
Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri1,5 Donghyuk Lee2,5 Thomas Mullins3,5 Hasan Hassan4 Amirali Boroumand5

Jeremie Kim4,5 Michael A. Kozuch3 Onur Mutlu4,5 Phillip B. Gibbons5 Todd C. Mowry5

1Microsoft Research India 2NVIDIA Research 3Intel 4ETH Zürich 5Carnegie Mellon University

Abstract

Many important applications trigger bulk bitwise opera-
tions, i.e., bitwise operations on large bit vectors. In fact, re-
cent works design techniques that exploit fast bulk bitwise op-
erations to accelerate databases (bitmap indices, BitWeaving)
and web search (BitFunnel). Unfortunately, in existing archi-
tectures, the throughput of bulk bitwise operations is limited
by the memory bandwidth available to the processing unit
(e.g., CPU, GPU, FPGA, processing-in-memory).

To overcome this bottleneck, we propose Ambit, an
Accelerator-in-Memory for bulk bitwise operations. Unlike
prior works, Ambit exploits the analog operation of DRAM
technology to perform bitwise operations completely inside
DRAM, thereby exploiting the full internal DRAM bandwidth.
Ambit consists of two components. First, simultaneous acti-
vation of three DRAM rows that share the same set of sense
ampliVers enables the system to perform bitwise AND and OR
operations. Second, with modest changes to the sense ampli-
Ver, the system can use the inverters present inside the sense
ampliVer to perform bitwise NOT operations. With these
two components, Ambit can perform any bulk bitwise opera-
tion eXciently inside DRAM. Ambit largely exploits existing
DRAM structure, and hence incurs low cost on top of com-
modity DRAM designs (1% of DRAM chip area). Importantly,
Ambit uses the modern DRAM interface without any changes,
and therefore it can be directly plugged onto the memory bus.

Our extensive circuit simulations show that Ambit works
as expected even in the presence of signiVcant process vari-
ation. Averaged across seven bulk bitwise operations, Am-
bit improves performance by 32X and reduces energy con-
sumption by 35X compared to state-of-the-art systems. When
integrated with Hybrid Memory Cube (HMC), a 3D-stacked
DRAM with a logic layer, Ambit improves performance of

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for proVt or commercial advantage and that copies bear
this notice and the full citation on the Vrst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speciVc permission and/or a fee. Request
permissions from Permissions@acm.org.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM. ISBN 978-1-4503-4034-2/15/12...$15.00.
DOI: http://dx.doi.org/10.1145/3123939.3124544

bulk bitwise operations by 9.7X compared to processing in
the logic layer of the HMC. Ambit improves the performance
of three real-world data-intensive applications, 1) database
bitmap indices, 2) BitWeaving, a technique to accelerate
database scans, and 3) bit-vector-based implementation of
sets, by 3X-7X compared to a state-of-the-art baseline using
SIMD optimizations. We describe four other applications that
can beneVt from Ambit, including a recent technique pro-
posed to speed up web search. We believe that large per-
formance and energy improvements provided by Ambit can
enable other applications to use bulk bitwise operations.

CCS CONCEPTS
• Computer systems organization → Single instruction,
multiple data; • Hardware→ Hardware accelerator;
• Hardware→ Dynamic memory;

KEYWORDS
Bulk Bitwise Operations, Processing-in-memory, DRAM,
Memory Bandwidth, Performance, Energy, Databases

ACM Reference Format:
Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Has-
san, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch,
Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2017.
Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology. In Proceedings of An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, Cambridge, MA, USA, October 2017 (MICRO-50), 15
pages. http://dx.doi.org/10.1145/3123939.3124544

1. Introduction
Many applications trigger bulk bitwise operations, i.e., bit-

wise operations on large bit vectors [61, 108]. In databases,
bitmap indices [26, 85], which heavily use bulk bitwise oper-
ations, are more eXcient than B-trees for many queries [3,
26, 111]. In fact, many real-world databases [3, 8, 10, 11]
support bitmap indices. A recent work, WideTable [76], de-
signs an entire database around a technique called BitWeav-
ing [75], which accelerates scans completely using bulk bit-
wise operations. Microsoft recently open-sourced a technol-
ogy called BitFunnel [40] that accelerates the document Vl-
tering portion of web search. BitFunnel relies on fast bulk
bitwise AND operations. Bulk bitwise operations are also

1



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

prevalent in DNA sequence alignment [20, 21, 113], encryp-
tion algorithms [44, 83, 107], graph processing [74], and net-
working [108]. Thus, accelerating bulk bitwise operations can
signiVcantly boost the performance of various applications.

In existing systems, a bulk bitwise operation requires a
large amount of data to be transferred on the memory chan-
nel. Such large data transfers result in high latency, band-
width, and energy consumption. In fact, our experiments on
a multi-core Intel Skylake [7] and an NVIDIA GeForce GTX
745 [4] show that the available memory bandwidth of these
systems limits the throughput of bulk bitwise operations. Re-
cent works (e.g., [16, 17, 24, 37, 42, 47, 48, 115]) propose pro-
cessing in the logic layer of 3D-stacked DRAM, which stacks
DRAM layers on top of a logic layer (e.g., Hybrid Memory
Cube [6, 51]). While the logic layer in 3D-stacked memory
has much higher bandwidth than traditional systems, it still
cannot exploit the maximum internal bandwidth available in-
side a DRAM chip (Section 7).

To overcome this memory bandwidth bottleneck, we pro-
pose a new Accelerator-in-Memory for bulk Bitwise opera-
tions (Ambit). Unlike prior approaches, Ambit uses the ana-
log operation of DRAM technology to perform bulk bitwise
operations completely inside the memory array. With modest
changes to the DRAM design, Ambit can exploit 1) the max-
imum internal bandwidth available inside each DRAM array,
and 2) the memory-level parallelism across multiple DRAM
arrays to signiVcantly improve the performance and eXciency
of bulk bitwise operations.

Ambit consists of two parts, Ambit-AND-OR and Ambit-
NOT. We propose two new ideas that exploit the operation of
the sense ampliVer, the circuitry that is used to extract data
from the DRAM cells. First, in modern DRAM, many rows of
DRAM cells (typically 512 or 1024) share a single set of sense
ampliVers [27, 59, 68, 97]. Ambit-AND-OR exploits the fact
that simultaneously activating three rows (rather than one)
results in a bitwise majority function across the cells in the
three rows. We refer to this operation as triple-row activation.
We show that by controlling the initial value of one of the
three rows, we can use the triple-row activation to perform
a bitwise AND or OR of the other two rows. Second, each
sense ampliVer has two inverters. Ambit-NOT uses a row of
dual-contact cells (a 2-transistor 1-capacitor cell [53, 81]) that
connects to both sides of the inverters to perform bitwise NOT
of any row of DRAM cells. With the ability to perform AND,
OR, and NOT operations, Ambit can perform any bulk bit-
wise operation completely using DRAM technology. Our cir-
cuit simulation results show that Ambit-AND-OR and Ambit-
NOT work reliably, even in the presence of signiVcant process
variation. Sections 3 and 4 describe these two parts of Ambit.

A naïve mechanism to support triple-row activation on
three arbitrary rows would require a wider oU-chip address
bus and multiple row decoders to simultaneously communi-
cate and decode three arbitrary addresses. Such a mechanism
would incur high cost. We present a practical, low-cost mech-
anism that employs three ideas. First, we restrict triple-row

activations to be performed only on a designated set of rows
(chosen at design time). Before performing Ambit-AND-OR,
our mechanism copies data from the source rows into the des-
ignated rows. After the operation is completed, it copies the
result into the destination row. We exploit a recent work,
RowClone [97] to perform the required copy operations ef-
Vciently inside the DRAM arrays (Section 3.4). Second, we
reserve a few DRAM row addresses and map each of them
to triple-row activation on a predeVned set of three desig-
nated rows. With this approach, the memory controller can
communicate a triple-row activation with a single address,
thereby eliminating the need for a wider address bus (Sec-
tion 5.1). Third, we split the row decoder into two parts: one
small part that handles all activations to the designated rows,
and another part to handle activations to regular data rows.
This split-row decoder signiVcantly reduces the complexity of
changes required to the row decoder design (Section 5.3).

Our implementation of Ambit has three advantages. First,
unlike prior systems that are limited by the external DRAM
data bandwidth, the performance of Ambit scales linearly
with the maximum internal bandwidth of DRAM (i.e., row
buUer size) and the memory-level parallelism available in-
side DRAM (i.e., number of banks or subarrays [59]). Second,
our implementation does not introduce any changes to the
DRAM command and address interface. As a result, Ambit
can be directly plugged onto the systemmemory bus, allowing
a design where applications can directly trigger Ambit oper-
ations using processor instructions rather than going through
a device interface like other accelerators (e.g., GPU). Third,
since almost all DRAM technologies (e.g., Hybrid Memory
Cube [6, 51], and High-Bandwidth Memory [5, 70]) use the
same underlying DRAM microarchitecture [60], Ambit can
be integrated with any of these DRAM technologies.

We compare the raw throughput and energy of performing
bulk bitwise operations using Ambit to 1) an Intel Skylake [7],
2) an NVIDIA GTX 745 [4], and 3) performing operations on
the logic layer of a state-of-the-art 3D-stacked DRAM, HMC
2.0 [6, 51]. Our evaluations show that the bulk bitwise op-
eration throughput of these prior systems is limited by the
memory bandwidth. In contrast, averaged across seven bit-
wise operations, Ambit with 8 DRAM banks improves bulk
bitwise operation throughput by 44X compared to Intel Sky-
lake and 32X compared to the GTX 745. Compared to the
DDR3 interface, Ambit reduces energy consumption of these
operations by 35X on average. Compared to HMC 2.0, Ambit
improves bulk bitwise operation throughput by 2.4X. When
integrated directly into the HMC 2.0 device, Ambit improves
throughput by 9.7X compared to processing in the logic layer
of HMC 2.0. Section 7 discusses these results.

Although the Ambit accelerator incurs low cost on top of
existing DRAM architectures, we do not advocate Ambit as a
replacement for all commodity DRAM devices. Rather, cer-
tain important applications that run in large data centers (e.g.,
databases, web search, genome analysis) can beneVt signiV-
cantly from increased throughput for bulk bitwise operations.

2



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

For such applications, we believe Ambit can improve the scal-
ability and reduce the overall cost of the system (e.g., by re-
quiring fewer servers). We evaluate the performance of Ambit
on three real-world data-intensive applications over a state-
of-the-art baseline that employs SIMD optimization. First,
Ambit improves end-to-end performance of database queries
that use bitmap indices [3] by 6.0X, averaged across a range
of query parameters. Second, for BitWeaving [75], a recently-
proposed technique to accelerate column scan operations in
databases, Ambit improves performance by 7.0X, averaged
across a range of scan parameters. Third, for the commonly-
used set data structure, Ambit improves performance of set
intersection, union, and diUerence operations by 3.0X com-
pared to existing implementations [41]. Section 8 describes
our full-system simulation framework [22], workloads, re-
sults, and four other applications that can signiVcantly beneVt
from Ambit: BitFunnel [40], masked initialization, encryption
algorithms, and DNA read mapping.

