Computer Architecture
Lecture 16a: Memory Interference and

Quality of Service Wrap Up

Prof. Onur Mutlu
ETH Zirich
Fall 2019
15 November 2019

Guest Lecture Next Week

November 22, Friday
Stephan Meier, Platform Architecture Team, Apple

Topic: Prefetching

Source Throttling: Ups and Downs

Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource
contention

+ Can reduce overall load/contention in the memory system

Disadvantages
- Requires slowdown estimations - difficult to estimate
- Thresholds can become difficult to optimize

- throughput loss due to too much throttling

- can be difficult to find an overall-good configuration

More on Source Throttling (1)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory
Systems”
Proceedings of the 15th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 335-346, Pittsburgh, PA, March 2010.
Slides (pdf)

Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems

Eiman Ebrahimif Chang Joo Leef Onur Mutlu§ Yale N. Pattj

iDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt} @ece.utexas.edu onur@cmu.edu

SAFARI 4

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf

More on Source Throttling (1)

= Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha,rachata,cfallin,onur}@cmu.edu

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

More on Source Throttling (I111)

= George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"”
Proceedings of the 2012 ACM SIGCOMM Conference
(SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-Core Interconnects

George Nychis+, Chris Fallint, Thomas Moscibrodag, Onur Mutlut, Srinivasan Seshan+

t Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

SAFARI 6

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx

Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling
2. Data mapping to banks/channels/ranks

3. Core/source throttling

‘ 4. Application/thread scheduling

Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

Application-to-Core Mapping to Reduce Interference

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"”
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

= Key ideas:
o Cluster threads to memory controllers (to reduce across chip interference)

o Isolate interference-sensitive (low-intensity) applications in a separate
cluster (to reduce interference from high-intensity applications)

o Place applications that benefit from memory bandwidth closer to the
controller

SAFARI 8

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Multi-Core to Many-Core

| .

Multi-Core Many-Core

Many-Core On-Chip Communication

Applications

A

A

—>{ 4 -

P €

A Memory
Controller

Shared
$ Cache Bank

10

Problem: Spatial Task Scheduling

Applications Cores

- —

How to map applications to cores?

11

Challenges 1n Spatial Task Scheduling

Applications Cores

—
—

How to reduce communication distance?

\‘

How to reduce destructive interference between applications?

How to prioritize applications to improve throughput?

12

Application-to-Core Mapping

Improve Bandwidth Improve Bandwidth
Utilization Utilization
Balancmg \ | IE pping

Improve Locality Reduce Interference
Reduce Interference

SAFARI 13

Step 1 — Clustering

A A

Controller

_\’\
\ A Memory
\

Y

A A

Inefficient data mapping to memory and caches

SAFARI 14

Step 1 — Clustering

Cluster O

Cluster 1

A

A

|
¢
|

mm

Cluster 2
_—mlﬂ:r-p
>

Cluster 3

A

Improved Locality

Reduced Interference

SAFARI

15

System Performance

1.3

m BASE m BASE+CLS

Normalized Weighted
Speedup

MPKI1000 MPKI1500

System performance improves by 17%

16

Network Power

Normalized NoC Power

1.2
m BASE w BASE+CLS “A2C

1.0 =

0.8

0.6 -

0.4 -

0.2 -

0.0 -

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

Average network power consumption reduces by 52%

17

More on App-to-Core Mapping

= Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

Application-to-Core Mapping Policies
to Reduce Memory System Interference in Multi-Core Systems

Reetuparna Dasx Rachata Ausavarungnirun{ Onur Mutlut Akhilesh Kumar: Mani Azimif
University of Michiganx Carnegie Mellon UniversityT Intel Labs:

18

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

Interference-Aware Thread Scheduling

An example from scheduling in compute clusters (data
centers)

Data centers can be running virtual machines

19

Virtualized Cluster

~ Distributed Resource Management
(DRM) policies
f N W\ : /f AY4 x

SAFARI

20

Conventional DRM Policies

Bas operating-system-level
-atlon memor- Cityep

dema nd
Memory Capacity Host Host
— % Y4 x % Y4 x

CPUT.

SAFARI

21

Microarchitecture-level Interference

* VMs within a host compete for:

— Shared cache capacity

— Shared memory bandwidth

Can operating-system-level metrics capture the

microarchitecture-level resource interference?
SAFARI 22

Microarchitecture Unawareness

Operating-system-level metrics

Microarchitecture-level metrics

VM
CPU Utilization | Memory Capacity LLC Hit Ratio Memory Bandwidth
- 92% 369 MB 2% 2267 MB/s
App 93% 348 MB 98% 1 MB/s
Host

Memory Capacity % N/ x
S

CPU

Core0 Corel

- STREAM

LLC
gromacs

SAFARI = e =/

23

Impact on Performance

0.6

IPC 0.4
(Harmonic
Mean) 02

0.0

Memory Capacity

SAFARI

m Conventional DRM

Host

24

Impact on Performance
| /]
| 49% / I
We need microarchitecture-
level interference awareness in
DRM!
)7 pp
ﬂ \/ Core0 1
A

gromacs
SAFARI = =/ = J/ s

A-DRM: Architecture-aware DRM

e Goal: Take into account microarchitecture-level
shared resource interference

— Shared cache capacity
— Shared memory bandwidth

e Key Idea:

