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Abstract
After many years of prefetching research, most commercially
available systems support only two types of prefetching:
software-directed prefetching and hardware-based prefetchers
using simple sequential or stride-based prefetching
algorithms. More sophisticated prefetching proposals, despite
promises of improved performance, have not been adopted
by industry. In this paper, we explore the efficacy of both
hardware and software prefetching in the context of an IBM
POWER6 commercial server. Using a variety of applications
that have been compiled with an aggressively optimizing
compiler to use software prefetching when appropriate, we
perform the first study of a new runahead prefetching feature
adopted by the POWER6 design, evaluating it in isolation
and in conjunction with a conventional hardware-based
sequential stream prefetcher and compiler-inserted software
prefetching.

We find that the POWER6 implementation of runahead
prefetching is quite effective on many of the memory intensive
applications studied; in isolation it improves performance
as much as 36% and on average 10%. However, it outper-
forms the hardware-based stream prefetcher on only two of
the benchmarks studied, and in those by a small margin.
When used in conjunction with the conventional prefetching
mechanisms, the runahead feature adds an additional 6% on
average, and 39% in the best case (GemsFDTD).

1. Introduction

By necessity, most new prefetching research occurs in
the context of experimental frameworks consisting of some-
what immature simulators or compilation infrastructure, with
comparisons to baseline machine models whose memory
hierarchy may not include the aggressive tuning that occurs
for commercially available systems. While such environments
are perfectly reasonable to demonstrate the potential of a
new prefetching algorithm, it is also important to periodi-
cally revisit and characterize the current state-of-the art on
solid ground: a commercially available system that has been

heavily optimized to employ prefetching as much as will be
economically beneficial.

In this paper we do not propose any new prefetching
algorithm, but instead measure natively the benefits due to
prefetching observed in a highly optimized POWER6-based
commercial server, providing a reference point for future
researchers and practitioners of the current prefetching state-
of-the-art, as well as to gauge the opportunity for further
prefetching research.

The POWER6 system used for our experiments supports
software-initiated load and store prefetching, a hardware-
based sequential stream prefetcher, and the first commercially
available form of run-ahead prefetching, called load looka-
head prefetching in the POWER6 context. Using performance
counters, and a set of undocumented hardware switches to
independently control the various prefetching modes, we study
the performance of various applications using each type of
prefetching mechanism, independently as well as in conjunc-
tion with one another.

We find that when evaluating each in isolation, the conven-
tional hardware prefetching technique is the most effective of
the three, yielding an average speedup of 74%, and delivering
performance improvements for most of the benchmarks we
analyzed. The load lookahead prefetching feature yields rela-
tively lower performance improvements, with an average 10%
improvement across all benchmarks, but is at times effective
even when hardware prefetching is not, specifically for our
Java benchmarks. Software prefetching, on the other hand, is
beneficial for only a few of the benchmarks we analyzed,
however the XL compiler used often suppresses software
prefetching in reliance of the hardware stream prefetcher. In
spite of an impressive 90% average improvement in perfor-
mance from applying all three techniques together, there is
room for further improvement with on average 22% of the
time still being spent on data miss stalls.

In summary, this paper makes the following contributions:
• We present the first study of run-ahead prefetching in

a commercially available design, finding that it provides
significant benefits in isolation or in conjunction with
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other types of prefetching, although its benefits in iso-
lation are substantially less than those of a conventional
sequential stream prefetcher.

• We measure the performance improvements for each type
of prefetching across applications commonly used in
other prefetching studies, providing a reference point for
expected performance improvements and opportunity.

• We demonstrate that data cache miss stalls remain a
significant performance problem, even in the context of a
high-end server including relatively large caches (a 4MB
private L2, and 32MB L3 shared by 2 cores) and a variety
of aggressive prefetching mechanisms.

This paper is organized as follows: we begin in Section
2 with an overview of hardware prefetching support in the
POWER6 design, as well as software prefetching mechanisms
employed by the XL compiler and J9 Java Virtual Machine
used in our experiments. In Section 3 we describe the ex-
perimental setup and methodology used for our evaluation,
which is described in Section 4. Related work is summarized
in Section 5, followed by conclusions.