We make the following contributions in this work.

• To our knowledge, this is the Vrst work that integrates sup-
port for bulk bitwise operations directly into a DRAMmem-
ory array. We introduce Ambit, an in-memory accelerator
that exploits the analog operation of DRAM to perform bulk
bitwise operations with high throughput and eXciency.

• We present a low-cost implementation of Ambit, which re-
quires modest changes to the commodity DRAM architec-
ture (less than 1% DRAM chip area overhead). We verify
our implementation of Ambit with rigorous circuit simula-
tions. Ambit requires no changes to the DRAM command
and address interface, and hence, can be directly plugged
onto the system memory bus (Section 5).

• Our evaluations show that Ambit signiVcantly improves the
throughput and energy eXciency of bulk bitwise operations
compared to state-of-the-art CPUs, GPUs, and processing-
in-memory systems using 3D-stacked DRAM. This directly
translates to large performance improvements for three
real-world applications that use bulk bitwise operations.

2. Background on DRAM Operation
Our Ambit accelerator exploits the internal high-

bandwidth operation of the modern DRAM chips and tightly
integrates into the DRAM architecture. In this section, we
provide the necessary background on DRAM operation.

A DRAM-based memory hierarchy consists of channels,
modules, and ranks at the top level. Each rank consists of
a set of chips that operate in unison. Each rank is fur-
ther divided into many banks. All access-related commands
are directed towards a speciVc bank. Each bank consists
of several subarrays and peripheral logic to process com-
mands [27, 29, 59, 60, 67, 68, 97, 116]. Each subarray consists
of many rows (typically 512 or 1024) of DRAM cells, a row of
sense ampliVers, and a row address decoder. Figure 1 shows
the logical organization of a subarray.1

... ... ... ... ... ... ... ... ... ...

...

...

...

...

...

...

R
ow

D
ec
od
er

sense
ampliVers

row of
DRAM cells

Figure 1: Logical organization of a DRAM subarray

At a high level, accessing data from a subarray involves
three steps. The Vrst step, row activation, copies data from a
speciVed row of DRAM cells to the row of sense ampliVers
in the subarray. This step is triggered by the ACTIVATE com-
mand. Then, data is accessed from the sense ampliVers using a
READ or WRITE command. Each READ or WRITE accesses only
a subset of the sense ampliVers. Once a row is activated, mul-
tiple READ and WRITE commands can be issued to that row.
An activated bank is prepared for an access to another row by
an operation called precharging. This step is triggered by the
PRECHARGE command. We now explain these operations by
focusing on a single DRAM cell and a sense ampliVer.

Figure 2 shows the connection between a DRAM cell and
a sense ampliVer. Each DRAM cell consists of 1) a capacitor,
and 2) an access transistor that controls access to the cell. Each
sense ampliVer consists of two inverters, and an enable signal.
The output of each inverter is connected to the input of the
other inverter. The wire that connects the cell to the sense
ampliVer is called the bitline, and the wire that controls the

1Although the Vgure logically depicts a subarray as a single monolithic struc-
ture, in practice, each subarray is divided into several MATs. The row de-
coding functionality is also split between a bank-level global row decoder, a
subarray-local row decoder, and wordline drivers [50, 59, 71]. While we de-
scribe our mechanisms on top of the logical organization, they can be easily
engineered to work with the actual physical design.

sense
ampliVer

DRAM cell wordline

bi
tl
in
e

bitline

capacitor

access
transistor

enable

Figure 2: DRAM cell
and sense amplifier

0

0

1
2VDD

1
2VDD

1

1

0

1
2VDD

1
2VDD

2

1

0

1
2VDD + δ

1
2VDD

3

1

1

1
2VDD + δ

1
2VDD

4

1

1

VDD

0 5

ACTIVATE

PRECHARGE

precharged
state

wordline
enable

charge sharing
phase

sense ampliVer
enable

activated
state

Figure 3: State transitions involved in DRAM cell activation

3



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

access transistor is called the wordline. We refer to the wire
on the other end of the sense ampliVer as bitline (“bitline bar”).
Figure 3 shows the state transitions involved in extracting

the state of the DRAM cell. In this Vgure, we assume that the
cell capacitor is initially charged. The operation is similar if
the capacitor is initially empty. In the initial precharged state
Ê, both the bitline and bitline are maintained at a voltage level
of 1

2VDD . The sense ampliVer and the wordline are disabled.
The ACTIVATE command triggers an access to the cell.

Upon receiving the ACTIVATE, the wordline of the cell is
raised Ë, connecting the cell to the bitline. Since the capac-
itor is fully charged, and thus, at a higher voltage level than
the bitline, charge Wows from the capacitor to the bitline un-
til both the capacitor and the bitline reach the same voltage
level 1

2VDD + δ. This phase is called charge sharing Ì. Af-
ter charge sharing is complete, the sense ampliVer is enabled
Í. The sense ampliVer senses the diUerence in voltage level
between the bitline and bitline. The sense ampliVer then am-
pliVes the deviation to the stable state where the bitline is at
the voltage level of VDD (and the bitline is at 0). Since the ca-
pacitor is still connected to the bitline, the capacitor also gets
fully charged (i.e., restored) Î. If the capacitor was initially
empty, then the deviation on the bitline would be negative
(towards 0), and the sense ampliVer would drive the bitline
to 0. Each ACTIVATE command operates on an entire row of
cells (typically 8 KB of data across a rank).

After the cell is activated, data can be accessed from the
bitline by issuing a READ or WRITE to the column containing
the cell (not shown in Figure 3; see [28, 45, 59, 67, 68, 71] for
details). When data in a diUerent row needs to be accessed,
the memory controller takes the subarray back to the initial
precharged state Ê using the PRECHARGE command. Upon
receiving this command, DRAM Vrst lowers the raised word-
line, thereby disconnecting the capacitor from the bitline. Af-
ter this, the sense ampliVer is disabled, and both the bitline
and the bitline are driven to the voltage level of 1

2VDD .

3. Ambit-AND-OR
The Vrst component of our mechanism, Ambit-AND-OR,

uses the analog nature of the charge sharing phase to perform
bulk bitwise AND and OR directly in DRAM. It speciVcally
exploits two facts about DRAM operation:

1. In a subarray, each sense ampliVer is shared by many
(typically 512 or 1024) DRAM cells on the same bitline.

2. The Vnal state of the bitline after sense ampliVcation de-
pends primarily on the voltage deviation on the bitline
after the charge sharing phase.

Based on these facts, we observe that simultaneously activat-
ing three cells, rather than a single cell, results in a bitwise ma-
jority function—i.e., at least two cells have to be fully charged
for the Vnal state to be a logical “1”. We refer to simultaneous
activation of three cells (or rows) as triple-row activation. We
now conceptually describe triple-row activation and how we
use it to perform bulk bitwise AND and OR operations.

3.1. Triple-Row Activation (TRA)
A triple-row activation (TRA) simultaneously connects a

sense ampliVer with three DRAM cells on the same bitline.
For ease of conceptual understanding, let us assume that the
three cells have the same capacitance, the transistors and bit-
lines behave ideally (no resistance), and the cells start at a
fully refreshed state. Then, based on charge sharing princi-
ples [57], the bitline deviation at the end of the charge sharing
phase of the TRA is:

δ =
k.Cc.VDD + Cb.

1
2
VDD

3Cc + Cb
−

1

2
VDD

=
(2k − 3)Cc

6Cc + 2Cb
VDD (1)

where, δ is the bitline deviation, Cc is the cell capacitance,
Cb is the bitline capacitance, and k is the number of cells in
the fully charged state. It is clear that δ > 0 if and only if
2k− 3 > 0. In other words, the bitline deviation is positive if
k = 2, 3 and it is negative if k = 0, 1. Therefore, we expect
the Vnal state of the bitline to be VDD if at least two of the
three cells are initially fully charged, and the Vnal state to be
0, if at least two of the three cells are initially fully empty.
Figure 4 shows an example TRA where two of the three

cells are initially in the charged state Ê. When the wordlines
of all the three cells are raised simultaneously Ë, charge shar-
ing results in a positive deviation on the bitline. Therefore,
after sense ampliVcation Ì, the sense ampliVer drives the bit-
line to VDD , and as a result, fully charges all the three cells.2

C

B

A

C

B

A

C

B

A

0

0

0

0

1
2VDD

1
2VDD

1

1

1

1

0

1
2VDD + δ

1
2VDD

2

1

1

1

1

VDD

0 3

initial state after charge sharing after sense ampliVcation

Figure 4: Triple-row activation

If A, B, and C represent the logical values of the three
cells, then the Vnal state of the bitline is AB + BC + CA
(the bitwise majority function). Importantly, we can rewrite
this expression as C(A + B) + C(AB). In other words, by
controlling the value of the cell C , we can use TRA to execute
a bitwise AND or bitwise OR of the cells A and B. Since
activation is a row-level operation in DRAM, TRA operates
on an entire row of DRAM cells and sense ampliVers, thereby
enabling a multi-kilobyte-wide bitwise AND/OR of two rows.

2Modern DRAMs use an open-bitline architecture [29, 57, 71, 79], where cells
are also connected to bitline. The three cells in our example are connected to
the bitline. However, based on the duality principle of Boolean algebra [104],
i.e., not (A and B) ≡ (not A) or (not B), TRA works seamlessly even if all
the three cells are connected to bitline.

4



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

3.2. Making TRA Work
There are Vve potential issues with TRA that we need to

resolve for it to be implementable in a real DRAM design.

1. When simultaneously activating three cells, the deviation
on the bitline may be smaller than when activating only
one cell. This may lengthen sense ampliVcation or worse,
the sense ampliVer may detect the wrong value.

2. Equation 1 assumes that all cells have the same capaci-
tance, and that the transistors and bitlines behave ideally.
However, due to process variation, these assumptions are
not true in real designs [30, 67, 71]. This can aUect the
reliability of TRA, and thus the correctness of its results.

3. As shown in Figure 4 (state Ì), TRA overwrites the data
of all the three cells with the Vnal result value. In other
words, TRA overwrites all source cells, thereby destroying
their original values.

4. Equation 1 assumes that the cells involved in a TRA are
either fully-charged or fully-empty. However, DRAM cells
leak charge over time [78]. If the cells involved have leaked
signiVcantly, TRA may not operate as expected.