— Monitor and detect microarchitecture-level shared
resource interference

— Balance microarchitecture-level resource usage across
cluster to minimize memory interference while

maximizing system performance
SAFARI 26

A-DRM: Architecture-aware DRM

Hosts Controller
' | A-DRM: Global Architecture —
OS+Hypervisor aware Resource Manager
> Profiling Engine
VM VM \

oo Architecture-aware
Interference Detector

——

Architecture-aware
Distributed Resource
Management (Polic

f[CPU/Memory

Capacity

Protiler < Migration Engine

SAFARI 27

More on Architecture-Aware DRM

= Hui Wang, Canturk Isci, Lavanya Subramanian, Jongmoo Choi,
Depei Qian, and Onur Mutlu,
"A-DRM: Architecture-aware Distributed Resource
Management of Virtualized Clusters”
Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), Istanbul,
Turkey, March 2015.
[Slides (pptx) (pdf)]

A-DRM: Architecture-aware Distributed Resource Management
of Virtualized Clusters

Hui Wang'*, Canturk Iscit, Lavanya Subramanian*, Jongmoo Choi®*, Depei Qianf, Onur Mutlu*

"Beihang University, fIBM Thomas J. Watson Research Center, *Carnegie Mellon University, “Dankook University
{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {lsubrama, onur}@cmu.edu, choijm@dankook.ac.kr

28

http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15.pdf
http://www.cercs.gatech.edu/vee15/
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/architecture-aware-distributed-resource-management_vee15-talk.pdf

Interference-Aware Thread Scheduling

Advantages

+ Can eliminate/minimize interference by scheduling “symbiotic
applications” together (as opposed to just managing the
interference)

+ Less intrusive to hardware (less need to modify the hardware
resources)

Disadvantages and Limitations

-- High overhead to migrate threads and data between cores and
machines

-- Does not work (well) if all threads are similar and they
interfere

29

Summary

30

Summary: Fundamental Interference Control Techniques

= Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks
3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

31

Summary: Memory QoS Approaches and Techniques

Approaches: Smart vs. dumb resources

o Smart resources: QoS-aware memory scheduling

o Dumb resources: Source throttling; channel partitioning
o Both approaches are effective in reducing interference
o No single best approach for all workloads

Techniques: Request/thread scheduling, source throttling,
memory partitioning

o All approaches are effective in reducing interference

o Can be applied at different levels: hardware vs. software

o No single best technique for all workloads

Combined approaches and techniques are the most powerful
o Integrated Memory Channel Partitioning and Scheduling [MICRO'11]

SAFARI 32

Summary: Memory Interference and QoS

QoS-unaware memory >
uncontrollable and unpredictable system

Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

Discussed many new techniques to:
o Minimize memory interference
o Provide predictable performance

Many new research ideas needed for integrated techniques
and closing the interaction with software

SAFARI 33

What Did We Not Cover?

Prefetch-aware shared resource management
DRAM-controller co-design

Cache interference management
Interconnect interference management
Write-read scheduling

DRAM designs to reduce interference
Interference issues in hear-memory processing

SAFARI >4

What the Future May Bring

Memory QoS techniques for heterogeneous SoC systems

o Many accelerators, processing in/near memory, better
predictability, higher performance

Combinations of memory QoS/performance techniques
a E.g., data mapping and scheduling

Fundamentally more intelligent designs that use machine
learning

Real prototypes

SAFARI 3

SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A v HE;;:“-}
Flexible and Practical Open- Chamber |

|

Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

Pl s Mathine
= Flexible i |
= Easy to Use (C++ API) ' Contrgp"er ﬂi
= Open-source Heater B T;E;

U‘@J ; - /

github.com/CMU-SAFARI/SoftMC

SAFARI 36

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Saugata Ghose® Kevin Chang?
Oguz Ergin?> Onur Mutlu!-3

Samira Khan
6,3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®? Donghyuk Lee

\ETH Ziirich > TOBB University of Economics & Technology 3Carnegie Mellon University
4 University of Virginia > Microsoft Research ~ SNVIDIA Research

SAFARI 37

https://github.com/CMU-SAFARI/SoftMC

Computer Architecture
Lecture 16a: Memory Interference and

Quality of Service Wrap Up

Prof. Onur Mutlu
ETH Zirich
Fall 2019
15 November 2019

Backup Slides:
Some Other Ideas ...

MISE:
Providing Performance Predictability
in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

SAFARI Carnegie Mellon

40

Unpredictable Application Slowdowns

ul
Ul

AN
|

LN

N
|

Slowdown
Slowdown

—t
|

-t
|

.

gcc (core 1)

o
o
|

eslie3d (core Q

An application’s performance depends on
which application it is running with

mcf (core 1)

SAFARI H

Need for Predictable Performance

Our Goal: Predictable performance
in the presence of memory interference

SAFARI

42

Outline

1. Estimate Slowdown

2. Control Slowdown

SAFARI

43

Outline

1. Estimate Slowdown
o Key Observations
d
d

d

2. Control Slowdown

d

d

SAFARI

44

Slowdown: Definition

Performance alone

Slowdown =
Performan shared

SAFARI

45

Key Observation 1

For a memory bound application,
Performance «« Memory request service rate

§ 091) : ==0mnetpp
@ U2 - Harder
g 0.8 % _ 7
t] U‘Juwua/
SIOWdOngg\UI _ i7, 4 cores
E @cﬁ]e dth: 8.5 GB/s
S 0.4 -
§ 0.3 [[[[[[EIaSy

2 03 04 05 06 07 08 09 1

Normalized Request Service Rate

SAFARI 46

Key Observation 2

Request Service Rate 5. (RSR,) Of an application can be
estimated by giving the application highest priority in
accessing memory

Highest priority - Little interference
(almost as if the application were run alone)

SAFARI 47

Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

Time
<€

2. Run with another application.

Request Buffer State

Main
Memory

Trme

units Service order

3

unrts Servrce order

Main
Memory

3. Run with another application: hlghESt priority

Request Buffer State

SAFARI

Main
Memory

T|me

units ! Servrce order

Main
Memory

) ‘ .

