]

113

https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Interconnect QoS/Performance Ideas

114

Application-Aware Prioritization in NoCs

◼ Das et al., “Application-Aware Prioritization Mechanisms for
On-Chip Networks,” MICRO 2009.

❑ https://users.ece.cmu.edu/~omutlu/pub/app-aware-
noc_micro09.pdf

115

https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

Slack-Based Packet Scheduling

◼ Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 106-116, Saint-Malo, France, June
2010. Slides (pptx)

116

https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx

Low-Cost QoS in On-Chip Networks (I)

◼ Boris Grot, Stephen W. Keckler, and Onur Mutlu,
"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY, December
2009. Slides (pdf)

117

https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf

Low-Cost QoS in On-Chip Networks (II)

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

118

https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx

Throttling Based Fairness in NoCs

◼ Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

119

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Scalability: Express Cube Topologies

◼ Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects"
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174,
Raleigh, NC, February 2009. Slides (ppt)

120

https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt

Scalability: Slim NoC

◼ Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili,
Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability"
Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Poster (pdf)]

121

https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf

Bufferless Routing in NoCs

◼ Moscibroda and Mutlu, “A Case for Bufferless Routing in On-
Chip Networks,” ISCA 2009.

❑ https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

122

https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

CHIPPER: Low-Complexity Bufferless

◼ Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection
Router"
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

123

https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html

Minimally-Buffered Deflection Routing

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect"
Proceedings of the 6th ACM/IEEE International Symposium on
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides
(pptx) (pdf)

124

https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf

“Bufferless” Hierarchical Rings

◼ Ausavarungnirun et al., “Design and Evaluation of Hierarchical
Rings with Deflection Routing,” SBAC-PAD 2014.

❑ http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-
deflection_sbacpad14.pdf

◼ Discusses the design and implementation of a mostly-
bufferless hierarchical ring

125

http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf

“Bufferless” Hierarchical Rings (II)

◼ Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate"
Parallel Computing (PARCO), to appear in 2016.

❑ arXiv.org version, February 2016.

126

http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

Summary of Six Years of Research

◼ Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"Bufferless and Minimally-Buffered Deflection Routing"
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

127

https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

On-Chip vs. Off-Chip Tradeoffs

◼ George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM
Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides
(pptx)

128

https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx

Slowdown Estimation in NoCs

◼ Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,
"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System
Fairness and Performance"
Proceedings of the 34th IEEE International Conference on
Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]

129

https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf

Handling Multicast and Hotspot Issues

◼ Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu,
and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting
Adaptive Multicast and Hotspot Alleviation"
Proceedings of the International Conference on Supercomputing
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]

130

https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17.pdf
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pdf

Predictable Performance Again:

Strong Memory Service Guarantees

131

Remember MISE?

◼ Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

132

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending Slowdown Estimation to Caches

◼ How do we extend the MISE model to include shared cache
interference?

◼ Answer: Application Slowdown Model

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

133

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,

Arnab Ghosh, Samira Khan, Onur Mutlu

134

Application Slowdown Model

Shared Cache and Memory Contention

135

Main
Memory

Shared
Cache

Capacity

CoreCore

CoreCore

Slowdown =
Request Service Rate Alone

Request Service Rate Shared

MISE [HPCA’13]

Cache Capacity Contention

136

Main
Memory

Shared
Cache

Cache
Access Rate

Priority

Core

Core

Applications evict each other’s blocks
from the shared cache

Estimating Cache and Memory Slowdowns

137

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Memory
Service Rate

Service Rates vs. Access Rates

138

Request service and access rates
are tightly coupled

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Service Rate

Cache Access
Rate

The Application Slowdown Model

139

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown=

Cache Access
Rate

Real System Studies:
Cache Access Rate vs. Slowdown

140

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
o

w
d

o
w

n

Cache Access Rate Ratio

astar

lbm

bzip2

Challenge

How to estimate alone cache access rate?

