
32

Microprocessors took over the entire
computer industry in the 1970s and 1980s,
leading to the phrase “the attack of the killer
micros” as a popular topic on the newsgroup
comp.arch for many years. We believe that the
disruption offered by throughput computing
is similar in scope. Over the next several years,
we expect chip multithreading (CMT) proces-
sors to take over all computing segments, from
laptops and desktops to servers and super-
computers, effectively creating “the attack of
throughput computing.” Most microproces-
sor companies have now announced plans
and/or products with multiple cores and/or
multiple threads per core. Sun Microsystems
has been developing CMT technology for
almost a decade through the Microprocessor
Architecture for Java Computing (MAJC,
pronounced “magic”) program1,2 and a vari-
ety of SPARC processors.3-7 IBM, through the

Power4 and Power5;8,9 and Intel, through
hyperthreading, are shipping products in this
space. AMD has announced plans to ship
dual-core chips in late 2005. What is misun-
derstood, though, is how you can build a
microprocessor that has several multithread-
ed cores that still delivers high-end single-
thread performance. The combination of
high-end single-thread performance and a
high degree of multicore, multithreading (for
example, tens of threads) is what we call high
performance throughput computing, the topic
of this article.

A variety of papers have shown how work-
loads running on servers10 and desktops11 can
greatly benefit from thread-level parallelism.
It is no surprise that large symmetric multi-
processors (SMPs) were so successful in the
1990s in delivering very high throughput in
terms of transactions per second, for instance,
while running large, scalable, multithreaded
applications. Successive generations of SMPs
delivered better individual processors, better
interconnects (certainly in terms of band-
width, not necessarily in terms of latency) and
better scalability. Gradually, applications and

Shailender Chaudhry
Paul Caprioli
Sherman Yip

Marc Tremblay
Sun Microsystems

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND

MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS

THAT ARE 10 TO 30× THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.

HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOOD SINGLE-THREAD

PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING

INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

Published by the IEEE Computer Society 0272-1732/05/$20.00 © 2005 IEEE

This article was based on a keynote speech by Marc
Tremblay at the 2004 International Symposium on
Computer Architecture in Munich, with some updat-
ed information.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

operating systems have matched the hardware
scalability. A decade later, architects design-
ing CMT processors face a dilemma: Many
applications and some operating systems
already scale to tens of threads. This leads to
the question, “Should you populate a proces-
sor die with many very simple cores or should
you use fewer but more powerful cores?” We
simulated (and built, or are building) two very
different cores and two different threading
models and discuss how they benefit from
multithreading and from growing the num-
ber of cores on a chip. We show that if multi-
threading is the prime feature and the rest of
the core (that is, the rest of the pipeline and
the memory subsystem) is architected around
it, as opposed to simply adding threading to
an existing core, these two different cores ben-
efit greatly from multithreading (a 1.8 to 3.2×
increase in throughput) and from multicores
(3.1 to 3.7× increase). Server workloads dic-
tate that high throughput be the primary goal.
On the other hand, the impact of critical sec-
tions, Amdahl’s law, response time require-
ments, and pipeline efficiency force us to try
to design a high-performance single-thread
pipeline although not at the expense of
throughput.

Unfortunately as we discuss in a later sec-
tion, two big levers that industry traditional-
ly used—clock rate and traditional
out-of-order execution—no longer work very
well in the context of an aggressive 65-nm
process and memory latencies now ranging in
the hundreds of cycles.

Clearly the industry needs new techniques.
This article describes hardware scouting in
which the processor launches a hardware
thread (invisible to software) which runs in
front of the head thread. The goal here is to
bring all interesting data and instructions (and
control state) into the on-chip caches. Scout-
ing heavily leverages some of the existing
threaded hardware to boost single-thread per-
formance. The control speculation accuracy,
the scout’s depth, the memory-level paral-
lelism (MLP) impact, and the overall effect
on performance and cache sizes form the core
of this article. We will show that this microar-
chitecture technique will, for some configu-
rations, improve performance by 40 percent
on TPC-C, double the effective L2 cache size
for SPECint2000, and make a 1-Mbyte L2

cache behave as a 64-Mbyte one for
SPECfp2000.

Researchers have proposed several other
techniques to reduce the impact of ever-
increasing memory latencies, as the “Scaling
the Memory Wall” sidebar explains.

