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Abstract—Modern computer systems expend significant
amounts of energy on transmitting data over long and highly
capacitive interconnects. A promising way of reducing the data
movement energy is to design the interconnect such that the
transmission of 0s is considerably cheaper than that of 1s. Given
such an interconnect with asymmetric transmission costs, data
movement energy can be reduced by encoding the transmitted
data such that the number of 1s in each transmitted codeword is
minimized. This paper presents a new data encoding technique
based on online data clustering that exploits this opportunity.

The transmitted data blocks are dynamically clustered based
on the similarities between their binary representations. Each
data block is expressed as the bitwise XOR between one of
multiple cluster centers and a residual with a small number of 1s.
The data movement energy is minimized by sending the residual
along with an identifier that specifies which cluster center to
use in decoding the transmitted data. At runtime, the proposed
approach continually updates the cluster centers based on the
observed data to adapt to phase changes.

The proposed technique is compared to three previously
proposed energy-efficient data encoding techniques on a set of
14 applications. The results indicate respective energy savings
of 5%, 9%, and 12% in DDR4, LPDDR3, and last level cache
subsystems as compared to the best existing baseline encoding
technique.

I. INTRODUCTION

Data movement is a major contributor to the total system

energy consumption in deeply scaled CMOS ICs [1]. Studies

show that for scientific and mobile applications, 40% [2] and

35% [3] of the total system energy is consumed by data

movement, respectively. The energy cost of data movement

is substantially higher than that of computation. For example,

when performing a double precision addition on a graphics

processing unit (GPU) implemented at the 22nm technology

node, fetching the two operands from memory consumes 50×
greater energy than moving the operands from the edge of the

chip to its center, which in turn consumes another 10× higher

energy than the addition [4]. This orders of magnitude energy

gap between data movement and computation is expected to

widen in the future with technology scaling [5]. Thus, reducing

data movement energy is critical to future computer systems.

A promising way of reducing the data movement energy

is to design the interconnect such that the transmission of

0s is considerably cheaper than that of 1s. Given such an

interconnect with asymmetric transmission costs, data move-

ment energy can be reduced by encoding the transmitted data

such that the number of 1s in each transmitted codeword

is minimized. Existing coding techniques that can exploit

this asymmetry to reduce data movement energy include the

DBI coding technique adopted by DDR4 DRAM [6], [7],

two dimensional bus invert (CAFO) coding [8], and recent

value encoding [9]. However, these techniques either use fixed

coding methods that cannot adapt to the data patterns across

different applications, or are restricted to exploring limited set

of data patterns at runtime. These shortcomings leave room for

designing a more effective data encoding technique to reduce

the energy consumption due to data movement.

This paper proposes a new data encoding method based

on online data clustering. In the proposed coding scheme,

the transmitted data are dynamically grouped into different

clusters based on their similarities, as shown in Figure 1. The

similarity is evaluated based on the Hamming distance (i.e., the

number of bit positions that differ) between two data blocks.

Each cluster has a center with a bit pattern close to those

of the data blocks that belong to that cluster. These cluster

centers are learned online and stored at both the transmitter

and the receiver. A transmitted data block is encoded by the

residual that results from XORing the contents of the block

with the nearest cluster center, concatenated with a center

identifier. The original data block is recovered by XORing the

received residual with the identified center. By dynamically

learning the cluster centers and assigning each data block to

the nearest center, the sum of the Hamming distances to the

cluster centers is minimized. As a result, the total number of 1s

in the transmitted data blocks is significantly reduced, leading

to substantial savings in data movement energy.

Online data clustering allows the proposed coding scheme

to adapt to changes and to customize data encoding to different

applications. As compared to coding techniques that use fixed

frequent data values [10] or recent data values [9] to represent

the data, the proposed data encoding scheme can capture data

patterns that appear both recently and in the distant past. In

addition, the cluster centers in the proposed scheme are not

required to be present in the actual data that is transmitted. For

example, given the data patterns 1110, 1101, and 1011, the

proposed approach can place a cluster center at 1111, which

results in a Hamming distance of 1 to each of the three data978-1-5090-3508-3/16/$31.00 c© 2016 IEEE
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Fig. 1. Illustrative example of clustering 8-bit data blocks based on similarity.
The small data points represent the transmitted data blocks. The data points
in different colors belong to different clusters.

patterns in that cluster. This feature increases the number of

possible data patterns that can be chosen as a cluster center,

thereby improving the odds of finding a representation with a

few ones for each encoded data block. All of these advantages

make the proposed data encoding scheme better at reducing

the energy consumption of data movement as compared to

existing techniques.

The proposed coding scheme is applied both to DRAM

interfaces and the main data H-tree in a last level cache

(LLC) for evaluation. The proposed approach reduces the

average energy consumption of data movement by 40% as

compared to conventional DBI coding. The overall energy of

DDR4 and LPDDR3 DRAM systems are respectively reduced

by 9% and 15%. Depending on the cache size, the energy

consumption of the LLC is reduced by 15% to 21%. These

energy reductions are achieved at a cost of less than 0.5%

performance degradation as compared to a system using con-

ventional DBI coding. Furthermore, as compared to two other

recently proposed encoding techniques, CAFO [8] and recent

value encoding [9], the proposed coding scheme respectively

reduces the data movement energy by 30% and 20%.

II. BACKGROUND AND RELATED WORK

To reduce the energy consumption of data movement, it is

important to understand how the energy is consumed when

data are transmitted on different types of interconnects, and

how existing energy efficient data encoding techniques are

designed. The basics of the data clustering algorithm that

inspired the proposed online clustering and encoding scheme

are also reviewed in this section.

A. Energy Consumption of Data Movement

Different types of interconnects consume energy in different

ways. Some DRAM standards provide basic coding schemes

that improve the energy efficiency of the IO interface.