5. Simultaneously activating three arbitrary rows inside a
DRAM subarray requires the memory controller and the
row decoder to simultaneously communicate and decode
three row addresses. This introduces a large cost on the
address bus and the row decoder, potentially tripling these
structures, if implemented naïvely.

We address the Vrst two issues by performing rigorous cir-
cuit simulations of TRA. Our results conVrm that TRA works
as expected (Section 6). In Sections 3.3 and 3.4, we propose a
simple implementation of Ambit-AND-OR that addresses all
of the last three issues at low cost.

3.3. Implementation of Ambit-AND-OR
To solve issues 3, 4, and 5 described in Section 3.2, our im-

plementation of Ambit reserves a set of designated rows in
each subarray that are used to perform TRAs. These desig-
nated rows are chosen statically at design time. To perform
a bulk bitwise AND or OR operation on two arbitrary source
rows, our mechanism Vrst copies the data of the source rows
into the designated rows and performs the required TRA on
the designated rows. As an example, to perform a bitwise
AND/OR of two rows A and B, and store the result in row R,
our mechanism performs the following steps.

1. Copy data of row A to designated row T0
2. Copy data of row B to designated row T1
3. Initialize designated row T2 to 0
4. Activate designated rows T0, T1, and T2 simultaneously
5. Copy data of row T0 to row R

Let us understand how this implementation addresses the
last three issues described in Section 3.2. First, by perform-
ing the TRA on the designated rows, and not directly on the
source data, our mechanism avoids overwriting the source
data (issue 3). Second, each copy operation refreshes the cells
of the destination row by accessing the row [78]. Also, each
copy operation takes Vve-six orders of magnitude lower la-

tency (100 ns—1 µs) than the refresh interval (64 ms). Since
these copy operations (Steps 1 and 2 above) are performed just
before the TRA, the rows involved in the TRA are very close
to the fully-refreshed state just before the TRA operation (is-
sue 4). Finally, since the designated rows are chosen statically
at design time, the Ambit controller uses a reserved address to
communicate the TRA of a pre-deVned set of three designated
rows. To this end, Ambit reserves a set of row addresses just
to trigger TRAs. For instance, in our implementation to per-
form a TRA of designated rows T0, T1, and T2 (Step 4, above),
the Ambit controller simply issues an ACTIVATE with the re-
served address B12 (see Section 5.1 for a full list of reserved
addresses). The row decoder maps B12 to all the three word-
lines of the designated rows T0, T1, and T2. This mechanism
requires no changes to the address bus and signiVcantly re-
duces the cost and complexity of the row decoder compared
to performing TRA on three arbitrary rows (issue 5).

3.4. Fast Row Copy and Initialization Using RowClone
Our mechanism needs three row copy operations and one

row initialization operation. These operations, if performed
naïvely, can nullify the beneVts of Ambit, as a row copy or
row initialization performed using the memory controller in-
curs high latency [29, 97]. Fortunately, a recent work, Row-
Clone [97], proposes two techniques to eXciently copy data
between rows directly within DRAM. The Vrst technique,
RowClone-FPM (Fast Parallel Mode), copies data within a
subarray by issuing two back-to-back ACTIVATEs to the
source row and the destination row. This operation takes only
80 ns [97]. The second technique, RowClone-PSM (Pipelined
Serial Mode), copies data between two banks by using the
internal DRAM bus. Although RowClone-PSM is faster and
more eXcient than copying data using the memory controller,
it is signiVcantly slower than RowClone-FPM.

Ambit relies on using RowClone-FPM for most of the copy
operations.3 To enable this, we propose three ideas. First,
to allow Ambit to perform the initialization operation using
RowClone-FPM, we reserve two control rows in each subar-
ray, C0 and C1. C0 is initialized to all zeros and C1 is ini-
tialized to all ones. Depending on the operation to be per-
formed, bitwise AND or OR, Ambit copies the data from C0
or C1 to the appropriate designated row using RowClone-
FPM. Second, we reserve separate designated rows in each
subarray. This allows each subarray to perform bulk bitwise
AND/OR operations on the rows that belong to that subarray
by using RowClone-FPM for all the required copy operations.
Third, to ensure that bulk bitwise operations are predomi-
nantly performed between rows inside the same subarray, we
rely on 1) an accelerator API that allows applications to spec-

3A recent work, Low-cost Interlinked Subarrays (LISA) [29], proposes a mech-
anism to eXciently copy data across subarrays in the same bank. LISA uses a
row of isolation transistors next to the sense ampliVer to control data trans-
fer across two subarrays. LISA can potentially beneVt Ambit by improving
the performance of bulk copy operations. However, as we will describe in
Section 4, Ambit-NOT also adds transistors near the sense ampliVer, posing
some challenges in integrating LISA and Ambit. Therefore, we leave the ex-
ploration of using LISA to speedup Ambit as part of future work.

5



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

ify bitvectors that are likely to be involved in bitwise oper-
ations, and 2) a driver that maps such bitvectors to the same
subarray (described in Section 5.4.2). With these changes, Am-
bit can use RowClone-FPM for a signiVcant majority of the
bulk copy operations, thereby ensuring high performance for
the bulk bitwise operations.

4. Ambit-NOT
Ambit-NOT exploits the fact that at the end of the sense

ampliVcation process, the voltage level of the bitline repre-
sents the negated logical value of the cell. Our key idea to
perform bulk bitwise NOT in DRAM is to transfer the data
on the bitline to a cell that can also be connected to the bit-
line. For this purpose, we introduce the dual-contact cell
(shown in Figure 5). A dual-contact cell (DCC) is a DRAM
cell with two transistors (a 2T-1C cell similar to the one de-
scribed in [53, 81]). Figure 5 shows a DCC connected to a
sense ampliVer. In a DCC, one transistor connects the cell
capacitor to the bitline and the other transistor connects the
cell capacitor to the bitline. We refer to the wordline that
controls the capacitor-bitline connection as the d-wordline (or
data wordline) and the wordline that controls the capacitor-
bitline connection as the n-wordline (or negation wordline).
The layout of the dual-contact cell is similar to Lu et al.’s mi-
gration cell [81].

d-wordline

n-wordline

sense
ampliVer

enable

dual-contact cell
(DCC)

bi
tl
in
e

bitline

Figure 5: A dual-contact cell connected to a sense amplifier

Figure 6 shows the steps involved in transferring the
negated value of a source cell on to the DCC connected to
the same bitline (i.e., sense ampliVer) Ê. Our mechanism Vrst
activates the source cell Ë. The activation drives the bitline to
the data value corresponding to the source cell, VDD in this

case and the bitline to the negated value, i.e., 0 Ì. In this acti-
vated state, our mechanism activates the n-wordline. Doing so
enables the transistor that connects the DCC to the bitline Í.
Since the bitline is already at a stable voltage level of 0, it over-
writes the value in the DCC capacitor with 0, thus copying the
negated value of the source cell into the DCC. After this, our
mechanism precharges the bank, and then copies the negated
value from the DCC to the destination cell using RowClone.

Implementation of Ambit-NOT. Based on Lu et al.’s [81]
layout, the cost of each row of DCC is the same as two regular
DRAM rows. Similar to the designated rows used for Ambit-
AND-OR (Section 3.3), the Ambit controller uses reserved row
addresses to control the d-wordlines and n-wordlines of the
DCC rows—e.g., in our implementation, address B5 maps to
the n-wordline of the DCC row (Section 5.1). To perform a
bitwise NOT of row A and store the result in row R, the Ambit
controller performs the following steps.

1. Activate row A
2. Activate n-wordline of DCC (address B5)
3. Precharge the bank.
4. Copy data from d-wordline of DCC to row R (RowClone)

5. Ambit: Putting It All Together
In this section, we describe our implementation of Ambit

by integrating Ambit-AND-OR and Ambit-NOT. First, both
Ambit-AND-OR and Ambit-NOT reserve a set of rows in each
subarray and a set of addresses that map to these rows. We
present the full set of reserved addresses and their mapping
in detail (Section 5.1). Second, we introduce a new primitive
called AAP (ACTIVATE-ACTIVATE-PRECHARGE) that the Am-
bit controller uses to execute various bulk bitwise operations
(Section 5.2). Third, we describe an optimization that lowers
the latency of the AAP primitive, further improving the per-
formance of Ambit (Section 5.3). Fourth, we describe how we
integrate Ambit with the system stack (Section 5.4). Finally,
we evaluate the hardware cost of Ambit (Section 5.5).

5.1. Row Address Grouping
Our implementation divides the space of row addresses in

each subarray into three distinct groups (Figure 7): 1) Bitwise
group, 2) Control group, and 3) Data group.

The B-group (or the bitwise group) corresponds to the des-
ignated rows used to perform bulk bitwise AND/OR opera-

0

(d-wordline) 0

(n-wordline) 0

0

1
2VDD

1
2VDD

1

1

0

0

0

1
2VDD + δ

1
2VDD

2

1

0

0

1

VDD

0 3

0

0

1

1

VDD

0 4

ACTIVATE
source row

ACTIVATE
n-wordline

source

DCC

source

DCC

source

DCC

source

DCC

initial state after charge sharing activated source row activated n-wordline

Figure 6: Bitwise NOT using a dual-contact cell

6



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

Sense AmpliVers
... 1006 rows ...

small B-group
row decoder

regular
row decoder

B12

C-group
(2 rows)
C0,C1

B-group
(8 rows)

T0,T1,T2,T3
DCC0,DCC0
DCC1,DCC1

D-group

Figure 7: Row address grouping in a subarray. The figure shows
how the B-group row decoder (Section 5.3) simultaneously
activates rows T0, T1, and T2 with a single address B12.

tions (Section 3.3) and the dual-contact rows used to perform
bulk bitwise NOT operations (Section 4). Minimally, Ambit
requires three designated rows (to perform triple row acti-
vations) and one row of dual-contact cells in each subarray.
However, to reduce the number of copy operations required
by certain bitwise operations (like xor and xnor), we de-
sign each subarray with four designated rows, namely T0—
T3, and two rows of dual-contact cells, one on each side of
the row of sense ampliVers.4 We refer to the d-wordlines of
the two DCC rows as DCC0 and DCC1, and the correspond-
ing n-wordlines as DCC0 and DCC1. The B-group contains 16
reserved addresses: B0—B15. Table 1 lists the mapping be-
tween the 16 addresses and the wordlines. The Vrst eight ad-
dresses individually activate each of the 8 wordlines in the
group. Addresses B12—B15 activate three wordlines simulta-
neously. Ambit uses these addresses to trigger triple-row ac-
tivations. Finally, addresses B8—B11 activate two wordlines.
Ambit uses these addresses to copy the result of an operation
simultaneously to two rows. This is useful for xor/xnor op-
erations to simultaneously negate a row of source data and
also copy the source row to a designated row. Note that this
is just an example implementation of Ambit and a real im-
plementation may use more designated rows in the B-group,
thereby enabling more complex bulk bitwise operations with
fewer copy operations.