Main
Memory

48

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Slowdown — Request Service Rate aione (RSRAlone)

Req uest Service Rate shared (RSRShared)

SAFARI i

Key Observation 3

= Memory-bound application
Compute Phase

Memory Phase

e
interference fime
e (T E—
interference

—>time

Memory phase slowdown dominates overall slowdown

SAFARI >

Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAIone

Slowdown=(1- &) + &
RSRShared

SAFARI o1

Outline

1. Estimate Slowdown
a Key Observations

o Implementation

a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown

a Providing Soft S
a Minimizing Maxi

owdown Guarantees

Mmum Slowdown

SAFARI

52

Interval Based Operation

Interval
A

Interval
A

(

Y

A

ey { | | €

) R

Measure RSRq; . eqs &
Estimate RSRy e

Measure RSRq, . o4, &
Estimate RSR,,,.

4 4
Estimate Estimate
slowdown slowdown

SAFARI

53

Measuring RSRg, . and «

Request Service Rate ¢ .eq (RSRshared)

a Per-core counter to track number of requests serviced
o At the end of each interval, measure

Number of Requests Serviced

Interval Length

RS RShared —

Memory Phase Fraction (&)
a Count number of stall cycles at the core
o Compute fraction of cycles stalled for memory

SAFARI

54

Estimating Request Service Rate ;. (RSR,;...)

Divide each interval into shorter epochs

At the beginning of each epoch

e SR RER, Steoton =
How: Periodically give each application
At Wrsne et aniganial for eact-arrlicaticirrstmetey

Number of Requests During High Priority Epochs
Number of Cycles Application Given High Priority

RS RAIone —

SAFARI >

Inaccuracy in Estimating RSR

lone

ReqY¥heRAL application hﬁ]ﬁéﬂﬂt}eStsQF\iQEiBYder B High Priority

S| exieriq\;pces lsome iRterference ! .
aim Main
Memory - Memory
Request Buffer Time,_units Service order
State Mo 3 2 1 Mai
ain ain
| .|
Request Buffer Time< units Service order
State

3 2 1
| e
Memory
Time< units Service order
3 2 1
| .
Memory
<>

Interference Cycles

B | o
Memory

SAFARI 56

Accounting for Interference in RSR,, . Estimation

lone

Solution: Determine and remove interference cycles from
RSR, e Calculation

Number of Requests During High Priority Epochs
Number of Cycles Application Given High Priority<Interference Cycles>

RSRAIone =

A cycle is an interference cycle if

o a request from the highest priority application is
waiting in the request buffer and

o another application’s request was issued previously

SAFARI >

Outline

1. Estimate Slowdown
a Key Observations

a Implementation

o MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown

a Providing Soft S
a Minimizing Maxi

owdown Guarantees

Mmum Slowdown

SAFARI

58

MISE Model: Putting it All Together

Interval
A

Interva
A

(

Y

A

ey { | | €

) R

Measure RSRq; . eqs &
Estimate RSRy e

Measure RSRq, . o4, &
Estimate RSR,,,.

4 4
Estimate Estimate
slowdown slowdown

SAFARI

59

Outline

1. Estimate Slowdown
a Key Observations

a Implementation

a MISE Model: Putting it All Together
o Evaluating the Model

2. Control Slowdown

a Providing Soft S
a Minimizing Maxi

owdown Guarantees

Mmum Slowdown

SAFARI

60

Previous Work on Slowdown Estimation

Previous work on slowdown estimation

2 <STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO 07
o FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

o Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

Basic Idea:

/7 Hard
Slowdown <Al THme Alone>

Stall Time shared

~ Easy

Count number of cycles application receives interference

SAFARI 01

Two Major Advantages of MISE Over STFM

= Advantage 1:

o STFM estimates alone performance while an
application is receiving interference = Hard

o MISE estimates alone performance while giving an
application the highest priority = Easier

= Advantage 2:

o STFM does not take into account compute phase for
non-memory-bound applications

a MISE accounts for compute phase - Better accuracy

SAFARI 62

Methodology

Configuration of our simulated system
o 4 cores

o 1 channel, 8 banks/channel

o DDR3 1066 DRAM

a 512 KB private cache/core

Workloads
o SPEC CPU2006
0 300 multi programmed workloads

SAFARI

63

Quantitative Comparison

SPEC CPU 2006 application

leslie3d
4
3.5
c
S 3
@)
©C 25 —Actual
S
o
m w
1.5
1 [[[[]
0 20 40 60 80 100

Million Cycles

SAFARI 04

Comparison to STFM

:)
Average error of MISE: 8.2%
_____Average error of STEM: 204%
- (across 300 workloads) A
- /

SAFARI

65

Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
o Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI

66

Providing “Soft” Slowdown Guarantees

= Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

= Basic Idea

o Allocate just enough bandwidth to QoS-critical
application

a Assign remaining bandwidth to other applications

SAFARI

67

MISE-QoS: Mechanism to Provide Soft QoS

= Assign an initial bandwidth allocation to QoS-critical application

= Estimate slowdown of QoS-critical application using the MISE
model

= After every N intervals
a If slowdown > bound B +/- €, increase bandwidth allocation
a If slowdown < bound B +/- €, decrease bandwidth allocatior
= When slowdown bound not met for N intervals
a Notify the OS so it can migrate/de-schedule jobs

SAFARI 08

Methodology

Each application (25 applications in total) considered the
QoS-critical application