1) Terminated Interconnects: Many DRAM interfaces

adopt on-die termination (ODT) to maintain signal integrity at

a high clock speed. Recent DDR3/4, GDDR4/5, and LPDDR4

interfaces all support ODT in different forms. DDR4 and

GDDR5 adopt a pseudo open drain (POD) signaling scheme

with VDDQ termination [6], [11], as shown in Figure 2 (a).

The IO interface consumes energy when transmitting a 0 as

the current flows from VDD to GND; transmitting a 1 is effec-

tively free. This asymmetric energy cost provides the opportu-

nity for coding techniques to reduce the energy consumption

of DDR4 and GDDR5 interfaces by reducing the number of

transmitted 0s. Different from DDR4 and GDDR5, LPDDR4

adopts a low-voltage-swing terminated logic (LVSTL) with

VSSQ termination to satisfy speed requirements with noise

immunity [12]. It consumes energy when transmitting a 1;

transmitting a 0 is free. For simplicity and without loss of

generality, a terminated interface that consumes energy during

the transmission of 1s is used as an example for the rest of

this paper.
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Fig. 2. Energy consumption of different interconnects: (a) a VDDQ terminated
interface; (b) an unterminated interface.

To reduce the IO energy and simultaneous switching output

(SSO) noise, DDR4 chips with ×8 and ×16 configurations [6],

[7] adopt data bus inversion (DBI) coding. DBI coding can be

used to minimize either the number of 0s or 1s in a transmitted

block of data; in the case of DDR4, DBI is used to guarantee

that the number of 0s in each encoded byte is less than or equal

to four. DBI coding is performed by checking the number of

0s within each byte of data that needs to be transmitted. If

the number is greater than four, the data block is inverted

and transmitted over the interconnect. A DBI bit, which is

transmitted over an extra pin, is set to 0 to signal that the

transmitted data block is in the inverted form. Otherwise, the

data block is transmitted in its original form with the DBI bit

set to 1.
2) Unterminated Interconnects: Many mobile systems

use a point-to-point unterminated DRAM interface such as

LPDDR3. As shown in Figure 2 (b), the energy consump-

tion of the unterminated LPDDR3 IO interface is caused by

charging and discharging the load capacitance of the data

bus [13], [14]. Unlike the asymmetric energy consumption of a

terminated interface, the energy consumption of the LPDDR3

IO interface is context-dependent, and is proportional to the

number of 0 → 1 and 1 → 0 transitions on the data bus.

Since the energy consumption of an unterminated interface

is not directly related to the number of 0s in the transmitted

data, applying DBI coding is not guaranteed to reduce the data

movement energy.

Although LPDDR3 in its unterminated configuration does

not provide native coding methods, bus invert (BI) coding [15]



can be used to save energy. BI coding can be considered a

special version of DBI coding that is designed for reducing

context-dependent data movement energy. Similar to DBI

coding, BI coding is also applied to an 8-bit data block with

the help of an extra pin, which is used to transmit the BI bit.

However, rather than checking the exact value of the data to be

transmitted, BI coding checks whether the number of bits that

differ between the current and the previously transmitted data

is greater than four. If so, each bit of the original data block

is flipped and transmitted with the BI bit set to 1. Otherwise,

the BI bit is set to 0 and transmitted with the original byte of

data.

High Bandwidth Memory (HBM) [16] and Wide I/O 2 [17]

are memory standards that use wide interfaces to deliver

high bandwidth with high power efficiency. Both standards

use unterminated interfaces, and adopt the BI coding scheme

(called DBIac in the standards) to reduce the interface energy

consumption [16], [17].

Transition signaling (discussed in Section IV-C) is another

solution to save the energy consumption of an unterminated

interface. When transition signaling is used, the number of

transitions on the interconnect is equal to the number of 1s in

the transmitted data, which allows an unterminated interface

to adopt coding techniques that reduce data movement energy

by reducing the number of transmitted 1s.

On-chip interconnects such as the H-trees in caches are also

unterminated interconnects, and consume energy in the same

way as unterminated DRAM interfaces. The techniques that

are used by unterminated DRAM IO to reduce data movement

energy can also be applied to on-chip interconnects to improve

their energy efficiency.

3) Other Interconnects: Hybrid Memory Cube (HMC) [18],

[19] employs SerDes links in its IO interface to provide high

bandwidth and energy efficiency. However, due to the high

static power consumption of SerDes links, HMC consumes

more energy than conventional memory interfaces when the

data bus is underutilized. In addition, the high static interface

power prevents the energy efficient data encoding techniques

from effectively reducing data movement energy. Udipi et
al. [20] propose a memory interface similar to HMC that uses

photonic interconnects instead of the SerDes links. Photonic

interconnects require significant hardware changes and also

dissipate high static power. The proposed energy efficient

coding scheme is not applicable to SerDes links or to photonic

interconnects.

B. Energy Efficient Data Encoding Techniques

Since BI coding [15] was introduced, energy efficient coding

techniques have been heavily studied. Comprehensive surveys

on data encoding schemes that can reduce on/off-chip inter-

connect power can be found in the literature [21], [22].

The M limited-weight codes (M-LWCs) [23] are a class of

codes that guarantee the Hamming weights of the codewords

are no more than M. They can achieve a relatively small M for

energy savings at the cost of a wide codeword that may need to

be transmitted in multiple cycles. For example, a 3-LWC en-

codes a byte of original data into a 17-bit codeword [24]. More

is Less [25] exploits data bus underutilization by opportunisti-

cally using wide, sparse codes without significant performance

degradation. In contrast, the coding scheme proposed herein

does not require a wide codeword, and keeps the extra pin

overheads the same as the DBI coding used in conventional

memory interfaces.