Addr. Wordline(s)

B0 T0
B1 T1
B2 T2
B3 T3
B4 DCC0
B5 DCC0
B6 DCC1
B7 DCC1

Addr. Wordline(s)

B8 DCC0, T0
B9 DCC1, T1

B10 T2, T3
B11 T0, T3
B12 T0, T1, T2
B13 T1, T2, T3
B14 DCC0, T1, T2
B15 DCC1, T0, T3

Table 1: Mapping of B-group addresses to corresponding ac-
tivated wordlines

The C-group (or the control group) contains the two pre-
initialized rows for controlling the bitwise AND/OR opera-
tions (Section 3.4). SpeciVcally, this group contains two ad-
dresses: C0 (row with all zeros) and C1 (row with all ones).

4Each xor/xnor operation involves multiple and, or, and not operations.
We use the additional designated row and the DCC row to store intermediate
results computed as part of the xor/xnor operation (see Figure 8c).

The D-group (or the data group) corresponds to the rows
that store regular data. This group contains all the addresses
that are neither in the B-group nor in the C-group. SpeciV-
cally, if each subarray contains 1024 rows, then the D-group
contains 1006 addresses, labeled D0—D1005. Ambit exposes
only the D-group addresses to the software stack. To ensure
that the software stack has a contiguous view of memory, the
Ambit controller interleaves the row addresses such that the
D-group addresses across all subarrays are mapped contigu-
ously to the processor’s physical address space.

With these groups, the Ambit controller can use the existing
DRAM interface to communicate all variants of ACTIVATE to
the Ambit chip without requiring new commands. Depend-
ing on the address group, the Ambit DRAM chip internally
processes each ACTIVATE appropriately. For instance, by just
issuing an ACTIVATE to address B12, the Ambit controller
triggers a triple-row activation of T0, T1, and T2. We now
describe how the Ambit controller uses this row address map-
ping to perform bulk bitwise operations.

5.2. Executing Bitwise Ops: The AAP Primitive
Let us consider the operation, Dk = not Di. To perform

this bitwise-NOT operation, the Ambit controller sends the
following sequence of commands.

1. ACTIVATE Di; 2. ACTIVATE B5; 3. PRECHARGE;
4. ACTIVATE B4; 5. ACTIVATE Dk; 6. PRECHARGE;
The Vrst three steps are the same as those described in Sec-

tion 4. These three operations copy the negated value of row
Di into the DCC0 row (as described in Figure 6). Step 4 ac-
tivates DCC0, the d-wordline of the Vrst DCC row, transfer-
ring the negated source data onto the bitlines. Step 5 activates
the destination row, copying the data on the bitlines, i.e., the
negated source data, to the destination row. Step 6 prepares
the array for the next access by issuing a PRECHARGE.

The bitwise-NOT operation consists of two steps of
ACTIVATE-ACTIVATE-PRECHARGE operations. We refer to
this sequence as the AAP primitive. Each AAP takes two
addresses as input. AAP (addr1, addr2) corresponds to
the following sequence of commands:

ACTIVATE addr1; ACTIVATE addr2; PRECHARGE;
Logically, an AAP operation copies the result of the row acti-
vation of the Vrst address (addr1) to the row(s) mapped to
the second address (addr2).
Most bulk bitwise operations mainly involve a sequence

of AAP operations. In a few cases, they require a regular
ACTIVATE followed by a PRECHARGE, which we refer to as
AP. AP takes one address as input. AP (addr) maps to the
following two commands:

ACTIVATE addr; PRECHARGE;
Figure 8 shows the steps taken by the Ambit controller to
execute three bulk bitwise operations: and, nand, and xor.

Let us consider the and operation, Dk = Di and Dj, shown
in Figure 8a. The four AAP operations directly map to the steps
described in Section 3.3. The Vrst AAP copies the Vrst source
row (Di) into the designated row T0. Similarly, the second

7



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

AAP (Di, B0) ;T0 = Di
AAP (Dj, B1) ;T1 = Dj
AAP (C0, B2) ;T2 = 0
AAP (B12, Dk) ;Dk = T0 & T1

AAP (Di, B0) ;T0 = Di
AAP (Dj, B1) ;T1 = Dj
AAP (C0, B2) ;T2 = 0
AAP (B12, B5) ;DCC0 = !(T0 & T1)
AAP (B4, Dk) ;Dk = DCC0

AAP (Di, B8) ;DCC0 = !Di, T0 = Di
AAP (Dj, B9) ;DCC1 = !Dj, T1 = Dj
AAP (C0, B10) ;T2 = T3 = 0
AP (B14) ;T1 = DCC0 & T1
AP (B15) ;T0 = DCC1 & T0

AAP (C1, B2) ;T2 = 1
AAP (B12, Dk) ;Dk = T0 | T1

a) Dk = Di and Dj

b) Dk = Di nand Dj

c) Dk = Di xor Dj
= (Di & !Dj) | (!Di & Dj)

or/nor/xnor can be implemented
by appropriately modifying the
control rows of and/nand/xor.

Figure 8: Command sequences for different bitwise operations

AAP copies the second source row Dj to row T1, and the third
AAP copies the control row “0” to row T2 (to perform a bulk
bitwise AND). Finally, the last AAP 1) issues an ACTIVATE to
address B12, which simultaneously activates the rows T0, T1,
and T2, resulting in an and operation of the rows T0 and T1,
2) issues an ACTIVATE to Dk, which copies the result of the
and operation to the destination row Dk, and 3) precharges
the bank to prepare it for the next access.

While each bulk bitwise operation involves multiple copy
operations, this copy overhead can be reduced by applying
standard compilation techniques. For instance, accumulation-
like operations generate intermediate results that are imme-
diately consumed. An optimization like dead-store elimina-
tion may prevent these values from being copied unnecessar-
ily. Our evaluations (Section 8) take into account the overhead
of the copy operations without such optimizations.

5.3. Accelerating AAP with a Split Row Decoder
The latency of executing any bulk bitwise operation using

Ambit depends on the latency of the AAP primitive. The la-
tency of the AAP in turn depends on the latency of ACTIVATE,
i.e., tRAS, and the latency of PRECHARGE, i.e., tRP. The naïve
approach to execute an AAP is to perform the three operations
serially. Using this approach, the latency of AAP is 2tRAS + tRP
(80 ns for DDR3-1600 [52]). While even this naïve approach
oUers better throughput and energy eXciency than existing
systems (not shown here), we propose a simple optimization
that signiVcantly reduces the latency of AAP.

Our optimization is based on two observations. First, the
second ACTIVATE of an AAP is issued to an already acti-
vated bank. As a result, this ACTIVATE does not require
full sense ampliVcation, which is the dominant portion of
tRAS [45, 67, 71]. This enables the opportunity to reduce the
latency for the second ACTIVATE of each AAP. Second, when
we examine all the bitwise operations in Figure 8, with the
exception of one AAP in nand, we Vnd that exactly one of the
two ACTIVATEs in each AAP is to a B-group address. This en-
ables the opportunity to use a separate decoder for B-group
addresses, thereby overlapping the latency of the two row ac-
tivations in each AAP.
To exploit both of these observations, our mechanism splits

the row decoder into two parts. The Vrst part decodes all C/D-
group addresses and the second smaller part decodes only B-
group addresses. Such a split allows the subarray to simul-

taneously decode a C/D-group address along with a B-group
address. When executing an AAP, the Ambit controller is-
sues the second ACTIVATE of an AAP after the Vrst activa-
tion has suXciently progressed. This forces the sense ampli-
Ver to overwrite the data of the second row to the result of the
Vrst activation. This mechanism allows the Ambit controller
to signiVcantly overlap the latency of the two ACTIVATEs.
This approach is similar to the inter-segment copy operation
used by Tiered-Latency DRAM [68]. Based on SPICE simu-
lations, our estimate of the latency of executing the back-to-
back ACTIVATEs is only 4 ns larger than tRAS. For DDR3-1600
(8-8-8) timing parameters [52], this optimization reduces the
latency of AAP from 80 ns to 49 ns.

Since only addresses in the B-group are involved in triple-
row activations, the complexity of simultaneously raising
three wordlines is restricted to the small B-group decoder. As
a result, the split row decoder also reduces the complexity of
the changes Ambit introduces to the row decoding logic.

5.4. Integrating Ambit with the System
Ambit can be plugged in as an I/O (e.g., PCIe) device and

interfaced with the CPU using a device model similar to other
accelerators (e.g., GPU). While this approach is simple, as de-
scribed in previous sections, the address and command in-
terface of Ambit is exactly the same as that of commodity
DRAM. This enables the opportunity to directly plug Ambit
onto the system memory bus and control it using the memory
controller. This approach has several beneVts. First, appli-
cations can directly trigger Ambit operations using CPU in-
structions rather than going through a device API, which in-
curs additional overhead. Second, since the CPU can directly
access Ambit memory, there is no need to copy data between
the CPU memory and the accelerator memory. Third, existing
cache coherence protocols can be used to keep Ambit memory
and the on-chip cache coherent. To plug Ambit onto the sys-
tem memory bus, we need additional support from the rest of
the system stack, which we describe in this section.

5.4.1. ISA Support. To enable applications to communicate
occurrences of bulk bitwise operations to the processor, we
introduce new instructions of the form,

bbop dst, src1, [src2], size
where bbop is the bulk bitwise operation, dst is the desti-

nation address, src1 and src2 are the source addresses, and
size denotes the length of operation in bytes. Note that size
must be a multiple of DRAM row size. For bitvectors that are
not a multiple of DRAM row size, we assume that the appli-
cation will appropriately pad them with dummy data, or per-
form the residual (sub-row-sized) operations using the CPU.

5.4.2. Ambit API/Driver Support. For Ambit to pro-
vide signiVcant performance beneVt over existing systems,
it is critical to ensure that most of the required copy oper-
ations are performed using RowClone-FPM, i.e., the source
rows and the destination rows involved in bulk bitwise opera-
tions are present in the same DRAM subarray. To this end, we
expect the manufacturer of Ambit to provide 1) an API that

8



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

enables applications to specify bitvectors that are likely to be
involved in bitwise operations, and 2) a driver that is aware of
the internal mapping of DRAM rows to subarrays and maps
the bitvectors involved in bulk bitwise operations to the same
DRAM subarray. Note that for a large bitvector, Ambit does
not require the entire bitvector to Vt inside a single subarray.
Rather, each bitvector can be interleaved across multiple sub-
arrays such that the corresponding portions of each bitvector
are in the same subarray. Since each subarray contains over
1000 rows to store application data, an application can map
hundreds of large bitvectors to Ambit, such that the copy op-
erations required by all the bitwise operations across all these
bitvectors can be performed eXciently using RowClone-FPM.

