
Computer Architecture
Lecture 21b: Memory Ordering

(Memory Consistency)

Prof. Onur Mutlu
ETH Zürich
Fall 2019

5 December 2019

Memory Ordering in
Multiprocessors

2

Readings: Memory Consistency
n Required

q Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

n Recommended
q Gharachorloo et al., “Memory Consistency and Event Ordering

in Scalable Shared-Memory Multiprocessors,” ISCA 1990.
q Gharachorloo et al., “Two Techniques to Enhance the

Performance of Memory Consistency Models,” ICPP 1991.
q Ceze et al., “BulkSC: bulk enforcement of sequential

consistency,” ISCA 2007.

3

Memory Consistency vs. Cache Coherence

n Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)
q Global ordering of accesses to all memory locations

n Coherence is about ordering of operations from different
processors to the same memory location
q Local ordering of accesses to each cache block

4

Difficulties of Multiprocessing
n Much of parallel computer architecture is about

q Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

q Making programmer’s job easier in writing correct and high-
performance parallel programs

5

Ordering of Operations
n Operations: A, B, C, D

q In what order should the hardware execute (and report the
results of) these operations?

n A contract between programmer and microarchitect
q Specified by the ISA

n Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
q Ease of debugging; ease of state recovery, exception handling

n Preserving an “expected” order usually makes the hardware
designer’s life difficult
q Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity
6

Memory Ordering in a Single Processor
n Specified by the von Neumann model

n Sequential order

q Hardware executes the load and store operations in the order

specified by the sequential program

n Out-of-order execution does not change the semantics

q Hardware retires (reports to software the results of) the load

and store operations in the order specified by the sequential

program

n Advantages: 1) Architectural state is precise within an execution.

2) Architectural state is consistent across different runs of the program

à Easier to debug programs

n Disadvantage: Preserving order adds overhead, reduces

performance, increases complexity, reduces scalability
7

Memory Ordering in a Dataflow Processor
n A memory operation executes when its operands are ready

n Ordering specified only by data dependencies

n Two operations can be executed and retired in any order if
they have no dependency

n Advantage: Lots of parallelism à high performance
n Disadvantages:

q Precise state is very hard to maintain (No specified order)
à Very hard to debug

q Order can change across runs of the same program
à Very hard to debug

8

Memory Ordering in a MIMD Processor
n Each processor’s memory operations are in sequential order

with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

n Multiple processors execute memory operations
concurrently

n How does the memory see the order of operations from all
processors?
q In other words, what is the ordering of operations across

different processors?

9

Why Does This Even Matter?
n Ease of debugging

q It is nice to have the same execution done at different times
to have the same order of execution à Repeatability

n Correctness
q Can we have incorrect execution if the order of memory

operations is different from the point of view of different
processors?

n Performance and overhead
q Enforcing a strict “sequential ordering” can make life harder

for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

10

When Could Order Affect Correctness?
n When protecting shared data

11

Protecting Shared Data
n Threads are not allowed to update shared data concurrently

q For correctness purposes

n Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

n Only one thread can execute a critical section at
a given time
q Mutual exclusion principle

n A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to
protect shared data

12

Supporting Mutual Exclusion
n Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented
q We will assume this
q But, correct parallel programming is an important topic
q Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

n http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

n See Dekker’s algorithm for mutual exclusion

n Programmer relies on hardware primitives to support correct
synchronization

n If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

n If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

13

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

14

Protecting Shared Data

Assume P1 is in critical section.
Intuitively, it must have executed A,
which means F1 must be 1 (as A happens before B),
which means P2 should not enter the critical section.

A Question
n Can the two processors be in the critical section at the

same time given that they both obey the von Neumann
model?

n Answer: yes

15

16

Both Processors in Critical Section

17

18

A appeared to happen
before X

X appeared to happen
before A

The Problem
n The two processors did NOT see the same order of

operations to memory

n The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

n As a result, each processor thought the other was not in
the critical section

19

How Can We Solve The Problem?
n Idea: Sequential consistency

n All processors see the same order of operations to memory
n i.e., all memory operations happen in an order (called the

global total order) that is consistent across all processors

n Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

20

Sequential Consistency
n Lamport, “How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

n A multiprocessor system is sequentially consistent if:
q the result of any execution is the same as if the operations of all

the processors were executed in some sequential order
AND
q the operations of each individual processor appear in this

sequence in the order specified by its program

n This is a memory ordering model, or memory model
q Specified by the ISA

21

Programmer’s Abstraction
n Memory is a switch that services one load or store at a time

from any processor
n All processors see the currently serviced load or store at the

same time
n Each processor’s operations are serviced in program order

22

MEMORY

P1 P3P2 Pn

Sequentially Consistent Operation Orders
n Potential correct global orders (all are correct):

n A B X Y
n A X B Y
n A X Y B
n X A B Y
n X A Y B
n X Y A B

n Which order (interleaving) is observed depends on
implementation and dynamic latencies

23

Consequences of Sequential Consistency
n Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory
à No correctness issue
à Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)
à Debugging is still difficult (as order changes across runs)

24

Issues with Sequential Consistency?
n Nice abstraction for programming, but two issues:

q Too conservative ordering requirements
q Limits the aggressiveness of performance enhancement

techniques

n Is the total global order requirement too strong?
q Do we need a global order across all operations and all

processors?
q How about a global order only across all stores?

n Total store order memory model; unique store order model
q How about enforcing a global order only at the boundaries of

synchronization?
n Relaxed memory models
n Acquire-release consistency model

25

Issues with Sequential Consistency?
n Performance enhancement techniques that could make SC

implementation difficult

n Out-of-order execution
q Loads happen out-of-order with respect to each other and

with respect to independent stores à makes it difficult for all
processors to see the same global order of all memory
operations

n Caching
q A memory location is now present in multiple places
q Prevents the effect of a store to be seen by other processors

à makes it difficult for all processors to see the same global
order of all memory operations

26

Weaker Memory Consistency
n The ordering of operations is important when the order

affects operations on shared data à i.e., when processors
need to synchronize to execute a “program region”

n Weak consistency
q Idea: Programmer specifies regions in which memory

operations do not need to be ordered
q “Memory fence” instructions delineate those regions

n All memory operations before a fence must complete before
fence is executed

n All memory operations after the fence must wait for the fence to
complete

n Fences complete in program order
q All synchronization operations act like a fence

27

Tradeoffs: Weaker Consistency
n Advantage

q No need to guarantee a very strict order of memory
operations
à Enables the hardware implementation of performance

enhancement techniques to be simpler
à Can be higher performance than stricter ordering

n Disadvantage
q More burden on the programmer or software (need to get the

“fences” correct)

n Another example of the programmer-microarchitect tradeoff

28

Example Question (I)
n Question 4 in

q http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

29

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

Example Question (II)

30

Computer Architecture
Lecture 21b: Memory Ordering

(Memory Consistency)

Prof. Onur Mutlu
ETH Zürich
Fall 2019

5 December 2019