2. Prefetching in the POWER6 Microprocessor

POWER6 includes support for a variety of prefetching
mechanisms: several forms of software-prefetch instructions, a
hardware sequential stream prefetcher, and a runahead “load-
lookahead” prefetching mechanism. We begin this overview
with the most novel of the bunch, load-lookahead prefetching.

2.1. Load-Lookahead Prefetching

Because the POWER6 design employs a high-frequency
in-order microarchitecture, there was a desire to “buy-
back” some of the benefits of an out-of-order design us-
ing a runahead prefetching mechanism [12], called load-
lookahead prefetching (LLA) in the POWER6 design. This
LLA prefetching mechanism works as follows:

When a L1 data cache or DERAT1 miss occurs due to
a load, the pipeline switches to LLA mode. In LLA mode,
the pipeline continues fetching and executing instructions, in
the hope that these instructions will initiate useful prefetches
while the initial miss is outstanding. In this mode instructions
are dispatched from the 64-entry instruction fetch buffer that
is used to queue instructions fetched by the front-end of
the pipeline before they can be dispatched by the in-order
core. When executing in LLA mode, entries in this buffer are
not deallocated. They are retained, so that once LLA mode
execution completes, at the time that the inital miss returns,
they will be re-dispatched and executed conventionally.

The primary implementation challenge in a design support-
ing runahead execution is the management of speculative state.
Because execution resumes from the instruction that initiated

1. Data Effective to Real Address Translation Cache, the equivalent of a
TLB in POWER processors

lookahead mode, the architectural state of the machine must
precisely reflect the machine state that existed before that
instruction was executed. Supporting rollback for each type of
update to architectural state (e.g. stores to memory, or writes
to various register types) is costly, and it is therefore desirable
to approximately maintain machine state during runahead
mode. The degree of approximation is a trade-off between the
accuracy of the run-ahead thread, and the amount of resources
used to maintain speculative state. Should instructions in
run-ahead mode receive incorrect input values due to this
approximation, the performance gains from runahead will be
impacted, but not program correctness.

The POWER6 design handles various components of ar-
chitectural state differently. Because address calculations (the
source of addresses for prefetching), are not frequently de-
pendent on floating point registers, floating point instructions
are treated as no-ops in LLA mode. Due to the difficulty
checkpointing memory, store instructions are also treated
as no-ops. When the core operates in single-thread mode,
general-purpose register updates are performed speculatively,
leveraging the spare SMT thread’s context. When operating
in SMT mode, however, general purpose register writes are
dropped during LLA execution. Dependences may be main-
tained through forwarding paths, but a lack of speculative
register writes result in reduced ability for LLA mode to
productively run ahead, since the register contents will be in-
accurate, leading to incorrect control flow and address calcula-
tions. For the purposes of this paper, we focus on performance
improvements in single-threaded mode only, however do note
that the latency tolerance benefits of multithreading outweigh
any degradation in LLA mode benefits for multithreaded
applications.

As has been pointed out by others, the performance of
runahead execution is very dependent on branch prediction
accuracy [12], [8], [21], [1], since prefetches are less likely
to be useful if they are from the wrong path. The POWER6
processor also includes a mode in which branch prediction
history is warmed during runahead; this mode is disabled by
default in POWER6 systems, but we also test its benefits in
Section 4.

2.2. Hardware Stream Prefetcher

Since POWER4, POWER systems have also included a
hardware-based data prefetching engine targeting stride-one
workloads. By monitoring the addresses of L1 data cache
misses, it recognizes sequential misses, allocating a miss
stream when encountering misses to adjacent cache lines,
in either a descending or ascending reference pattern. Once
a sequential miss stream is detected, the prefetcher will
prefetch up to two lines into the L1 data cache, and up to
a programmable maximum of 24 lines into the L2 cache,
staging data into each cache level as prefetched blocks are
touched. Up to sixteen simultaneous load and store streams are
supported, with store streams exclusively prefetching blocks
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into the L2 cache only. Since streams are maintained using
effective addresses2, each prefetch stream is terminated when
a page boundary is reached.