5.4.3. Implementing the bbop Instructions. Since all
Ambit operations are row-wide, Ambit requires the source
and destination rows to be row-aligned and the size of the
operation to be a multiple of the size of a DRAM row. The mi-
croarchitecture implementation of a bbop instruction checks
if each instance of the instruction satisVes this constraint. If
so, the CPU sends the operation to the memory controller,
which completes the operation using Ambit. Otherwise, the
CPU executes the operation itself.

5.4.4. Maintaining On-chip Cache Coherence. Since
both CPU and Ambit can access/modify data in memory, be-
fore performing any Ambit operation, the memory controller
must 1) Wush any dirty cache lines from the source rows, and
2) invalidate any cache lines from destination rows. Such
a mechanism is already required by Direct Memory Access
(DMA) [31], which is supported by most modern processors,
and also by recently proposed mechanisms [48, 97]. As Ambit
operations are always row-wide, we can use structures like
the Dirty-Block Index [98] to speed up Wushing dirty data.
Our mechanism invalidates the cache lines of the destination
rows in parallel with the Ambit operation.

5.4.5. Error Correction and Data Scrambling. In DRAM
modules that support Error Correction Code (ECC), the mem-
ory controller must Vrst read the data and ECC to verify data
integrity. Since Ambit reads and modiVes data directly in
memory, it does not work with the existing ECC schemes
(e.g., SECDED [43]). To support ECC with Ambit, we need an
ECC scheme that is homomorphic [93] over all bitwise opera-
tions, i.e., ECC(A and B) = ECC(A) and ECC(B), and similarly
for other bitwise operations. The only scheme that we are
aware of that has this property is triple modular redundancy
(TMR) [82], wherein ECC(A) = AA. The design of lower-
overhead ECC schemes that are homomorphic over all bitwise
operations is an open problem. For the same reason, Ambit
does notwork with data scrambling mechanisms that pseudo-
randomly modify the data written to DRAM [36]. Note that
these challenges are also present in any mechanism that in-
terprets data directly in memory (e.g., the Automata Proces-
sor [33, 106]). We leave the evaluation of Ambit with TMR
and exploration of other ECC and data scrambling schemes to
future work.

5.5. Ambit Hardware Cost

As Ambit largely exploits the structure and operation of
existing DRAM design, we estimate its hardware cost in terms
of the overhead it imposes on top of today’s DRAM chip and
memory controller.

5.5.1. Ambit Chip Cost. In addition to support for Row-
Clone, Ambit has only two changes on top of the existing
DRAM chip design. First, it requires the row decoding logic to
distinguish between the B-group addresses and the remaining
addresses. Within the B-group, it must implement the map-
ping described in Table 1. As the B-group contains only 16
addresses, the complexity of the changes to the row decoding
logic is low. The second source of cost is the implementation
of the dual-contact cells (DCCs). In our design, each sense
ampliVer has only one DCC on each side, and each DCC has
two wordlines associated with it. In terms of area, each DCC
row costs roughly two DRAM rows, based on estimates from
Lu et al. [81]. We estimate the overall storage cost of Ambit
to be roughly 8 DRAM rows per subarray—for the four desig-
nated rows and the DCC rows (< 1% of DRAM chip area).

5.5.2. Ambit Controller Cost.On top of the existing
memory controller, the Ambit controller must statically store
1) information about diUerent address groups, 2) the timing
of diUerent variants of the ACTIVATE, and 3) the sequence of
commands required to complete diUerent bitwise operations.
When Ambit is plugged onto the system memory bus, the
controller can interleave the various AAP operations in the
bitwise operations with other regular memory requests from
diUerent applications. For this purpose, the Ambit controller
must also track the status of on-going bitwise operations. We
expect the overhead of these additional pieces of information
to be small compared to the beneVts enabled by Ambit.

5.5.3. Ambit Testing Cost. Testing Ambit chips is simi-
lar to testing regular DRAM chips. In addition to the regular
DRAM rows, the manufacturer must test if the TRA opera-
tions and the DCC rows work as expected. In each subarray
with 1024 rows, these operations concern only 8 DRAM rows
and 16 addresses of the B-group. In addition, all these opera-
tions are triggered using the ACTIVATE command. Therefore,
we expect the overhead of testing an Ambit chip on top of
testing a regular DRAM chip to be low.

When a component is found to be faulty during testing,
DRAM manufacturers use a number of techniques to improve
the overall yield; The most prominent among them is using
spare rows to replace faulty DRAM rows. Similar to some
prior works [67, 68, 97], Ambit requires faulty rows to be
mapped to spare rows within the same subarray. Note that,
since Ambit preserves the existing DRAM command interface,
an Ambit chip that fails during testing can still be shipped as
a regular DRAM chip. This signiVcantly reduces the impact
of Ambit-speciVc failures on overall DRAM yield.

9



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

6. Circuit-level SPICE Simulations
We use SPICE simulations to conVrm that Ambit works re-

liably. Of the two components of Ambit, our SPICE results
show that Ambit-NOT always works as expected and is not
aUected by process variation. This is because, Ambit-NOT op-
eration is very similar to existing DRAM operation (Section 4).
On the other hand, Ambit-AND-OR requires triple-row acti-
vation, which involves charge sharing between three cells on
a bitline. As a result, it can be aUected by process variation in
various circuit components.

To study the eUect of process variation on TRA, our SPICE
simulations model variation in all the components in the
subarray (cell capacitance, transistor length/width/resistance,
bitline/wordline capacitance and resistance, and voltage lev-
els). We implement the sense ampliVer using 55nm DDR3
model parameters [14], and PTM low-power transistor mod-
els [9, 117]. We use cell/transistor parameters from the Ram-
bus power model [14] (cell capacitance = 22fF; transistor
width/height = 55nm/85nm).5

We Vrst identify the worst case for TRA, wherein every
component has process variation that works toward making
TRA fail. Our results show that even in this extremely adver-
sarial scenario, TRA works reliably for up to±6% variation in
each component.

In practice, variations across components are not so highly
correlated. Therefore, we use Monte-Carlo simulations to un-
derstand the practical impact of process variation on TRA. We
increase the amount of process variation from ±5% to ±25%
and run 100,000 simulations for each level of process varia-
tion. Table 2 shows the percentage of iterations in which TRA
operates incorrectly for each level of variation.

Variation ±0% ±5% ±10% ±15% ±20% ±25%

% Failures 0.00% 0.00% 0.29% 6.01% 16.36% 26.19%

Table 2: Effect of process variation on TRA

Two conclusions are in order. First, as expected, up to ±5%
variation, there are zero errors in TRA. Second, even with
±10% and ±15% variation, the percentage of erroneous TRAs
across 100,000 iterations each is just 0.29% and 6.01%. These
results show that Ambit is reliable even in the presence of sig-
niVcant process variation.

The eUect of process variation is expected to get worse with
smaller technology nodes [55]. However, as Ambit largely
uses the existing DRAM structure and operation, many tech-
niques used to combat process variation in existing chips can
be used for Ambit as well (e.g., spare rows or columns). In ad-
dition, as described in Section 5.5.3, Ambit chips that fail test-
ing only for TRA can potentially be shipped as regular DRAM
chips, thereby alleviating the impact of TRA failures on over-
all DRAM yield, and thus cost.

5In DRAM, temperature aUects mainly cell leakage [30, 46, 67, 78, 79, 87, 92,
114]. As TRA is performed on cells that are almost fully-refreshed, we do not
expect temperature to aUect TRA.

7. Analysis of Throughput & Energy
We compare the raw throughput of bulk bitwise opera-

tions using Ambit to a multi-core Intel Skylake CPU [7], an
NVIDIA GeForce GTX 745 GPU [4], and processing in the
logic layer of an HMC 2.0 [6] device. The Intel CPU has
4 cores with Advanced Vector eXtensions [49], and two 64-
bit DDR3-2133 channels. The GTX 745 contains 3 streaming
multi-processors, each with 128 CUDA cores [77], and one
128-bit DDR3-1800 channel. The HMC 2.0 device consists of
32 vaults each with 10 GB/s bandwidth. We use two Ambit
conVgurations: Ambit that integrates our mechanism into a
regular DRAM module with 8 banks, and Ambit-3D that ex-
tends a 3D-stacked DRAM similar to HMC with support for
Ambit. For each bitwise operation, we run a microbenchmark
that performs the operation repeatedly for many iterations on
large input vectors (32 MB), and measure the throughput of
the operation. Figure 9 plots the results of this experiment for
the Vve systems (the y-axis is in log scale).

Skylake GTX 745 HMC 2.0 Ambit Ambit-3D

2
4
8
16
32
64
128
256
512
1024
2048

not and/or nand/nor xor/xnor mean

Th
ro
ug
hp

ut
(G
O
ps
/s
)

lo
g
sc
al
e

Figure 9: Throughput of bulk bitwise operations.

We draw three conclusions. First, the throughput of Sky-
lake, GTX 745, and HMC 2.0 are limited by the memory band-
width available to the respective processors. With an order
of magnitude higher available memory bandwidth, HMC 2.0
achieves 18.5X and 13.1X better throughput for bulk bitwise
operations compared to Skylake and GTX 745, respectively.
Second, Ambit, with its ability to exploit the maximum inter-
nal DRAM bandwidth and memory-level parallelism, outper-
forms all three systems. On average, Ambit (with 8 DRAM
banks) outperforms Skylake by 44.9X, GTX 745 by 32.0X, and
HMC 2.0 by 2.4X. Third, 3D-stacked DRAM architectures like
HMC contain a large number of banks (256 banks in 4GB
HMC 2.0). By extending 3D-stacked DRAM with support for
Ambit, Ambit-3D improves the throughput of bulk bitwise op-
erations by 9.7X compared to HMC 2.0.

We estimate energy for DDR3-1333 using the Rambus
power model [14]. Our energy numbers include only the
DRAM and channel energy, and not the energy consumed by
the processor. For Ambit, some activations have to raise mul-
tiple wordlines and hence, consume higher energy. Based on
our analysis, the activation energy increases by 22% for each
additional wordline raised. Table 3 shows the energy con-
sumed per kilo-byte for diUerent bitwise operations. Across
all bitwise operations, Ambit reduces energy consumption by
25.1X—59.5X compared to copying data with the memory con-
troller using the DDR3 interface.

10



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy Ambit 1.6 3.2 4.0 5.5

(nJ/KB) (↓) 59.5X 43.9X 35.1X 25.1X

Table 3: Energy of bitwise operations. (↓) indicates energy
reduction of Ambit over the traditional DDR3-based design.