Frequent value (FV) encoding [10] maintains a table to store

a set of frequent data values that can be identified offline

or online. Before transmitting the original data, an encoder

compares the data to the values stored in the table. If there is

a hit, the identifier of the table entry is transmitted using a one-

hot code (1-LWC). Otherwise, the original data is transmitted.

VALVE and TUBE improve FV by detecting variable length

frequent values [26]. Constrained to using the exact data values

that have appeared in the past transmissions, these coding

techniques do not fully exploit data similarity.

A previously proposed XOR-based coding technique [27]

exploits the temporal locality of the transmitted data by

encoding each data block as the XOR between the current

and the perviously transmitted data values. Komatsu et al. [9]

propose a recent value coding technique that extends the XOR-

based coding by keeping the most recent data values in a table.

The original data is encoded as the identifier of the table entry

that has the smallest Hamming distance from the original data,

concatenated with the residual that results from XORing the

table entry and the original data. In contrast, by using the

learned cluster centers rather than the most recent data as the

coding bases, the proposed method can capture representative

data patterns that appear both recently and in the distant

past. In addition, the proposed coding scheme can use data

values that do not exist in the transmitted data set as centers,

which further increases the potential to find representative data

patterns.

Not limited to energy efficient data movement, data encod-

ing schemes also find applications in the area of emerging

memory technlogies. Flip-N-Write [28] uses BI coding to

improve the write bandwidth, energy efficiency, and endurance

of phase change memory (PCM). The recently published

CAFO [8] coding uses an up-to-date two dimensional BI

coding scheme to provide high endurance and reliability for

PCM and spin-transfer torque random access memory (STT-

RAM). The two dimensional BI coding organizes each data

block as a matrix, and iteratively applies BI coding to each

row and column until no more Hamming weight reduction can

be achieved.

C. K-Majority Clustering

Data clustering is a machine learning technique that groups

a set of data points into clusters such that points within each

cluster are similar to each other. In centroid-based clustering,

each cluster is represented by its centroid, which may not

necessarily be a member of the clustered data set. K-means

is a clustering algorithm in which each data point is assigned

to the nearest cluster center such that the sum of the squared



distances from the cluster centers is minimized [29], [30]. K-

majority is a variant of k-means clustering proposed for binary

data. It replaces Euclidean distance with Hamming distance

to evaluate the similarity between bit-strings, and uses the

majority vote rather than the arithmetic mean to recalculate the

cluster centers. Similarly to the k-means clustering algorithm,

k-majority proceeds by alternating between two steps: assign-

ment and update [31]. In the assignment step, each binary data

point is assigned to the nearest center based on the Hamming

distance. In the update step, a new center is regenerated for

each cluster using a majority vote—each bit of the new center

is set based on the majority of the data points that are assigned

to that cluster. This iterative process stops when the centers

stop changing.

III. KEY IDEA: LEARNING THE ENCODING AT RUNTIME

The goal of the proposed runtime encoding technique is to

arrive at a sparse representation of the data—i.e., a represen-

tation with few 1s—prior to transmission on an interconnect

with asymmetric energy costs. The key idea is to dynamically

group similar data into clusters, and to represent each transmit-

ted data block as the XOR between the nearest cluster center

(i.e., the most similar data pattern) and a residual. Copies of the

learned cluster centers are kept at both the transmitter and the

receiver. Instead of transmitting the original data blocks, only

the residuals and the center identifiers are transmitted as the

encoded data. The original data is recovered by XORing the

received residual and the identified cluster center. By learning

the proper cluster centers, the Hamming distance between each

transmitted data block and the nearest cluster center is kept

small. As a result, the number of 1s in the transmitted residual

is substantially reduced, leading to significant energy savings.
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Fig. 3. Illustrative example of the key idea. The goal of the shown DBI
coding is to minimize the number of 1s.

DBI coding can be considered a special case of the proposed

coding scheme with two fixed centers: all 0s and all 1s. By

dynamically learning centers that more effectively represent

the data patterns that appear in the data stream, the proposed

coding scheme significantly outperforms DBI coding. Figure 3

shows an example of data transmission over an interconnect

with asymmetric transmission costs under DBI coding 1 and

the proposed coding scheme. In the example, two bytes of

data (00010101 and 01011101) are sent from the transmitter

to the receiver. Under DBI coding, the first byte remains in

its original form with the DBI bit set to 0; the second byte

is flipped with the DBI bit set to 1. In total, the transmission

results in seven 1s. Under the proposed coding scheme, one

of the learned centers is 01010101, and is recorded at both

the transmitter and the receiver. Since 00010101 is the result

of XORing the center 01010101 with the residual 01000000,

and 01011101 is the result of XORing the center 01010101

with the residual 00001000, the two residuals are transmitted

through the interconnects with the center bit set to 1. The

total number of transmitted 1s is four, which is 43% smaller

than that of DBI coding. This simple example suggests that

the proposed coding scheme can reduce data movement energy

by reducing the number of transmitted 1s by learning accurate

data cluster centers.

IV. ONLINE DATA CLUSTERING AND ENCODING

Figure 5 illustrates an example system using the proposed

data encoding scheme. The coding technique is applied to

both the DRAM interface and the LLC. Data communication

between the memory controller and each DRAM chip is

performed through a codec. The cache controller and each

cache bank are also equipped with the proposed codec for

transmitting data on the main data H-tree. The proposed

coding scheme is applied to only the main data H-tree—which

is a major contributor to the overall LLC energy—to limit the

coding overhead.

Memory 
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DRAM System
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Fig. 5. An example system using the proposed coding technique.

A. Encoding and Decoding

Accurately decoding the encoded data requires the learned

cluster centers to be kept synchronized at the transmitter and

receiver. Given the current set of cluster centers, the encoder

encodes each new data block as the XOR between the nearest

cluster center (i.e., the center with the smallest Hamming

1Recall that DBI coding can be used to minimize either the number of 1s
or 0s. In DDR4, it is used to minimize the number of zeroes, whereas in this
example, it is used to minimize the number number of 1s.
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distance to the block) and the residual. The residual, which

typically contains a small number of 1s, is transmitted with

the corresponding center identifier. At the receiver, the decoder

recovers the data by XORing the specified cluster center with

the transmitted residual.

Figure 4 (a) shows an encoder with four centers as an

example. In this example, to keep the overhead due to extra

pins the same as that of DBI coding, each cache line is

chopped into 16-bit data blocks before encoding. The encoder

needs to find the nearest center for each transmitted data block

to reduce the energy cost of data movement. To fulfill this

need, a data block is first XORed with each stored center

to generate a candidate residual (step 1 in Figure 4). The

Hamming weights (number of 1s) of the generated residual

blocks are compared to determine the residual with the lowest

Hamming weight (step 2 in Figure 4). The center used

to generate the selected residual block thus has the shortest

Hamming distance to the original data block. Its identifier and

the residual are concatenated to form the encoded data block,

and are transmitted to the receiver (step 3 in Figure 4).

Figure 4 (b) illustrates how the decoder recovers the original

data at the receiver side. The center identifier in the encoded

data is used as the index to retrieve the center used for

encoding. The original data is recovered by XORing the center

and the residual in the encoded data.

B. Learning the Cluster Centers

Learning proper cluster centers that can capture represen-

tative data patterns in the transmitted data set is vital to the

proposed coding scheme. An online clustering method inspired

by the offline k-majority algorithm is proposed to solve the

problem. The original offline k-majority algorithm performs

clustering by iteratively assigning each data block to the

nearest cluster center, and relocating each center based on the

data blocks that belong to the corresponding cluster. Although

it is perceivable that k-majority could be applied to the entire

memory system once (or periodically) to determine the cluster

centers, the required transfer of data to perform the clustering

itself could become a significant source of energy dissipation.

Instead, the proposed online data clustering scheme dynami-

cally assigns each transmitted data block to the nearest cluster

center, and adjusts the center based on this newly observed

data. The assignment step is automatically performed by data

encoding since the encoder already calculates the Hamming

distance to the nearest cluster center. The adjustment step

adopts the majority vote method used by the offline k-majority

algorithm: each bit value of the new center is determined by

the majority of the corresponding bit values within all of the

data blocks that belong to that cluster. Hardware counters are

required to keep the majority vote results of old data blocks

that have been assigned to each cluster. At the receiver side,

the corresponding cluster center is adjusted by following an

identical set of steps to keep the centers at the transmitter and

receiver synchronized.

Choosing the number of centers. In the proposed coding

scheme, the number of cluster centers is a parameter defined

at design time. A larger number of centers provides the

opportunity to learn and make fine distinctions among a greater

number of data patterns. However, to keep the extra coding bit

overhead the same as that of DBI coding, the coding data block

size also needs to be increased, which may reduce the efficacy

of the clustering. In addition, more centers and larger coding

blocks lead to high coding overheads, which may outweigh the

benefits achieved by data encoding. Based on the results from a

sensitivity study (Section VI-E1), we choose sixteen centers,

which provides the best energy efficiency for the evaluated

systems.

Initializing the centers. Similar to the original k-majority

clustering algorithm, the cluster centers are randomly initial-

ized in the proposed coding scheme. The centers can also be

initialized based on prior knowledge of the transferred data to

learn the cluster centers faster. Here we use random initial-

ization to keep the coding scheme simple. An analysis on the

impact of center initialization can be found in Section VI-E4.

Updating the centers. Instead of performing the data

clustering offline, the cluster centers in the proposed coding

scheme are dynamically updated based on the transmitted data

to adapt to the changes in data patterns during the execution.

The proposed online center updating method is designed based

on the update rule of the offline k-majority algorithm, as shown

in Figure 6. Each bit of every cluster center is associated with

a saturating counter, which maintains sufficient statistics to

compute the majority vote. When a transmitted data block

is assigned to the nearest cluster center for encoding, it also

updates the counters that belong to the cluster center in the

background. Depending on whether the corresponding bit



value within the data block is a 0 or a 1, every counter

is respectively decremented or incremented by 1. The most

significant bit of every counter is used to represent the result

of the majority vote.

The saturating counters provide the ability to “forget” stale

associations with old data, because a number of updates in the

opposite direction decreases the weights of old data in each

cluster, helping the cluster center to “drift” as the data changes.

Therefore, the size of the saturating counter affects the effi-

ciency of the proposed coding scheme. On the one hand, if the

size is too large, the old information may require a long time

to be forgotten, which may prolong the time needed to find the

proper centers for more recent data. On the other hand, if the

size is too small, it might be hard for the learning procedure

to capture important patterns that may have appeared in the

distant past. In addition, large counters introduce higher coding

overheads, which may offset the energy reduction achieved by

the data encoding. A sensitivity analysis on the size of the

counter is presented in Section VI-E2. For the configuration

with sixteen centers, the proposed coding scheme that uses

4-bit counters achieves the highest energy improvement.

The two update units located at the transmitter and the re-

ceiver provide a simple and effective way for synchronization.

If there is a transmission error, the centers at the transmitter

are updated first. The transmission error is then corrected —

e.g., by retransmission or ECC checks, depending on the error

correction mechanism employed by the system. After this, the

centers at the receiver side are updated based on the correct

data value. As long as the correct data can be recovered, the

centers can be correctly synchronized by the same learning

procedure. 2
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Reducing the coding overheads. The proposed coding

scheme applies sampling on top of the basic center update

procedure to reduce the energy overheads. Fixed interval sam-

pling is employed to keep the learning process simple. Rather

than collecting information and performing updates based on

all of the transferred data, the counters and the cluster centers

are updated every N memory requests. Due to the sampling,

the coding scheme loses some data value information in the

center learning process. The sampling interval (N ) is chosen

to be sixty-four, which limits the lost opportunity in energy

2The overhead of maintaining the two update units is taken into account in
the evaluation.

savings to 5% of an ideal solution that samples every memory

access (Section VI-E3).