Run with 12 sets of co-runners of different memory
intensities

Total of 300 multiprogrammed workloads
Each workload run with 10 slowdown bound values

Baseline memory scheduling mechanism
a Always prioritize QoS-critical application
[Iyer+, SIGMETRICS 2007]
o Other applications’ requests scheduled in FRFCFS order

[Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

SAFARI 69

A Look at One Workload

Sl wdo n Bound = 1
3§| dW %\';Ivn oun 3132

/

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications
(esliead hmmer lbm MDEIPI;
QoS-critical non-QoS-critical

SAFARI

70

Ettectiveness of MISE in Enforcing QoS

Across 3000 data points

Predicted
Not Met

QoS Sound RTET> 2.1%

Q;itB;‘;':d 2.2% C 16.9% O

Predicted

MISE-QoS correctly predicts whether or not
the bound is met for 95.7% of workloads

SAFARI

Pertormance of Non-QoS-Critical Applications

1.4

212

o

Q 1

g_ m AlwaysPrioritize

»n 0.8 = MISE-QoS-10/1

= 0.6 = MISE-QoS-10/3

o m MISE-Q0S-10/5

£04 m MISE-Q0S-10/7

T 0.2 = MISE-Q0S-10/9
0

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

SAFARI 72

Outline

1. Estimate Slowdown
a Key Observations
a Implementation
a MISE Model: Putting it All Together
a Evaluating the Model

2. Control Slowdown
a Providing Soft Slowdown Guarantees
a Minimizing Maximum Slowdown

SAFARI

73

Other Results in the Paper

Sensitivity to model parameters
o Robust across different values of model parameters

Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

o MISE significantly more effective in enforcing guarantees

Minimizing maximum slowdown
o MISE improves fairness across several system configurations

SAFARI [

Summary

= Uncontrolled memory interference slows down
applications unpredictably

= Goal: Estimate and control slowdowns

= Key contribution
o MISE: An accurate slowdown estimation model
a Average error of MISE: 8.2%

= Key Idea
o Request Service Rate is a proxy for performance
a Request Service Rate ,,,. estimated by giving an application highest
priority in accessing memory
= Leverage slowdown estimates to control slowdowns
a Providing soft slowdown guarantees
a Minimizing maximum slowdown

SAFARI 7>

MISE: Pros and Cons

Upsides:
o Simple new insight to estimate slowdown

o Much more accurate slowdown estimations than prior
techniques (STFM, FST)

o Enables a number of QoS mechanisms that can use slowdown
estimates to satisfy performance requirements

Downsides:
o Slowdown estimation is not perfect - there are still errors

o Does not take into account caches and other shared resources
in slowdown estimation

SAFARI 76

More on MISE

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 7

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending MISE to Shared Caches: ASM

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutly,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*1
Samira Khan*? Onur Mutlu*

*Carnegie Mellon University §Intel Labs 'IIT Kanpur *University of Virginia

SAFARI 78

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Decoupled DMA w/ Dual-Port DRAM
[PACT 2015]

Isolating CPU and 10 Traffic by
Leveraging a Dual-Data-Port DRAM

Decoupled Direct Memory Access

Donghyuk Lee

Lavanya Subramanian, Rachata Ausavarungnirun,
Jongmoo Choi, Onur Mutlu

SAFARI Carnegie Mellon

Logical System Organization

Processor

CPU access ‘

main
memory

|O access ‘

|O devices

Main memory connects processor and 10 devices

as an intermediate layer
SAFARI 81

Physical System Implementation

High Pin Cost
in Processor

|O access

processor*

CPU access

High Contention e
in Memory Channe/ SRiSIER]

|O access ‘

|O devices

SAFARI 37

Our Approach

Processor

CPU access ‘

main
memory

|O access

|O access

|O devices

Enabling IO channel,
decoupled & isolated from CPU channel

SAFARI

83

Executive Summary

* Problem
— CPU and 10 accesses contend for the shared memory channel

* Qur Approach: Decoupled Direct Memory Access (DDMA)
— Design new DRAM architecture with two independent data ports

=> Dual-Data-Port DRAM
— Connect one port to CPU and the other port to |10 devices

=> Decouple CPU and 10 accesses

* Application
— Communication between compute units (e.g., CPU —GPU)
— In-memory communication (e.g., bulk in-memory copy/init.)
— Memory-storage communication (e.g., page fault, IO prefetch)

Result

— Significant performance improvement (20% in 2 ch. & 2 rank system)
— CPU pin count reduction (4.5%)

SAFARI

84

Outline

1. Problem
2. Our Approach
3. Dual-Data-Port DRAM

4. Applications for DDMA

5. Evaluation

SAFARI

85

Problem 1: Memory Channel Contention

Processor memory
Chip |

DRAM graphics
Chip
network

storage

SAFARI

Problem 1: Memory Channel Contention

100% T -m== ===
—Time Spent on CPU-GPU Communication
80% ----mm oo b
o)
O R R 33.5% [...
on avera
40% -

20% A

Fraction of Execution Time

Benchmarks

A large fraction of the execution time

IS spent on |10 accesses
SAFARI 87

Problem 2: High Cost for 10 Interfaces

|0 interface
'(10.6%)

|0 interface
(28.4%)
959 pins in total 359 pins in total
Processor Pin Count Processor Pin Count
(w/ power pins) (w/o power pins)