2.3. Software Prefetching

In POWER-based systems, the data-cache-block touch dcbt
and data-cache-block touch for store dcbtst instructions can
be used to prefetch a single data cache block into the
L1 data cache, in either a shared or exclusive coherence
state, respectively. In addition, POWER6 provides a means
for software to control the hardware-based data prefetching
engine via an enhanced dcbt variant, called edcbt, that allows
initiation of prefetch streams and control over parameters like
the prefetch stream to use, the direction, and the length of the
prefetch. The benefit from software prefetching depends on
how effectively compilers employ static analysis techniques
and other heuristics to insert these instructions.

The JIT compiler in the Java Virtual Machine that we
use to run our Java benchmarks uses profile information and
heuristics to selectively insert the dcbt instruction to perform
targeted prefetching for loops. dcbt is also used during the
allocation of thread local heaps. In the version of the Java
Virtual Machine we used, edcbt is not used.

The IBM XL optimizing compiler used in this study
includes separate front-ends for Fortan and C/++, but shares
a common back-end such that optimizations described here
apply to both the Fortran and C/C++ benchmarks. The XL
compiler includes the following optimizations for data cache
performance:

• dcbt insertion: In loops where the compiler can identify
access patterns, and whose iteration count is sufficiently
large, the compiler will automatically insert dcbt or
dcbtst instructions for data to be referenced in subsequent
loop iterations. When compiling for the POWER6 pro-
cessor, however, the compiler applies this optimization
selectively. When a loop contains a sequential access
patterns that is amenable to hardware prefetching, in-
sertion of software prefetch instructions is suppressed;
consequently, this optimization is only performed when
the access pattern includes a stride larger than the 128B
cache block size, which are not detectable by the hard-
ware prefetcher.

• Stream throttling: Insertion of ecdbt instructions to
terminate prefetch streams in progress by the hardware
prefetcher. While POWER6 supports both software ini-
tiated creation and termination of streams, the compiler
only takes advantage of stream termination, performed
when a loop which has been identified as stream-friendly
terminates.

• Stream splitting: A loop splitting optimization is em-
ployed when the number of memory streams in a loop

2. In the POWER architecture’s two-level address translation, effective
addresses are the first of two levels of virtual address.

is expected to exceed the 16-entry limit of the hardware
prefetcher.

• dcbz prefetching: For store streams where an entire
cache block is being written, the referenced cache block
is pre-allocated in-cache using the POWER dcbz (data
cache block zero) operation, which installs a zero-filled
cache block without requiring data to be fetched from
memory.

Of the optimizations described above, dcbz prefetching
cannot be controlled in our experiments since the dcbz in-
struction cannot be disabled, so this optimization is always on
during our experiments. Stream splitting is always enabled, but
is not meaningful when the hardware prefetcher is disabled.
The dcbt, dcbtst, and edcbt instructions are always present in
the instruction stream for our experiments, but are treated as
no-ops depending on certain hardware switches. There are no
compiler optimizations related to the LLA prefetching mode.

3. Experimental Methodology

3.1. Power6 System Parameters

Experiments were performed on a 4-core 4.7 GHZ IBM
POWER6 p570 server, running AIX 6.1. The POWER6 design
contains two cores per chip, each including separate 64KB pri-
vate L1 instruction and data caches. The 8-way set associative
data cache is optimized for low latency access, allowing for
a single-cycle load-to-use penalty for fixed-point operations,
and a zero-cycle penalty for floating point operations. It is a
write-through design, backed by a 4MB unified L2 cache with
a 5 ns access latency, which is private per core and inclusive
of the L1 d-cache. An off-chip 32 MB 16-way set-associative
L3 victim cache is shared by the two cores, with a 40 ns
access latency. Cache line size is fixed in all cache levels at
128B.

Each chip contains two memory controllers, each respon-
sible for one half of the address space, interleaved by cache
line. The characteristics of the memory system are heavily
influenced by the populated capacity, since DRAMS are daisy-
chained in high-capacity configurations. POWER6 systems
support up to 8TB of 800MHZ DDR2 DRAM. The system
used for these experiments contained 22.5GB of memory, with
a memory acess latency of 110ns. Le et al. describe further
details of the POWER6 design [19].

3.2. Applications

We used the SPEC CPU 2006 benchmark suite, as well
as a handful of Java applications from the SPEC JVM 2008
benchmark suite, and SPECjbb2005.