8. Effect on Real-World Applications
We evaluate the beneVts of Ambit on real-world applica-

tions using the Gem5 full-system simulator [22]. Table 4 lists
the main simulation parameters. Our simulations take into ac-
count the cost of maintaining coherence, and the overhead of
RowClone to perform copy operations. We assume that appli-
cation data is mapped such that all bitwise operations happen
across rows within a subarray. We quantitatively evaluate
three applications: 1) a database bitmap index [3, 8, 10, 11],
2) BitWeaving [75], a mechanism to accelerate database col-
umn scan operations, and 3) a bitvector-based implementation
of the widely-used set data structure. In Section 8.4, we dis-
cuss four other applications that can beneVt from Ambit.

Processor
x86, 8-wide, out-of-order, 4 Ghz
64-entry instruction queue

L1 cache 32 KB D-cache, 32 KB I-cache, LRU policy
L2 cache 2 MB, LRU policy, 64 B cache line size
Memory Controller 8 KB row size, FR-FCFS [94, 118] scheduling
Main memory DDR4-2400, 1-channel, 1-rank, 16 banks

Table 4: Major simulation parameters

8.1. Bitmap Indices
Bitmap indices [26] are an alternative to traditional B-

tree indices for databases. Compared to B-trees, bitmap in-
dices 1) consume less space, and 2) can perform better for
many queries (e.g., joins, scans). Several major databases sup-
port bitmap indices (e.g., Oracle [8], Redis [10], Fastbit [3],
rlite [11]). Several real applications (e.g., [1, 2, 12, 32]) use
bitmap indices for fast analytics. As bitmap indices heavily
rely on bulk bitwise operations, Ambit can accelerate bitmap
indices, thereby improving overall application performance.

To demonstrate this beneVt, we use the following work-
load from a real application [32]. The application uses bitmap
indices to track users’ characteristics (e.g., gender) and activ-
ities (e.g., did the user log in to the website on day ’X’?) for
u users. Our workload runs the following query: “How many
unique users were active every week for the past w weeks?
and How many male users were active each of the past w
weeks?” Executing this query requires 6w bulk bitwise or,
2w-1 bulk bitwise and, and w+1 bulk bitcount operations. In
our mechanism, the bitcount operations are performed by the
CPU. Figure 10 shows the end-to-end query execution time of
the baseline and Ambit for the above experiment for various
values of u and w.

We draw two conclusions. First, as each query has O(w)
bulk bitwise operations and each bulk bitwise operation takes
O(u) time, the query execution time increases with increas-

5.4X 6.1X 6.3X 5.7X 6.2X 6.6X

Baseline Ambit

10
20
30
40
50
60
70
80
90

100
110

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
u = 8 million users u = 16 million users

w =

E
xe

cu
ti
on

T
im

e
of

th
e

Q
ue

ry
(m

s)

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

ing value uw. Second, Ambit signiVcantly reduces the query
execution time compared to the baseline, by 6X on average.

While we demonstrate the beneVts of Ambit using one
query, as all bitmap index queries involve several bulk bitwise
operations, we expect Ambit to provide similar performance
beneVts for any application using bitmap indices.

8.2. BitWeaving: Fast Scans using Bitwise Operations
Column scan operations are a common part of many

database queries. They are typically performed as part of
evaluating a predicate. For a column with integer values, a
predicate is typically of the form, c1 <= val <= c2, for two
integer constants c1 and c2. Recent works [75, 110] observe
that existing data representations for storing columnar data
are ineXcient for such predicate evaluation especially when
the number of bits used to store each value of the column is
less than the processor word size (typically 32 or 64). This
is because 1) the values do not align well with word bound-
aries, and 2) the processor typically does not have comparison
instructions at granularities smaller than the word size. To
address this problem, BitWeaving [75] proposes two column
representations, called BitWeaving-H and BitWeaving-V. As
BitWeaving-V is faster than BitWeaving-H, we focus our at-
tention on BitWeaving-V, and refer to it as just BitWeaving.

BitWeaving stores the values of a column such that the Vrst
bit of all the values of the column are stored contiguously, the
second bit of all the values of the column are stored contigu-
ously, and so on. Using this representation, the predicate c1
<= val <= c2, can be represented as a series of bitwise op-
erations starting from the most signiVcant bit all the way to
the least signiVcant bit (we refer the reader to the BitWeaving
paper [75] for the detailed algorithm). As these bitwise oper-
ations can be performed in parallel across multiple values of
the column, BitWeaving uses the hardware SIMD support to
accelerate these operations. With support for Ambit, these op-
erations can be performed in parallel across a larger set of val-
ues compared to 128/256-bit SIMD available in existing CPUs,
thereby enabling higher performance.

We show this beneVt by comparing the performance of
BitWeaving using a baseline CPU with support for 128-bit
SIMD to the performance of BitWeaving accelerated by Am-
bit for the following commonly-used query on a table T:

‘select count(*) from T where c1 <= val <= c2’
Evaluating the predicate involves a series of bulk bitwise

operations and the count(*) requires a bitcount operation.

11



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

The execution time of the query depends on 1) the number of
bits (b) used to represent each value val, and 2) the number of
rows (r) in the table T. Figure 11 shows the speedup of Ambit
over the baseline for various values of b and r.

1m 2m 4m 8mRow count (r) =

1
2
3
4
5
6
7
8
9
10
11
12
13

4 8 12 16 20 24 28 32

Sp
ee
du

p
oU

er
ed

by
A
m
bi
t

Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit for BitWeaving over our
baseline CPU with SIMD support

We draw three conclusions. First, Ambit improves the per-
formance of the query by between 1.8X and 11.8X (7.0X on
average) compared to the baseline for various values of b and
r. Second, the performance improvement of Ambit increases
with increasing number of bits per column (b), because, as
b increases, the fraction of time spent in performing the bit-
count operation reduces. As a result, a larger fraction of the
execution time can be accelerated using Ambit. Third, for
b = 4, 8, 12, and 16, we observe large jumps in the speedup
of Ambit as we increase the row count. These large jumps
occur at points where the working set stops Vtting in the on-
chip cache. By exploiting the high bank-level parallelism in
DRAM, Ambit can outperform the baseline (by up to 4.1X)
even when the working set Vts in the cache.

8.3. Bitvectors vs. Red-Black Trees
Many algorithms heavily use the set data structure. Red-

black trees [41] (RB-trees) are typically used to implement a
set [13]. However, a set with a limited domain can be imple-
mented using a bitvector—a set that contains only elements
from 1 toN , can be represented using anN -bit bitvector (e.g.,
Bitset [13]). Each bit indicates whether the corresponding el-
ement is present in the set. Bitvectors provide constant-time
insert and lookup operations compared toO(log n) time taken
by RB-trees. However, set operations like union, intersection,
and diUerence have to scan the entire bitvector regardless of
the number of elements actually present in the set. As a result,
for these three operations, depending on the number of ele-
ments in the set, bitvectors may outperform or perform worse
than RB-trees. With support for fast bulk bitwise operations,
we show that Ambit signiVcantly shifts the trade-oU in favor
of bitvectors for these three operations.

To demonstrate this, we compare the performance of set
union, intersection, and diUerence using: RB-tree, bitvectors
with 128-bit SIMD support (Bitset), and bitvectors with Am-
bit. We run a benchmark that performs each operation on
m input sets and stores the result in an output set. We restrict
the domain of the elements to be from 1 toN . Therefore, each
set can be represented using an N -bit bitvector. For each of
the three operations, we run multiple experiments varying the

number of elements (e) actually present in each input set. Fig-
ure 12 shows the execution time of RB-tree, Bitset, and Ambit
normalized to RB-tree for the three operations for m = 15,
and N = 512k.

16 153 88 30 8 69 24

RB-tree

Bitset

Ambit

1

2

3

4

5

6

4 16 64 256 1k 4 16 64 256 1k 4 16 64 256 1k
Set Union Set Intersection Set Difference

e =

N
or

m
al

iz
ed

E
xe

cu
ti
on

T
im

e

# Elements in Each Input Set (N = 512k)

Figure 12: Performance of set operations

We draw three conclusions. First, by enabling much higher
throughput for bulk bitwise operations, Ambit outperforms
the baseline Bitset on all the experiments. Second, as ex-
pected, when the number of elements in each set is very small
(16 out of 512k), RB-Tree performs better than Bitset and Am-
bit (with the exception of union). Third, even when each set
contains only 64 or more elements out of 512k, Ambit sig-
niVcantly outperforms RB-Tree, 3X on average. We conclude
that Ambit makes the bitvector-based implementation of a set
more attractive than the commonly-used red-black-tree-based
implementation.

8.4. Other Applications
8.4.1. BitFunnel: Web Search.Microsoft recently open-
sourced BitFunnel [40], a technology that improves the eX-
ciency of document Vltering in web search. BitFunnel rep-
resents both documents and queries as a bag of words using
Bloom Vlters [23], and uses bitwise AND operations on spe-
ciVc locations of the Bloom Vlters to eXciently identify doc-
uments that contain all the query words. With Ambit, this
operation can be signiVcantly accelerated by simultaneously
performing the Vltering for thousands of documents.

8.4.2. Masked Initialization.Masked initializations [90]
are very useful in applications like graphics (e.g., for clear-
ing a speciVc color in an image). By expressing such masked
operations using bitwise AND/OR operations, we can easily
accelerate such masked initializations using Ambit.

8.4.3. Encryption.Many encryption algorithms heavily use
bitwise operations (e.g., XOR) [44, 83, 107]. The Ambit support
for fast bulk bitwise operations can i) boost the performance of
existing encryption algorithms, and ii) enable new encryption
algorithms with high throughput and eXciency.

8.4.4. DNA Sequence Mapping. In DNA sequence map-
ping, prior works [20, 21, 58, 69, 73, 91, 95, 109, 112, 113]
propose algorithms to map sequenced reads to the reference
genome. Some works [20, 21, 58, 84, 91, 113] heavily use bulk
bitwise operations. Ambit can signiVcantly improve the per-
formance of such DNA sequence mapping algorithms [58].

12



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

9. Related Work
To our knowledge, this is the Vrst work that proposes an ac-

celerator to perform bulk bitwise operations completely inside
DRAM with high eXciency and low cost. We now compare
Ambit to prior related works that use diUerent techniques to
accelerate bitwise operations.

Two patents [18, 19] from Mikamonu describe a DRAM
design with 3T-1C cells and additional logic (e.g., muxes) to
perform NAND/NOR operations on the data inside DRAM.
While this architecture can perform bitwise operations inside
DRAM, the 3T-1C cells result in signiVcant area overhead to
the DRAM array, and hence greatly reduce overall memory
density/capacity. In contrast, Ambit builds on top of the ex-
isting DRAM architecture, with very few modiVcations, and
therefore, incurs low cost.

