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Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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Agenda for Today
n This lecture is NOT about how to analyze biological data 

using available tools.

3http://biocomicals.blogspot.com/2011/05/thats-what-bioinformaticians-do.html
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What is Data Analysis?

“The purpose of computing is [to gain] 

insight, not numbers” 

5

Richard Hamming



What is Genome Analysis?

6https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 
https://www.nature.com/subjects/genomic-analysis



What is Genome Analysis?

7https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 
https://www.nature.com/subjects/genomic-analysis



DNA Testing
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DNA Testing
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Human Chromosomes (23 Pairs)
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Human Chromosomes (23 Pairs)
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Finding SNPs Associated with Complex Trait

Eleazar Eskin: Discovering the Causal Variants Involved in GWAS Studies, CGSI 2018, UCLA 

Individual #1
Individual #2
Individual #3
Individual #4
Individual #5
Individual #6
Individual #7
Individual #8
Individual #9

Individual #10
Individual #11
Individual #12
Individual #13
Individual #14
Individual #15
Individual #16
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SNP: single nucleotide polymorphism

computationalgenomics.bioinformatics.ucla.edu/portfolio/eleazar-eskin-discovering-the-causal-variants-involved-in-gwas-studies


Genome-Wide Association Study (GWAS)
n Detecting genetic variants associated with phenotypes 

using two groups of people.

13
Manhattan plot

variant with higher frequency in cases than controls

https://onlinelearning.hms.harvard.edu/hmx/courses/genetic-testing/ 



Similar Association Studies

14
Wainberg+, "Opportunities and challenges for transcriptome-wide 
association studies”, Nature genetics, 2019.

https://www.nature.com/articles/s41588-019-0385-z


SNPs and Personalized Medicine 

15https://opensnp.org/snps/rs12979860



Personalized Medicine in UK

16Farnaes+, “Rapid whole-genome sequencing decreases infant morbidity and 
cost of hospitalization”, NPJ Genom Med. 2018

“From 2019, all seriously ill 
children in UK will be offered 
whole genome sequencing as 
part of their care”

reduced inpatient cost by 
$9.9K-$327K

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884823/


Mirror Phenotypes of 593 Kb CNVs

17

AUTISM
Weiss, N Eng J Med 2008
Deletion of 593 kb

OBESITY
Walters, Nature 2010
Deletion of 593 kb

SCHIZOPHRENIA
McCarthy, Nat Genet 2009
Duplication of 593 kb

UNDERWEIGHT
Jacquemont, Nature 2011
Duplication of 593 kb

Deletion in the short arm 
of chromosome 16 (16p11.2)

Duplication in the short arm 
of chromosome 16 (16p11.2)

CNV: copy number variation



Recommended Reading

18
Ho+, "Structural variation in the sequencing era", Nature Reviews Genetics, 2020

https://www.nature.com/articles/s41576-019-0180-9
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Fast Genome Analysis?
n Fast genome analysis in mere seconds using limited 

computational resources (i.e., personal computer or small 
hardware).

20

1997 2015     



Intelligent Architecture?

21
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Intelligent Architecture?

22
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine

https://nanoporetech.com/products/smidgion

https://nanoporetech.com/products/smidgion


Privacy-Preserving Genome Analysis?

23

Alser+, "Can you really anonymize the donors of genomic data in today’s digital 
world?" 10th International Workshop on Data Privacy Management (DPM), 2015.

https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16


Can you Really Anonymize the Donors?

24

Alser+, "Can you really anonymize the donors of genomic data in today’s 
digital world?" 10th International Workshop on Data Privacy Management 
(DPM), 2015.

https://link.springer.com/chapter/10.1007/978-3-319-29883-2_16


Rapid Surveillance of Disease Outbreaks?

25
Quick+, “Real-time, portable genome sequencing for Ebola surveillance”, Nature, 2016

https://www.nature.com/articles/nature16996


Scalable SARS-CoV-2 Testing

26

Bloom+, "Swab-Seq: A high-throughput platform for massively scaled up SARS-
CoV-2 testing", medRxiv, 2020

https://www.medrxiv.org/content/10.1101/2020.08.04.20167874v2


Population-Scale Microbiome Profiling

27https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/

https://blog.wego.com/7-crowded-places-and-events-that-you-will-love/


City-Scale Microbiome Profiling

28

Afshinnekoo+, "Geospatial Resolution of Human and 
Bacterial Diversity with City-Scale Metagenomics", Cell 
Systems, 2015

https://www.cell.com/cell-systems/pdfExtended/S2405-4712(15)00002-2


Plague in New York Subway System?

29



Plague in New York Subway System?

30

The findings of Yersinia Pestis in the subway received wide coverage in the lay 
press, causing some alarm among New York residents

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-
the-subway-system-dont-worry-about-it.html

https://www.nytimes.com/2015/02/07/nyregion/bubonic-plague-in-the-subway-system-dont-worry-about-it.html


Failure of Bioinformatics

31

Living in a microbial world
Charles Schmidt
Nature Biotechnology, volume 35, pages401–403 (2017)
https://www.nature.com/articles/nbt.3868

https://www.nature.com/articles/nbt.3868
https://www.nature.com/articles/nbt.3868


There is a critical need for fast and 
accurate genome analysis.

32



What is Intelligent Data Analysis?

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?