The C/C++ SPEC benchmarks were compiled using the
XL C/C++ Compiler, Enterprise Edition V9 for AIX. Fortran
benchmarks we compiled with the XL Fortran Enterprise
Edition V11.1 for AIX. All benchmarks were compiled with
peak optimization flags, identically to their configuration for
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submission of SPEC CPU results, and measured using the
reference input set. A full listing of benchmark compiler
switches is included in Appendix A.

For the Java benchmarks, we used IBM’s J9 Java Virtual
Machine, version 1.6 (SR2). The measurement interval is
preceded by a 30 second warm-up period to eliminate startup
and JIT compilation overhead from our measurements. In
addition, to compensate for the indeterminism and cross-
run variability in Java programs, the numbers we report are
averaged across five separate runs.

3.3. Measurements and Metrics

In the analysis that follows, data is presented for the
following six different prefetching configurations.

• nopref: No prefetching enabled. Software prefetch in-
structions are treated as no-ops, and both hardware-based
sequential and LLA prefetching are disabled.

• swpref: Software-only prefetching is enabled. LLA
and hardware-based prefetching are disabled. Enhanced
dcbt instructions, which provide hints to the hardware
prefetcher, are ignored.

• hwpref: Hardware-based Sequential prefetching is en-
abled. LLA prefetching and all software prefetching,
including enhanced dcbt instructions, are disabled.

• hwswpref: Both hardware-based sequential prefetching,
and software prefetching (including enhanced dcbt hints)
are enabled. LLA prefetching is disabled.

• llapref: LLA prefetching is enabled, hardware-based
stream preftcher and software prefetching is disabled.

• allpref: All prefetching mechanisms enabled. This is the
default system configuration.

All experiments were performed using a single application
thread, so a single core was utilized with SMT disabled.
For each prefetching configuration, we measure performance,
either in terms of execution time or throughput, and a number
of relevant micro-architectural metrics using the the core’s
performance monitoring unit (PMU). The PMU uses dedi-
cated, per-thread counters to measure up to four performance
events concurrently. In addition to counting events, the PMU
counters can also be programmed to attribute processor stalls
to specific events.

4. Analysis

In this section we present our analysis, primarily based on
data collected using hardware performance counters. We start
with a look at the magnitude of the data cache stall problem
to assess the potential of data prefetching techniques, and
then investigate the performance of the different techniques
currently available.

4.1. Data Misses and Prefetching Potential

We used the nopref configuration, in which none of the
prefetching techniques are enabled, to gauge the opportunity

for prefetching techniques based on the amount of time spent
in data miss related stalls. These include stalls due to data
cache misses and data address translation misses. Figure 1
shows the percentage of cycles spent in data miss related stalls
for all of our benchmarks, with different colors designating
separate benchmark suites. The C language benchmarks, par-
ticularly those belonging to the SPEC FP suite, show greater
opportunity with eight of the 27 benchmarks spending more
than 50% of their time stalled on data misses. The worst of
our Java benchmarks, on the other hand, spend about 20%
of their time stalled on data misses. On an average, the time
spent in data miss related stalls, and hence the size of the
opportunity for data prefetching techniques, is a significant
31%. As we can see from the figure, there are also a few
benchmarks in every suite that do not suffer significantly from
data misses, and are therefore not interesting from a data
prefetching perspective. Consequently, the following experi-
ments omit data for the following benchmarks, which spend
fewer than 15% of their time stalled in data cache and data
translation misses: perlbench, bzip2, gobmk, hmmer, sjeng,
h264ref, gamess, gromacs, namd, povray, calculix, compiler,
and mpegaudio.

4.2. Comparing Prefetching Performance

Figure 2 shows the speedup due to each prefetching config-
uration relative to the baseline nopref configuration in which
all prefetching is disabled. The hardware stream prefetcher
demonstrates significant performance improvements across the
board, causing speedups as high as 3.7 (libquantum), with
average speedup of 1.73. A few applications, including all of
the Java apps, do not benefit at all, but most benefit greatly.
For this set of benchmarks, software prefetching is generally
ineffective, showing no performance improvements for the
vast majority of benchmarks (recall that the compiler sup-
presses prefetching in loops that are predicted to be amenable
to hardware prefetching). The milc application from SPEC FP
is the only app shown here with significant performance gain,
a 67% speedup. The only other two benchmarks exhibiting
any improvements from software prefetching are GemsFDTD
and derby, 1% and 2% respectively. On average, software
prefetching alone is worth 2% for these applications, with
this milc outlier responsible for skewing the average up to
2%. Combining hardware and software prefetching provides
additional benefits for milc, while other benchmarks are
unaffected.