Compute Cache [15] proposes a mechanism to perform bit-
wise operations inside on-chip SRAM caches. While Compute
Cache improves performance and reduces energy consump-
tion by reducing data movement between the cache and the
CPU, the main drawback of Compute Cache is that it requires
the data structures involved in bitwise operations to Vt in the
on-chip cache. However, this may not be the case for data-
intensive applications, such as databases, graph analytics, and
web search. For such applications, Ambit enables signiVcant
performance improvements as it can exploit the large capac-
ity and parallelism present inside the DRAM chip. In general,
since Compute Cache and Ambit beneVt applications with dif-
ferent working set characteristics, they can be employed in
conjunction to achieve greater beneVts.

Pinatubo [74] proposes a mechanism to perform bulk bit-
wise operations inside Phase Change Memory (PCM) [66].
Similarly, recent works [63, 64, 65, 72] propose mechanisms
to perform bitwise operations and other operations (3-bit full
adder) completely inside a memristor array. As the underly-
ing memory technology is diUerent, the mechanisms proposed
by these works is completely diUerent from Ambit. Moreover,
given that DRAM is faster than PCM or memristors, Ambit
can oUer higher throughput compared to these mechanisms.

Prior works [54, 97, 100, 102] exploit memory architectures
to accelerate speciVc operations. RowClone [97] eXciently
performs bulk copy and initialization inside DRAM. Kang et
al. [54] propose a mechanism to exploit SRAM to acceler-
ate “sum of absolute diUerences” computation. ISAAC [102]
proposes a mechanism to accelerate dot-product computation
using memristors. Gather-Scatter DRAM [100] accelerates
strided access patterns via simple changes to a DRAMmodule.
None of these mechanisms can perform bitwise operations.

Prior works (e.g., [34, 35, 38, 39, 56, 62, 86, 88, 103, 105])
propose designs that integrate custom processing logic into
the DRAM chip to perform bandwidth-intensive operations.
These approaches have two drawbacks. First, the exten-
sive logic added to DRAM signiVcantly increases the chip
cost. Second, logic designed using DRAM process is gener-
ally slower than regular processors.

Many works (e.g., [16, 17, 24, 25, 37, 42, 47, 48, 80, 89, 115])
propose mechanisms to perform computation in the logic
layer of 3D-stacked memory architectures. Even though they
provide higher bandwidth compared to oU-chip memory, 3D-
stacked architectures are still bandwidth limited compared to
the maximum internal bandwidth available inside a DRAM
chip [70]. We have shown in Section 7 that, for bulk bitwise
operations, Ambit outperforms processing in the logic layer
of HMC 2.0 [6]. However, processing in the logic layer can
still be used to synergistically perform other operations, while
Ambit can perform bulk bitwise operations inside DRAM.

10. Conclusion
We introduce Ambit, a new accelerator that performs bulk

bitwise operations within a DRAM chip by exploiting the
analog operation of DRAM. Ambit consists of two compo-
nents. The Vrst component uses simultaneous activation of
three DRAM rows to perform bulk bitwise AND/OR opera-
tions. The second component uses the inverters present in
each sense ampliVer to perform bulk bitwise NOT operations.
With these two components, Ambit can perform any bulk bit-
wise operation eXciently in DRAM. Our evaluations show
that, on average, Ambit enables 32X/35X improvement in the
throughput/energy of bulk bitwise operations compared to a
state-of-the-art system. This improvement directly translates
to performance improvement in three data-intensive applica-
tions. Ambit is generally applicable to any memory device
that uses DRAM (e.g, 3D-stacked DRAM, embedded DRAM).
We believe that the Ambit’s support for fast and eXcient bulk
bitwise operations can enable better design of other applica-
tions to take advantage of such operations, which would result
in large improvements in performance and eXciency.

Acknowledgments
We thank the reviewers of ISCA 2016/2017, MICRO

2016/2017, and HPCA 2017 for their valuable comments. We
thank the members of the SAFARI group and PDL for their
feedback. We acknowledge the generous support of our in-
dustrial partners, especially Google, Huawei, Intel, Microsoft,
Nvidia, Samsung, Seagate, and VMWare. This work was sup-
ported in part by NSF, SRC, and the Intel Science and Tech-
nology Center for Cloud Computing. A preliminary version
of this work was published in IEEE CAL [99], which intro-
duced bulk bitwise AND/OR in DRAM, and in ADCOM [96],
which introduced the idea of processing using memory. An
earlier pre-print of this paper was posted on arxiv.org [101].

References
[1] Belly Card Engineering. https://tech.bellycard.com/.
[2] bitmapist. https://github.com/Doist/bitmapist.
[3] FastBit: An EXcient Compressed Bitmap Index Technology. https:

//sdm.lbl.gov/fastbit/.
[4] GeForce GTX 745. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-745-oem/specifications.
[5] High Bandwidth Memory DRAM. http://www.jedec.org/

standards-documents/docs/jesd235.

13



MICRO-50, October 2017, Cambridge, MA, USA V. Seshadri et al.

[6] Hybrid Memory Cube SpeciVcation 2.0. http://
www.hybridmemorycube.org/files/SiteDownloads/
HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.

[7] 6th Generation Intel Core Processor Family Datasheet. http:
//www.intel.com/content/www/us/en/processors/core/
desktop-6th-gen-core-family-datasheet-vol-1.html.

[8] Using Bitmap Indexes in Data Warehouses. https://docs.oracle.
com/cd/B28359_01/server.111/b28313/indexes.htm.

[9] Predictive Technology Model. http://ptm.asu.edu/.
[10] Redis - bitmaps. http://redis.io/topics/data-types-intro.
[11] rlite. https://github.com/seppo0010/rlite.
[12] Spool. http://www.getspool.com/.
[13] std::set, std::bitset. http://en.cppreference.com/w/cpp/.
[14] DRAM Power Model. https://www.rambus.com/energy/, 2010.
[15] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and

R. Das. Compute Caches. In HPCA, 2017.
[16] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable Processing-

in-memory Accelerator for Parallel Graph Processing. In ISCA, 2015.
[17] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled Instructions: A

Low-overhead, Locality-aware Processing-in-memory Architecture. In
ISCA, 2015.

[18] A. Akerib, O. Agam, E. Ehrman, and M. Meyassed. Using Storage Cells
to Perform Computation. US Patent 8908465, 2014.

[19] A. Akerib and E. Ehrman. In-memory Computational Device. US
Patent 9653166, 2015.

[20] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan.
GateKeeper: A New Hardware Architecture for Accelerating Pre-
Alignment in DNA Short Read Mapping. Bioinformatics, 2017.

[21] G. Benson, Y. Hernandez, and J. Loving. A Bit-Parallel, General
Integer-Scoring Sequence Alignment Algorithm. In CPM, 2013.

[22] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The Gem5 Simulator.
SIGARCH CAN, 2011.

[23] B. H. Bloom. Space/time Trade-oUs in Hash Coding with Allowable
Errors. ACM Communications, 13, July 1970.

[24] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng,
and O. Mutlu. LazyPIM: An EXcient Cache Coherence Mechanism for
Processing-in-Memory. IEEE CAL, 2017.

[25] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia, N. Hajinazar,
K. Hsieh, K. T. Malladi, H. Zheng, and O. Mutlu. LazyPIM: EXcient
Support for Cache Coherence in Processing-in-Memory Architectures.
arXiv preprint arXiv:1706.03162, 2017.

[26] C.-Y. Chan and Y. E. Ioannidis. Bitmap Index Design and Evaluation.
In SIGMOD, 1998.

[27] K. K. Chang, D. Lee, Z. Chisti, A. R. Alameldeen, C. Wilkerson, Y. Kim,
and O. Mutlu. Improving DRAM Performance by Parallelizing Re-
freshes with Accesses. In HPCA, 2014.

[28] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li,
G. Pekhimenko, S. Khan, and O. Mutlu. Understanding Latency Varia-
tion in Modern DRAM Chips: Experimental Characterization, Analy-
sis, and Optimization. In SIGMETRICS, 2016.

[29] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu.
Low-cost Inter-linked Subarrays (LISA): Enabling Fast Inter-subarray
Data Movement in DRAM. In HPCA, 2016.

[30] K. K. Chang, A. G. Yaălikçi, S. Ghose, A. Agrawal, N. Chatterjee,
A. Kashyap, D. Lee, M. O’Connor, H. Hassan, and O. Mutlu. Un-
derstanding Reduced-voltage Operation in Modern DRAM Devices:
Experimental Characterization, Analysis, and Mechanisms. SIGMET-
RICS, 2017.

[31] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers,
page 445. O’Reilly Media, 2005.

[32] D. Denir, I. AbdelRahman, L. He, and Y. Gao. Audience Insights
Query Engine. https://www.facebook.com/business/news/
audience-insights.

[33] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes.
An EXcient and Scalable Semiconductor Architecture for Parallel Au-
tomata Processing. IEEE TPDS, 2014.

[34] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,
J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca. The Architec-
ture of the DIVA Processing-in-memory Chip. In ICS, 2002.

[35] D. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie.
Computational RAM: Implementing Processors in Memory. IEEE DT,
1999.

[36] C. F. Falconer, C. P. Mozak, and A. J. Normal. Suppressing Power
Supply Noise Using Data Scrambling in Double Data Rate Memory
Systems. US Patent 8503678, 2009.

[37] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim.
NDA: Near-DRAM Acceleration Architecture Leveraging Commodity
DRAM Devices and Standard Memory Modules. In HPCA, 2015.

[38] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas. Pro-
gramming the FlexRAM Parallel Intelligent Memory System. In PPoPP,
2003.

[39] M. Gokhale, B. Holmes, and K. Iobst. Processing in Memory: The
Terasys Massively Parallel PIM Array. Computer, 1995.

[40] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety,
and Y. He. BitFunnel: Revisiting Signatures for Search. In SIGIR, 2017.

[41] L. J. Guibas and R. Sedgewick. A Dichromatic Framework for Balanced
Trees. In SFCS, 1978.

[42] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T. M. Low, L. Pileggi,
J. C. Hoe, and F. Franchetti. 3D-stacked Memory-side Acceleration:
Accelerator and System Design. InWoNDP, 2013.

[43] R. W. Hamming. Error Detecting and Error Correcting Codes. BSTJ,
1950.

[44] J.-W. Han, C.-S. Park, D.-H. Ryu, and E.-S. Kim. Optical Image Encryp-
tion Based on XOR Operations. SPIE OE, 1999.

[45] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Er-
gin, and O. Mutlu. ChargeCache: Reducing DRAM Latency by Ex-
ploiting Row Access Locality. In HPCA, 2016.

