Computer Architecture
Lecture 21b: Memory Ordering
(Memory Consistency)

Prof. Onur Mutlu
ETH Zurich
Fall 2019
5 December 2019

Memory Ordering in
Multiprocessors

Readings: Memory Consistency

Required

o Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions

on Computers, 1979

Recommended

o Gharachorloo et al., "Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

o Gharachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

o Ceze et al., "BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.

Memory Consistency vs. Cache Coherence

Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)

o Global ordering of accesses to a// memory /locations

Coherence is about ordering of operations from different
processors to the same memory location

o Local ordering of accesses to each cache block

Ditticulties of Multiprocessing

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-
performance parallel programs

Ordering of Operations

Operations: A, B, C, D
o In what order should the hardware execute (and report the
results of) these operations?

A contract between programmer and microarchitect
o Specified by the ISA

Preserving an “expected” (more accurately, “agreed upon”)

order simplifies programmer’s life
o Ease of debugging; ease of state recovery, exception handling

Preserving an “expected” order usually makes the hardware

designer’s life difficult

o Especially if the goal is to design a high performance processor: Recall load-
store queues in out of order execution and their complexity

Memory Ordering in a Single Processor

Specified by the von Neumann model
Sequential order

o Hardware executes the load and store operations in the order
specified by the sequential program

Out-of-order execution does not change the semantics

o Hardware retires (reports to software the results of) the load

and store operations in the order specified by the sequential
program

Advantages: 1) Architectural state is precise within an execution.

2) Architectural state is consistent across different runs of the program
- Easier to debug programs

Disadvantage: Preserving order adds overhead, reduces
performance, increases complexity, reduces scalability

Memory Ordering in a Dataflow Processor

A memory operation executes when its operands are ready
Ordering specified only by data dependencies

Two operations can be executed and retired in any order if
they have no dependency

Advantage: Lots of parallelism = high performance
Disadvantages:

o Precise state is very hard to maintain (No specified order)
- Very hard to debug

o Order can change across runs of the same program
- Very hard to debug

Memory Ordering in a MIMD Processor

Each processor’'s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

Multiple processors execute memory operations
concurrently

How does the memory see the order of operations from all
processors?

o In other words, what is the ordering of operations across
different processors?

Why Does This Even Matter?

Ease of debugging

o It is nice to have the same execution done at different times
to have the same order of execution > Repeatability

Correctness |

o Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

Performance and overhead

o Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., Oo0O execution, caches)

10

When Could Order Affect Correctness?

= When protecting shared data

11

Protecting Shared Data

Threads are not allowed to update shared data concurrently
o For correctness purposes

Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

Only one thread can execute a critical section at
a given time
o Mutual exclusion principle

A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to

protect shared data
12

Supporting Mutual Exclusion

Programmer needs to make sure mutual exclusion
(synchronization) is correctly implemented

o We will assume this

o But, correct parallel programming is an important topic

o Reading: Dijkstra, “"Cooperating Sequential Processes,” 1965.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWDQ1xx/EWD
123.html

See Dekker’s algorithm for mutual exclusion

Programmer relies on hardware primitives to support correct
synchronization

If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

If hardware primitives are correct but not easy to reason about

or use, programmer’s life is still tough
13

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

I = \ l P S Protecting Shared Data

Fl'—'¢ l F;,_=¢

s {

A F=t

A - a=id
B IF (R==@) THen N4 |F (Fy==§) THEN
§ Crricat seokn | §Cpscat sechnn]|
FEP F2=g K
ELSE ELSE‘ O/\H P, cr
S"'z_ ‘ i"’*‘l _ Fz ¢heAd
Le p» xs
Assume P1 is in critical section. Sechn

Intuitively, it must have executed A, G+ orvy qeven

which means F1 must be 1 (as A happens before B), Frne_
which means P2 should not enter the critical section. NoY b

A Question

Can the two processors be in the critical section at the
same time given that they both obey the von Neumann

model?

Answer: yes

15

A'-n Trcorntch ResU\ -+ (due.ha o prpumentson trd- dees No—

RPVEORY CURM - TSR ate) S -
' (S&Fg-—") S‘}"F:crﬁdf-
Atssar\—hmandy

..S

o

provide Seqeselasilercy)

=% ‘cmm.ﬁ-t.s ok

X 75 SWhmwy (From PSS

viaw)

1V

Both Processors in Critical Section

+are 0 : }P, exewtes A P, ementes X
Atssar‘-hmandy [m; X ss sent o memry (*'\’:;:)5-5
Lrene 1 - P,mcaﬁﬁ& pa_eaw-ﬁ'té\/
(Yes+ ==0) ld F_shled (Jpey Fy==0) lol &, shid
B 1% Sogr-%o ey Y 15 Senr tu prurang
+rne 50-.- Mermery Sends lu-at}o - Mernoy seads sk 4o Pa
Fa (0) Jd Facwple (Fq D) ld Ficompletc
bnne. -~ P., 1S N orHcel Sedhiom P2 1 n chced seckin
‘Lm {UO -4 an", CWMS A m“v\u-, co-\p\dd R
. .8 4 M e F2_=.1 M nerneny