Load lookahead prefetching, while less beneficial than
the hardware stream prefetcher, does provide significant per-
formance benefits for many applications, as much as 36%
(relative to nopref) for GemsFDTD, and 10% on average.
LLA prefetching outperforms the hardware stream prefetcher
in only two benchmarks (SPECjbb2005 and omnetpp), but in
these cases the performance improvements are very small (2%
and 4% respectively).

When combined with hardware and software prefetching
(allpref ), load-lookahead continues to provide benefits, on

206

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on December 05,2020 at 10:21:49 UTC from IEEE Xplore.  Restrictions apply. 



0%

20%

40%

60%

80%

100%

4
0
0
.p
er
lb
en
ch

4
0
1
.b
zi
p
2

4
0
3
.g
cc

4
2
9
.m
cf

4
4
5
.g
ob
m
k

4
5
6
.h
m
m
er

4
5
8
.s
je
n
g

4
6
2
.l
ib
q
u
an
tu
m

4
6
4
.h
2
6
4
re
f

4
7
1
.o
m
n
et
p
p

4
7
3
.a
st
ar

4
8
3
.x
al
an
cb
m
k

4
1
6
.g
am
es
s

4
3
3
.m
il
c

4
3
5
.g
ro
m
ac
s

4
3
6
.c
ac
tu
sA
D
M

4
3
7
.l
es
lie
3
d

4
4
4
.n
am
d

4
4
7
.d
ea
lI
I

4
5
0
.s
op
le
x

4
5
3
.p
ov
ra
y

4
5
4
.c
al
cu
li
x

4
5
9
.G
em
sF
D
TD

4
6
5
.t
on
to

4
7
0
.l
b
m

4
8
1
.w
rf

4
8
2
.s
p
h
in
x3

co
m
p
ile
r.
co
m
p
ile
r

co
m
p
ile
r.
su
n
fl
o
w

co
m
p
re
ss

d
er
b
y

m
p
eg
au
d
io

S
P
EC
jb
b
2
0
0
5

am
ea
n

%
 t
im
e
 s
t
a
ll
e
d
 o
n
 d
a
t
a
 m
is
s
e
s

Figure 1: Dispatch stalls caused by L1 data cache or data translation misses, without any prefetching enabled.
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Figure 2: Speedup Due to Different Prefetch Combinations (relative to all prefetching disabled).
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Figure 3: L1 Data Cache Misses and where they are serviced from. Each cluster of bars represents one benchmark. Individual bars
in a cluster represent the nopref, swpref, hwpref, hwswpref, llapref, and allpref configurations in that order from left to right. Note
that the Y-axis scale for mcf and the rest of the benchmarks is different.

average 6% and over 15% for 3 of the benchmarks. In the best
case (GemsFDTD), it adds 39% performance improvement
when used in conjunction with the other forms of prefetching.

Effect on Data Cache Misses. We next take a closer look
at the effect of different prefetching techniques on data cache
miss behavior. Figure 3 shows the L1 data cache miss rate and
the location from which L1 data cache misses are serviced.
For each of the benchmarks analyzed, we plot the L1 data
cache miss rate for all six configurations in the following
order from left to right: nopref, swpref, hwpref, hwswpref,
llapref, and allpref. The total height of a stacked bar denotes
the total number of L1 data cache misses per 100 instructions.
These are further broken down into categories based on the
number of misses that were serviced from the on-chip L2
cache, the off-chip L3 cache, and from memory. Note that
this data pertains to demand misses only.

In keeping with the speedup numbers discussed in the
previous section, we observe that hardware prefetching is
successful in reducing the miss rate for most of our bench-
marks. Moreover, it reduces the number of high latency
transfers required to service L1 data cache misses. The latter
is sometimes even more effective than reducing the miss rate.
For mcf, for example, the L1 d-cache miss rate with hardware
prefetching enabled is the highest across all configurations, but
also involves the least number of L3 and memory accesses.
The speedup achieved by hardware prefetching is also the
highest for mcf. For two of our three Java benchmarks,
LLA prefetching is most effective in reducing the miss rate.
Hardware, software, and LLA prefetching also seem to share a
synergy, so that the cumulative effect of all three, as observed
in the default allpref configuration often yields higher benefits
than any one technique applied in isolation.