33
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Genome Analysis

35

>CCTCCTCAGTGCCACCCAGCCCACTGGCAGCTCCCAAACAGGCTCTTATTAAAACACCCTGTTCCCTGCCCCTTGGAGTGAGGTGTCAAG
GACCTAAACTAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTT
CATGTCAAGGACCTAATGTGCTAAACAGCACTTTTTTGACCATTATTTTGGATCTGAAAGAAATCAAGAATAAATGAAGGACTTGATACATTG
GAAGAGGAGAGTCAAGGACCTACAGAAAAAAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAA
ACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCTGTGTTGCAGGTCTTCTTGCATTTCCCTGTCAAAAGAAAAAGAATTTAAAATTT
AAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTCAGGCCAAGAGTTGCAAAAAAAAAAAAAGAAAAA
GAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTCTTCATGTCAAGGACCTAATGTAGCCAGAATGG
TTGTGGGATGGGAGCCTCTGTGGACCGACCAGGTAGCTCTCTTTTCCACACTGTAGTCTCAAAGCTTCTTCATGTGGTTTCTCTGAGTGAAA
AAAAAAAAAAGAAAAAGAAAAGAAAAAGAATTTAAAATTTAAGTAATTCTTTGAAAAAAACTAATTTCTAAGCTTTTTCATGTCAAGGACC
TAATGTAGCTATACTGAACGTTATCTAGGGGAAAGATTGAAGGGGAGCTCTAAGGTCAACACACCACCACTTCCCAGAAAGCTTCTTCA……

machine can read the 
entire content of a genomeNO



Genome Sequencer is a Chopper

36

Genome 
Analysis

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

44 hours

1x1012 bases

* NovaSeq 6000

*

*

GATK

<1000 $



… and more! All produce data with different properties.

Illumina MiSeq

Oxford Nanopore MinION

Pacific Biosciences RS IIIllumina NovaSeq 6000

Oxford
Nanopore 
SmidgION

High-Throughput Sequencers

37

Pacific 
Biosciences 
Sequel II

Oxford 
Nanopore 
PromethION



How Does HTS Machine Work?

38

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

Reads lack information about their order and location (which part of 
genome they are originated from) 



Solving the Puzzle

39
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Reads

Reference 
genome

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HTS Sequencing Output

40

q 500-2M bp
q high error rate (~15%)

q 100-300 bp
q low error rate (~0.1%)

Large pieces of a puzzle 
long reads (ONT & PacBio)

Small pieces of a puzzle
short reads (Illumina)

Which sequencing technology is the best?

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


HiFi Reads (PacBio)

41

Wenger+, "Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome", Nature Biotechnology, 2019

But still very 
expensive!

https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/

https://www.nature.com/articles/s41587-019-0217-9
https://labs.wsu.edu/genomicscore/illumina-sequencing/
https://pacbio.gs.washington.edu/


How Long is DNA?

42

Phi X174 virus

5.386 Killo bp

E. coli O157:H7

5.44 Million bp

Homo Sapiens

3.2 Billion bp

Onion, Allium Cepa

16 Billion bp

Paris Japonica

149 Billion bp



Cracking the 1st Human Genome Sequence
n 1990-2003: The Human Genome Project (HGP) provides a 

complete and accurate sequence of all DNA base pairs that make 
up the human genome and finds 20,000 to 25,000 human genes.

43

13 years

3.2 x109 

bases

>3x109 $



Obtaining the Human Reference Genome
n GRCh38.p13
n Description: Genome Reference Consortium Human Build 38 

patch release 13 (GRCh38.p13)

n Organism name: Homo sapiens (human)

n Date: 2019/02/28

n 3,099,706,404 bases

n Compressed .fna file (964.9 MB)

n https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

44

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39


Genome Analysis

52

Reference genomeReads
“text format”

DNA Sample
“chemical format”

Subject genome
“text format”

Map reads to a known reference genome with some 
minor differences allowed



Metagenomics Analysis

53

Reference 
Database

Reads
“text format”

genetic material recovered 
directly from environmental 

samples

Reads from different unknown donors at sequencing 
time are mapped to many known reference genomes



Challenges in Read Mapping
n Need to find many mappings of each read

n Need to tolerate variances/sequencing errors in each read

n Need to map each read very fast (i.e., performance is 
important, life critical in some cases)

n Need to map reads to both forward and reverse strands

55https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1



Revisiting the Puzzle

56
https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/


Reference Genome Bias

57Sherman+, “Assembly of a pan-genome from deep sequencing of 910 humans of 
African descent” Nature genetics, 2019.

“African pan-genome contains ~10% more DNA 
bases than the current human reference genome”

https://www.nature.com/articles/s41588-018-0273-y


Time to Change the Reference Genome

58

“Switching to a consensus reference would offer important 
advantages over the continued use of the current reference with 

few disadvantages”
Ballouz+, "Is it time to change the reference genome?", Genome Biology, 2019

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1774-4


GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 

GAGTCAGAATTTGAC 
GAGTCAGAATTTGAC 

Bottlenecked in Read Mapping!!

59

Human whole 
genomes 

Human 1
Illumina NovaSeq 6000 

48
at 30× coverage

in about 2 days

genome
32 CPU hours 

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT 
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
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61

Let’s First Learn
How to Map a Read



Read Mapping in 111 pages! 