Integrating 10O interface on the processor chip

leads to high area cost
SAFARI 88

Shared Memory Channel

* Memory channel contention for 10 access
and CPU access

* High area cost for integrating |O interfaces
on processor chip

SAFARI

89

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM
4. Applications for DDMA

5. Evaluation

SAFARI

90

Our Approach

__

Processor memory Dl\/lA
o I[N controller |0 interface |

--

Port 1

DRAM Dual-Data-
Chip Port DRAM

graphics

DMA control

network

R i T LT T ————

storage
DMA
Chip

SAFARI

DMA |0 interface USB

Our Approach

Decoupled Direct Memory Access

Processor |t
o [JJ controller

CPU ACCESS
Port 1 1

DRAM Dual-Data-
Chip Port DRAM &

Port 2
10 ACCESS

DMA
Chip

graphics

" DMAcontrol s

network

~ control channel

storage

| |
h h

DMA |10 interface USB
SAFARI 92

Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM
4. Applications for DDMA

5. Evaluation

SAFARI

93

Background: DRAM Operation

control channel

bank

DRAM peripheral logic: i) controls banks, and

/i) transfers data over memory channel
SAFARI 94

Problem: Single Data Port

Many
Banks

Req uests are servec

control channel

Single
Data Port

serially

due to single data port

SAFARI

95

Problem: Single Data Port

time
Control Port @ @ >

What about a DRAM with two data ports?

time
Control Port RD RD)

Data Port 1
Data Port 2

SAFARI 96

Dual-Data-Port DRAM

al

data channel ' Si control channel
(%)
data IS
port 1 §
3
bank mux IS
Q

- to Port 1 (upper)