4.3. Load Lookahead Analysis
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Figure 4: Percentage of instructions dispatched in LLA mode vs.
LLA speedup (relative to nopref)

Figure 4 shows the percentage of instructions that are
dispatched in LLA mode, versus its performance benefits. The
two do not appear to be at all correlated. Of the benchmarks
shown, six gain more than 15% performance due to LLA, but
of those six the percentage of instructions dispatched in LLA
mode varies between 2% and 26%.

In addition to the top level parameters for toggling LLA
mode, the system also contains several other switches for
controlling the behavior of LLA mode, with which we also
experimented. Lookahead can also be optionally used to
warm branch prediction history structures. When enabling
this option, we found that the benefits were negligible for
most applications. The system also includes a switch that
disables prefetching and branch history warming in LLA
mode, inducing the overhead associated with switching be-
tween LLA and normal mode at each d-cache and DERAT
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Figure 5: Dispatch stalls caused by L1 data cache or data trans-
lation misses when all currently available prefetching techniques
are enabled.

miss, without any of the benefits. We tested this mode on a
subset of the benchmarks to study the inherent overhead of the
LLA mechanism, and found that this LLA-induced overhead
contributed to less than 0.2% runtime, so the mechanism is
itself efficient; the observed benefits are not weighed down by
any significant overhead.

4.4. The Potential for Further Prefetching
Gains

After enabling each of the prefetching mechanisms, we are
left with a familiar picture. Many benchmarks continue to
spend a large fraction of their time waiting on data misses
to be serviced. Figure 5 shows the percentage of time each
benchmark spends with the pipeline’s dispatch stage stalled
waiting on a L1 data cache or data translation miss. (This chart
is analogous to Figure 1, which shows stall cycles before ap-
plying prefetching.) While the average stall time has dropped
significantly from 30%, it remains high, at 22%. Some bench-
marks(omnetpp, astar, xalancbmk, compress, SPECjbb2005))
were improved by only a small amount using the implemented
prefetching mechanisms. Others were improved dramatically
(mcf, libquantum, milc, leslie3d, dealII, soplex, GemsFDTD,
lbm, wrf, sphinx3). Of these benchmarks, further prefetching
opportunity is marginal for a few (libquantum, leslie3d, lbm,
wrf), but significant for the rest.

Obviously, ample opportunity remains for improving per-
formance through novel prefetching techniques. While this
opportunity may be offset by latency-tolerating mechanisms
like multithreading, we believe that single-thread performance
will continue to be important for many applications.

5. Related Work

Jouppi proposed the first hardware prefetcher capable of
detecting streaming, which is the basis for many prefetchers
found in commercial designs today, including POWER6 [16].
Numerous variations have been proposed, each correlating

prefetches with a variety of dynamic information. Baer and
Chen describe a prefetching mechanism that uses instruction
address to predict subsequent data accesses [2]. Charney and
Reeves first proposed general hardware-based correlated cache
prefetching[6]. Joseph and Grunwald determine correlations
using a Markov prediction process[15]. Lai et al. correlate
prefetches with the prediction of dead cache blocks [18].
Cooksey et al. base correlations on the contents of incoming
cache blocks [11].

A number of other papers have explored correlations of
misses among a fixed region of memory, triggering multiple
prefetches when a miss in that region occurs [5][17][26][32].
Hu et al.[13], and Nesbit and Smith[22], develop area and
complexity-effective mechanisms for tracking correlations.
Another area of prefetching research has explored pre-
execution of part or all of the program using a parallel helper
thread [10][24][25][30][34]. A more thorough summary of
prior work in hardware prefetching can be found in Vander-
wiel and Lilja’s survey [31].