Throughput computing
Systems designed for throughput comput-

ing emphasize the overall work performed
over a fixed time period as opposed to focus-
ing on a metric describing how fast a single
core or a thread executes a benchmark. The
work is the aggregate amount of computation
performed by all functional units, all threads,
all cores, all chips, all coprocessors (such as
network and cryptography accelerators) and
all the network interface cards in a system.

The scope of throughput computing is
broad, especially if the microarchitecture and
operating system collaborate to enable a
thread to handle a full process. In this way, a
32-thread CMT can appear to be an SMP of
32 virtual cores, from the viewpoint of the
operating system and applications. At one end
of the spectrum, 32 different processes could
run on a 32-way CMT. At the other end, a
single application, scaling to 32 threads—like
many large commercial applications running
on today’s SMPs—can run on a CMT. Any
point in between is also possible. For instance,
you could run four application servers, each
scaling to eight threads. Obviously, there are
sweet spots, and it is the task of the load bal-
ancing software and operating system to
appropriately leverage the hardware.

Throughput computing relies on the fact
that server processors run large data sets
and/or a large number of distinct jobs, result-
ing in memory footprints that stress all levels
of the memory hierarchy. This stress results
in much higher miss rates for memory oper-
ations than those typical of SPECint2000, for
instance. A compounding effect is the miss
cost. In about 2007, servers will already be
driving over 1 Tbyte of data provided by hun-
dreds of dual, inline memory modules. This
makes the memory physically far from proces-
sors (requiring long board traces, heavy load-
ing, backplane connectors, and so on),
resulting in large cache-miss penalties.

As a result, cores are often idle, waiting for
data or instructions coming from distant

33MAY–JUNE 2005

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

34

FUTURE TRENDS

IEEE MICRO

Tolerating memory latency has of course been a goal for archi-
tects and researchers for a long time. Various designs have employed
caches to tolerate memory latency by using the temporal and spa-
tial locality that most programs exhibit. To improve the latency tol-
erance of caches, other designs have employed nonblocking caches
that support load hits under a miss and multiple misses.

The use of software prefetching has proven effective when the
compiler can statically predict which memory reference will cause
a miss and disambiguate pointers.1,2 This is effective for a small
subset of applications. In particular, however, it is not very effec-
tive in commercial database applications, a prime target for servers.
Notice that software prefetching can also hurt performance if it

• generates extraneous load misses by speculatively hoisting
multiple loads above branches based on static analysis and

• increases instruction bandwidth.

Hardware prefetching alleviates the instruction cache pres-
sure, using dynamic information to predict misses and discover
access patterns. Its drawback (and the reason why system vendors
often turn it off) is that it is hard to map a single hardware algo-
rithm to different applications, which would require a variety of
algorithms. We have observed severe cache pollution when apply-
ing a generic hardware prefetch to codes with significantly dif-
ferent data access patterns.

Thread-based prefetching techniques on a CMT processor use
idle threads or cores to prefetch data for the main computation.3-5

Finally, researchers have proposed several forms of run-ahead
execution; these techniques have various levels of complexity.6-8

In general, these techniques run program instructions after long-
latency instructions. They do not actually retire instructions but
prefetch data into the caches. These prefetches are accurate
because they are part of the instruction stream and are based on
runtime information. Run-ahead execution can effectively cover L1
latency. Covering the longer latencies of remote caches and mem-
ory came at a hardware cost and some potential slowdown. New
techniques such as out-of-order commit9 are starting to appear. It
remains to be seen how they will work within the context of
throughput computing, but it looks promising.

Hardware scouting also runs instructions after a load miss. It does
so by using mostly the same structures needed to support multi-
threading in a processor core. An earlier article gives a preview of
how to accomplish this in a modern processor.10 A novel aspect of
scouting is that it executes instructions at a faster rate than normal
execution to both ensure the timeliness of prefetches and to warm
up the fetch prediction hardware and caches. Invoking and exiting out
of scouting is a zero-cycle operation to avoid slowdowns from unsuc-
cessful scouting events. This is an important implementation aspect
that dictates the organization of important pipeline stages (this has
been our experience). We conclude that even though architects can

no longer mostly rely on faster transistors and faster wires to provide
an easy performance scaling, certain ways of using the transistor
budget compensate for the lack of scaling; these reach high levels
of performance, especially in the context of throughput computing.