62

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
arXiv, 2020

GitHub: https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms

Analyzing 107 read mappers (1988-2020) in depth

https://arxiv.org/abs/2003.00110
https://github.com/Mangul-Lab-USC/review_technology_dictates_algorithms


Read Mapping: A Brute Force Algorithm

63

Very Expensive! 
O(m2kn)

Reference

Read

m: read length
k: no. of reads
n: reference genome length



Similar to Searching Yellow Pages!

64

n Step 1: Get the page number from the book’s 
index using a small portion of the name (e.g., 1st 
letter).

n Step 2: Retrieve the page(s).

n Step 3: Match the full name & get the phone 
number.



65

Mapping a Read is 
Similar to Querying
the Yellow Pages!



Step 1: Indexing the Reference Genome

66

?



67

Hashing is the most popular 
indexing technique for 

read mapping since 1988

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
arXiv, 2020

https://arxiv.org/abs/2003.00110


Step 1: Indexing the Reference Genome

68

Index the first 
seed at location 1

Seed=k-mer
(string of length k)



Genome Index Properties
n The index is built only once for each reference.

n Seeds can be overlapping, non-overlapping, spaced, 
adjacent, non-adjacent, minimizers, compressed, …

69

Tool Version Index Size* Indexing 
Time

mrFAST 2.2.5 16.5 GB 20.00 min

minimap2 0.12.7 7.2 GB 3.33 min

BWA-MEM 0.7.17 4.7 GB 49.96 min
*Human genome = 3.2 GB



Performance of Human Genome Indexing 

70

Alser+, "Technology dictates algorithms: Recent developments in read alignment", 
arXiv, 2020

Mapper

https://arxiv.org/abs/2003.00110


Step 2: Query the Index Using Read Seeds

72



Step 2: Query the Index Using Read Seeds

73



Step 2: Query the Index Using Read Seeds

74

We can query the Hash table with 
substrings from reads to quickly find a list 

of possible mapping locations



Step 3: Read Alignment (Verification)

76



Step 3: Read Alignment (Verification)
n Edit distance is defined as the minimum number of edits 

(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.

o - - r g a n i z a t i o n
o p e r - - - - - a t i o n

o - - r g a n i z a t i o n
o p e r - a - - - - t i o n

o r g a n i z a t i o n
t r - a n s l a t i o n

o r g a n - i z a t i o n
t r - a n s l - a t i o n

o r g a n i z - a t i o n
t r - a n - s l a t i o n

Ref
Read

Ref
Read

Ref
Read

Ref
Read

Ref
Read

organization x operation organization x translation

match
deletion
insertion
mismatch

77

Edit distance = 7

Edit distance = 4



Smith-Waterman remains 
the most popular algorithm 

since 1988

Hamming distance is 
the second most popular technique 

since 2008
78

Alser+, "Technology dictates algorithms: Recent developments in read alignment", arXiv, 2020

https://arxiv.org/abs/2003.00110


An Example of Hash Table Based Mappers

n + Guaranteed to find all mappings à very sensitive
n + Can tolerate up to e errors

79

https://github.com/BilkentCompGen/mrfast

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

https://github.com/BilkentCompGen/mrfast
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


Performance of Read Mapping

80

Mapper

Mapper

Alser+, "Technology dictates algorithms: Recent developments in read alignment", arXiv, 2020

https://arxiv.org/abs/2003.00110


The Need for Speed

81
Alser+, "Technology dictates algorithms: Recent developments in read alignment", arXiv, 2020

Mapper

Did we realize the need for 
faster genome analysis?

https://arxiv.org/abs/2003.00110


82

What Makes 
Read Mapper Slow? 



candidate 
alignment 

locations (CAL)
4%

Read Alignment
93%

SAM 
printing

3%

What Makes Read Mapper Slow? 

93%
of the read mapper’s 

execution time is spent 
in read alignment.

Key Observation # 1

Alser et al, Bioinformatics (2017)
83



What Makes Read Mapper Slow? (cont’d)
Key Observation # 2

of candidate locations 
have high dissimilarity 

with a given read.

98% 

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 
Alignment

        CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

84



N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

What Makes Read Mapper Slow? (cont’d)

n Quadratic-time dynamic-
programming algorithm

etc

Processing row (or column) after another
etc

n Data dependencies limit the 
computation parallelism

etc

WHY?!

NETHERLANDS x SWITZERLAND
NETHERLANDS x S
NETHERLANDS x SW
NETHERLANDS x SWI
NETHERLANDS x SWIT
NETHERLANDS x SWITZ
NETHERLANDS x SWITZE
NETHERLANDS x SWITZER
NETHERLANDS x SWITZERL
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN
NETHERLANDS x SWITZERLAND 

Enumerating all possible prefixes

Key Observation # 3
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N E T H E R L A N D S
0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10
W 2 2 2 3 4 5 6 7 8 9 10 11
I 3 3 3 3 4 5 6 7 8 9 10 11
T 4 4 4 3 4 5 6 7 8 9 10 11
Z 5 5 5 4 4 5 6 7 8 9 10 11
E 6 6 5 5 5 4 5 6 7 8 9 10
R 7 7 6 6 6 5 4 5 6 7 8 9
L 8 8 7 7 7 6 5 4 5 6 7 8
A 9 9 8 8 8 7 6 5 4 5 6 7
N 10 9 9 9 9 8 7 6 5 4 5 6
D 11 10 10 10 10 9 8 7 6 5 4 5

What Makes Read Mapper Slow? (cont’d)

n Quadratic-time dynamic-
programming algorithm

n Data dependencies limit the 
computation parallelism

n Entire matrix is computed 
even though strings can be 
dissimilar.

Enumerating all possible prefixes

Processing row (or column) after another

Number of differences is computed only at the backtraking step.

Key Observation # 3

86



Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?

87



Accelerating Read Mapping

88
Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE Micro, 2020.

https://arxiv.org/pdf/2008.00961.pdf


89

Alser+, “Accelerating Genome Analysis: A Primer on an Ongoing Journey”, IEEE 
Micro, August, 2020.

https://arxiv.org/pdf/2008.00961.pdf


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
90



Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
91



FastHASH
n Goal: Reducing the number of seed (k-mer) locations.

q Heuristic (limits the number of mapping locations for each 
seed).

q Supports exact matches only.

92



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

93

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read

Reference genomeValid mapping Invalid mapping



Key Observations
n Observation 1 (Adjacent k-mers)

q Key insight: Adjacent k-mers in the read should also be 
adjacent in the reference genome

q Key idea: 1) sort the location list based on their number of 
locations and 2) search for adjacent locations in the k-mers’ 
location lists

n Observation 2 (Cheap k-mers)
q Key insight: Some k-mers are cheaper to verify than others 

because they have shorter location lists (they occur less 
frequently in the reference genome)

q Key Idea: Read mapper can choose the cheapest k-mers and 
verify their locations
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Cheap K-mer Selection
n occurrence threshold = 500

95

AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read

314

1231

4414

9219

4 loc.

338

…

…

…

…

1K loc.

376

…

…

…

…

2K loc.

326

1451

2 loc.

350

1470

2 loc.

388

…

…

…

…

1K loc.

Previous work needs 
to verify:

3004 locations

FastHASH verifies only:

8 locations

Locations

Number of Locations

Cheapest 3 k-mers
Expensive 3 k-mers



FastHASH Conclusion
n Problem: Existing read mappers perform poorly in mapping 

billions of short reads to the reference genome, in the 
presence of errors

n Observation: Most of the verification calculations are 
unnecessary à filter them out

n Key Idea: To reduce the cost of unnecessary verification
q Select Cheap and Adjacent k-mers.

n Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings
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More on FastHASH

n Download source code and try for yourself
q Download link to FastHASH

97

http://mrfast.sourceforge.net/


Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
98



Pre-alignment Filtering Technique

Read Alignment is expensive

Our goal is to reduce the need for dynamic 
programming algorithms

99



1. Filter out most of incorrect mappings.
2. Preserve all correct mappings.
3. Do it quickly.

Ideal Filtering Algorithm 
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Step 2

Query 
the 

Index

Step 3

Read 
Alignment



GateKeeper
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Alser+, "GateKeeper: A New Hardware Architecture for Accelerating 
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


GateKeeper
n Key observation:

q If two strings differ by E edits, then every bp match can be 

aligned in at most 2E shifts. 

n Key idea:
q Compute “Shifted Hamming Distance”: AND of 2E+1 Hamming 

vectors of two strings, to identify invalid mappings 

n Uses bit-parallel operations that nicely map to FPGA architectures

n Key result:
q GateKeeper is 90x-130x faster than SHD (Xin et al., 2015) and 

the Adjacency Filter (Xin et al., 2013), with only a 7% false 

positive rate

q The addition of GateKeeper to the mrFAST mapper (Alkan et 

al., 2009) results in 10x end-to-end speedup in read mapping
102



Hamming Distance (∑⊕)

103

I S T A N B U L

I S T A N B U L

8 matches 0 mismatches3 matches 5 mismatches

To cancel the effect of a 
deletion, we need to shift 
in the right direction

Edit = 1 Deletion



I S T N B U L

Shifted Hamming Distance (Xin+ 2015) 

104

7 matches 1 mismatches

XOR

XOR
AND

Edit = 1 Deletion

I S T N B U L0 0 0 1

1 1 1 0 0 0 0

1 1 1

0   0   0   1   0   0   0   0Count 
1’s

I S T A N B U L



GateKeeper Walkthrough
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Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

--- Masks after amendment ---

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000AND Mask :

 Alignment :
Needleman-Wunsch

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.



Alignment Matrix vs. Neighborhood Map
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A C T T A G C A C T

0 -1 -2

A -1 -1 -1 -2

C -2 -2 -2 -1 -2

T -2 -3 -2 -1 -2

A -3 -3 -2 -1 -2

G -4 -3 -2 -1 -2

A -4 -3 -2 -2 -2

A -4 -3 -2 -3 -3

C -4 -3 -2 -3 -4

T -4 -3 -2 -3

T -4 -3 -2

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

A C T T A G C A C T

A

C

T

A

G

A

A

C

T

T

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

|dp[i][j-1] -1 // Inser.
dp[i][j]=max|dp[i-1][j]  -1 // Del.

|dp[i-1][j-1]-1 // Subs.
|dp[i-1][j-1]+0 // match.

dp[i][j]=|0 if X[i]=Y[j]
|1 if X[i]≠Y[j]

No data dependencies!Each cell depends on three 
pre-computed cells!

Needleman-Wunsch Neighborhood Map

where    1≤ i ≤ m 
i-E ≤ j ≤ i+E

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C
A

T
A
T
A
T
A
C
G

1 1 0

Our goal to track the diagonally consecutive matches in the 
neighborhood map.

Independent vectors can be processed in parallel using 
hardware technologies
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A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

High throughput DNA 
sequencing (HTS) technologies 

Read Pre-Alignment Filtering 
Fast & Low False Positive Rate1 2

Read Alignment
Slow & Zero False Positives3

Billions of Short Reads

Hardware Acceleratorx1012
mappings

x103
mappings

Low Speed & High Accuracy
Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our Solution: GateKeeper

Alignment 
Filter

st1
FPGA-based 

Alignment Filter.



AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 
0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 
0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 
0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 
0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 
0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG
|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||
AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 
0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 
0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 
0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 
0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 
0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 
0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 
Reference :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

Hamming Mask : 
1-Deletion Mask :
2-Deletion Mask :
3-Deletion Mask :

1-Insertion Mask :
2-Insertion Mask :
3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d)
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Generate 2E+1 
masks

Amend random zeros: 
101 à 111 &  1001 à 1111

AND all masks, 
ACCEPT iff number of ‘1’ ≤ Threshold

• (2E+1)*(ReadLength) 5-input LUT. 

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 10 101 10 0 11 1 1 000 1 0 0 1 0
Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 11 111 11 1 1 11 00 0 11 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input
LUT

• E right-shift registers (length=ReadLength)
• E left-shift registers (length=ReadLength)
• (2E+1) * (ReadLength) 2-XOR operations.

• (2E)*(ReadLength) 2-AND 
operations.

• (ReadLength/4) 5-input LUT.
• !"#$ReadLength-bit counter.

1001X

X1001



GateKeeper Accelerator Architecture
n Maximum data throughput =~13.3 billion bases/sec
n Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

n Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers

110

Preprocessing Host (CPU)

input reads 
(.fastq)

reference 
genome (.fasta)

Read 
Encoder

read pairs 
(mrFAST 
output)

GateKeeper 
Processing 

Core #1

GateKeeper 
Processing 

Core #N. . .  .
. . .  .

Read Controller

Mapping ControllerFIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments
(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 
(CPU/FPGA)GateKeeper

PCIe

PCIe

Input stream 
of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G
C

C
A

T
A
T
A
T
A
C
G

A



FPGA Chip Layout
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42
.5

m
m

42.5mm

GateKeeper: 17.6%, PCIe Controller, RIFFA, and IO: 5%

GateKeeper 
Logic Cells

PCIe 
Controller, 

RIFFA, and IO

300 bp

E=15



GateKeeper: Speed & Accuracy Results

113

90x-130x faster filter 
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate
than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online 
github.com/BilkentCompGen/GateKeeper

https://github.com/BilkentCompGen/GateKeeper


GateKeeper Conclusions

n FPGA-based pre-alignment greatly speeds up read mapping
q 10x speedup of a state-of-the-art mapper (mrFAST)

n FPGA-based pre-alignment can be integrated with the 
sequencer
q It can help to hide the complexity and details of the FPGA
q Enables real-time filtering while sequencing

114



More on SHD (SIMD Implementation)
n Download and test for yourself 
n https://github.com/CMU-SAFARI/Shifted-Hamming-Distance

115

https://github.com/CMU-SAFARI/Shifted-Hamming-Distance


More on GateKeeper
n Download and test for yourself 

https://github.com/BilkentCompGen/GateKeeper

116

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping”, Bioinformatics, 2017.

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
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Can we do better? Scalability?



Shouji (障子)

124

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Shouji

125

n Key observation:
q Correct alignment always includes long identical subsequences. 
q Processing the entire mapping at once is ineffective for hardware 

design.
n Key idea:

q Use overlapping sliding window approach to quickly and 
accurately find all long segments of consecutive zeros.

n Key result:
q Shouji on FPGA is up to three orders of magnitude faster than its 

CPU implementation.
q Shouji accelerates best-performing CPU read aligner Edlib 

(Bioinformatics 2017) by up to 18.8x using 16 filtering units that 
work in parallel.

q Shouji is 2.4x to 467x more accurate than GateKeeper 
(Bioinformatics 2017) and SHD (Bioinformatics 2015).
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

1
1
1
4
1
2
1

search window # 1 search window # 5

0
0

0
0

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector

1
1

3
1

0
2

0
0

0
1

0

0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
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j 1 2 3 4 5 6 7 8 9 10 11 12

i G G T G C A G A G C T C

1 G 0 0 1 0

2 G 0 0 1 0 1

3 T 1 1 0 1 1 1

4 G 0 0 1 0 1 1 0

5 A 1 1 1 1 0 1 0

6 G 1 0 1 1 0 1 0

7 A 1 1 0 1 0 1 1

8 G 1 1 0 1 0 1 1

9 T 1 1 1 1 1 0 1

10 T 1 1 1 1 0 1

11 G 1 0 1 1 1

12 T 1 1 0 1

Shouji Walkthrough

search window # 1 search window # 5

Building the 
Neighborhood Map

Storing it @ Shouji Bit-vector 0 0 0 0 1 0 0 0 0 1 0 1

Finding all common 
subsequences 
(diagonal segments of 
consecutive zeros) 
shared between two 
given sequences.

ACCEPT iff number of ‘1’ ≤ Threshold
Shouji: a fast and efficient pre-alignment filter for sequence alignment, Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234


Sliding Window Size
n The reason behind the selection of the window size is due 

to the minimal possible length of the identical subsequence 
that is a single match (e.g., such as `101').
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Hardware Implementation
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m

m

m

Text . . . . . .

0's 
Counter

SLIDER 
bit-vector

m search windows for processing 
sequences of length m characters

Pattern

Edit 
distance 
threshold
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m
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42.5mm
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4
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1: similar
0: dissimilar

Step 1 Step 2 Step 3

0000
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0100
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0110
0111
1000
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1011
1100
1101
1110
1111

• Counting is performed concurrently for all bit-vectors and all 
sliding windows in a single clock cycle using multiple 4-input 
LUTs.



More on Shouji

130

Alser+, “Shouji: a fast and efficient pre-alignment filter for sequence alignment”,
Bioinformatics 2019, 
https://doi.org/10.1093/bioinformatics/btz234

Download and test for yourself 
https://github.com/CMU-SAFARI/Shouji

https://doi.org/10.1093/bioinformatics/btz234
https://doi.org/10.1093/bioinformatics/btz234
https://github.com/CMU-SAFARI/Shouji


SneakySnake
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Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter 
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).

https://arxiv.org/pdf/1910.09020.pdf


SneakySnake

132

n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

n Key idea:
q Approximate edit distance calculation is similar to Single Net 

Routing problem in VLSI chip.

VLSI chip layout



SneakySnake
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n Key observation:
q Correct alignment is a sequence of non-overlapping long matches. 

n Key idea:
q Approximate edit distance calculation is similar to Single Net 

Routing problem in VLSI chip.

n Key result:
q SneakySnake is up to four orders of magnitude more accurate 

than Shouji (Bioinformatics’19) and GateKeeper (Bioinformatics’17).

q SneakySnake accelerates the state-of-the-art CPU-based sequence 

aligners, Edlib (Bioinformatics’17) and Parasail (BMC 

Bioinformatics’16), by up to 37.6× and 43.9× (>12× on average), 

respectively, without requiring hardware acceleration, and by up 

to 413× and 689× (>400× on average), respectively, using 

hardware acceleration. 



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

E = 3

EN
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EX
IT



SneakySnake Walkthrough
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Building Neighborhood Map Finding the Optimal Routing Path Examining the Snake Survival

3

EX
IT
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SneakySnake Walkthrough
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Building Neighborhood Map Finding the Routing Travel Path Examining the Snake Survival

This is what you actually need to build
and it can be done on-the-fly!

EN
TR

AN
CE

EX
IT

3



FPGA Resource Analysis

n FPGA resource usage for a single filtering unit of GateKeeper, 
Shouji, and Snake-on-Chip for a sequence length of 100 and 
under different edit distance thresholds (E).
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Long Sequence Filtering (SneakySnake vs Parasail)

139

The execution time of SneakySnake, Parasail, and SneakySnake integrated with 
Parasail using long reads, (a) Set_5 and (b) Set_6, and 40 CPU threads. The y-axis 
is on a logarithmic scale. For each edit distance threshold value, we provide the rate 
of accepted pairs (out of 100,000 pairs for Set_5 and out of 74,687 pairs for Set_6) 

10K bp dataset                      100K bp dataset



Long Sequence Filtering (SneakySnake vs KSW2)

140

The execution time of SneakySnake, KSW2, and SneakySnake integrated with KSW2 
using long reads, (a) Set_5 and (b) Set_6, and a single CPU thread. The y-axis is on 
a logarithmic scale. For each edit distance threshold value, we provide the rate of 
accepted pairs (out of 100,000 pairs for Set_5 and out of 74,687 pairs for Set_6) by 
SneakySnake that are passed to KSW2. 

10K bp dataset                      100K bp dataset



SneakySnake
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Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter 
for CPUs, GPUs, and FPGAs." arXiv preprint (2019).

Download and test for CPU, GPU, and FPGA: 

https://github.com/CMU-SAFARI/SneakySnake

https://arxiv.org/pdf/1910.09020.pdf
https://github.com/CMU-SAFARI/SneakySnake


Read Mapping & Filtering
n Problem: Heavily bottlenecked by Data Movement

n Shouji performance limited by DRAM bandwidth [Alser+, 
Bioinformatics 2019]

n GateKeeper performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017]

n Ditto for SHD [Xin+, Bioinformatics 2015]

n Solution: Processing-in-memory can alleviate the bottleneck
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Read Mapping & Filtering in Memory

We need to design 
mapping & filtering algorithms 
that fit processing-in-memory
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Energy Cost of Data Movement
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Data Movement

key observation:  62.7% of the 
total system energy is spent on data movement

Potential solution: move computation close to data
Challenge: limited area and energy budget

Processing-in-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 

Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks", ASPLOS 2018.

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf


Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core
GPU

(throughput)
core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

Onur Mutlu, Computer Architecture Lecture 7, Fall 2019, ETH Zurich

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture7-in-memory-computation-ii-afterlecture.pdf


Processing in Memory Approaches

n 1. Minimally changing memory chips

n 2. Exploiting 3D-stacked memory
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In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost

n Using analog computation capability of DRAM
q Idea: activating multiple rows performs computation

n 30-60X performance and energy improvement
q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 

Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

147Onur Mutlu, Computer Architecture Lecture 7, Fall 2019, ETH Zurich

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture7-in-memory-computation-ii-afterlecture.pdf


Hybrid Memory Cube (HMC)

149https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.3-
memory-FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf

https://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.18.3-memory-FPGA/HC23.18.320-HybridCube-Pawlowski-Micron.pdf


More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on In-DRAM Bitwise Operations

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


More on In-DRAM Bulk Bitwise Execution
n Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


RowClone & Bitwise Ops in Real DRAM Chips

153https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

154https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]

155

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GRIM-Filter
n Key observation: FPGA and GPU accelerators are Heavily 

bottlenecked by Data Movement.

n Key idea: exploiting the high memory bandwidth and the logic layer of 
3D-stacked memory to perform highly-parallel filtering in the DRAM 
chip itself.

n Key results: 
q We propose an algorithm called GRIM-Filter
q GRIM-Filter with processing-in-memory is 1.8x-3.7x (2.1x on 

average) faster than FastHASH filter (BMC Genomics’13) across real 
data sets.

q GRIM-Filter has 5.6x-6.4x (6.0x on average) lower falsely accepted 
pairs than FastHASH filter (BMC Genomics’13) across real data sets.
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GRIM-Filter in 3D-Stacked DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter: Bitvectors
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AAAAC
exists in 
bin 1

CCCCT
doesn’t 
exist in 
bin 1

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) 
in the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall 

within a single bin



GRIM-Filter: Bitvectors

Storing all bitvectors
requires !" ∗ $ bits
in memory, 
where 
t = number of bins 
&
n = token length.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter: Checking a Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare
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Integrating GRIM-Filter into a Read Mapper

GRIM-Filter:
Seed Location Checker

0001010     011010... ......

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010     011010... ......

020128 020131 414415... ... ... ...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131
reference 
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3
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Key Properties of GRIM-Filter
1. Simple Operations:

q To check a given bin, find the sum of all bits corresponding 
to each token in the read

q Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM
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GRIM-Filter in 3D-Stacked DRAM

n Customized logic for accumulation and comparison 
per genome segment
q Low area overhead, simple implementation
q For HBM2, we use 4096 incrementer LUTs, 7-bit counters, 

and comparators in logic layer
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Details are in [Kim+, BMC Genomics 2018]



More on GRIM-Filter
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
to appear in BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

165

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


GenCache

166

Nag, Anirban, et al. "GenCache: Leveraging In-Cache Operators for Efficient 
Sequence Alignment." Proceedings of the 52nd Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO 52) , ACM, 2019.

https://www.cs.utah.edu/~rajeev/pubs/micro19a.pdf


GenCache
n Key observation: State-of-the-art alignment accelerators are still 

bottlenecked by memory.

n Key ideas: 
q Performing in-cache alignment + pre-alignment filtering by enabling 

processing-in-cache using previous proposal, ComputeCache
(HPCA’17).

q Using different Pre-alignment filters depending on the selected edit 
distance threshold.

n Results: 
q GenCache on CPU is 1.36x faster than GenAx (ISCA 2018). 

GenCache in cache is 5.26x faster than GenAx.
q GenCache chip has 16.4% higher area, 34.7% higher peak power, 

and 15% higher average power than GenAx.
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GenCache’s Four Phases
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Throughput Results
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Ongoing Directions
n Seed Filtering Technique:

q Goal: Reducing the number of seed (k-mer) locations.
n Heuristic (limits the number of mapping locations for each seed).
n Supports exact matches only.

n Pre-alignment Filtering Technique:
q Goal: Reducing the number of invalid mappings (>E).

n Supports both exact and inexact matches.
n Provides some falsely-accepted mappings. 

n Read Alignment Acceleration:
q Goal: Performing read alignment at scale.

n Limits the numeric range of each cell in the DP table and hence 
supports limited scoring function.

n May not support backtracking step due to random memory accesses.
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Darwin

173

Yatish+ "Darwin: A genomics co-processor provides up to 15,000x acceleration on 
long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf

• Seed filter: D-Soft
• Read alignment accelerator: GACT ß We will cover this

http://bejerano.stanford.edu/papers/p199-turakhia.pdf


Darwin: GACT Hardware Acceleration
n Key observation:

q Data Dependencies limit accelerating the dynamic programming table 
calculation. 

n Key idea:
q Divide the dynamic programming table into overlapping tiles.
q Calculate each tile independently and in a systolic array fashion.
q Calculate many alignments concurrently.

n Key result:
q It is simulated for TSMC 40nm CMOS process.
q It provides a speedup of up to 380x compared to GACT software.
q It is three orders of magnitude faster than Edlib (best-performing CPU 

read aligner).
n Weaknesses: 

q It is not clear if tiling maintains the same accuracy as the original 
dynamic programming algorithm.
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Specialized Accelerator for Read Aligner
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n Accelerating the read alignment algorithm as-is using specialized 
hardware (40 nm CMOS) provides a limited speedup (37x). 

CPU-based read aligner         vs.        Hardware accelerated read aligner

Dally, "Hardware Enabled Biology", AACBB 2019, https://aacbb-workshop.github.io

https://aacbb-workshop.github.io/


GACT Alignment 
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n Solution: Divide the table into overlapping tiles and compute them all 
independently using systolic arrays.

n Store the trace of each cell in an SRAM for traceback.



GACT Hardware vs. Software Speedup
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GACT Hardware vs. Edlib
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More on Darwin
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Yatish+ "Darwin: A genomics co-processor provides up to 15,000 x 
acceleration on long read assembly." ASPLOS 2018.
http://bejerano.stanford.edu/papers/p199-turakhia.pdf

https://github.com/gsneha26/Darwin-WGA

http://bejerano.stanford.edu/papers/p199-turakhia.pdf
https://github.com/gsneha26/Darwin-WGA


Disclaimer on Darwin
n Darwin is NOT developed in SAFARI group, but we 

developed GenASM that is published in MICRO 2020.

n GenASM = new read alignment algorithm + PIM specialized 
accelerator.

n GenASM provides 6.6x better throughput per unit area and 
10.5x better throughput per unit power when compared 
with GACT of Darwin.
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GenASM

182

Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate String 
Matching Acceleration Framework for Genome Sequence Analysis", MICRO 2020

Damla will present GenASM during 
tomorrow lecture 16 October 2020!

https://arxiv.org/abs/2009.07692


Conclusion on Ongoing Directions

n Read alignment can be substantially accelerated using 
computationally inexpensive and accurate pre-alignment 
filtering algorithms designed for specialized hardware.

n All the three directions are used by mappers today, but 
filtering has replaced alignment as the bottleneck.

n Pre-alignment filtering does not sacrifice any of the aligner 
capabilities, as it does not modify or replace the alignment 
step.
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What Else can be Done?
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What if we got a new version 
of the reference genome?



AirLift
n Key observation: Reference genomes are updated frequently. 

Repeating read mapping is a computationally expensive workload.

n Key idea: Update the mapping results of only affected reads 
depending on how a region in the old reference relates to another 
region in the new reference. 

n Key results: 
q reduces number of reads that needs to be re-mapped to new 

reference by up to 99%
q reduces overall runtime to re-map reads by 6.94x, 208x, and 

16.4x for large (human), medium (C. elegans), and small
(yeast) reference genomes
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Clustering the Reference Genome Regions
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More Details on AirLift

189

GitHub: https://github.com/CMU-SAFARI/AirLift

Kim+, "AirLift: A Fast and Comprehensive Technique for Translating Alignments 
between Reference Genomes", arXiv, 2020

https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/abs/1912.08735


Agenda for Today
n What is Genome Analysis?
n What is Intelligent Genome Analysis?

n How we Analyze Genome?
n What Makes Read Mapper Slow?

n Algorithmic & Hardware Acceleration 
q Seed Filtering Technique
q Pre-alignment Filtering Technique
q Read Alignment Acceleration

n Where is Read Mapping Going Next?
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Did we Achieve Our Goal?
n Fast genome analysis in mere seconds using limited 

computational resources (i.e., personal computer or small 
hardware).
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1997 2015     



Open Questions

How and where to enable

fast, accurate, cheap, 

privacy-preserving, and exabyte scale 
analysis of genomic data?
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Pushing Towards New Architectures

193

Microprocessor Main Memory Storage (SSD/HDD)

Sequencing 
Machine

Single memory request consumes

>160x-800x more energy compared to 
performing a complex add operation  



Processing Genomic Data Where it Makes Sense

194
(General Purpose) GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs Modern systems

?
Sequencing 

Machine



Most speedup comes from parallelism enabled 
by novel architectures and algorithms
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Cerebras’s Wafer Scale Engine (2019)

196

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip

n 400,000 cores 

NVIDIA TITAN V

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


UPMEM Processing-in-DRAM Engine (2019)
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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


TESLA Full Self-Driving Computer (2019)

198

n ML accelerator: 260 mm2, 6 billion transistors, 
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

n Two redundant chips for better safety.
https://youtu.be/Ucp0TTmvqOE?t=4236

Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich

https://youtu.be/Ucp0TTmvqOE?t=4236
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf


Where is Read Mapping Going Next?

Will 100% accurate genome-long 
reads alleviate/eliminate the need for 

read mapping?
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Think about metagenomics, pan-genomics, ...



Lecture Conclusion
n System design for bioinformatics is a critical problem

q It has large scientific, medical, societal, personal implications

n This lecture is about accelerating a key step in bioinformatics: 
genome sequence analysis
q In particular, read mapping

n Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis

n We cover various recent ideas to accelerate read mapping
q A journey since September 2006
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Recommended Readings
n Jones, Neil C. and Pavel Pevzner. “An introduction to 

bioinformatics algorithms,” MIT press, 2004.
n Mäkinen, Veli, Djamal Belazzougui, Fabio Cunial, and 

Alexandru I. Tomescu. “Genome-scale algorithm design,”
Cambridge University Press, 2015.
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Work With Us

n If you are already a student at ETH and are interested in 
doing research with SAFARI research group on similar 
topics, Talk to me:

q ALSERM @ safari . ethz . ch  
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Openings @ SAFARI
n We are hiring enthusiastic and motivated students and 

researchers at all levels.

n Join us now:
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safari.ethz.ch/apply

https://safari.ethz.ch/apply/
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