A lot of research has also gone into software techniques
that employ static or dynamic program analysis to perform
compiler-enabled data prefetching [20], [4], [29], [9], [33],
[27], [14]. These techniques range from exploiting regular data
access patterns resulting from loops and array accesses, and
statically analyzing linked data structures to more complex
dynamic schemes that use profiles gathered at runtime to
infer data access patterns. Modern compilers, including JIT
compilers for Java, incorporate some of these techniques.

The area of runahead execution also has a rich recent
history, starting from its introduction by Dundas and Mudge,
who demonstrated its benefits for increasing memory-level
parallelism in an in-order pipeline[12]. Mutlu and Patt, and
Barnes et al. subsequently demonstrated the benefits of runa-
head execution in the context of out-of-order [21] and EPIC
[3] microarchitectures, respectively. There have been a num-
ber of subsequent enhancements since then involving more
sophisticated checkpoint mechanisms [1] as well as the ability
to runahead without requiring the re-execution of subsequent
instructions [28].

While the POWER6 design represents the first commer-
cially available processor supporting runahead execution, it
has been well documented that the Rock Processor from
Sun Microsystems was also slated to support an aggressive
microarchitecture including both a runahead mode involving
re-execution (Scout mode) and an enhancement in which
instructions need not be re-executed (SST mode)[7][8]. In
attempting to compare our own results to the performance im-
provements reported in those studies, we note two experimen-
tal differences that prevent an apples-to-apples comparison: 1)
with double the L1 cache capacity, and a 32MB L3 cache, the
POWER6 system should observe fewer data related stalls to
begin with, and consequently less opportunity for prefetching
benefits, and 2) it is unclear whether a separate conventional
hardware prefetcher was used in those studies. Consequently,
a true comparison is a subject of future work.
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Many of the factors that make fair comparisons of different
evaluations of microarchitectural techniques difficult were
described by Perez et al.[23], whose study also included a
head-to-head comparison of a variety of proposed prefetching
techniques. While their work focused on a number of proposed
prefetching mechanisms in the context of an experimental
simulation environment, we compare prefetching mechanisms
that are sufficiently mature to have been implemented in a
commercial product. Hopefully, our study may be useful as a
reference in future studies similar to Perez et al.

6. Conclusions and Future Work

In this paper, we have taken a snapshot of the prefetching
mechanisms employed by one high-performance commercial
server design, have examined the benefits of each prefetching
form independently and together, and gauged opportunity for
further performance improvements due to prefetching. We
find that therunahead prefetching feature delivers significant
performance improvement when used in conjunction with the
other prefetching mechanisms, on average 6% and at most
39%, for the cache-sensitive benchmarks studied. However,
in a head-to-head comparison, a more conventional sequential
hardware stream prefetcher outperforms runahead prefetching
significantly, across nearly all applications. Software prefetch-
ing benefits are very inconsistent; when effective it appears
to be extremely effective, demonstrating 67% performance
improvement on milc, but unfortunately all other applications
show negligible benefits. In future work, we hope to study
the benefits of software prefetching in the XL compiler while
disabling its mode of suppressing prefetches in the presence of
a hardware prefetch engine; although this does not represent
a realistic system configuration, we are interested to see
software prefetch benefits relative to the other prefetching
mechanisms.

The runahead prefetching results demonstrate that the fea-
ture is an effective form of prefetching for some applications
when used in isolation or in conjunction with other types
of prefetchers. Because its effectiveness is very application-
specific, however, we do not view this technique as a re-
placement for conventional hardware prefetchers, or as a
replacement for cache capacity. As shown in our evaluation,
a sequential hardware prefetcher out-performs this partic-
ular implementation of runahead prefetching in nearly all
applications. However, many (6 of the 19 cache intensive
workloads evaluated) are not improved significantly by any
of the forms of prefetching studied. Other implementations
of runahead may overcome some of the limitations of the
POWER6 implementation, but their ability to provide robust
performance across a variety of workloads remains to be
seen. Consequently, we view runahead execution as a useful
addition, not a replacement, to large caches and stride-based
hardware prefetching.