-
-
-

—-— o o -

~~~~~ ! dG busi

__________ ea ] _1_ @5/3_/]_\
Pl n%{) gort (lower)

twice the bandwidth & independent data ports

with low overhead
SAFARI 97

data channel



DDP-DRAM Memory System

SAFARI

memory controller at CPU

CPU channel ‘

bank

10 channel

DDMA 10 interface

port 1

MUuX

control channel
with port select



Three Data Transfer Modes

* CPU Access: Access through CPU channel
— DRAM read/write with CPU port selection

* |O Access: Access through 10 channel
— DRAM read/write with 10 port selection

* Port Bypass: Direct transfer between channels
— DRAM access with port bypass selection

SAFARI



1. CPU Access Mode

memory controller at CPU

bank
READY

bank

10 channel

DDMA IO interface

SAFARI

CPU channel

data
port 1

- IX

MUuX

data
port 2

control channel
with CPU channel

100



2. 10 Access Mode

memory controller at CPU

CPU channel ‘ control channel

with forhselect
port 1

bank
READY

bank mi

data
port 2

10 channel

DDMA IO interface

SAFARI 101



3. Port Bypass Mode

memory controller at CPU

control channel

with port bejerts

CPU channel

10 channel

DDMA IO interface

SAFARI 102



Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM
4. Applications for DDMA

5. Evaluation

SAFARI 103




Three Applications for DDMA

* Communication b/w Compute Units
— CPU-GPU communication

* In-Memory Communication and Initialization
— Bulk page copy/initialization

* Communication b/w Memory and Storage
— Serving page fault/file read & write

SAFARI



1. Compute Unit <> Compute Unit

memory memory
controller controller

-

source destination 2

TTveritencr
with 10 sel.
ek

T Tread T
with 10 sel
CRUV4 GPU

DDMA IO interface DDMA 10 interfae

Transfer data through DDMA
without interfering w/ CPU/GPU memory accesses

SAFARI 105



2. In-Memory Communication

memory [EDDMA
destination controller ctrl.

source —._

~ <
< S
~. ~
~ <
< ~.
<
~<
~
~

~

Ctrhaute -
with 10 sel.
DDMA ctrl

DDMA [0 interface

Transfer data in DRAM through DDAM

without interfering with CPU memory accesses
SAFARI 106



3. Memory < Storage

memory
controller

destination =4

write
with 10 sel.
AcO/Stbrage

DDMA IO interfac Storage (source)

e

Transfer data from storage through DDMA

without interfering with CPU memory accesses
SAFARI 107



Outline

1. Problem

2. Our Approach

3. Dual-Data-Port DRAM
4. Applications for DDMA

5. Evaluation

SAFARI 108




Evaluation Methods

* System
— Processor: 4 — 16 cores
— LLC: 16-way associative, 512KB private cache-slice/core
— Memory: 1 -4 ranks and 1 —4 channels

 Workloads

— Memory intensive:
SPEC CPU2006, TPC, stream (31 benchmarks)

— CPU-GPU communication intensive:
polybench (8 benchmarks)

— In-memory communication intensive:
apache, bootup, compiler, filecopy, mysql, fork,

shell, memcached (8 in total)
SAFARI



Performance (2 Channel, 2 Rank)

25%
20%
15%
10%

5%

Performance Improvement

0%

4-Core 8-Core 16-Core 4-Core 8-Core 16-Core
CPU-GPU Comm.-Intensive In-Memory Comm.-Intensive

High performance improvement

More performance improvement at higher core count
SAFARI 110



Performance on Various Systems

2 Q0% e P
L — 1oL —
L > 30%
G 250 S 25%
% 20% 20%
c 15% 15%
c 10% c 10%
gé 5% S 5%
& 0% 0%
1ch 2 ch 4 ch lrank 2rank 4rank

Channel Count Rank Count

Performance increases with rank count

SAFARI 111



DDMA vs. Dual Channel

180%
160%
140%
120%
100%
80%
60%
40%
20%
0%

Performance

1ch 1ch 2 ch 1ch 1ch 2 ch
DDMA DDMA

DDMA achieves higher performance

at lower processor pin count
SAFARI 112



More on Decoupled DMA

= Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu,
"Decoupled Direct Memory Access: Isolating CPU and
10 Traffic by Leveraging a Dual-Data-Port DRAM"
Proceedings of the 24th International Conference on Parallel
Architectures and Compilation Technigues (PACT), San
Francisco, CA, USA, October 2015.

[Slides (pptx) (pdf)]

Decoupled Direct Memory Access:
Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM

Donghyuk Lee* Lavanya Subramanian®* Rachata Ausavarungnirun* Jongmoo Choi’  Onur Mutlu*

*Carnegie Mellon University "Dankook University
{donghyul, lIsubrama, rachata, onur}@cmu.edu choijm@dankook.ac.kr

SAFARI 1



https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_pact15.pdf
https://sites.google.com/a/lbl.gov/pact2015/
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/decoupled-dma_donghyuk_pact15-talk.pdf

Interconnect QoS/Performance Ideas

114




Application-Aware Prioritization 1n NoCs

Das et al., "Application-Aware Prioritization Mechanisms for
On-Chip Networks,” MICRO 2009.

a https://users.ece.cmu.edu/~omutlu/pub/app-aware-
noc microQ09.pdf

Application-Aware Prioritization Mechanisms
for On-Chip Networks

Reetuparna Das® Onur Mutlut Thomas Moscibroda* Chita R. Das?
§Pennsylvania State University tCarnegie Mellon University Microsoft Research
{rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

115


https://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf

Slack-Based Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Aergia: Exploiting Packet Latency Slack in On-Chip Networks
Proceedings of the 3/th International Symposium on Computer
Architecture (ISCA), pages 106-116, Saint-Malo, France, June

2010. Slides (pptx)

Aérgia: Exploiting Packet Latency Slack
in On-Chip Networks

Reetuparna Das?® Onur Mutlut Thomas Moscibroda* Chita R. Das®

§Pennsylvania State University tCarnegie Mellon University Microsoft Research
{rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

116


https://people.inf.ethz.ch/omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/moscibroda_isca10_talk.pptx

Low-Cost QoS 1n On-Chip Networks (I)

Boris Grot, Stephen W. Keckler, and Onur Mutluy,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"

Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY, December
20009. Slides (pdf)

Preemptive Virtual Clock: A Flexible, Efficient, and
Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot Stephen W. Keckler Onur Mutlut
Department of Computer Sciences TComputer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{bgrot, skeckler@cs.utexas.edu} onur@cmu.edu

117


https://people.inf.ethz.ch/omutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/grot_micro09_talk.pdf

Low-Cost QoS in On-Chip Networks (II)

= Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for
Scalability and Service Guarantees”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Kilo-NOC: A Heterogeneous Network-on-Chip Architecture
for Scalability and Service Guarantees

Boris Grot* Joel Hestness! Stephen W. Keckler?:2 Onur Mutlu?
bgrot@cs.utexas.edu hestness@cs.utexas.edu skeckler@nvidia.com onur@cmu.edu
IThe University of Texas at Austin 2NVIDIA 3Carnegie Mellon University

Austin, TX Santa Clara, CA Pittsburgh, PA

118


https://people.inf.ethz.ch/omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/grot_isca11_talk.pptx

Throttling Based Fairness in NoCs

= Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip
Networks"
Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), New
York, NY, October 2012. Slides (pptx) (pdf)

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha,rachata,cfallin,onur}@cmu.edu