141

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Auxiliary Tag Store

142

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Core

Core

Still in auxiliary
tag store

Auxiliary
Tag StoreAuxiliary tag store tracks such contention misses

Accounting for Contention Misses

• Revisiting alone memory request service rate

Cycles serving contention misses should not

count as high priority cycles

143

 CyclesPriority High #

EpochsPriority High During Requests #

nApplicatioan of Rate ServiceRequest Alone

=

Alone Cache Access Rate Estimation

144

Cycles Contention Cache# - CyclesPriority High #

EpochsPriority High During Requests #

nApplicatioan of Rate Access Cache

Alone =

Cache Contention Cycles: Cycles spent serving contention misses

Time ServiceMemory Average

 x Misses Contention # Cycles Contention Cache =

From auxiliary tag store
when given high priority

Measured when given
high priority

Application Slowdown Model (ASM)

145

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown=

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Shared

Alone

 TimeExecution

 TimeExecution
 Slowdown =

Count interference experienced by each request → Difficult

146

ASM’s estimates are much more coarse grained → Easier

Model Accuracy Results

Average error of ASM’s slowdown estimates: 10%

147

Select applications

0

20

40

60

80

100

120

140

160

ca
lc

u
lix

p
o

vr
ay

to
n

to

n
am

d

d
ea

lII

sj
en

g

p
er

lb
en

…

go
b

m
k

xa
la

n
cb

…

sp
h

in
x3

G
em

sF
…

o
m

n
et

p
p

lb
m

le
sl

ie
3

d

so
p

le
x

m
ilc

lib
q

m
cf

N
P

B
b

t

N
P

B
ft

N
P

B
is

N
P

B
u

a

A
ve

ra
ge

Sl
o

w
d

o
w

n
 E

st
im

at
io

n

Er
ro

r
(i

n
 %

)

FST PTCA ASM

Leveraging ASM’s Slowdown Estimates

• Slowdown-aware resource allocation for high
performance and fairness

• Slowdown-aware resource allocation to bound
application slowdowns

• VM migration and admission control schemes
[VEE ’15]

• Fair billing schemes in a commodity cloud

148

Cache Capacity Partitioning

149

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the shared cache among
applications to mitigate contention

Cache Capacity Partitioning

150

Main
Memory

Core

Core

Way
2

Set 0
Set 1
Set 2
Set 3

..

Set N-1

Way
0

Way
1

Way
3

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

ASM-Cache: Slowdown-aware
Cache Way Partitioning

• Key Requirement: Slowdown estimates for all
possible way partitions

• Extend ASM to estimate slowdown for all
possible cache way allocations

• Key Idea: Allocate each way to the application
whose slowdown reduces the most

151

Memory Bandwidth Partitioning

152

Main
Memory

Shared
Cache

Cache
Access Rate

Core

Core

Goal: Partition the main memory bandwidth
among applications to mitigate contention

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

• Key Idea: Allocate high priority proportional to
an application’s slowdown

• Application i’s requests given highest priority
at the memory controller for its fraction

153


=

j
j

i
i

Slowdown

Slowdown
 FractionPriority High

Coordinated Resource
Allocation Schemes

154

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

155

16-core system
100 workloads

Significant fairness benefits across different channel counts

4

5

6

7

8

9

10

11

1 2

Fa
ir

n
e

ss

(L
o

w
e

r
is

 b
et

te
r)

Number of Channels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2

P
e

rf
o

rm
an

ce

Number of Channels

FRFCFS-NoPart

FRFCFS+UCP

TCM+UCP

PARBS+UCP

ASM-Cache-Mem

Summary

• Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory

interference and quantifying cache interference

• Applications of Our Model
– Slowdown-aware cache and memory management to achieve

high performance, fairness and performance guarantees

• Source Code Released in January 2016

156

More on Application Slowdown Model

◼ Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

157

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