In conclusion, despite much improvement from these forms
of prefetching, we find that ample opportunity remains for

further gains from reducing stalls due to data cache misses. We
believe that prefetching will continue to be a fertile ground for
research, particularly the development of complexity, area, and
bandwidth-effective prefetchers (including improved forms of
runahead) for which adoption by industry is economical.
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Benchmark Compilation flags
SPECINT 2006

400.perlbench -bmaxdata:0x50000000 -qpdf1(pass 1) -qpdf2(pass 2) -O4 -qlargepage -qenablevmx -
qvecnvol -D ILS MACROS -qalias=noansi -qfdpr -blpdata

401.bzip2 -bmaxdata:0x4ffffffc -qpdf1(pass 1) -qpdf2(pass2) -O5 -qlargepage -qenablevmx -
qvecnvol -D ILS MACROS -qfdpr -blpdata

403.gcc basepeak = yes
429.mcf basepeak = yes
445.gobmk -qpdf1(pass 1) -qpdf2(pass 2) -O4 -qlargepage -qenablevmx -qvecnvol -D ILS MACROS

-blpdata
456.hmmer -O5 -qlargepage -D ILS MACROS -qfdpr -blpdata
458.sjeng -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -qenablevmx -qvecnvol -D ILS MACROS

-qfdpr -blpdata
462.libquantum -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -qenablevmx -qvecnvol -D ILS MACROS

-q64 -qfdpr -blpdata
464.h264ref -qpdf1(pass 1) -qpdf2(pass 2) -O5 -q64 -D ILS MACROS -qenablevmx -qvecnvol -qfdpr

-bdatapsize:64K -bstackpsize:64K -btextpsize:64K
471.omnetpp -bmaxdata:0x20000000 -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -qenablevmx -

qvecnvol -D ILS MACROS -qalign=natural -qrtti=all -qinlglue -blpdata
473.astar -bmaxdata:0x20000000 -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -

D ILS MACROS -qfdpr -qinlglue -qalign=natural -blpdata
483.xalancbmk -bmaxdata:0x20000000 -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -

D ILS MACROS -qinlglue -D IBM FAST VECTOR -blpdata
SPECFP 2006

433.milc -bmaxdata:0x40000000 -O5 -qlargepage -D ILS MACROS -qalign=natural -qfdpr -
blpdata

470.lbm -O5 -qlargepage -D ILS MACROS -qfdpr -q64 -blpdata
482.sphinx3 -qpdf1(pass 1) -qpdf2(pass 2) -O4 -qlargepage -qenablevmx -qvecnvol -D ILS MACROS

-qfdpr -blpdata
444.namd -qpdf1(pass 1) -qpdf2(pass 2) -O5 -D ILS MACROS
447.dealII -bmaxdata:0x50000000 -O5 -qlargepage -D ILS MACROS -qrtti=all -

D IBM FAST VECTOR -blpdata
450.soplex basepeak = yes
453.povray -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -qenablevmx -qvecnvol -D ILS MACROS

-qalign=natural -qfdpr -blpdata
410.bwaves -bmaxdata:0x50000000 -O5 -qlargepage -qenablevmx -qvecnvol -qfdpr -

qsmallstack=dynlenonheap -blpdata
416.gamess -bmaxdata:0x40000000 -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qalias=nostd
434.zeusmp -bmaxdata:0x40000000 -qpdf1(pass 1) -qpdf2(pass 2) -O3 -qarch=auto -qtune=auto -

qlargepage -qenablevmx -qvecnvol -qxlf90=nosignedzero -blpdata
437.leslie3d -O4 -qlargepage -q64 -blpdata
459.GemsFDTD basepeak = yes
465.tonto -bmaxdata:0x20000000 -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -blpdata
435.gromacs -qpdf1(pass 1) -qpdf2(pass 2) -O5 -qlargepage -qenablevmx -qvecnvol -qfdpr -

D ILS MACROS -blpdata
436.cactusADM -bmaxdata:0x60000000 -qpdf1(pass 1) -qpdf2(pass 2) -O2 -qarch=auto -qtune=auto -

qlargepage -qenablevmx -qvecnvol -qfdpr -qnostrict -D ILS MACROS -blpdata
454.calculix -qpdf1(pass 1) -qpdf2(pass 2) -O4 -qlargepage -D ILS MACROS -blpdata
481.wrf -bmaxdata:0x30000000 -O5 -qlargepage -qalias=nostd -D ILS MACROS -blpdata

Java
compiler, compress, derby, mpegau-
dio, SPECjbb2000

-Xmx1024m -Xlp
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