(420 loke)) (+ze lole |

17

Uet hoppered 7

‘_P.'s \ItaWﬁ mem. Op.S s Pz,‘_s \F!QM?i
A (F=1) " X (Fa=1)
B perreo) Y (e Fiz0)
b OER 2 T LR Py
A appeared to happen X appeared to happen
before X before A
| pr'bia)m\

Thege éwo Prmzs.scxsdrd
N See 1re Sorne oydex—

The Problem

The two processors did NOT see the same order of
operations to memory

The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

As a result, each processor thought the other was not in
the critical section

19

How Can We Solve The Problem?

Idea: Sequential consistency

All processors see the same order of operations to memory

i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

20

Sequential Consistency

Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on

Computers, 1979

A multiprocessor system is sequentially consistent if:

o the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

a the operations of each individual processor appear in this
sequence in the order specified by its program

This is @ memory ordering model, or memory model
o Specified by the ISA

21

Programmer’s Abstraction

Memory is a switch that services one load or store at a time
from any processor

All processors see the currently serviced load or store at the
same time

Each processor’s operations are serviced in program order

@ @ ooo

4\

(

MEMORY

22

Sequentially Consistent Operation Orders

Potential correct global orders (all are correct):

ABXY
AXBY
AXYB
XABY
XAYB
XYAB

Which order (interleaving) is observed depends on
implementation and dynamic latencies

23

Consequences of Sequential Consistency

Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

- No correctness issue
- Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

- Debugging is still difficult (as order changes across runs)

24

Issues with Sequential Consistency?

Nice abstraction for programming, but two issues:
o Too conservative ordering requirements

o Limits the aggressiveness of performance enhancement
techniques

Is the total global order requirement too strong?

o Do we need a global order across all operations and all
processors?
o How about a global order only across all stores?
Total store order memory model; unique store order model
o How about enforcing a global order only at the boundaries of
synchronization?
Relaxed memory models
Acquire-release consistency model
25

Issues with Sequential Consistency?

Performance enhancement techniques that could make SC
implementation difficult

Out-of-order execution

o Loads happen out-of-order with respect to each other and
with respect to independent stores - makes it difficult for all

processors to see the same global order of all memory
operations

Caching
o A memory location is now present in multiple places

o Prevents the effect of a store to be seen by other processors
- makes it difficult for all processors to see the same global
order of all memory operations

26

Weaker Memory Consistency

The ordering of operations is important when the order
affects operations on shared data - i.e., when processors
need to synchronize to execute a “program region”

Weak consistency

o Idea: Programmer specifies regions in which memory
operations do not need to be ordered

o "Memory fence” instructions delineate those regions

All memory operations before a fence must complete before
fence is executed

All memory operations after the fence must wait for the fence to
complete

Fences complete in program order
o All synchronization operations act like a fence

27

Tradeotts: Weaker Consistency

Advantage

o No need to guarantee a very strict order of memory
operations

- Enables the hardware implementation of performance
enhancement techniques to be simpler

- Can be higher performance than stricter ordering

Disadvantage

a More burden on the programmer or software (need to get the
“fences” correct)

Another example of the programmer-microarchitect tradeoff

28

Example Question (I)

= Question 4 in
o http://www.ece.cmu.edu/~eced447/s13/lib/exe/fetch.php?media=final.pdf

4. Sequential Consistency [30 points]

Two threads (A and B) are concurrently running on a dual-core processor that implements a sequen-
tially consistent memory model. Assume that the value at address 0x1000 is initialized to O.

Thread A

X1: st 0x1, (0x1000)
X2: 1d $r1, (0x1000)
X3: st 0x2, (0x1000)
X4: 1d $r2, (0x1000)

(a) List all possible values that can be stored in $r3 after both threads have finished executing.

Thread B

Y1l: st 0x3, (0x1000)
Y2: 1d $r3, (0x1000)
Y3: st 0x4, (0x1000)
Y4: 1d $r4, (0x1000)

29

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

Example Question (1I)

(b) After both threads have finished executing, you find that ($rl, $r2, $r3, $r4) = (1, 2, 3, 4).
How many different instruction interleavings of the two threads produce this result?

(c) What is the total number of all possible instruction interleavings? You need not expand factorials.

(d) On a non-sequentially consistent processor, is the total number of all possible instruction inter-
leavings less than, equal to, or greater than your answer to question (c)?

30

Computer Architecture
Lecture 21b: Memory Ordering
(Memory Consistency)

Prof. Onur Mutlu
ETH Zurich
Fall 2019
5 December 2019