SAFARI o


http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Scalability: Express Cube Topologies

= Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Express Cube Topologies for On-Chip Interconnects”
Proceedings of the 15th International Symposium on High-
Performance Computer Architecture (HPCA), pages 163-174,
Raleigh, NC, February 2009. Slides (ppt)

Express Cube Topologies for On-Chip Interconnects

Boris Grot Joel Hestness Stephen W. Keckler Onur Mutlu!
Department of Computer Sciences TComputer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{bgrot, hestness, skeckler} @cs.utexas.edu onur@cmu.edu

120


https://people.inf.ethz.ch/omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/grot_hpca09_talk.ppt

Scalability: Slim NoC

= Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili,
Rachata Ausavarungnirun, Onur Mutlu, Torsten Hoefler,
"Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability”
Proceedings of the 23rd International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

[Poster (pdf)]

Slim NoC: A Low-Diameter On-Chip Network Topology
for High Energy Efficiency and Scalability

Maciej Besta! Syed Minhaj Hassan? Sudhakar Yalamanchili
Rachata Ausavarungnirun’ Onur Mutlu’? Torsten Hoefler!

'ETH Ziirich 2Georgia Institute of Technology 3Carnegie Mellon University

121


https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18.pdf
https://www.asplos2018.org/
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SlimNoC_asplos18-poster.pdf

Butterless Routing in NoCs

Moscibroda and Mutlu, “A Case for Bufferless Routing in On-
Chip Networks,” ISCA 2009.

a https://users.ece.cmu.edu/~omutlu/pub/bless isca09.pdf

A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda Onur Mutlu
Microsoft Research Carnegie Mellon University
mosmtho@mmrosoft.com onur@cmu_edu

122


https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

CHIPPER: Low-Complexity Butferless

= Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection
Router”
Proceedings of the 17th International Symposium on High-
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. Slides (pptx)
An extended version as SAFARI Technical Report, TR-SAFARI-
2010-001, Carnegie Mellon University, December 2010.

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin Chris Craik Onur Mutlu
cfallin@cmu.edu craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

123


https://people.inf.ethz.ch/omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
https://people.inf.ethz.ch/omutlu/pub/fallin_hpca11_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/chipper-TR-SAFARI-2010-001.pdf
http://www.ece.cmu.edu/~safari/tr.html

Minimally-Butfered Detlection Routing

= Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,
"MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect”
Proceedings of the 6th ACM/IEEE International Symposium on
Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides
(pptx) (pdf)

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu!, Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

Carnegie Mellon University
{cfallin,gnazario,kevincha,rachata,onur } @cmu.edu

"Tsinghua University & Carnegie Mellon University
yxythu@gmail.com

124


https://people.inf.ethz.ch/omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/fallin_nocs12_talk.pdf

“Butterless” Hierarchical Rings

Ausavarungnirun et al., "Design and Evaluation of Hierarchical
Rings with Deflection Routing,” SBAC-PAD 2014.

o http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-
deflection sbacpadil4.pdf

Discusses the design and implementation of a mostly-
bufferless hierarchical ring

Design and Evaluation of Hierarchical Rings

with Deflection Routing

Rachata Ausavarungnirun  Chris Fallin  Xiangyao Yut Kevin Kai-Wei Chang
Greg Nazario Reetuparna Das§  Gabriel H. Lohf  Onur Mutlu

Carnegie Mellon University  §University of Michigan {MIT #Advanced Micro Devices, Inc.

125


http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-with-deflection_sbacpad14.pdf

“Butterless” Hierarchical Rings (II)

Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang,
Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,

"A Case for Hierarchical Rings with Deflection Routing: An
Energy-Efficient On-Chip Communication Substrate”
Parallel Computing (PARCO), to appear in 2016.

o arXiv.org version, February 2016.

Achieving both High Energy Efficiency
and High Performance in On-Chip Communication
using Hierarchical Rings with Detflection Routing

Rachata Ausavarungnirun Chris Fallin  Xiangyao Yuf Kevin Kai-Wei Chang
Greg Nazario Reetuparna Das§ Gabriel H. Loh:  Onur Mutlu

Carnegie Mellon University = §University of Michigan {tMIT $AMD

126


http://dx.doi.org/10.1016/j.parco.2016.01.009
http://arxiv.org/pdf/1602.06005.pdf

Summary of Six Years of Research

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,

"Bufferless and Minimally-Buffered Deflection Routing"”
Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp.
241-275, Springer, 2014.

Chapter 1

Bufferless and Minimally-Buffered
Deflection Routing

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, Onur Mutlu

127


https://people.inf.ethz.ch/omutlu/pub/bufferless-and-minimally-buffered-deflection-routing_springer14.pdf
http://www.springer.com/engineering/circuits+&+systems/book/978-1-4614-8273-4

On-Chip vs. Off-Chip Tradeoffs

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu,
and Srinivasan Seshan,

"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects”
Proceedings of the 2012 ACM SIGCOMM

Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides
(pptx)

On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-Core Interconnects

George Nychis+, Chris Fallint, Thomas Moscibrodags, Onur Mutlu+, Srinivasan Seshan+

 Carnegie Mellon University § Microsoft Research Asia
{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

128


https://people.inf.ethz.ch/omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
https://people.inf.ethz.ch/omutlu/pub/nychis_sigcomm12_talk.pptx

Slowdown Estimation in NoCs

= Xiyue Xiang, Saugata Ghose, Onur Mutlu, and Nian-Feng Tzeng,
"A Model for Application Slowdown Estimation in On-
Chip Networks and Its Use for Improving System
Fairness and Performance”
Proceedings of the 34th IEEE International Conference on

Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
[Slides (pptx) (pdf)]

A Model for Application Slowdown Estimation in On-Chip Networks
and Its Use for Improving System Fairness and Performance

Xiyue Xiang' Saugata Ghose* Onur Mutlu’* Nian-Feng Tzeng'
"University of Louisiana at Lafayette *Carnegie Mellon University SETH Ziirich

129


https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_iccd16.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/on-chip-network-application-slowdown-estimation_xiyue_iccd16-talk.pdf

Handling Multicast and Hotspot Issues

= Xiyue Xiang, Wentao Shi, Saugata Ghose, Lu Peng, Onur Mutlu,
and Nian-Feng Tzeng,
"Carpool: A Bufferless On-Chip Network Supporting
Adaptive Multicast and Hotspot Alleviation”
Proceedings of the International Conference on Supercomputing