[46] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhi-
menko, D. Lee, O. Ergin, and O. Mutlu. SoftMC: A Flexible and Prac-
tical Open-source Infrastructure for Enabling Experimental DRAM
Studies. In HPCA, 2017.

[47] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-
mar, O. Mutlu, and S. W. Keckler. Transparent OYoading and Map-
ping (TOM): Enabling Programmer-transparent Near-data Processing
in GPU Systems. In ISCA, 2016.

[48] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu. Accelerating Pointer Chasing in 3D-stacked
Memory: Challenges, Mechanisms, Evaluation. In ICCD, 2016.

[49] Intel. Intel Instruction Set Architecture Extensions. https://
software.intel.com/en-us/intel-isa-extensions.

[50] K. Itoh. VLSI Memory Chip Design, volume 5. Springer Science &
Business Media, 2013.

[51] J. Jeddeloh and B. Keeth. Hybrid Memory Cube: New DRAM Archi-
tecture Increases Density and Performance. In VLSIT, 2012.

[52] JEDEC. DDR3 SDRAM Standard, JESD79-3D. http://www.jedec.
org/sites/default/files/docs/JESD79-3D.pdf, 2009.

[53] H. Kang and S. Hong. One-Transistor Type DRAM. US Patent 7701751,
2009.

[54] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz. An
Energy-eXcient VLSI Architecture for Pattern Recognition via Deep
Embedding of Computation in SRAM. In ICASSP, 2014.

[55] U. Kang, H.-s. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and
J. S. Choi. Co-architecting Controllers and DRAM to Enhance DRAM
Process Scaling. In The Memory Forum, 2014.

[56] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas. FlexRAM: Toward an Advanced Intelligent Memory
System. In ICCD, 1999.

[57] B. Keeth, R. J. Baker, B. Johnson, and F. Lin. DRAM Circuit Design:
Fundamental and High-Speed Topics. Wiley-IEEE Press, 2007.

[58] J. S. Kim, D. Senol, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu. GRIM-Vlter: Fast Seed Filtering in
Read Mapping Using Emerging Memory Technologies. arXiv preprint
arXiv:1708.04329, 2017.

[59] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A Case for Exploiting
Subarray-level Parallelism (SALP) in DRAM. In ISCA, 2012.

[60] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A Fast and Extensible
DRAM Simulator. IEEE CAL, 2016.

[61] D. E. Knuth. The Art of Computer Programming. Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams, 2009.

14



Ambit: In-Memory Accelerator for Bulk Bitwise Operations MICRO-50, October 2017, Cambridge, MA, USA

[62] P. M. Kogge. EXECUBE: A New Architecture for Scaleable MPPs. In
ICPP, 1994.

[63] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman. Memristor-
based IMPLY Logic Design Procedure. In ICCD, 2011.

[64] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser. MAGIC —Memristor-Aided Logic. IEEE
TCAS II: Express Briefs, 2014.

[65] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser. Memristor-Based Material Implication (IMPLY) Logic: Design
Principles and Methodologies. IEEE TVLSI, 2014.

[66] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change
Memory As a Scalable DRAM Alternative. In ISCA, 2009.

[67] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. K. Chang, and
O. Mutlu. Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-case. In HPCA, 2015.

[68] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu.
Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Archi-
tecture. In HPCA, 2013.

[69] D. Lee, F. Hormozdiari, H. Xin, F. Hach, O. Mutlu, and C. Alkan. Fast
and Accurate Mapping of Complete Genomics Reads. Methods, 2015.

[70] D. Lee, S. Ghose, G. Pekhimenko, S. Khan, and O. Mutlu. Simultane-
ous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at
Low Cost. ACM TACO, 2016.

[71] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun,
G. Pekhimenko, V. Seshadri, and O. Mutlu. Design-Induced Latency
Variation in Modern DRAM Chips: Characterization, Analysis, and
Latency Reduction Mechanisms. In SIGMETRICS, 2017.

[72] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi,
and S. Kvatinsky. Logic Operations in Memory Using a Memristive
Akers Array. Microelectronics Journal, 2014.

[73] H. Li and R. Durbin. Fast and Accurate Long-read Alignment with
Burrows–Wheeler Transform. Bioinformatics, 2010.

[74] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie. Pinatubo: A Processing-
in-Memory Architecture for Bulk Bitwise Operations in Emerging
Non-Volatile Memories. In DAC, 2016.

[75] Y. Li and J. M. Patel. BitWeaving: Fast Scans for Main Memory Data
Processing. In SIGMOD, 2013.

[76] Y. Li and J. M. Patel. WideTable: An Accelerator for Analytical Data
Processing. Proc. VLDB Endow., 2014.

[77] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A UniVed Graphics and Computing Architecture. IEEE Micro, 2008.

[78] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-Aware
Intelligent DRAM Refresh. In ISCA, 2012.

[79] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu. An Experimental
Study of Data Retention Behavior in Modern DRAM Devices: Impli-
cations for Retention Time ProVling Mechanisms. In ISCA, 2013.

[80] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu. Concurrent Data Structures
for Near-Memory Computing. In SPAA, 2017.

[81] S.-L. Lu, Y.-C. Lin, and C.-L. Yang. Improving DRAM Latency with
Dynamic Asymmetric Subarray. In MICRO, 2015.

[82] R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redun-
dancy to Improve Computer Reliability. IBM JRD, 1962.

[83] S. A. Manavski. CUDA Compatible GPU as an EXcient Hardware
Accelerator for AES Cryptography. In ICSPC, 2007.

[84] G. Myers. A Fast Bit-vector Algorithm for Approximate String Match-
ing Based on Dynamic Programming. JACM, 1999.

[85] E. O’Neil, P. O’Neil, and K. Wu. Bitmap Index Design Choices and
Their Performance Implications. In IDEAS, 2007.

[86] M. Oskin, F. T. Chong, and T. Sherwood. Active Pages: A Computation
Model for Intelligent Memory. In ISCA, 1998.

[87] M. Patel, J. S. Kim, and O. Mutlu. The Reach ProVler (REAPER): En-
abling the Mitigation of DRAM Retention Failures via ProVling at Ag-
gressive Conditions. In ISCA, 2017.

[88] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent RAM.
IEEE Micro, 1997.

[89] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,
O. Mutlu, and C. R. Das. SchEduling Techniques for GPU Architectures
with Processing-in-memory Capabilities. In PACT, 2016.

[90] A. Peleg and U. Weiser. MMX Technology Extension to the Intel Ar-
chitecture. IEEE Micro, 1996.

[91] K. R. Rasmussen, J. Stoye, and E. W. Myers. EXcient Q-gram Filters
for Finding All ε-matches Over a Given Length. JCB, 2006.

[92] P. J. Restle, J. W. Park, and B. F. Lloyd. DRAM Variable Retention Time.
In IEDM, 1992.

[93] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On Data Banks and
Privacy Homomorphisms. FSC, 1978.

[94] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Mem-
ory Access Scheduling. In ISCA, 2000.

[95] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and
M. Brudno. SHRiMP: Accurate Mapping of Short Color-space Reads.
PLOS Computational Biology, 2009.

[96] V. Seshadri and O. Mutlu. Simple Operations in Memory to Reduce
Data Movement, ADCOM, Chapter 5. Elsevier, 2017.

[97] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry. RowClone: Fast and Energy-eXcient In-DRAM Bulk Data
Copy and Initialization. In MICRO, 2013.

[98] V. Seshadri, A. Bhowmick, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry. The Dirty-block Index. In ISCA, 2014.

[99] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry. Fast Bulk Bitwise AND and OR in
DRAM. IEEE CAL, 2015.

[100] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry. Gather-scatter DRAM: In-DRAM Address
Translation to Improve the Spatial Locality of Non-unit Strided Ac-
cesses. In MICRO, 2015.

[101] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A.
Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry. Buddy-RAM: Im-
proving the Performance and EXciency of Bulk Bitwise Operations
Using DRAM. arXiv preprint arXiv:1611.09988, 2016.

[102] A. ShaVee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: A Convolutional
Neural Network Accelerator with In-Situ Analog Arithmetic in Cross-
bars. In ISCA, 2016.

[103] D. E. Shaw, S. Stolfo, H. Ibrahim, B. K. Hillyer, J. Andrews, and
G. Wiederhold. The NON-VON Database Machine: An Overview.
http://hdl.handle.net/10022/AC:P:11530, 1981.

[104] R. Sikorski. Boolean Algebras, volume 2. Springer, 1969.
[105] H. S. Stone. A Logic-in-Memory Computer. IEEE Trans. Comput., 1970.
[106] A. Subramaniyan and R. Das. Parallel Automata Processor. In ISCA,

2017.
[107] P. Tuyls, H. D. L. Hollmann, J. H. V. Lint, and L. Tolhuizen. XOR-based

Visual Cryptography Schemes. Designs, Codes and Cryptography.
[108] H. S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd

edition, 2012. ISBN 0321842685, 9780321842688.
[109] D. Weese, A.-K. Emde, T. Rausch, A. Döring, and K. Reinert. RazerS –

fast Read Mapping with Sensitivity Control. Genome research, 2009.
[110] T. Willhalm, I. Oukid, I. Muller, and F. Faerber. Vectorizing Database

Column Scans with Complex Predicates. In ADMS, 2013.
[111] K. Wu, E. J. Otoo, and A. Shoshani. Compressing Bitmap Indexes for

Faster Search Operations. In SSDBM, 2002.
[112] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan.

Accelerating Read Mapping with FastHASH. BMC Genomics, 2013.
[113] H. Xin, J. Greth, J. Emmons, G. Pekhimenko, C. Kingsford, C. Alkan,

and O. Mutlu. Shifted Hamming Distance: A Fast and Accurate SIMD-
friendly Filter to Accelerate Alignment VeriVcation in Read Mapping.
Bioinformatics, 2015.

[114] D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson. A Meta-
stable Leakage Phenomenon in DRAM Charge Storage - Variable Hold
Time. In IEDM, 1987.

[115] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski. TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory. In HPDC, 2014.

[116] T. Zhang, K. Chen, C. Xu, G. Sun, T. Wang, and Y. Xie. Half-DRAM:
A High-bandwidth and Low-power DRAM Architecture from the Re-
thinking of Fine-grained Activation. In ISCA, 2014.

[117] W. Zhao and Y. Cao. New Generation of Predictive Technology Model
for Sub-45 nm Early Design Exploration. IEEE TED, 2006.

[118] W. K. ZuravleU and T. Robinson. Controller for a Synchronous DRAM
that Maximizes Throughput by Allowing Memory Requests and Com-
mands to be Issued Out of Order. US Patent 5630096, 1997.

15


