
Computer Architecture
Lecture 21b: Memory Ordering 

(Memory Consistency)

Prof. Onur Mutlu
ETH Zürich
Fall 2019

5 December 2019



Memory Ordering in 
Multiprocessors
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Readings: Memory Consistency
n Required

q Lamport, “How to Make a Multiprocessor Computer That 
Correctly Executes Multiprocess Programs,” IEEE Transactions 
on Computers, 1979

n Recommended
q Gharachorloo et al., “Memory Consistency and Event Ordering 

in Scalable Shared-Memory Multiprocessors,” ISCA 1990.
q Gharachorloo et al., “Two Techniques to Enhance the 

Performance of Memory Consistency Models,” ICPP 1991.
q Ceze et al., “BulkSC: bulk enforcement of sequential 

consistency,” ISCA 2007.
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Memory Consistency vs. Cache Coherence

n Consistency is about ordering of all memory operations 
from different processors (i.e., to different memory 
locations)
q Global ordering of accesses to all memory locations

n Coherence is about ordering of operations from different 
processors to the same memory location
q Local ordering of accesses to each cache block
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Difficulties of Multiprocessing
n Much of parallel computer architecture is about

q Designing machines that overcome the sequential and parallel 
bottlenecks to achieve higher performance and efficiency

q Making programmer’s job easier in writing correct and high-
performance parallel programs
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Ordering of Operations
n Operations: A, B, C, D

q In what order should the hardware execute (and report the 
results of) these operations?

n A contract between programmer and microarchitect
q Specified by the ISA

n Preserving an “expected” (more accurately, “agreed upon”) 
order simplifies programmer’s life
q Ease of debugging; ease of state recovery, exception handling

n Preserving an “expected” order usually makes the hardware 
designer’s life difficult
q Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity
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Memory Ordering in a Single Processor
n Specified by the von Neumann model

n Sequential order

q Hardware executes the load and store operations in the order 

specified by the sequential program

n Out-of-order execution does not change the semantics

q Hardware retires (reports to software the results of) the load 

and store operations in the order specified by the sequential 

program

n Advantages: 1) Architectural state is precise within an execution.    

2) Architectural state is consistent across different runs of the program 

à Easier to debug programs

n Disadvantage: Preserving order adds overhead, reduces 

performance, increases complexity, reduces scalability
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Memory Ordering in a Dataflow Processor
n A memory operation executes when its operands are ready

n Ordering specified only by data dependencies

n Two operations can be executed and retired in any order if 
they have no dependency

n Advantage: Lots of parallelism à high performance
n Disadvantages: 

q Precise state is very hard to maintain (No specified order)     
à Very hard to debug

q Order can change across runs of the same program             
à Very hard to debug
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Memory Ordering in a MIMD Processor
n Each processor’s memory operations are in sequential order 

with respect to the “thread” running on that processor 
(assume each processor obeys the von Neumann model)

n Multiple processors execute memory operations 
concurrently

n How does the memory see the order of operations from all 
processors? 
q In other words, what is the ordering of operations across 

different processors?
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Why Does This Even Matter?
n Ease of debugging

q It is nice to have the same execution done at different times 
to have the same order of execution à Repeatability

n Correctness
q Can we have incorrect execution if the order of memory 

operations is different from the point of view of different 
processors?

n Performance and overhead
q Enforcing a strict “sequential ordering” can make life harder 

for the hardware designer in implementing performance 
enhancement techniques (e.g., OoO execution, caches)
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When Could Order Affect Correctness?
n When protecting shared data
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Protecting Shared Data
n Threads are not allowed to update shared data concurrently

q For correctness purposes

n Accesses to shared data are encapsulated inside 
critical sections or protected via synchronization constructs 
(locks, semaphores, condition variables)

n Only one thread can execute a critical section at 
a given time
q Mutual exclusion principle

n A multiprocessor should provide the correct execution of 
synchronization primitives to enable the programmer to 
protect shared data
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Supporting Mutual Exclusion
n Programmer needs to make sure mutual exclusion 

(synchronization) is correctly implemented
q We will assume this 
q But, correct parallel programming is an important topic
q Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

n http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

n See Dekker’s algorithm for mutual exclusion

n Programmer relies on hardware primitives to support correct 
synchronization

n If hardware primitives are not correct (or unpredictable), 
programmer’s life is tough

n If hardware primitives are correct but not easy to reason about 
or use, programmer’s life is still tough
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Protecting Shared Data

Assume P1 is in critical section.
Intuitively, it must have executed A, 
which means F1 must be 1 (as A happens before B), 
which means P2 should not enter the critical section.