References
1. C.-K. Luk and T.C. Mowry, “Compiler-Based

Prefetching for Recursive Data Structures,” Proc. 7th
Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS 96), ACM
Press, 1996, pp. 222-233.

2. T.C. Mowry, M.S. Lam, and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching,”
Proc. 5th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS 92), ACM Press, 1992, pp. 62-73.

3. S. Chaudhry and M. Tremblay, “Method and Apparatus
for Using an Assist Processor to Pre-fetch Data Values
for a Primary Processor,” US Patent 6,415,356.

4. J.D. Collins et al., “Dynamic Speculative
Precomputation,” Proc. 34th Ann. ACM/IEEE Int’l
Symp. Microarchitecture (Micro-34), IEEE CS Press,
2001, pp. 306-317.

5. C. Zilles and G. Sohi, “Execution-Based Prediction
Using Speculative Slices,” Proc. 28th Ann. Int’l Symp.
Computer Architecture (ISCA 01), IEEE CS Press, 2001,
pp. 2-13.

6. J. Dundas and T. Mudge, “Improving Data Cache
Performance by Pre-Executing Instructions Under a
Cache Miss,” Proc. 1997 Int’l Conf. Supercomputing
(SC 97), IEEE CS Press, 1997, pp. 68-78.

7. R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi,
“Dynamically Allocating Processor Resources
Between Nearby and Distant ILP,” Proc. 28th Ann. Int’l
Symp. Computer Architecture (ISCA 01), IEEE CS
Press, 2001, pp. 26-37.

8. O. Mutlu et al., “Runahead Execution: An Alternative to
Very Large Instruction Windows for Out-of-order
Processors,” Proc. 9th Int’l Symp. High Performance
Computer Architecture (HPCA 03), IEEE CS Press,
2003, pp. 129-140.

9. A. Cristal, D. Ortega, J. Llosa, and Mateo Valero, “Out-
of-order Commit Processors,” Proc. 10th Int’l Symp.
High Performance Computer Architecture (HPCA 04),
IEEE CS Press, 2004, pp. 48-59.

10. J. Niccolai, “Sun Adds Rock to its UltraSPARC Road
Map,” Computerworld, 12 Feb. 2004; http://www.
computerworld.com/hardwaretopics/hardware/story/0,1
0801,90145,00.html.

Scaling the Memory Wall

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

memory locations. Depending on the proces-
sor’s latency tolerance, “distant memory” can
be the first few levels of caches, external
caches, other processors’ caches, and/or main
memory. As we will describe later, even very
aggressive out-of-order processors will be idle,
waiting for memory data, for hundreds of
cycles.

CMT allows the processor to switch on-
chip threads into the pipeline after it discov-
ers events causing long stalls; Figure 1 shows
this strategy. CMT uses the fact that some of
the outer structures (those further from the
core) are often architected for full pipelining
and yet are idle most of the time. Examples of
such structures include mem-
ory controllers, I/O con-
trollers, and networking
accelerators. CMT processors
share these structures among
cores and threads, resulting in
much better utilization.
Alternatively, we find that
adding full pipelining to non-
pipelined structures, such as
memory controllers, cyclic
redundancy checkers, or large
MMUs adds slightly to the
area and yet allows full shar-
ing at very little performance
cost. Figure 2 shows how
cores and threads overlap spa-
tially and temporally to
achieve a large amount of
work (high throughput).

Throughput computing is as much about
the consolidation of on-chip resources as it is
about consolidating assets at the server gran-
ularity. This strategy accommodates data shar-
ing among processors in a large SMP on-chip
or across a few CMT chips with much short-
er latencies. For horizontally scaled applica-
tions, this permits consolidation of multiple
copies of the operating system and the appli-
cations into one copy of the operating system
and a single physical copy of the application
(with multiple virtual copies). This consoli-
dation can result in large savings in terms of
memory, often the dominant cost in these
platforms.

Typical CMT
In Figure 3, we show a block diagram for a

35MAY–JUNE 2005

Thread 4 C C CM MM

Thread 3 C C CM MM

Thread 2 C C CM MM

Thread 1 C C CM MM

Time

Memory latency Compute

Time

Memory latency
Compute

Thread 4
Thread 3
Thread 2
Thread 1

Core 1

Thread 4
Thread 3
Thread 2
Thread 1

Core 8

Core 2

Figure 1. Systems with multithreaded cores hide stall
cycles by switching alternate threads and processes into
the pipeline.

Figure 2. A 32-way CMT combines multithreaded cores into an on-chip SMP to deliver high
throughput.

DRAMs

Memory
controller

Memory
controller

Memory
controller

L2
cache bank

L2
cache bank

L2
cache bank

DRAMsDRAMs

Global switch

Instruction
cache

Data
 cache

Multithreaded
core

Instruction
cache

Data
 cache

Multithreaded
core

Instruction
cache

Data
 cache

Multithreaded
core

I/O

Figure 3. Block diagram of a typical CMT.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

typical CMT processor, one that we have been
using for simulation and analysis over the
years. We will use it throughout this article.
It is fairly generic and yet maps nicely onto
the Niagara processor, for instance.6 In this
generic processor, a few threads (four for Nia-
gara) share a pipeline and form a core. For a
T-threaded core, we assume T copies of the
register file and T copies of the internal proces-
sor registers. We assume that other inner
structures, such as the level-one (L1) instruc-
tion cache, data cache, and translation look-
aside buffers, are shared within a core but not
across cores.

This model views the memory subsystem
as a single logical structure. In our diagram, a
global switch connects cores and the shared
logical memory. The on-chip L2 cache has
banks for increased bandwidth. Figure 3
shows the same number of banks as the num-
ber of cores, but that need not be the case.
Each bank of the L2 cache has attached mem-
ory controllers. We use this model to study
the impact of threading and multiple cores on
overall performance.

Multithreading and multicore
In trying to architect a core for a CMT chip,

there is an inherent tension between the com-
plexity of each core and number of cores that
can fit on a die. If you choose to implement a
lightweight core or a core that does not target
high instruction level parallelism (ILP) and
high clock rate, single-thread performance will
suffer, but high overall throughput is achiev-

able through replicating many of them.
The Niagara core is a good example of a

power-efficient multithreaded core.6 It uses a
simple one-issue, in-order pipeline with little
speculation, which translates into a small area,
low power, and a fairly easy core to multithread.

A complex core will require more effort to
implement, likely result in a more expensive
part, and likely draw more power. On the
other hand, it can offer substantial perfor-
mance gain.

Both simultaneous multithreading (SMT)
and vertical threading (VT) enable a core to
support multiple threads. Vertical threading
is simpler because it has the restriction that,
on a given cycle, the processor can only issue
instructions from a single thread. Obviously,
VT is less able to optimize pipeline resource
utilization.

Lightweight cores become more attractive
when coupled with multithreading. A core
using SMT or VT can take advantage of oth-
erwise idle resources while not significantly
impacting other threads. Since lightweight
cores have a relatively low resource utilization
per thread, such cores can support many
threads before per-thread performance starts
to degrade. Supporting four threads can scale
total performance by as much as 3.2× on a
large database benchmark, as Figure 4 shows.
The figure also shows that a lightweight core
with four threads has greater performance
than three single-threaded cores, a very good
trade-off.

These large performance improvements
might appear surprisingly high when com-
pared with other commercial processors. The
key to achieving them is to architect cores
from the very beginning to support multi-
threading (as opposed to adding multi-
threading to an existing core not explicitly
built for multithreading). As an example, in
the context of throughput computing, there is
little to gain from trying to access the L1 cache
in two cycles (versus three). This relaxation
permits the removal of complex and power
hungry hardware, which has the benefit of
reducing the area and power of a core. How-
ever, it also lowers the initial single-thread per-
formance, anticipating that the multithreaded
performance will make up for this deficit.

A heavyweight core will improve single-
thread performance, but generally reduces the

36

FUTURE TRENDS

IEEE MICRO

10

9

8

7

6

5

4

3

2

1

0

6.2

3.6

2.8

1.9

1

4.8

3.3

1.8

8.6

6.5

4.6

2.6

10

7.8

5.5

3.2

4321

No. of threads

R
el

at
iv

e
pe

rf
or

m
an

ce

No. of cores

1
2

3
4

Figure 4. Impact of cores and threads on lightweight cores.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

number of cores that will fit
onto a chip. Also, compared
to a lightweight core, a heav-
ier core will typically have
higher power consumption.
Nevertheless, the judicious
addition of complexity can
increase performance per
square millimeter as well as
performance per watt. Exper-
iments show that an other-
wise fairly lightweight core
with hardware scouting capa-
bilities (which we discuss
later), can outperform a truly
lightweight core by 4 to 10×.

Multithreading is also a
profitable addition to a
heavyweight core. Although
a heavier core is better able to optimize per-
thread pipeline utilization and is better at
extracting ILP than a lighter core, there still
remains significant opportunity for an addi-
tional thread to utilize otherwise idle
resources.

We have observed that a two-thread core
achieves a 1.4 to 1.5× improvement in
throughput. This boost in performance costs
only a relatively small increase in area (about
10 percent). The additional improvement
from a four-thread core starts to diminish,
yielding another 1.3 to 1.4× improvement.
This incremental performance comes at an
incremental cost of about 15 percent for the
state of the additional two threads and the
slightly bigger state machines.

Multicore technology can help to extract
thread-level parallelism in either lightweight
or heavyweight core designs. By putting four
lightweight cores on a die, we observed up to
a 3.6× increase in performance (see Figure 4).
Similarly, as Figure 5 shows, four heavyweight
cores on a die showed improvements of up to
3.7×. Therefore, almost regardless of the type
of core being used, throughput processors
have much to gain from replicating cores and
organizing them efficiently.

Furthermore, the gains achieved by repli-
cating cores are largely independent of the
gains obtained by multithreading. We
observed substantial performance improve-
ment by putting several multithreaded cores
on a die. For example, a chip using four light-

weight cores, each having four threads per
core, delivered a combined 10× performance.
A heavier multithreaded core was also able to
yield a 6.9× improvement. Of course, this
scaling is based on the already impressive 4 to
10× advantage of the heavier core.

We generated the data in Figures 4 and 5
to understand scaling, sharing, inflexion
points, and so on. To isolate these effects, we
assume that

• all threads on a core share the L1 caches,
• all threads on a chip share the TLBs,
• the number of threads or cores does not

affect the access times to caches, and
• that the processor connects directly to

memory through multiple memory con-
trollers (that is, there is no L3 cache).

Single-thread performance
CMT processors built from heavyweight

cores can provide good single-thread perfor-
mance. One choice to consider is a tradition-
al out-of-order core. Such processors have
been very popular and fairly successful in run-
ning commercial applications because they
can execute past load misses and overlap mul-
tiple misses. This reduces the effective mem-
ory latency, resulting in a high number of
instructions per cycle (IPC).

The ability to overlap misses is limited by
the window size and the amount of specula-
tion supported. A small window limits the

37MAY–JUNE 2005

7

6

5

4

3

2

1

0

5.3

3.7

2.8

1.9

1

4.1

2.8

1.5

6.4

5

3.5

1.9

6.9

5.3

3.7

2.1

4321

No. of threads

R
el

at
iv

e
pe

rf
or

m
an

ce
No. of cores

1
2

3
4

Figure 5. Impact of cores and threads on heavyweight
cores.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

number of instructions that are potential can-
didates for overlap. For example, a 32-instruc-
tion window limits the search for the next load
miss to 31 instructions following the first load
miss. Unfortunately, as we discussed previ-
ously, the growing gap in the cycle time of
dual inline memory modules and processors
has resulted in memory accesses that can take

hundreds of processor cycles to complete.
Thus, to “tolerate” this long latency and over-
lap multiple load misses, an out-of-order
processor needs a very large window and high-
ly speculative execution. This increases the
core area substantially; some structures grow
quadratically with window size. Growing this
window size to 64, 128, or even 256 instruc-
tions through traditional methods runs
counter to the desire to build a core small
enough to fit many of them on a single chip.
The data on the UltraSPARC V core, a 128-
instruction-deep out-of-order processor,
showed that it was about nine times as big as
the four-issue in-order core in UltraSPARC I.
The power associated with the large associa-
tive structures (content-addressable memo-
ries) and broadcast networks also make
traditional out-of-order cores unattractive for
throughput computing.

The amount of speculation that fits on a chip
limits the ability to overlap multiple load miss-
es. For example, if a store address is unknown
(because it depends on a load miss), and the
processor does not support memory disam-
biguation for possible read-after-write hazards
of subsequent loads, then these loads cannot
be candidates for miss overlap. