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Agenda for Today

What is Genome Analysis?
What is Intelligent Genome Analysis?

How we Analyze Genome?
What Makes Read Mapper Slow?

Algorithmic & Hardware Acceleration
o Seed Filtering Technique

o Pre-alignment Filtering Technique

o Read Alignment Acceleration

Where is Read Mapping Going Next?
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Agenda for Today

= This lecture is NOT about how to analyze biological data
using available tools.

We are
bioihformatiCians
thats what we do

Sample preparation

[ Gene identification

Novel genes
Discoveries. ..etc

SAFARI http://biocomicals.blogspot.com/2011/05/thats-what-bioinformaticians-do.html



Agenda for Today

= What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?
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What 1s Data Analysis?

“The purpose of COIT) putlng is [to gain]
insig ht, not numbers”

Richard Hamming

SAFARI .



What 1s Genome Analysis?

SAFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 6
https://www.nature.com/subjects/genomic-analysis



What 1s Genome Analysis?
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nature researc

nature > subjects > genomic analysis

Genomic analysis Y Atom  EYRSS Feed

Genomic analysis is the identification, measurement or comparison of genomic features
such as DNA sequence, structural variation, gene expression, or regulatory and functional
element annotation at a genomic scale. Methods for genomic analysis typically require high-

throughput sequencing or microarray hybridization and bioinformatics.

SAFARI https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 7
https://www.nature.com/subjects/genomic-analysis
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DNA Testing
Fall DNA special

Just 55 CHF 8ocHF The promotion ends today in 12 more hours!

@ MyHeritage >NA

SAFARI 8



DNA Testing

ANCESTRY
x2]nndMe

Fall DNA specia Welcome to you now
Just 55 CHF 89-¢+

lay in 12 more hours!

Health + Ancestry
Service

$199

Includes everything in Ancestry +

@ MyHeritage >NA

Traits Service

PLUS

e : — : 10+ Health Predisposition reports*

5+ Wellness reports

40+ Carrier Status reports*
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Human Chromosomes (23 Pairs)
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Human Chromosomes (23 Pairs)
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Finding SNPs Associated with Complex Trait

SNP1 SNP2 Blood Pressure
...ACATGCCGACATTTCATAGGCC... 180
...ACATGCCGACATTTCATAAGCC... 175
...ACATGCCGACATTTCATAGGCC... 170

Individual #4 ...ACATGCCGACATTTCATAAGCC... 165
...ACATGCCGACATTTCATAGGCC... 160
...ACATGCCGACATTTCATAGGCC... 145
...ACATGCCGACATTTCATAAGCC... 140
...ACATGCCGACATTTCATAAGCC... 130
...ACATGTCGACATTTCATAGGCC... 120
...ACATGTCGACATTTCATAAGCC... 120
...ACATGTCGACATTTCATAGGCC... 115
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 110
...ACATGTCGACATTTCATAAGCC... 110
...ACATGTCGACATTTCATAGGCC... 105
...ACATGTCGACATTTCATAAGCC... 100

SNP: single nucleotide polymorphism
SA FARI Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA! 2



computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies

Genome-Wide Association Study (GWAS)

= Detecting genetic variants associated with phenotypes
using two groups of people.
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Similar Association Studies

nature |
o genetics

Opportunities and challenges for transcriptome-
wide association studies

Michael Wainberg', Nasa Sinnott-Armstrong ©2, Nicholas Mancuso @3, Alvaro N. Barbeira©*

David A.Knowles ©5¢, David Golan?, Raili Ermel’, Arno Ruusalepp”8, Thomas Quertermous ©°
KeHao®, JohanL. M. Bjorkegren ©819112* Hae Kyung Im©4*, Bogdan Pasaniuc ©31314*,
Manuel A.Rivas ©* and Anshul Kundaje ©"2*

I

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression
datasets to identify gene-trait associations. In this Perspective, we explore properties of TWAS as a potential approach to
prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for
schizophrenia, low-density-lipoprotein cholesterol and Crohn's disease. We explore risk loci where TWAS accurately prioritizes
the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be non-causal, owing to sharing
of expression quantitative trait loci (eQTL). TWAS is especially prone to spurious prioritization with expression data from
non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths.
Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for
causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths
and limitations of using eQTL datasets to determine causal genes at GWAS loci.

Wainberg+, "Opportunities and challenges for transcriptome-wide

SAFARI association studies”, Nature genetics, 2019. 14



https://www.nature.com/articles/s41588-019-0385-z

SNPs and Personalized Medicine

openSNP Q | Search
P Allele Frequency
SNP rs12979860
A
Basic Information
T
Name rs12979860 h
G
Chromosome 19 49%
W | [o
Position 39248147
-_
Weight of evidence 926 - 0
Links to SNPedia
Title Summary
rs12979860 T/T ~20-25% of such hepatitis ¢ patients respond to treatment
rs12979860 C/C ~80% of such hepatitis ¢ patients respond to treatment
rs12979860 C/T ~20-40% of such hepatitis c patients respond to treatment
15

SAFARI https://opensnp.org/snps/rs12979860




Personalized Medicine in UK

an ‘ Genomic MediCine www.nature.com/npjgenmed
NPJ Genom Med. 2018; 3: 10. PMCID: PMC5884823
Published online 2018 Apr 4. doi: 10.1038/s41525-018-0049-4 PMID: 29644095

Rapid whole-genome sequencing decreases infant morbidity and cost of
hospitalization

Lauge Farnaes,#1:2 Amber Hildreth,#12 Nathaly M. Sweeney,#1:2 Michelle M. Clark,! Shimul Chowdhury,
Shareef Nahas, ! Julie A. Cakici,! Wendy Benson,! Robert H. Kaplan,3 Richard Kronick,* Matthew N. Bainbridge,
Jennifer Friedman,1:2:5 Jeffrey J. Gold, ! Yan Ding,1 Narayanan Veeraraghavan,1 David Dimmock,! and

Stephen F. Kingsmorem1

“From 2019, all seriously ill
children in UK will be offered
whole genome sequencing as
part of their care”

reduced inpatient cost by NHS

National Institute for

$9 9K‘$327K Health Research

SAFARI Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 14
cost of hospitalization”, NPJ Genom Med. 2018



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/

Mirror Phenotypes of 593 Kb CNVs

&= | SCHIZOPHRENIA
' McCarthy, Nat Genet 2009
. Duplication of 593 kb

1

B8 AUTISM "y
Weiss, N Eng J Med 2008 ==
Deletion of 593 kb '

|| UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

I Deletion in the short arm Duplication in the short arm
l l of chromosome 16 (16p11.2) I ' of chromosome 16 (16p11.2)

SAFARI CNV: copy number variation 17



Recommended Reading

nature reviews genetics

Explore our content v Journal information v

nature > nature reviews genetics > review articles > article

Review Article | Published: 15 November 2019

Structural variation in the sequencing era
Steve S. Ho, Alexander E. Urban & Ryan E. Mills

Nature Reviews Genetics 21, 171-189(2020) | Cite this article
15k Accesses | 16 Citations | 309 Altmetric | Metrics

Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

SAFARI 18


https://www.nature.com/articles/s41576-019-0180-9

Agenda for Today

s What is Genome Analysis?
= What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?

SAFARI
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Fast Genome Analysis?

Fast genome analysis in mere seconds using limited
computational resources (i.e., personal computer or small
hardware).

TOMORROWLAND
Ny

A

)

SAFARI

20



Intelligent Architecturer

FPGAs Modern systems

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage

SAFARI 21



Intelligent Architecturer

FPGAs

Modern systems

guencing
Machine

Persistent Memory/Storage

BN -

RESETIFIRa g

(Gehealrbvo;e) GPUs
SAFARI https://nanoporetech.com/products/smidgion 22



https://nanoporetech.com/products/smidgion

Privacy-Preserving Genome Analysis?

B0 ‘Q 2 m 3

ﬂ oY ". -\u Matching the Inferring the
o e demographic data real identity 4
@5 N with their ‘ of the Getting the
\ i \ correspondences unknown family tree of
in metadata Real identity of the  donor of the the victim.
. genetic record’s owner genetic
« Public records (Victim) record. Online, public

e Social media sites genealogical databases

¢ Voter registration forms

@l
sm 7
Inferring the genetic [—

0O
hd
@)

information of the known
and unknown members
that may not publish

thei t all
eirgenomes ata Real identity of the
genetic record’s owner
(Victim & Kins)

o~

Downloading the
anonymized records that
contain demographic data

Online, public genetic databases with

anonymized records Unauthorized party

(Adversary)

Fig.5. A completion attack.

Alser+, "Can you really anonymize the donors of genomic data in today’s digital
world?" 10th International Workshop on Data Privacy Management (DPM), 2015.

SAFARI 23



https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16

Can you Really Anonymize the Donors?

(Position Paper) Can You Really Anonymize the
Donors of Genomic Data in Today’s Digital World?

Mohammed Alser, Nour Almadhoun, Azita Nouri, Can Alkan, and Erman Ayday

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

Abstract. The rapid progress in genome sequencing technologies leads to avail-
ability of high amounts of genomic data. Accelerating the pace of biomedical break-
throughs and discoveries necessitates not only collecting millions of genetic samples
but also granting open access to genetic databases. However, one growing concern is
the ability to protect the privacy of sensitive information and its owner. In this work,
we survey a wide spectrum of cross-layer privacy breaching strategies to human
genomic data (using both public genomic databases and other public non-genomic
data). We outline the principles and outcomes of each technique, and assess its tech-

nological complexity and maturation. We then review potential privacy-preserving

countermeasure mechanisms for each threat. mﬁm ZU 1 5

Keywords: Genomics, Privacy, Bioinformatics
Vienna, Austria
September 21-22, 2015

Alser+, "Can you really anonymize the donors of genomic data in today’s
digital world?" 10th International Workshop on Data Privacy Management
(DPM), 2015.

SAFARI 24


https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16

Rapid Surveillance of Disease Outbreaks?

Figure 1: Deployment of the portable genome surveillance system in Guinea.

Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

SAFARI 25


https://www.nature.com/articles/nature16996

Scalable SARS-CoV-2 Testing
medRyiv @ ewve

Laboratory
THE PREPRINT SERVER FOR HEALTH SCIENCES

Search

¢© Comments (1)

Swab-Seq: A high-throughput platform for massively scaled up
SARS-CoV-2 testing

Joshua S. Bloom, Eric M. Jones, & Molly Gasperini, “=/ Nathan B. Lubock, Laila Sathe, Chetan Munugala,

A.Sina Booeshaghi, "=/ Oliver F. Brandenberg, = Longhua Guo, “=' James Boocock, = Scott W. Simpkins,
Isabella Lin, Nathan LaPierre, Duke Hong,Yi Zhang, Gabriel Oland, Bianca Judy Choe, Sukantha Chandrasekaran,
Evann E. Hilt, ©2) Manish J. Butte, ') Robert Damoiseaux, ‘= Aaron R. Cooper, "2 YiYin, "2 Lior Pachter,

Omai B. Garner, ' Jonathan Flint, ©2' Eleazar Eskin, ©2 Chongyuan Luo, “=' Sriram Kosuri, "=/ Leonid Kruglyak,
Valerie A.Arboleda

doi: https://doi.org/10.1101/2020.08.04.20167874

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020

SAFARI 26



https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2

Population-Scale Microbiome Profiling

N

S A FAR | https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/ 27


https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

Clty—Scale Microbiome Proﬁhng

1. Swab (3 mln) 2. Annotate 3. GPS- tag/tlmestamp

aaaaaa

Rochele

Staten g

habndge glan’ L4

Cc D E

Extract DNA (n=1'457 samples) Viruses Archaea Plasmids

¥ Ambiguous__0.032% 0.003% _ 0.001%
. . . 4.184% N —
Illumina and Qiagen Library Prep | Eukaryota

‘ 0.771%

HiSeq2500 125x125 Sequences

¥

‘ Quality Trim (Q20)

<

MegaBLAST-LCA alignment
U

MetaPhlAN classification Afshinnekoo+, "Geospatial Resolutlon of Human and
Bacterial Diversity with City-Scale Metagenomics", Cell
Figure 1. The Metagenomg of New York City SystemS 20 1 5

I

(A) The five boroughs of NYC include (1) Manhattan (green)
(B) The collection from the 466 subway stations of NYC across the 24 subway lines involved three main steps: (1) collection with Copan Elution swabs, (2) data

S A ‘ entry into the database, and (3) uploading of the data. An image is shown of the current collection database, taken from http://pathomap.giscloud.com. 8
(C) Workflow for sample DNA extraction, library preparation, sequencing, quality trimming of the FASTQ files, and alignment with MegaBLAST and MetaPhlAn to

disrarn taxva nresant



https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2

Plague in New York Subway System?

¥ Harvard Health Publishing
HARVARD MEDICAL SCHOOL

Trusted advice for a healthier life

Plague (Yersinia Pestis)

What Is It?

Published: December, 2018

Plague is caused by Yersinia pestis bacteria. It can be a life-threatening infection if not
treated promptly. Plague has caused several major epidemics in Europe and Asia over the
last 2,000 years. Plague has most famously been called "the Black Death" because it can
cause skin sores that form black scabs. A plague epidemic in the 14th century killed more
than one-third of the population of Europe within a few years. In some cities, up to 75% of
the population died within days, with fever and swollen skin sores.

SAFARI 29



Plague in New York Subway System?

. &he New York Eimes
P I ague ( Ye rsii Bubonic Plague in the Subway
System? Don’t Worry About It

What s It?

Published: December, 2018

Plague is caused by Yersinia
treated promptly. Plague h:
last 2,000 years. Plague has
cause skin sores that form k&
than one-third of the popul

the population died within

In October, riders were not deterred after reports that an Ebola-infected man had ridden
the subway just before he fell ill. Robert Stolarik for The New York Times

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

The findings of Yersinia Pestis in the subway received wide coverage in the lay
press, causing some alarm among New York residents

SAFARI 3


https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html

Failure of Bioinformatics

nature

bloﬁeel'mologDy

e e

data. Rob Knight, a professor in the department of pediatrics at the
University of California, San Diego, calls this type of error “a failure of
bioinformatics” in that Mason had assumed the gene fragments were

unique to the pathogens, when in fact they can also be detected in other

Living in @ microbial world
Charles Schmidt

Nature Biotechnology, volume 35, pages401-403 (2017)
https://www.nature.com/articles/nbt.3868

SAFARI 31


https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868

There is a critical need for fast and

accurate genome analysis.

SAFARI

32



What 1s Intelligent Data Analysis?

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?

SAFARI 33



Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
s What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?

SAFARI
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Genome Analysis

N o machine can read the
entire content of a genome

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA

AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA......

SAFARI 3




Genome Sequencer is a Chopper

( )

— Genome fj
Analysis S
Sequencing \ J
GATK

CCCCCCTATATATACGTACTAGTACGT m

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT E

1x10'2bases’

ACGTACGCCCCTACGTA
TATATATACGTACTAGTACGT .
ACGACTTTAGTACGTACGT 44 hours
TATATATACGTACTAAAGTACGT
TATATATACGTACTAGTACGT <

TATATATACGTACTAGTACGT

ACGTTTTTAAAACGTA
e <1000 $
ACGACGGGGAGTACGTACGT

* NovaSeq 6000

SAFARI 36



High- Throughput Sequencers

Oxford
Nanopore
PromethlON

Pacific
Biosciences
Sequel Il

lllumina MiSeq

_

g
| Oxford Nanopore MinION
Oxford
Nanopore
I—

SmidgION
lllumina NovaSeq 6000

Pacific Biosciences RS Il
.. and more! All produce data W|th dlfferent properties.

SAFARI 37



How Does HTS Machine Work?

Reads lack information about their order and location (which part of

genome they are originated from)

Billions of Short Reads
"ATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

CGCCCCTACGTA

ACGTACTAGTACGT
TTAGTACGTACGT
TACGTACTAAAGTACGT
[ TACGTACTAGTACGT
TTTAAAACGTA

CGTACTAGTACGT

GGGAGTACGTACGT

SAFARI
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Solving the Puzzle

Y
Reference / *

of

B *
genome / .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI 39


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HTS Sequencing Output

Small pieces of a puzzle Large pieces of a puzzle
short reads (Illumina) long reads (ONT & PacBio)

* ' I
1,

\

Which sequencing technology is the best?

1 100-300 bp 1 500-2M bp
U low error rate (~0.1%) U high error rate (~15%)

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI 40


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

HiF1 Reads (PacBio)

HIFI READS ARE LONG AND ACCURATE

100% Long: 10-20 kb
Accurate: 99 8%

> But still very
g expensive!
o
<

80%

0 Read Length (kb) 50

Wenger+, "Accurate circular consensus long-read sequencing improves variant
detection and assembly of a human genome", Nature Biotechnology, 2019

https://labs.wsu.edu/genomicscore/illumina-sequencing/ 41
SAFARI https://pacbio.gs.washington.edu/



https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

How Long 1s DNA?

SAFARI 42



Cracking the 15 Human Genome Sequence

= 1990-2003: The Human Genome Project (HGP) provides a
complete and accurate sequence of all DNA base pairs that make
up the human genome and finds 20,000 to 25,000 human genes.

Ntﬂonduuon

= El Hork Cimes ===
1 ?,ze_i\ﬂs;,,gw Bimes == g 2

ttc Code of Human Li eIs Cracked by Scientist G |T| pases

’ The Book of Life

vorerrend & ) srte syt || SHARED SUGCI
‘M*bd' ol ONA "r:.-," ',' chromosemes i our cells,
e AL have been sequenced 1 3
; s ) ears
A adeting y 2 Rivals' Announcem y
et
LG o =g Marks New Medic:
o
& Y| Risksand Al
3 N\ T—— y
o T — By NICHOLAS WADE *
PR il WASHINGTON, June 3 — |
ULl By orcieving the Dase Units. sCentiels Aope 10 ndnrw ment That repeesen
[ bcale the penes and deformng Shew Anclions sacke of hessan seif & nmsnkf
rval of scientists sadd |
S i~

Rps

1uhryh dc:phc«lhrh(
tary script, set nlm rue
that defines N organis

>3x10° $
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Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

SAFARI 4


https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Genome Analysis

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Refernteyganame
“chemical format” “text format” “text grgmat”

SAFARI 52



Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s (
directly from environmental N
samples Reads Reference
“text format” Database

SAFARI



Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
—)—

_(—

SAFAR’ https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1 5 55



Revisiting the Puzzle

ww.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

SAFARI >


https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reterence Genome Bias

nature genetics

Letter | Open Access | Published: 19 November 2018

Assembly of a pan-genome from deep
sequencing of 910 humans of African
descent

Rachel M. Sherman &, Juliet Forman, [...] Steven L. Salzberg

Nature Genetics 51, 30-35(2019) | Cite this article

“African pan-genome contains ~10% more DNA
bases than the current human reference genome”

SAFARI Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humanssof
African descent” Nature genetics, 2019.



https://www.nature.com/articles/s41588-018-0273-y

Time to Change the Reference Genome

I Genome Biology

Home About Articles Submission Guidelines

Opinion | Open Access | Published: 09 August 2019
Is it time to change the reference genome?

Sara Ballouz, Alexander Dobin & Jesse A. Gillis

Genome Biology 20, Article number: 159 (2019) | Cite this article

12k Accesses | 11 Citations | 45 Altmetric | Metrics

“Switching to a consensus reference would offer important
advantages over the continued use of the current reference with

few disadvantages”
SAFAR] Ballouz+, "Is it time to change the reference genome?", Genome Biology, 2019 58



https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4

Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

P\ \ r\
Illumina NovaSeq 6000 | ‘

Read Mapping = Others

71%

SAFAR’ Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 59
processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?

SAFARI
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Let’s First Learn
How to Map a Read

SAFARI



Read Mapping in 111 pages!

Analyzing 107 read mappers (1988-2020) in depth

arXiv.org > g-bio > arXiv:2003.00110 search...

Help | Advanced

Quantitative Biology > Genomics

[Submitted on 28 Feb 2020 (v1), last revised 9 Jul 2020 (this version, v3)]

Technology dictates algorithms: Recent developments in read
alignment

Mohammed Alser, Jeremy Rotman, Kodi Taraszka, Huwenbo Shi, Pelin Icer Baykal, Harry Taegyun
Yang, Victor Xue, Sergey Knyazev, Benjamin D. Singer, Brunilda Balliu, David Koslicki, Pavel Skums,
Alex Zelikovsky, Can Alkan, Onur Mutlu, Serghei Mangul

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
arXiv, 2020

GitHub: https://github.com/Mangul-Lab-USC/review_technology_dictates algorithms
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https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Read Mapping: A Brute Force Algorithm

Reference

[ ]
Read

Very Expensivel
O(nm¥kn)

m: read length
k: no. of reads
. reference genome length
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Similar to Searching Yellow Pages!

‘“\\ \X‘

= Step 1: Get the page number from the book’
index using a small portion of the name (e.q., 1st
letter).

H

= Step 2. Retrieve the page(s).

""{\a

’.’
L

\ = Step 3: Match the full name & get the phone
number.

Faam

SAFARI o4

W




Mapping a Read is
Similar to Querying
the Yellow Pages!

SAFARI



Step 1: Indexing the Reference Genome

I-_f__-

reference genome

SAFARI
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Hashing is the most popular
indexing technique for
read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,
arXiv, 2020
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https://arxiv.org/abs/2003.00110

Step 1: Indexing the Reference Genome

\ reference genome
\
‘\ Seed=k-mer
\ .
“ee e . 1] 9 ] 16 | 30

Index the first
seed at location 1

2 7 60

5 12

4 10 18 32

6 | 14
*.

seed location at the
reference genome

o
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Genome Index Properties

The index is built only once for each reference.

Seeds can be overlapping, non-overlapping, spaced,
adjacent, non-adjacent, minimizers, compressed, ...

Tool Version Index Size Ind_e xing
Time
mrFAST 2.2.5 16.5 GB 20.00 min
minimap2 0.12.7 7.2 GB 3.33 min
BWA-MEM 0.7.17 4.7 GB 49.96 min

SAFARI

*Human genome = 3.2 GB

69



Performance of Human Genome Indexing

60 -
50 .
8 * ) 30
540 o
g 30 E‘ZO
= e

[4)]

2 = 10
G 10

0

Hashing BWT-FM Other Suffix
Indexing algorithm

I * 1
a (e
I * 1
—-——e oo
—ssn e
Hashing BWT-FM Other Suffix

Indexing algorithm

Mapper

RMAP
Bowtie
BWA
GSNAP
SMALT
LAST
SNAP
Bowtie2
Subread
HISATZ2
minimap2

Alser+, "Technology dictates algorithms: Recent developments in read alignment”,

arXiv, 2020

SAFARI
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https://arxiv.org/abs/2003.00110

Step 2: Query the Index Using Read Seeds

seeds

. .
- ' -~
L4 -
E L -
- .
. .
o .
- e
A' ‘

read 1: ccTAGIATAIRERCTATACET T

read 2. TATcT}acdiackacT Ak cc

read 3: ceqreThTAEN AcT ARG T

SAFARI 72



Step 2: Query the Index Using Read Seeds

,Se?dS\ ________ /seed location list \
V PP e KRR E
A A
- 2 7 | 60
read 1: ccTAGIATAIRERCTATACET T -
[ e[ 3 [5 12
read 2. TATTcTfacdTAckAcT Ak cc B> < [0]n6]
_J-—» 6 14,5\
read 3: GCC@T seed location at the

reference genome /

X ¢ « X
1 9 |16 | 30

seed from location list from index data structure

read 1 X v x
2 7 60

X 4 7
> 3|5 [ 12|
.- 3

reference genome

SAFARI
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Step 2: Query the Index Using Read Seeds
Seeds seed Iocatlon st )
L .

’’’’’’ 1 16 | 30

We can query the Hash table with
substrings from reads to quickly find a list
of possible mapping locations

seed location at the
reference genome J

reac

read 3: Gccd €

X v « X
> 1 [ 9| 16 ] 30 |
seed from location list from index data structure
read 1 X 7 x
2 7 60
X «
> 3| 5 [ 12|

reference genome

SAFARI 74



Step 3: Read Alignment (Verification)

CGTTAGT

olofolo 000
clof2]2]2 2|2 |2
Clof2]3]53 333 4
T|o|2]3|s 5|5 |s5|5 )6
T o|2]3 s 777777
Alo|3]|3]s 9199|999
Glo|2|4]s o fur{r |||
T|lo|2]46 9 |11 13 {1313 ]13
Alo|2]4]6 9 11|13 14 14|15
T ol2]4]6 9 |11 [13 |14 |16 |16

.bam/.sam file contains
necessary alignment
information (e.g., type,
location, and number of
each edit)

SAFARI
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Step 3: Read Alignment (Verification)

Edit distance is defined as the minimum number of edits

(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organiz.ation
Read ation Read tr-an-slation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-anII-ation

Edit distance = 7

Ref organization
match )
deletion Read tr-anslation

~ insertion Edit distance = 4

mismatch

SAFARI 7



Smith-Waterman remains
the most popular algorithm
since 1988

Hamming distance is

the second most popular technique
since 2008

Alser+, "Technology dictates algorithms: Recent developments in read alignment”, arXiv, 2020
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https://arxiv.org/abs/2003.00110

An Example of Hash Table Based Mappers

= + Guaranteed to find a/ mappings = very sensitive
= + Can tolerate up to eerrors

nature
gCnCtICS https://github.com/BilkentCompGen/mrfast

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'?, Jeffrey M Kidd!, Tomas Marques-Bonet!?, Gozde Aksay', Francesca Antonaccil,

Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Fichler!»?

Alkan+, "Personalized copy number and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.

SAFARI 7



https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Performance of Read Mapping

a
80
2 60
3
o)
L
© 40
E
- 20
&
0 <> —— ‘ —_— T —=—
RMAP Bowtie BWA GSNAP SMALT LAST SNAP Bowtie2 Subread HISATZ2 minimap2
2008 2009 2009 2010 2010 2011 2011 2012 2013 2019 2019
o Mappef

. <>

35
8 s

Q 2
g‘zo
515 _—
E +
10
*
5 ‘ _ .
RMAP Bowtie BWA GSNAP  SMALT LAST SNAP Bowtie2  Subread  HISAT2  minimap?
2008 2009 2009 2010 2010 2011 2011 2012 2013 2019 2019
Mapper

Alser+, "Technology dictates algorithms: Recent developments in read alignment", arXiv, 2020
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https://arxiv.org/abs/2003.00110

The Need for Speed

Did we realize the need for
faster genome analysis?

Mapper
Moore's Law ° RMAP
e Bowtie
60 * BWA
p—, o sl GSNAP
» S0 ° e SMALI
= LAST
ational Human Genome O Q ¢
m:e;earcthlnsﬁtutg _C 40 ® SNAP
e i
genome.gov/sequencingcosts 0) 30 ® e * (o BOWT|92
E et 8, - ® Subread
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 [we 20 ® 9 g o HISAT2
- *® . . ® minimap2
(N } ol ‘ s
o 10 s
’ 2
- — 28 penen—
0
Before 2013 2013 and later

Year of publication
Alser+, "Technology dictates algorithms: Recent developments in read alignment”, arXiv, 2020
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What Makes
Read Mapper Slow?



What Makes Read Mapper Slow?

Key Observation # 1

93%

of the read mapper’'s

SAM

printing
3%

candidate

alignment
locations (CAL)
4%

execution time is spent

in ] :
read alignment Read Alignment

93%

Alser et al, Bioinformatics (2017)
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What Makes Read Mapper Slow? (cont’d)

Key Observation # 2

CCTATAATACG

OOP—B—AB—AODO

98%

Read s
Alignment .+’ of candidate locations

Short Read
T

have high dissimilarity
with a given read.

Reference Genome

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

SAFARI 84



What Makes Read Mapper Slow? (cont’d)

Key Observation # 3

» Quadratic-time dynamic-
programming algorithm WHY?! NJE[TH[E[R[L][A[N[D]S]

Enumerating all possible prefixes

S
W
NETHERLANDS X SWITZERLAND I
™ NETHERLANDS x S !
NETHERLANDS x SW z
NETHERLANDS x SWI E
NETHERLANDS X SWIT R
NETHERLANDS X SWITZ L
NETHERLANDS x SWITZE A
NETHERLANDS x SWITZER N
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA
NETHERLANDS X SWITZERLAN

NETHERLANDS x SWITZERLAND
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What Makes Read Mapper Slow? (cont’d)

Key Observation # 3
» Quadratic-time dynamic-

programming algorithm N[ E[T[H[E[R[L[A[N]D]S
_ _ _ 0|1/2|3|4|5/6|7|8]|9/10[11
Enumerating all possible prefixes sl 1213121516l 7 18 9 010
W(2|/2/23|4|5|6|7/8|9]|10/11
1/3/3|3|3|4(5/6|7|8/|9/10[11
» Data dependencies limit the Tl4/4/4/3/4/5/6 78 91011
computation parallelism 21515/5/4/4)5]6]7]8]9]10}11
_ E|6|(6|(5/5/5/4|5|/6[7[8|910
Processing row (or column) after another rl 7171 6lelelsi@lslel718lo
L|8|8|7|7|7|6|5|4/5/6|7]|8
Al9|9/8|8|8|7|6|5/4/5|6]|7
» Entire matrix is computed N110/9191919181716]5 4] 5
. D|(11/10/10|10(10|/9 |8 |7 |6 | 5| 4§ 5
even though strings can be
dissimilar.
Number of differences is computed only at the backtraking step.
86
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Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?

SAFARI
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Accelerating Read Mapping

Genome Analysis Pipeline 4
Read
Mapping
Genomic Sample Sequencing Machine Reads
@ Indexing @ Pre-Alignment Filtering © sequence Alignment
Reference Genome A% N Read
R - REBRES P ®
—] Q\ Q\ ?\ t:) .-
Kmers ™ 'ﬁ e ] = Dynamic
——oco = qg; N Em Programming
Index k-mers "= — 2N . " (DP) Matrix
k-mer | k-mer ) — \_ 3 I |
content|locations ; — @ i EE
S Locating — e HY BN Outout
3512 | common k-mers — o I. l= P
052 | A (1456 h 2 -
2 sse|~/ | 2 | |
23,90 .19 Reference subsequences extracted _ SAMfile (alignment score, edit
: | at each common k-mer location A distance, type and location of each edlt)l
) ) Accelerating . )
Accelerating Indexing Pre-Alignment Filtering Accelerating Alignment
¢ g-gram filtering )
s - —
the number of seeds ( Pigeonhole principle )
Reducing data movement ( Base counting )
during indexing
( Sparse DP )

Alser+, “Acéelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.
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https://arxiv.org/pdf/2008.00961.pdf

Accelerating Genome
Analysis: A Primer on
an Ongoing Journey

Mohammed Alser Saugata Ghose

ETH Zurich University of lllinois at Urbana-Champaign and
Ziilal Bingol Carnegie Mellon University

Bilkent University Can Alkan

Damla Senol Cali Bilkent University

Carnegie Mellon University Onur Mutlu

Jeremie Ki ETH Zurich, Carnegie Mellon University, and

ETH Zurich and Carnegie Mellon University Bilkent University

Alser+, “"Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE
Micro, August, 2020.
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Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI 20



Ongoing Directions

Seed Filtering Technique:
o Goal: Reducing the number of seed (k-mer) locations.

Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
SAFARI o1



FastHASH

= Goal: Reducing the number of seed (k-mer) locations.

o Heuristic (limits the number of mapping locations for each
seed).

o Supports exact matches only.

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/S1/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

SAFARI )2




Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists
AAAAAAA\A&A\ACEC_JCC_CC_CCC_JU [TTTTTTTTT | read
Valid mapping Invalid mapping Relerence genome

SAFARI )3



Key Observations

Observation 1 (Adjacent k-mers)

o Key insight: Adjacent k-mers in the read should also be
adjacent in the reference genome

o Key idea: 1) sort the location list based on their number of
locations and 2) search for adjacent locations in the k-mers’

location lists

Observation 2 (Cheap k-mers)

o Key insight: Some k-mers are cheaper to verify than others
because they have shorter location lists (they occur less
frequently in the reference genome)

o Key Idea: Read mapper can choose the cheapest k-mers and
verify their locations

SAFARI 74



Cheap K-mer Selection

= occurrence threshold = 500 read
326 338 350 376 388
Cafions1 1470
2 loc. 2 loc.
Nﬂmber of Logatijuns——_
Cheapest 3 k-mers 1K loc. 2K loc. 1K loc.
Expensive 3 k-mers
Previous work needs FastHASH verifies only:

to verify:
» 8 locations

3004 locations
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FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
billions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: To reduce the cost of unnecessary verification
o Select Cheap and Adjacent k-mers.

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings

SAFARI %6



More on FastHASH

= Download source code and try for yourself
a Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513

http://www.biomedcentral.com/1471-2164/14/51/513
BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu"", Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013

SAFARI o7


http://mrfast.sourceforge.net/

Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:
o Goal: Reducing the number of /nvalid mappings (>E).

Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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Pre-alignment Filtering Technique

Read Alignment is expensive

Our goal is to reduce the need for dynamic
programming algorithms

SAFARI
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Ideal Filtering Algorithm

Step 3

Read
Alignment

1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.
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GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser &, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu ¥, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

SAFARI
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

GateKeeper

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2 £ shifts.

Key idea:
o Compute “Shifted Hamming Distance”: AND of 2£+1 Hamming
vectors of two strings, to identify invalid mappings
Uses bit-parallel operations that nicely map to FPGA architectures

Key result:

o GateKeeper is 90x-130x faster than SHD (Xin et al., 2015) and
the Adjacency Filter (Xin et al., 2013), with only a 7% false
positive rate

o The addition of GateKeeper to the mrFAST mapper (Alkan et
al., 2009) results in 10x end-to-end speedup in read mapping

SAFARI 10z



Hamming Distance (D€

D)

3 matches

5 mismatches

Edit = 1 Deletion

A(IN

Bl|U|IL

I
\L 2
Y4

-
|

S

[
X

‘-- ——

[
NN

To cancel the effect of a

deletion, we need to shift

in the right direction

%

SAFARI
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Shifted Hamming Distance (Xin+ 2015)

| [|S|IT[A[IN[/B||U|]|L
XOR - ! E i i i E E Edit = 1 Deletion
\ 4 \ 4 [
g :
O(|O}JO[1{J1]/1)1}) = XOR
AND<
1(/1({/1]]0[/0}/0|/0

C°““t{ooo1oooo

7 matches

1 mismatches

SAFARI
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GateKeeper Walkthrough

Generate 2E+1
masks

Amend random zeros: AND all masks,
101 > 111 & 1001 »> 1111 ACCEPT iff number of ‘1" < Threshold

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :00000000001/0000000000001111111011110001110110101101111111110001000 11011010010101
l1-Deletion Mask :11111111111001111101111
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110

1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000

2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001

3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011

11101101001010
10111011101111
11101110111110
11000111101100
11010111001000

-—-- Masks after amendment ---

135 Our goal to track the diagonally consecutive matches in the
2-1: neighborhood map.

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : | ILEEEEIIT LEEEEEREREEE FPEEEEEEE PP EEEEEE P EEE PR PR s PR

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
CTATAATACG CTATAATACG
4
Al A jeas
C |- C 0
T T 0
A A 0
T T 0
A A 04 0
T T 0
A A 0
C C 0
G G :

Our goal to track the diagonally consecutive matches in the
neighborhood map.
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Alignment Matrix vs. Neighborhood Map

Needleman-Wunsch Neighborhood Map
TATAATACG TATAATACG
4
A A e
‘ 0
T T 0
A A 0
T T 0
A A 04 0

Independent vectors can be processed in parallel using
hardware technologies

107
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Our Solution: GateKeeper

st

Alignment WY
Filter ke o - 74 FPGA-based
Alignment Filter.

Low Speed & High Accuracy
Medium Speed, Medium Accurac
High Speed, Low Accuracy

x103

mappings
- oo

x1012

ATATATACG ]
3ACGGGGAGTA A

DOPAPAP-HOD>

E High throughput DNA Read Pre-Alignment Filtering Read Alignment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

| « (2E)*(ReadLength) 2-AND
operations.

* (ReadlLength/4) 5-input LUT.

log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NERS 101 > 111 & 1001 »> 1111

 E right-shift registers (length=ReadLength)
« E left-shift registers (length=ReadLength)
« (2E+1) * (ReadLength) 2-XOR operations.

~ ™

Hammmg mask

I 5-input

D LI{T LI : i

| l l
IC0111100011.10001111 1111110001&10

Hamming mask after amending

E » (2E+1)*(ReadlLength) 5-input LUT.
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GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

Preprocessing Host (CPU) Alignment Filtering (FPGA) EAIignment Verification

(CPU/FPGA)

ornnrnnrnnnns s , ..................... GateKeeper ,,

Read Controller

read#1 read#N

ACTATAATACG

read pairs

(MIFAST 1q #
output) b

Encoder EI¥ oo1

DOP>AP>PAP>PHA0>0

’ K Input stream :
. : of binary pairs GateKeeper EEEEE GateKeeper
—ll == B Processing Processing
fir b e eyt o fir b e eyt o E Core #1 » n n n Core #N
- E Accepted Alignments

input reads  reference '

(fastq) genome (.fasta) + (correct & false positives)

*Imap#ﬂj [ Tmap #N]|

PCie

GateKeeper
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper
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GateKeeper Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing
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More on SHD (SIMD Implementation)

= Download and test for yourself
= https://qgithub.com/CMU-SAFARI/Shifted-Hamming-Distance

Bioinformatics, 31(10), 2015, 1553-1560
doi: 10.1093/bioinformatics/btu856

Original Paper OXFORD

Advance Access Publication Date: 10 January 2015

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford?, Can Alkan** and Onur Mutlu®*
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More on GateKeeper

= Download and test for yourself
https://qgithub.com/BilkentCompGen/GateKeeper

Bioinformatics ISCB?

INTERNATIONAL SOCIETY FOR
COMPUTATIONAL BIOLOGY

Article Navigation

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping @

Mohammed Alser ¢, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu %, Can Alkan

Bioinformatics, Volume 33, Issue 21, 01 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping”, Bioinformatics, 2017.
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Can we do better? Scalability?
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Shouji (& 7-)

Bioinformatics, 2019, 1-9

doi: 10.1093/bioinformatics/btz234

Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouiji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>*
and Can Alkan3*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, *Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and *Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Shouyt

Key observation:

o Correct alignment always includes long identical subsequences.

o Processing the entire mapping at once is ineffective for hardware
design.

Key idea:

o Use overlapping sliding window approach to quickly and
accurately find all long segments of consecutive zeros.

Key result:

o Shouji on FPGA is up to three orders of magnitude faster than its
CPU implementation.

o Shouji accelerates best-performing CPU read aligner Edlib
(Bioinformatics 2017) by up to 18.8x using 16 filtering units that
work in parallel.

o Shouji is 2.4x to 467x more accurate than GateKeeper
SAF l&%i?informatics 2017)and SHD (Bioinformatics 2015).
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Building the
Neighborhood Map

Finding all common
subsequences
(diagonal segments of
consecutive zeros)
shared between two
given sequences.
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Storing it @ Shouji Bit-vector
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ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,

https://doi.org/10.1093/bioinformatics/btz234
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Shouji Walkthrough

j 1 2 3 4 6 7 8 9 10 11 12
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ACCEPT iff number of ‘1’ < Threshold

Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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Sliding Window Size

The reason behind the selection of the window size is due
to the minimal possible length of the identical subsequence
that is a single match (e.g., such as 101").
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Hardware Implementation
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Motre on Shoujt

Download and test for yourself
https://qgithub.com/CMU-SAFARI/ShOUJi ,uiemeties 216

doi: 10.1093/bioinformatics/btz234
Advance Access Publication Date: 28 March 2019
Original Paper

Sequence alignment

Shouji: a fast and efficient pre-alignment filter
for sequence alignment

Mohammed Alser'?>*, Hasan Hassan', Akash Kumar?, Onur Mutlu'>*
and Can Alkan®*

'Computer Science Department, ETH Ziirich, Ziirich 8092, Switzerland, “Chair for Processor Design, Center For
Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universitdt Dresden, 01062
Dresden, Germany and 3Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey

*To whom correspondence should be addressed.
Associate Editor: Inanc Birol
Received on September 13, 2018; revised on February 27, 2019; editorial decision on March 7, 2019; accepted on March 27, 2019

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,

Bioinformatics 2019,
https://doi.org/10.1093/bioinformatics/btz234
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SneakySnake

SneakySnake: A Fast and Accurate Universal Genome
Pre-Alignment Filter for CPUs, GPUs, and FPGAs

Mohammed Alser®?, Taha Shahroodi®, Juan Gémez-Luna®, Can Alkan?’, and
Onur Mutlu®?3

! Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland
“Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
% Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).
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SneakySnake

Key observation:

a Correct alignment is a sequence of non-overlapping long matches.

Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip.

Vs

VLSI chip layout
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SneakySnake

Key observation:

a Correct alignment is a sequence of non-overlapping long matches.

Key idea:

o Approximate edit distance calculation is similar to Single Net
Routing problem in VLSI chip.

Key result:

o SneakySnake is up to four orders of magnitude more accurate
than Shouji (Bioinformatics’'19) and GateKeeper (Bioinformatics’17).

o SneakySnake accelerates the state-of-the-art CPU-based sequence
aligners, Edlib (Bioinformatics’17) and Parasail (BMC
Bioinformatics'16), by up to 37.6x and 43.9x (>12x on average),
respectively, without requiring hardware acceleration, and by up
to 413x and 689x (>400x on average), respectively, using
hardware acceleration.
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival
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SneakySnake Walkthrough

Finding the Optimal Routing Path

Building Neighborhood Map

I*" Upper Diagc

Main Diagon

ENTRANCE

I’ Lower Diagq

SAFARI 135



SneakySnake Walkthrough

Building Neighborhood Map

Finding the Optimal Routing Path
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SneakySnake Walkthrough

Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival
This is what you actually need to build - 3
and it can be done on-the-fly!

checkpoint 1 checkpoint 2 checkpoint 3

Ll
O
=
=
—
=
L

SAFARI 157



FPGA Resource Analysis

FPGA resource usage for a single filtering unit of GateKeeper,
Shouji, and Snake-on-Chip for a sequence length of 100 and
under different edit distance thresholds (E).

E (bp) Slice LUT Slice Register | No. of Filtering Units

GateKeeoer 2 0.39% 0.01% 16
P 5 0.71% 0.01% 16

Shouii 2 0.69% 0.08% 16
) 5 1.72% 0.16% 16

. 2 0.68% 0.16% 16
Snake-on-Chip 5 1.42% 0.34% 16
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LOIlg Sequence Fﬂtering (SneakySnake vs Parasail)

10K bp dataset 100K bp dataset

i SneakySnake =#=Parasail i Sneaky Snake =e=Parasail
==SneakySnake+Parasail =@=Accept Rate of SneakySnake =x=Sneaky Snake+Parasail =@=Accept Rate of SneakySnake
10000 - - 100% 1000000 = - 100%
i + 90% e . x + 90%
1000 +
: + 80% o £ + 80%
o i
i © 10000 -+
—_ 4 70 3 = E + 70%
9 100 + 1 i °
K3 : x » + 60%
g g T% & 91000 ¢ .
E 10 - +50% 5 F ; T 50%
2 o e 100
5 L% § % L 1 40%
(%] o E
] 1 4 @ r
3 130 § 5 10+ T 30%
o -
Qo
+ 20% < [ + 20%
0.1 i 14
0w : - 1+ 10%
0.1 - 0%
0.01 L 0%
o 370 10, S07, 201, 0p, 20c, 20>, 00, 1in. 12n. 2
1 ¢ 468 B0l 01 10 100 10J5 1sh aoh 0 o 019 010 20 003,057,072 "%1, 200, 2000 <%0,
Edit Distance Threshold Edit Distance Threshold

The execution time of SneakySnake, Parasail, and SneakySnake integrated with
Parasail using long reads, (a) Set_5 and (b) Set_6, and 40 CPU threads. The y-axis
is on a logarithmic scale. For each edit distance threshold value, we provide the rate
of accepted pairs (out of 100,000 pairs for Set_5 and out of 74,687 pairs for Set_6)
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LOIlg Sequence Fﬂtering (SneakySnake vs KSW2)

10K bp dataset
B SneakySnake == KSW2
=»=SneakySnake+KSW2 -m=Accept Rate of SneakySnake

10000

1000 +

100 #

Execution Time (sec)

10 +

501 701 1100 1200 1225 1250 2000
Edit Distance Threshold

- 100%
+ 90%
+ 80%
+ 70%
+ 60%
+ 50%
+ 40%
+ 30%
+ 20%
+ 10%
- 0%

Accept Rate of SneakySnake

1000000

100000

10000

1000

Execution Time (sec)

100K bp dataset
B SneakySnake e KSW2
=»=SneakySnake+KSW2

Edit Distance Threshold

=@=Accept Rate of SneakySnake

The execution time of SneakySnake, KSW2, and SneakySnake integrated with KSW2
using long reads, (a) Set_5 and (b) Set_6, and a single CPU thread. The y-axis is on
a logarithmic scale. For each edit distance threshold value, we provide the rate of
accepted pairs (out of 100,000 pairs for Set_5 and out of 74,687 pairs for Set_6) by
SneakySnake that are passed to KSW2.

SAFARI
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SneakySnake

SneakySnake: A Fast and Accurate Universal Genome
Pre-Alignment Filter for CPUs, GPUs, and FPGAs

Mohammed Alser®?, Taha Shahroodi®, Juan Gémez-Luna®, Can Alkan?, and
Onur Mutlu 13

! Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland

“Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA
Y Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey

Download and test for CPU, GPU, and FPGA:

Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).

SAFARI 14
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Read Mapping & Filtering

Problem: Heavily bottlenecked by Data Movement

Shouji performance limited by DRAM bandwidth [Alser+,
Bioinformatics 2019]

GateKeeper performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

Ditto for SHD [Xin+, Bioinformatics 2015]

Solution: Processing-in-memory can alleviate the bottleneck
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Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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Energy Cost of Data Movement

key observation: 62.7% of the
total system energy is spent on data movement

Data Movement

Compute
Unit

Processing-in-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget

SAFARI Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data 144
Movement Bottlenecks", ASPLOS 2018.



https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf

Memory as an Accelerator

Memory Controller

mini-CPU
E GPU GPU :
CPU CPU delits : | (throughput) (throughput) | :
core core : core core :
video
core
] GPU GPU |
CPU CPU _ . : | (throughput) | |(throughput)
core core Imc?)gr:eng H core core
LLC
||

Memory

Specialized
compute-capability
in memory

Memory similar to a “conventiona

Memory Bus

III

accelerator

SAFARI onur Mutlu, Computer Architecture Lecture 7, Fall 2019, ETH Zurich



https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture7-in-memory-computation-ii-afterlecture.pdf

Processing in Memory Approaches

= 1. Minimally changing memory chips

= 2. Exploiting 3D-stacked memory

SAFARI a0



In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

SAFARI onur Mutlu, Computer Architecture Lecture 7, Fall 2019, ETH Zurich 147
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Hybrid Memory Cube (HMC)

Through-Silicon Vias
~ (TSV)

Abstraction
Protocol

I
-

Processor

High- Speed Links

Notes: Tb/s = Terabits / second
HMC height is exaggerated

SAFARI https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.3- 149
memory-FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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More on In-DRAM Bitwise Operations

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India ?NVIDIA Research Z3Intel *ETH Ziirich °Carnegie Mellon University
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More on In-DRAM Bulk Bitwise Execution

= Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zirich

visesha@microsoft.com onur .mutlu@inf.ethz.ch
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RowClone & Bitwise Ops 1n Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/micro19-gao.pdf 153
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Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li'; Cong Xu?, Qiaosha Zou'*, Jishen Zhao?, Yu Lu*, and Yuan Xie*
University of California, Santa Barbara', Hewlett Packard Labs?

University of California, Santa Cruz?, Qualcomm Inc.%, Huawei Technologies Inc.’
{shuangchenli, yuanxie}ece.ucsb.edu’

SAFARI https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf 154
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More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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GRIM-Filter

Key observation: FPGA and GPU accelerators are Heavily
bottlenecked by Data Movement.

Key idea: exploiting the high memory bandwidth and the logic layer of
3D-stacked memory to perform highly-parallel filtering in the DRAM
chip itself.

Key results:
o We propose an algorithm called GRIM-Filter

o GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on
average) faster than FastHASH filter (BMC Genomics’13) across real
data sets.

o GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted
pairs than FastHASH filter (BMC Genomics'13) across real data sets.
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GRIM-Filter in 3D-Stacked DRAM

Row 0: AAAAA
Row 1: AAAAC
Row 2: AAAAG

Row R—1: TTTTT

o)
Q
>
~

Bitvector for bin 2
Bitvector for bin t—1

Bitvector for bin 0
Bitvector for bin 1

-] —

s Vault
) i
Logic Layer N

= Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

= The layout of bitvectors in a bank enables filtering many

bins in parallel

SAFARI
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GRIM-Filter: Bitvectors

Reference
Genome

C AAAAA
AAAAC
AAAAG
AAAAT

CCCCT
tokens < '

GCATG

TTGCA

TTTTT

bin1
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA eee

by

OO -

— AAAAC
exists in
bin 1

bin3

o Represent each bin with a bitvector
that holds the occurrence of all
permutations of a small string (token)
in the bin

a To account for matches that straddle
bins, we employ overlapping bins

= A read will now always completely fall
within a single bin

SAFARI
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GRIM-Filter: Bitvectors

bin bin
Reference : 3
Genome "AAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA -
bin,
bl b2
CAAAAA | 1 AAAAA | O
AAAAC 1 AAAAC 1
AAAAG 0 AAAAG 0
AAAAT 0 ) .
. . AGAAA 1
CCCCT | 1 ) .
. . GAAAA 1
tokens < _ _ _ _ e o o
GACAG 1
GCATG | 1 GCATG 1
TTGCA 1
WTTTTT 0 TTTTT 0

Storing all bitvectors
requires 4™ x t bits
in memory,

where

t = number of bins
&

n = token length.

For bin size ~200,
and n =5,
memory footprint
~3.8 GB

SAFARI
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA ... CGAG g Read bitvector forbin_num(x)

o Get tokens ¢

TN Tt > 1
e Rl > 0
~~__ ~~. 1 Sum Compare
e TN 5%
e S.o S~<_ Mo -+ = Threshold?
" ~ e 1
tokens\ * TN 1 Nf/ NES
N .
T 1 Discard Send to
0 Read Mapper
o Match tokens to bitvector for Sequence
0 Alignment
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Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence +++( 020128 )..u( 020131 )i 414415 )aue
GAACTTGCGAG =+« GTATT »
3 (9 GRIM-Filter: .
- Seed Location Checker
(1) L KEEP 1~ KEEP
GRIM_FiIter: 9 lll(.)0010 Olll01 O10lll )
Filter Bitmask Generator DfSCARDl
. s y X v v
++10001010 4420110104 eReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020131 @ 4] 4415
@ Read Mapper: Edit-Distance Calculation
Sequence Alignment

SAFARI OUTPUT: Correct Mappings



Key Properties ot GRIM-Filter

1. Simple Operations:

o To check a given bin, find the sum of all bits corresponding
to each token in the read

o Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM
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GRIM-Filter in 3D-Stacked DRAM

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask
Bank - DRAM Layers ( B_—gﬂ
Q| |EH®
/L/ e |2hzE
s G g‘g g_ -
/ e 7{/ P TSVs - S 5HS
: [ 8:) % OH <+E
T - Vault S 2
pd P ST
Loéc Layer ~a—_. Row Data Register

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTS, 7-bit counters,
and comparators in logic layer

SAFARI  Details are in [Kim+, BMC Genomics 2018] Lod



More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim1®", Damla Senol Cali!, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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GenCache

GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment

Anirban Nag C. N. Ramachandra Rajeev Balasubramonian
anirban@cs.utah.edu ramgowda@cs.utah.edu rajeev@cs.utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah
Ryan Stutsman Edouard Giacomin Hari Kambalasubramanyam
stutsman@cs.utah.edu edouard.giacomin@utah.edu hari.kambalasubramanyam@utah.edu
University of Utah University of Utah University of Utah
Salt Lake City, Utah Salt Lake City, Utah Salt Lake City, Utah

Pierre-Emmanuel Gaillardon
pierre-
emmanuel.gaillardon@utah.edu
University of Utah
Salt Lake City, Utah

Nag, Anirban, et al. "GenCache: Leveraqging In-Cache Operators for Efficient
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.
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GenCache

Key observation: State-of-the-art alignment accelerators are still
bottlenecked by memory.

Key ideas:

o Performing in-cache alignment + pre-alignment filtering by enabling
processing-in-cache using previous proposal, ComputeCache
(HPCA'17).

o Using different Pre-alignment filters depending on the selected edit
distance threshold.

Results:

o GenCache on CPU is 1.36x faster than GenAx (ISCA 2018).
GenCache in cache is 5.26x faster than GenAx.

o GenCache chip has 16.4% higher area, 34.7% higher peak power,
and 15% higher average power than GenAx.
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GenCache’s Four Phases

Phase 1 Phase 2 Phase 3 Phase 4
0 ERRORS 1 ERROR 2-5 ERRORS 6+ ERRORS
Seed Solver: Seed Solver: Seed Solver: Seed Solver:
MIN SEARCH MIN SEARCH HOBBES SMEM
Operations: ) Operations: _). Operations: __) Operations:
HD SHD SHD C MYERS B
MYERS B SWA
48 MB REF 48 MB REF SWA
20 MB BLOOM 20 MB BLOOM 40 MB REF 24 MB REF
4 MB INDEX 8 MB INDEX 32 MB INDEX 48 MB INDEX

Figure 7: Four phases in the new alignment algorithm that

exploits in-cache operators.

SAFARI
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Throughput Results

Throughput (KReads/s)

5000

0000 I
5000

'm m B B

GenM e MB)GC (326‘:'?2\* U’“asmgclc lP“aég\ ?%\Oom filter)

Figure 9: Throughput improvement of GenCache (Hardware
& Software).
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Ongoing Directions

Seed Filtering Technique:

o Goal: Reducing the number of seed (k-mer) locations.
Heuristic (limits the number of mapping locations for each seed).
Supports exact matches only.

Pre-alignment Filtering Technique:

o Goal: Reducing the number of /nvalid mappings (>E).
Supports both exact and inexact matches.
Provides some falsely-accepted mappings.

Read Alignment Acceleration:
o Goal: Performing read alignment at scale.

Limits the numeric range of each cell in the DP table and hence
supports limited scoring function.

May not support backtracking step due to random memory accesses.
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Darwin

Session 3A: Programmable Devices and Co-processors ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Darwin: A Genomics Co-processor Provides up to

15,000x acceleration on long read assembly

Yatish Turakhia Gill Bejerano William J. Dally
Stanford University Stanford University Stanford University

yatisht@stanford.edu bejerano@stanford.edu NVIDIA Research
dally@stanford.edu

» Seed filter: D-Soft
» Read alignment accelerator: GACT <« We will cover this

Yatish+ "Darwin: A genomics co-processor provides up to 15,000x acceleration on
long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf
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Darwin: GACT Hardware Acceleration

Key observation:

o Data Dependencies limit accelerating the dynamic programming table
calculation.

Key idea:

o Divide the dynamic programming table into overlapping fi/es.

o Calculate each tile independently and in a systolic array fashion.
o Calculate many alignments concurrently.

Key result:

a It is simulated for TSMC 40nm CMOS process.
o It provides a speedup of up to 380x compared to GACT software.

o Itis three orders of magnitude faster than Edlib (best-performing CPU
read aligner).

Weaknesses:
o It is not clear if tiling maintains the same accuracy as the original
dynamic programming algorithm.
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Specialized Accelerator for Read Aligner

= Accelerating the read alignment algorithm as-is using specialized
hardware (40 nm CMOS) provides a limited speedup (37x).

Reference
*TG[G[CIGJAJC]T[T[T]
:; e L L s I(lvj) — max{H(i,j—l)—o, I(l,]—l)—E}
Ol 2l 2 | 1| 2¢4=1 | 0| 0| 0| 0 . ) ) ) )
Z. G| o 2 M4 | 3l af2ut—1a] 0 | 0] © D(la.]) - max{H(l_la.’)_Oa D(l_lvj)—e}
O | T o 1| 3 3 2 [Fon] 13 ]2 [2 (
8 C | ox] ox] 2 [Pselteet—2 Mo [Y3 | 262 * ?(l )
(1;- 0 % % [ PN P —\-4 il o H(l,j) — max< D(’l]])
o [ 1] 1] 3| 6x 6xf 5u] 7] 645 )
o [ o] o] 2| dlt sl s 7] ogfe H(i—1,j—1)+W(ri,q;
T|o|[o]o % %K s M4 9 [M1 : ( / ) ( l qj)

Dynamic programming for gene sequence alignment (Smith-Waterman)

CPU-based read aligner VS. Hardware accelerated read aligner
On 14nm CPU On 40nm Special Unit

35 ALU ops, 15 load/store 1 cycle (37x speedup)

37 cycles 3.1pJ (26,000x efficiency)

81nJ 300fJ for logic (remainder is memory)

SAFAR]/ Dally, "Hardware Enabled Biology", AACBB 2019, https://aachb-workshop.github.io 173
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GACT Alignment

= Solution: Divide the table into overlapping tiles and compute them all
independently using systolic arrays.

= Store the trace of each cell in an SRAM for traceback.

Reference
A|G|G|T|C|G|G|T|A
A
|A
\ f Block 1
. -
e
) X
S5 (A
N IZ= 1 O s
T
A v
\ T $Block 3
FIFO
HEERER
T C

PE 2 HAPEs
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GACT Hardware vs. Software Speedup

W Filtration ™ Alignment

Graphmap (software)
Time/read (ms) Replace by D-SOFT and GACT

0.1 | 10 100 1000 10000 100000 (software)

| | | | | ‘ 3. GACT hardware-acceleration

N —

2.1X slowdown

I

380X speedup

FIFO
LR

Traceback Logic
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GACT Hardware vs. Edlib

" GACT (software) =Edlib GACT (Darwin)

1.0E+07 4297K e
m 1.0E+06 5555] 401K
1 OE+05 3148X
T 1.0E+04

10E+03 57X B
1.0E+02 B
— 15X
e
1.0E+00 - - - . . . .
6 7 8 9 10

Sequence Length (Kbp)

5177X

gnments/s

Figure 10: Throughput (alignments/second) comparison for
different sequence lengths between a software implementa-
tion of GACT, Edlib library and the hardware-acceleration
of GACT in Darwin.
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More on Darwin

https://github.com/gsneha26/Darwin-WGA

Session 3A: Programmable Devices and Co-processors ASPLOS’18, March 24-28, 2018, Williamsburg, VA, USA

Darwin: A Genomics Co-processor Provides up to

15,000 acceleration on long read assembly

Yatish Turakhia Gill Bejerano William J. Dally
Stanford University Stanford University Stanford University

yatisht@stanford.edu bejerano@stanford.edu NVIDIA Research
dally@stanford.edu

Yatish+ "Darwin: A genomics co-processor provides up to 15,000 x
acceleration on long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf
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Disclaimer on Darwin

Darwin is NOT developed in SAFARI group, but we
developed GenASM that is published in MICRO 2020.

GenASM = new read alignment algorithm + PIM specialized
accelerator.

GenASM provides 6.6x better throughput per unit area and
10.5x better throughput per unit power when compared
with GACT of Darwin.
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GenASM

Damla will present GenASM during
tomorrow lecture 16 October 2020!

arXiv.org > c¢s > arXiv:2009.07692 Search...

Help | Advanced

Computer Science > Hardware Architecture
[Submitted on 16 Sep 2020]

GenASM: A High-Performance, Low-Power Approximate
String Matching Acceleration Framework for Genome
Sequence Analysis

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingél, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali
Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata
Ghose, Onur Mutlu

Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis", MICRO 2020
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Conclusion on Ongoing Directions

Read alignment can be substantially accelerated using
computationally inexpensive and accurate pre-alignment
filtering algorithms designed for specialized hardware.

All the three directions are used by mappers today, but
filtering has replaced alignment as the bottleneck.

Pre-alignment filtering does not sacrifice any of the aligner
capabilities, as it does not modify or replace the alignment

step.
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What Else can be Done?
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What if we got a new version

of the reference genome?
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Airlift

Key observation: Reference genomes are updated frequently.
Repeating read mapping is a computationally expensive workload.

Key idea: Update the mapping results of only affected reads
depending on how a region in the old reference relates to another
region in the new reference.

Key results:

a reduces number of reads that needs to be re-mapped to new
reference by up to 99%

o reduces overall runtime to re-map reads by 6.94x, 208x, and
16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions

Constant Region Updated Region
Retired Region New Region
Old Reference Lo
/ / / //
/ // /
/ // / //

New Reference o

Fig. 2. Reference Genome Regions.
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More Details on AirLift

arXiv.org > g-bio > arXiv:1912.08735 Search...

Help | Advang

Quantitative Biology > Genomics
[Submitted on 18 Dec 2019]

AirLift: A Fast and Comprehensive Technique for
Translating Alignments between Reference Genomes

Jeremie S. Kim, Can Firtina, Damla Senol Cali, Mohammed Alser, Nastaran Hajinazar,
Can Alkan, Onur Mutlu

GitHub: https://github.com/CMU-SAFARI/AirLift

Kim+, "AirLift: A Fast and Comprehensive Technique for Translating Alignments
between Reference Genomes", arXiv, 2020
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Agenda for Today

s What is Genome Analysis?
s What is Intelligent Genome Analysis?

= How we Analyze Genome?
= What Makes Read Mapper Slow?

= Algorithmic & Hardware Acceleration
o Seed Filtering Technique
a Pre-alignment Filtering Technique
o Read Alignment Acceleration

= Where is Read Mapping Going Next?
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Did we Achieve Our Goal?

Fast genome analysis in mere seconds using limited
computational resources (i.e., personal computer or small
hardware).

TOMORROWLAND
Ny

A

)
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Open Questions

How and where to enable
fast, accurate, cheap,

privacy-preserving, and exabyte scale

analysis of genomic data?
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Pushing Towards New Architectures

Microprocessor Main Memory Storage (SSD/HDD)

Single memory request consumes
>160x-800x more energy compared to

performing a complex add operation

Sequencing
Machine
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Processing Genomic Data Where it Makes Sense

Modern systems

;
= .
: ’l ? ‘t‘

h {H”\VH|‘fl':HF;HFMMM.MHEIMEM!ﬂ;‘"ﬁlll!hlélllllu‘l iﬂl“ﬂlﬂl;’ L] ,'.nl \u-‘uw L\n S e q u e n Ci n g
<" Hybrid Main Memory Machine

Heterogeneous

Processors and
Accelerators

Persistent Memory/Storage
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Most speedup comes from parallelism enabled

by novel architectures and algorithms
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Cerebras’s Water Scale Engine (2019)

The largest ML
accelerator chip

k]
o u[;' I

400,000 cores

]

NVIDIA TITAN V

VDI
T TAIWAN 1723A1

PFBY62.M00 87
OVI00-8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors

46,225 mm?2 815 mm?2
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

LPMEM UPMERA LIPIAE M UPMERA UPMEM LIPMENA UPMEM UPMEM
I PN Pin PiM I PIN PN BiM
chip dhip chip chip chip chip ahip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https: upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/ 197
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TESLA Full Selt-Driving Computer (2019)

= ML accelerator: 260 mm?, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.
htt s://youtu.be/UcpO0TTmvgOE?t=4236

AT

Iih..----- _ﬂ
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Where is Read Mapping Going Next?

Will 100% accurate genome-long
reads alleviate/eliminate the need for
read mapping?

Think about metagenomics, pan-genomics, ...
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Lecture Conclusion

System design for bioinformatics is a critical problem
o It has large scientific, medical, societal, personal implications

This lecture is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We cover various recent ideas to accelerate read mapping
a A journey since September 2006
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Recommended Readings

= Jones, Neil C. and Pavel Pevzner. “An introduction to
bioinformatics algorithms,” MIT press, 2004.

= Makinen, Veli, Djamal Belazzougui, Fabio Cunial, and
Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.

Veli Makinen, Djamal Belazzougui,

AN INTRODUCTION TO Fabio Cunial and Alexandru |. Tomescu
BIOINFORMATICS ALGORITHMS
GENOME-SCALE
ALGORITHM

DESIGN

BIOLOGICAL SEQUENCE ANALYSIS IN THE
ERA OF HIGH-THROUGHPUT SEQUENCING
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Work With Us

If you are already a student at ETH and are interested in
doing research with SAFARI research group on similar

topics, 1alk to me:

o ALSERM @ safari . ethz . ch
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Openings (@ SAFARI

We are hiring enthusiastic and motivated students and
researchers at all levels.

10in us now: Sa@fari.ethz.ch/apply

Elh.
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