A Question
n Can the two processors be in the critical section at the 

same time given that they both obey the von Neumann 
model?

n Answer: yes
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Both Processors in Critical Section
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A appeared to happen 
before X

X appeared to happen 
before A



The Problem
n The two processors did NOT see the same order of 

operations to memory

n The “happened before” relationship between multiple 
updates to memory was inconsistent between the two 
processors’ points of view

n As a result, each processor thought the other was not in 
the critical section
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How Can We Solve The Problem?
n Idea: Sequential consistency

n All processors see the same order of operations to memory
n i.e., all memory operations happen in an order (called the 

global total order) that is consistent across all processors

n Assumption: within this global order, each processor’s 
operations appear in sequential order with respect to its 
own operations.
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Sequential Consistency
n Lamport, “How to Make a Multiprocessor Computer That 

Correctly Executes Multiprocess Programs,” IEEE Transactions on 
Computers, 1979

n A multiprocessor system is sequentially consistent if:
q the result of any execution is the same as if the operations of all 

the processors were executed in some sequential order
AND
q the operations of each individual processor appear in this 

sequence in the order specified by its program

n This is a memory ordering model, or memory model
q Specified by the ISA
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Programmer’s Abstraction
n Memory is a switch that services one load or store at a time 

from any processor
n All processors see the currently serviced load or store at the 

same time
n Each processor’s operations are serviced in program order
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Sequentially Consistent Operation Orders
n Potential correct global orders (all are correct):

n A B X Y
n A X B Y
n A X Y B
n X A B Y
n X A Y B
n X Y A B

n Which order (interleaving) is observed depends on 
implementation and dynamic latencies
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Consequences of Sequential Consistency
n Corollaries

1. Within the same execution, all processors see the same 
global order of operations to memory
à No correctness issue
à Satisfies the “happened before” intuition

2. Across different executions, different global orders can be 
observed (each of which is sequentially consistent)
à Debugging is still difficult (as order changes across runs)
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Issues with Sequential Consistency?
n Nice abstraction for programming, but two issues:

q Too conservative ordering requirements
q Limits the aggressiveness of performance enhancement 

techniques

n Is the total global order requirement too strong?
q Do we need a global order across all operations and all 

processors?
q How about a global order only across all stores?

n Total store order memory model; unique store order model
q How about enforcing a global order only at the boundaries of 

synchronization?
n Relaxed memory models
n Acquire-release consistency model

25



Issues with Sequential Consistency?
n Performance enhancement techniques that could make SC 

implementation difficult

n Out-of-order execution 
q Loads happen out-of-order with respect to each other and 

with respect to independent stores à makes it difficult for all 
processors to see the same global order of all memory 
operations

n Caching 
q A memory location is now present in multiple places
q Prevents the effect of a store to be seen by other processors 

à makes it difficult for all processors to see the same global 
order of all memory operations
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Weaker Memory Consistency
n The ordering of operations is important when the order 

affects operations on shared data à i.e., when processors 
need to synchronize to execute a “program region”

n Weak consistency
q Idea: Programmer specifies regions in which memory 

operations do not need to be ordered
q “Memory fence” instructions delineate those regions

n All memory operations before a fence must complete before 
fence is executed

n All memory operations after the fence must wait for the fence to 
complete

n Fences complete in program order
q All synchronization operations act like a fence
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Tradeoffs: Weaker Consistency
n Advantage

q No need to guarantee a very strict order of memory 
operations
à Enables the hardware implementation of performance     

enhancement techniques to be simpler 
à Can be higher performance than stricter ordering

n Disadvantage
q More burden on the programmer or software (need to get the 

“fences” correct)

n Another example of the programmer-microarchitect tradeoff
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Example Question (I)
n Question 4 in

q http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf
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Example Question (II)
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