(ICS), Chicago, IL, USA, June 2017.
[Slides (pptx) (pdf)]

Carpool: A Bufferless On-Chip Network
Supporting Adaptive Multicast and Hotspot Alleviation

Xiyue Xiang! Wentao Shi*  Saugata Ghose* LuPeng* Onur Mutlu’* Nian-Feng Tzeng'

TUniversity of Louisiana at Lafayette =~ *Louisiana State University =~ *Carnegie Mellon University =~ SETH Ziirich

130


https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17.pdf
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/carpool-bufferless-network_ics17-talk.pdf

Predictable Performance Again:
Strong Memory Service Guarantees

131




Remember MISE?

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,
and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

MISE: Providing Performance Predictability and Improving Fairness
in Shared Main Memory Systems

Lavanya Subramanian =~ Vivek Seshadri ~ Yoongu Kim  Ben Jaiyen =~ Onur Mutlu

Carnegie Mellon University

SAFARI 152


http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Extending Slowdown Estimation to Caches

= How do we extend the MISE model to include shared cache
interference?

= Answer: Application Slowdown Model

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutluy,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]

[Source Code]

SAFARI 133


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Application Slowdown Model

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

SAFARI Carnegie Mellon (intel)




Shared Cache and Memory Contention

Core
H

_ Request Service Rate aone

Slowdown =

Request Service Rate shared
MISE [HPCA’13]



Cache Capacity Contention

Cache

Access Rate -
é Main

<:I Memory

Priority

Applications evict each other’s blocks
from the shared cache

136




Estimating Cache and Memory Slowdowns

Core Core Core Core

Core

Core

Core <:|

core | Cache Memory
Service Rate Service Rate

Core Core

Shared
Cache

Core Core Core

Core Core Core



Service Rates vs. Access Rates

Cache Access
HEEE
CIEEE s [P e
<:| Memory

Cache
Core Core Core Core
Service Rate

Request service and access rates
are tightly coupled




The Application Slowdown Model

Cache Access
CEEE
EEEE 5w B v
<:| Memory

Cache
Core Core Core Core

Cache Access Rate aione
Slowdown=

Cache Access Rate shared




Real System Studies:
Cache Access Rate vs. Slowdown

2.2 -
2 _
c _
E 1.8
'g 1.6 - --astar
(o]
= 1.4 - |bm
1.2 - bzip2

‘ ad

1 . / I I I I I I

1 1.2 14 16 1.8 2 2.2
Cache Access Rate Ratio

140



Challenge

How to estimate alone cache access rate?

. Cache
Core Core Core
Access Rate

lag Store

Core

Core

Shared Main
Cache

Core

Priority

Core




Auxiliary Tag Store

Cache

Access Rate -
' 5 Main

M
<: <: emory

Priority
Auxiliary
lag Store
Still in auxiliary

PR tag store

Auxiliary tag store tracks such contention misses

142



Accounting for Contention Misses

* Revisiting alone memory request service rate

Alone Request Service Rate of an Application =

# Requests During High Priority Epochs
# High Priority Cycles

Cycles serving contention misses should not
count as high priority cycles



Alone Cache Access Rate Estimation

Cache Access Rate aione 0f an Application =

# Requests During High Priority Epochs
#High Priority Cycles <#Cache Contention Cycles

Cache Contention Cycles: Cycles spent serving contention misses

Cache Contention Cycles=# Contention Misses X

/Aerage Memory Service Time
\

From auxiliary tag store

Measured when given
when given high priority

high priority



Application Slowdown Model (ASM)

coe ] [ | [ | [ | e

Core | | Core | | Core § } Core § » e Rgte

Shared (=] mair
<:| Memory

Cache
Core Core Core Core

Cache Access Rate aione
Slowdown=

Cache Access Rate shared




Previous Work on Slowdown

Estimation

* Previous work on slowdown estimation
— STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

T (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS 'T
er-thread Cycle Accounting [Du Bois et al., HIPEAC '13]
* Basic Idea:

Slowdown — xecution Time Al
Execution TIme snared

Count interference experienced by each request > Difficult
ASM'’s estimates are much more coarse grained = Easier



Slowdown Estimation

Error (in %)

Model Accuracy Results

W FST W PTCA m ASM
160

140

=
N D O 0 O DN
O O O O O o o

Average error of ASM’s slowdown estimates:

Average# ‘ ‘ ‘ ‘ ‘ ‘

10%

147



Leveraging ASM’s Slowdown Estimates

* [Slowdown-aware resource allocation for high
performance and fairness

e Slowdown-aware resource allocation to bound
application slowdowns

VM migration and admission control schemes
[VEE ’15]

* Fair billing schemes in a commodity cloud



Cache Capacity Partitioning

Goal: Partition the shared cache among
applications to mitigate contention

149



Cache Capacity Partitioning

Way Way Way Way

(0 1 2 3
Set 1 .
Set 2 Main

Set 3
“ Memory

Core : Set N-1

Previous partitioning schemes optimize for miss count
Problem: Not aware of performance and slowdowns

150



ASM-Cache: Slowdown-aware
Cache Way Partitioning

* Key Requirement: Slowdown estimates for all
possible way partitions

 Extend ASM to estimate slowdown for all
possible cache way allocations

* Key Idea: Allocate each way to the application
whose slowdown reduces the most



Memory Bandwidth Partitioning

Cache
Access Rate

Goal: Partition the main memory bandwidth
among applications to mitigate contention

152



ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

* Key Idea: Allocate high priority proportional to
an application’s slowdown

Slowdown,
;SIowdownj

High Priority Fraction. =

* Application i’s requests given highest priority
at the memory controller for its fraction



Coordinated Resource
Allocation Schemes

Cache capacity-aware

- bandwidth allocation
DEEE

HEEE
FEEE
FEEE

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache




Fairness and Performance Results

16-core system

100 workloads
11 0.35
10 03 B FRFCFS-NoPart
— u +
5 9 0 0.25 FRFCFS+UCP
2 2 £ B TCM+UCP
o2 8 g 0.2
c 2 - ®m PARBS+UCP
c 5 7/ O 0.15
*- 3 o m ASM-Cache-Mem
9 6 a 0.1
5 0.05
4 0
1 2 1 2

Number of Channels Number of Channels

Significant fairness benefits across different channel counts

155



Summary

Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

Goal: Quantify and control slowdowns

Key Contribution:

— ASM: An accurate slowdown estimation model

— Average error of ASM: 10%

Key ldeas:

— Shared cache access rate is a proxy for performance

— Cache Access Rate ,,,,. can be estimated by minimizing memory
interference and quantifying cache interference

Applications of Our Model

— Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

Source Code Released in January 2016

156



More on Application Slowdown Model

= Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and
Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO) Waikiki, Hawaii, USA, December 2015.

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster

(pptx) (pdf)]
[Source Code]

The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*1
Samira Khan*? Onur Mutlu*

*Carnegie Mellon University §Intel Labs 'IIT Kanpur *University of Virginia

157


https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