C. Transition Signaling for Unterminated Interconnects

For the unterminated LPDDR3 interface and for on-chip

interconnects, the energy consumption of data movement is

proportional to the number of transitions on the wires instead

of the number of transmitted 0s or 1s. However, transition sig-

naling [36] can be employed to make the energy consumption

of each transmitted data context-independent. Different from

level signaling, which uses high and low voltage levels to

represent logical 1s and 0s, transition signaling uses a voltage

transition on the interconnects and the lack thereof to represent

a logical 1 and 0. Under transition signaling, minimizing the

number of transitions on the wires reduces to the problem

of minimizing the number of 1s in the transmitted data.

With transition signaling, energy efficient coding techniques

designed for unterminated interconnects can be readily applied

to save data movement energy by reducing the number of 1s in

each transmitted data block. This makes the proposed coding

scheme applicable to an unterminated LPDDR3 interface, and

to the main data H-tree within the LLC.

Transimitter Receiver

Data_i Data_i

Fig. 7. Transition signaling. Data i represents the original data bit.

Transition signaling requires an extra XOR gate and a

register at both the transmitter and the receiver, as shown in

Figure 7. Each transmitted bit of data is encoded as the XOR

of the current bit value and the previous value transmitted

on the interconnect. At the decoder, the original bit of data is

recovered by XORing the received bit value and the previously

transmitted value.

V. EXPERIMENTAL SETUP

Analyzing the performance, energy, and area of the pro-

posed clustering based data encoding scheme requires both

architectural and circuit-level design and evaluation.

A. Architecture

We use a heavily-modified version of the SESC simula-

tor [37] with a cycle accurate DRAM timing model to evaluate

the baselines and the proposed coding scheme. The efficacy

of the proposed coding scheme depends on the contribution

of the memory interface and the main data H-tree of the

LLC to the system energy consumption. Both a DDR4 based

server system and an LPDDR3 based mobile system are

evaluated (configuration parameters are shown in Table I).

McPAT 1.0 [38] is used to estimate the processor energy at

the 22nm technology node. CACTI 6.5 [39] is used to evaluate

the energy and latency of caches. 3 The energy consumption

of DDR4 and LPDDR3 systems is calculated following the

3LSTP devices are used to model the last level caches [40], [41], [42], [43],
[44].



TABLE I
EVALUATED SYSTEM CONFIGURATIONS.

Mobile System [32], [33] Microserver System [34]

Core
8 out-of-order cores, 1.6GHz, single thread per core

fetch/issue/commit width 3/3/3
8 in-order cores, 3.2GHz, 4 threads per core

fetch/issue/commit width 4/4/4

IL1 cache 32KB, direct-mapped, 64B line, hit/miss delay 1/1

DL1 cache 32KB, 4-way, 64B line, write back, hit/miss delay 2/2

Coherence Snoopy bus with MESI protocol

L2 cache 2MB, 8-way, 8 banks, 64B line, hit/miss delay 11/2 8MB, 16-way, 8 banks, 64B line, hit/miss delay 19/4

Memory controller FR-FCFS scheduling [35], open-page policy, page-interleaved address mapping

DRAM

LPDDR3-1600 [13]
channels/ranks/banks = 2/2/8, page size 4KB,

tCL/tWL/tRCD/tRP/tRAS/tRC/tFAW/tREFI/tRFC/BL
= 12/6/15/16/34/50/40/3120/168/8 DRAM cycles

DDR4-3200 [7]
channels/ranks/banks = 2/2/8, page size 8KB,

tCL/tWL/tRCD/tRP/tRAS/tRC/tFAW/tREFI/tRFC/BL
= 20/16/20/20/52/72/48/12480/416/8 DRAM cycles

methodology described in the respective power calculators

provided by Micron [45], [14], with parameters taken from

prior work [7], [13]. The three coding schemes discussed

in Section II are implemented and evaluated as baselines

for comparison: 1) the conventional DBI coding [6], [7]; 2)

the recently proposed CAFO coding [8] (two dimensional

bus invert coding); and 3) coding based on the k recent

values [9]. 4 All of the data encoding techniques, including

the proposed one, keep the extra pin overhead the same as

that required by the conventional DBI coding.

B. Synthesis

The codec logic of different evaluated data encoding

schemes and the center updating unit used by the proposed

data encoding technique are designed and verified in Verilog

RTL, and synthesized with the FreePDK 45nm library [46]

using the Synopsys Design Compiler [47]. The area, timing

and power numbers are scaled from 45nm to 22nm DRAM

process technology using the methodology and scaling pa-

rameters reported in prior work [40], [48], [49], [50], [51]. 5

CACTI 6.5 [39] and FabMem [48] are used to model the

SRAM tables that store cluster centers.

C. Applications

We evaluate a mix of fourteen applications that are readily

portable to our simulator with different memory intensities,

as shown in Table II. We use SimPoint [52] to find a rep-

resentative 1 billion instruction region from each SPEC2006

benchmark to reduce the simulation time.

VI. EVALUATION

In this section, we compare the energy and performance

of the proposed architecture to the baseline systems. We

also analyze the latency, area, and power overheads of the

components in the proposed data encoding technique.

4XOR-based coding [27] is a special case of k recent value coding, with
k equal to 1. The k recent value coding is evaluated in the paper since it is
a stronger baseline.

5ITRS LSTP devices are used for the codec on the DRAM side to model
the impact of implementing logic circuits using a memory process [40]. For
simplicity, the same synthesis results (using LSTP devices) are conservatively
used for the processor side as well.

TABLE II
APPLICATIONS AND DATA SETS.

Benchmarks Suite Input
SCALPARC NuMineBench [53] A32-D125K

GUPS HPCC [54] 225 table, 1048576 updates

LINEAR Phoenix [55] 100MB file

FFT SPLASH-2 [56] 220 complex data points

OCEAN SPLASH-2 514×514 ocean

CG NAS OpenMP [57] Class A

MG NAS OpenMP Class A

ART SPEC OpenMP [58] MinneSpec-Large

EQUAKE SPEC OpenMP MinneSpec-Large

SWIM SPEC OpenMP MinneSpec-Large

LBM SPEC 2006 [59] Reference

MCF SPEC 2006 Reference

MILC SPEC 2006 Reference

SOPLEX SPEC 2006 Reference

A. Hardware Overheads

Table III lists the power, area, and latency overheads of the

evaluated data encoding techniques. The data shown for DBI

coding is based on an 8-bit coding block size. All of the other

coding techniques exhibit the same extra bit overhead (1 extra

bit per every 8 bits) as DBI coding. The data shown for CAFO

coding is based on a configuration with four iterations for

encoding 6. The data shown for the proposed coding scheme

is based on a configuration with a 32-bit coding block size

and sixteen cluster centers. Since recent value coding also

uses a 32-bit coding block size and keeps the most recent

sixteen data blocks, it has the same encoder and decoder

overheads as the proposed solution. The center update unit of

the proposed coding technique works in the background; thus,

its latency is not on a performance critical path. Compared

to the long DRAM access latency, the codec latency is short;

notably, the codec does not constitute a bandwidth bottleneck.

All of these overheads are taken into account in the subsequent

performance and energy evaluations.

B. Performance

The system performance with different energy efficient

coding techniques are evaluated. Figure 8 shows the execution

time normalized to the DBI coding baseline on the server sys-

tems. For the server systems, CAFO, recent value coding, and

the proposed coding scheme respectively degrade the average

performance by 1.2%, 0.4%, and 0.4%. The applications art,

cg, mg, swim, mcf, and milc are more sensitive to the extra

6CAFO coding in this configuration achieves the same average energy
reduction as the original CAFO without the extra latency penalty.



TABLE III
POWER, AREA AND LATENCY OVERHEADS OF DIFFERENT DATA ENCODING

SCHEMES AT 22NM.

Power
(mW)

Area
(mm2)

Latency
(ns)

Proposed Encoder 2.8 0.004 0.9
Proposed Decoder 0.81 0.0005 0.18

Center Update Unit 4.4 0.002 0.38

DBI Encoder 0.19 0.00006 0.18
DBI Decoder 0.35 0.00003 0.06

CAFO Encoder 0.64 0.0001 1.76
CAFO Decoder 0.88 0.0002 0.04

latency added by the encoding and decoding processes. Most

of the sensitive applications are memory intensive.

1.012 1.004 1.004

Fig. 8. Execution time normalized to the DBI coding baseline on the evaluated
server systems.

The performance results achieved on the mobile systems are

shown in Figure 9. As compared to the server systems, the

performance degradation slightly increases due to a smaller

number of hardware threads and a smaller LLC. On average,

CAFO, recent value coding, and the proposed coding scheme

respectively degrade the performance by 1.3%, 0.5%, and

0.5%. The applications art, mcf, and milc suffer from

the largest performance degradations (1.1%, 0.9%, and 0.9%)

when using the proposed coding scheme. However, the system

using the proposed coding scheme still outperforms the system

using CAFO coding, which respectively degrades the perfor-

mance by 3.9%, 3.6%, and 1.8% for these three applications.

1.013 1.005 1.005

Fig. 9. Execution time normalized to the DBI coding baseline on the evaluated
mobile systems.

C. Energy Impact on Server Systems

Figure 10 illustrates the number of transmitted 0s under

three different coding schemes in the DDR4 DRAM system.

The numbers are normalized to the baseline with DBI coding.

On average, the proposed coding scheme respectively reduces

40%, 30%, and 20% of the number of transmitted 0s as

compared to DBI, CAFO and recent value coding techniques.

For applications art and equake, the difference between

the recent value coding scheme and the proposed approach

is small (about 10%). These applications have relatively good

temporal data value locality, which makes the recent value cod-

ing competitive. In addition, the sampling used in the proposed

coding scheme has nontrivial effects on these applications

(discussed in Section VI-E3), preventing the proposed coding

scheme from eliminating a larger number of transmitted 0s.

Fig. 10. The number of transmitted 0s normalized to that of the DBI coding.

0.98 0.96
0.91

Fig. 11. Energy consumption of the DDR4 DRAM system normalized to that
with DBI coding.

The energy consumption of the DDR4 system is shown

in Figure 11. CAFO, recent value, and the proposed coding

schemes reduce the DDR4 system energy by 2%, 4%, and

9% as compared to the system with DBI coding. Figure 12

shows the energy breakdown of the DDR4 system. Since

the DRAM core energy, especially the background energy,

contributes substantially to the overall DDR4 energy, the IO

energy savings achieved by energy efficient coding schemes

are not as high as the percentage of eliminated 0s. The coding

overheads added to the DRAM system is too small to be

visible in the figure. The overheads of the proposed coding

scheme account for 0.15% of the overall DDR4 system energy.

Fig. 12. Energy breakdown of the DDR4 DRAM system.

Fig. 13. Energy breakdown of the 8MB LLC.

The energy efficient coding techniques are also applied to

the main data H-tree in the LLC. The proposed coding scheme



respectively reduces 40%, 30%, and 21% of the transitions

on the interconnects as compared to DBI, CAFO, and recent

value coding. Since the main data H-tree is a big contributor

to the overall LLC energy, as shown in Figure 13, the coding

techniques achieve significant energy savings on the LLC. As

illustrated in Figure 14, CAFO, recent value and the proposed

coding schemes respectively reduce the LLC energy by 7%,

11%, and 21% as compared to the DBI coding baseline. Since

the LLC is more frequently accessed than the DRAM system,

and the overall energy is smaller than that of the DRAM

system, the proportion of coding overheads in the overall LLC

energy become larger as compared to those in the overall

DDR4 energy. CAFO, recent value and the proposed coding

scheme add 0.8%, 2%, and 2% energy overheads to the overall

LLC energy (Figure 13).

0.93 0.89
0.79

Fig. 14. Energy consumption of the 8MB LLC normalized to that with DBI
coding.

0.99 0.98
0.95

Fig. 15. Energy consumption of the server system normalized to that with
DBI coding.

Figure 15 shows the energy consumption of the evaluated

server systems. As compared to DBI coding, CAFO, recent

value and the proposed coding schemes respectively save 1%,

2%, and 5% of the system energy on average. Besides the

reduction in the number of transmitted 0s and transitions, the

energy savings achieved by the proposed coding scheme also

depend on the proportion of the DRAM and LLC energy in

the overall system energy. For memory-nonintensive applica-

tions, such as linear, the DRAM and LLC energy are not

significant. For such applications, the overall system energy

reduction is modest although the proposed coding scheme

eliminates more than half of the number of transmitted 0s

and transitions. For memory-intensive applications, such as

gups and mcf, the proposed coding scheme can achieve high

system-wide energy savings (11% and 8%).

D. Energy Impact on Mobile Systems

When the proposed coding scheme is applied to a LPDDR3

DRAM system, it respectively reduces the number of transi-

tions on the interface by 39%, 30%, and 21% as compared to

Fig. 16. Energy breakdown of the LPDDR3 DRAM system.

0.96 0.93
0.85

Fig. 17. Energy consumption of the LPDDR3 DRAM system normalized to
that with DBI coding.

DBI, CAFO, and recent value coding. In an LPDDR3 system,

DRAM IO is a big contributor to the overall DRAM system

energy (Figure 16). As a result, coding techniques can achieve

much higher energy savings than they do in a DDR4 system.

Figure 17 shows that on average, CAFO, recent value, and

the proposed coding scheme respectively reduce the LPDDR3

system energy by 4%, 7%, and 15%. The coding overheads

remain low in the LPDDR3 DRAM system: 0.2%, 0.6%, and

0.6% for CAFO, recent value and the proposed coding scheme,

respectively.

0.96 0.97
0.85

Fig. 18. Energy consumption of the 2MB LLC normalized to that with DBI
coding.

In the mobile system, the proposed coding scheme reduces

the number of transitions on the main data H-tree of the

LLC by 41%, 31%, and 23% as compared to DBI, CAFO,

and recent value coding schemes. Although the number of

transitions is similar to those in the server system, the energy

savings on the LLC are smaller in the mobile system. As

shown in Figure 18, as compared to the DBI coding baseline,

the average LLC energy reductions achieved by CAFO, recent

value, and the proposed coding schemes are 4%, 3%, and

15%, respectively. Because of the smaller size and lower

energy consumption of the LLC in the mobile system, the

coding overheads become nontrivial and offset parts of the

benefits achieved by data encoding. The energy breakdown

in Figure 19 shows that the coding overheads of CAFO,

recent value, and the proposed coding schemes are respectively

responsible for 4%, 10%, and 10% of the overall LLC energy



in the mobile system.

Fig. 19. Energy breakdown of the 2MB LLC.

0.99 0.97
0.93

Fig. 20. Energy consumption of the mobile system normalized to that with
DBI coding.

Due to the large energy savings on LPDDR3 and the high

energy efficiency of mobile cores, the proposed coding scheme

achieves higher system-wide energy reduction in the mobile

system as compared to that of the server system. Figure 20

shows that as compared to DBI coding, the proposed coding

scheme reduces the overall mobile system energy by 7%,

which is higher than both CAFO (1%) and recent value coding

(3%). Some memory-intensive applications, such as gups and

mcf, achieve over 10% system-wide energy savings using the

proposed coding scheme.

E. Analysis and Discussion

We performed sensitivity studies and analyses on LLCs,

LPDDR3, and DDR4 DRAM systems in both mobile and

server systems. Only the LPDDR3 results are shown here for

brevity; DDR4 and LLCs demonstrate similar characteristics.

1) Number of Centers: In the proposed coding scheme, the

number of centers affects the magnitude of the achieved energy

reductions. Figure 21 illustrates the average number of transi-

tions under configurations with different numbers of centers.

Since the performance of the recent value coding scheme also

depends on the number of stored data values, its results are

also shown in the figure for comparison. The configuration

with sixteen centers achieves the best result for both recent

value and the proposed coding scheme. As compared to recent

value coding, the proposed coding technique is less sensitive

to the number of centers. Even with only two centers, it can

still achieve a 31% reduction in the number of transitions as

compared to DBI coding.

Figure 22 shows the average LPDDR3 system energy under

coding schemes with different configurations. The configura-

tion with sixty-four centers suffers from a significant coding

overhead; consequently, this configuration is not applicable in

practice and is not shown in the figure. Since the coding over-

heads of the remaining configurations are much smaller than

Fig. 21. Sensitivity of the number of transitions to the number of centers.
The results are normalized to those achieved by DBI coding.

the benefits achieved by reducing the number of transitions,

the LPDDR3 system energy under different configurations

closely follows the number of transitions. The proposed coding

scheme consistently achieves lower energy consumption and

is less sensitive to the number of centers as compared to recent

value coding.

Fig. 22. Sensitivity of LPDDR3 system energy to the number of centers. The
results are normalized to those achieved by DBI coding.

Since the configuration of the proposed coding scheme with

two centers can nevertheless reduce the number of transitions

significantly, it can be applied to small subsystems in which

the coding overheads are nontrivial.

Fig. 23. Sensitivity of LPDDR3 system energy to the size of the counter
used for center update. The results are normalized to those achieved by DBI
coding.

2) Counter Size: The proposed coding scheme uses sat-

urating up/down counters to dynamically update the centers.

Figure 23 illustrates the impact of counter size on the LPDDR3

system energy. On average, the 4-bit counter configuration

performs better than the other three configurations. The main

reason is that the 4-bit counter configuration can find a better

balance between adapting to recent data values and forgetting

the past information, which allows it to reduce a larger number

of transitions on the interconnects.

The best counter size is affected by the number of centers

used in the proposed coding scheme. With a decreasing

number of centers, the best configuration tends to use larger

counters. On average, the 4-bit counter configuration performs

best for the proposed coding schemes with sixteen and four

centers; the 8-bit counters perform best with two centers.

3) Impact of Sampling: Figure 24 illustrates the impact of

sampling on the proposed coding scheme. On average, the



Fig. 24. The impact of sampling on the number of transitions for the LPDDR3
interface. The results are normalized to those achieved by DBI coding.

proposed coding scheme with a sampling interval of sixty-

four memory requests increases the number of transitions on

the interconnects by 5% as compared to the proposed coding

scheme without sampling. Most of the applications are not

very sensitive to sampling, which allows the proposed coding

scheme to reduce center update overheads without significantly

sacrificing the energy reduction benefits achieved by the data

encoding.

Fig. 25. The impact of center initialization on the number of transitions for
the LPDDR3 interface. The results are normalized to those achieved by DBI
coding.

4) Impact of Initial Center Selection: The proposed coding

scheme can achieve greater energy reductions if it is given

some guidance at the center initialization step. If the centers

can be initialized closer to the representative data patterns,

the learning process will become shorter and the learned

centers will be more accurate, which leads to more energy

reduction. The information used to guide center initialization

can be achieved based on information collected from previous

executions of an application, or some knowledge about the

data sets stored in the memory that are going to be accessed

by an application.

Figure 25 shows the comparison between the proposed

coding scheme with random and guided center initialization.

The evaluated data encoding scheme with guided center ini-

tialization assumes the data sets used by the applications are

known ahead of time based on programmers’ knowledge or

previous executions. A single iteration of offline k-majority

analysis is performed on the data sets to generate the offline

cluster centers. These centers are used for initialization under

the assumption that the data transmitted over the interconnects

share some patterns and characteristics with the data stored in

the memory. On average, the new center initialization method

achieves a 9% higher reduction on the number of transitions

as compared to the random center initialization method. The

applications art and mcf achieve significantly higher savings

(35% and 46%, respectively), as their data sets that are stored

in the memory exhibit similar data patterns as those in their

transmitted data sets. For applications that are going to be

executed multiple times with a large amount of transferred

data, the guided center initialization might be a better option.

Although it requires extra overheads to collect information on

the data sets, the energy savings may still be higher than that

achieved by the random center initialization method due to

more accurate cluster centers.

5) Impact of Multiprogrammed Workloads: A set of mul-

tiprogrammed workloads was generated by choosing pairs

of applications from the evaluated SPEC2006 benchmarks.

Weighted speedup [60] is used as the metric to evaluate the

performance.

Similarly to the other evaluated applications, the perfor-

mance of the multiprogrammed workloads is slightly degraded

due to the latency added by the encoding and decoding

processes. For the mobile systems, CAFO, recent value coding,

and the proposed coding scheme respectively degrade the

average performance by 0.9%, 0.1%, and 0.1% as compared

to the system using DBI coding.

Fig. 26. The impact of multiprogrammed workloads on LPDDR3 system
energy. The results are normalized to those achieved by DBI coding.

The mixture of data patterns from different applications in-

creases the difficulty of the learning process. Figure 26 shows

that on average, CAFO, recent value, and the proposed coding

scheme respectively reduce the LPDDR3 system energy by

2%, 4%, and 13%. The coding schemes that only rely on

temporal locality, such as the evaluated recent value coding

baseline, can only achieve limited data movement energy

reduction. In contrast, the proposed coding scheme not only

exploits temporal locality, but also can find patterns that appear

in the distant past by keeping statistical information on each

cluster. When running multiprogrammed workloads, the differ-

ent patterns exhibited by different workloads are still captured

and form different clusters during the online learning process.

Consequently, the proposed coding scheme can still achieve

significant energy savings for multiprogrammed workloads.

Fig. 27. LPDDR3 system energy of multiprogrammed workloads with
different numbers of centers. The results are normalized to those achieved
by DBI coding.



Figure 27 shows the average LPDDR3 system energy under

coding schemes with different configurations for multipro-

grammed workloads. With a small number of cluster centers,

recent value coding fails to reduce the data movement en-

ergy. However, the proposed coding scheme can still achieve

moderate energy savings. As compared to other evaluated ap-

plications (Figure 22), multiprogrammed workloads are more

sensitive to the number of cluster centers, and the optimal

number of clusters depends on the mixture of applications.

VII. CONCLUSIONS

The asymmetric energy consumption of data movement pro-

vides the opportunity to save energy by reducing the number of

1s in the transmitted data. Leveraging this feature, we propose

a novel data encoding scheme based on online data clustering.

By dynamically grouping similar data blocks into clusters, and

encoding each data block as the XOR between the nearest

cluster center and a sparse residual, the proposed coding

technique can significantly reduce data movement energy. We

conclude that the proposed online data clustering and encoding

approach holds the potential to improve the energy efficiency

of data movement in future computer systems.
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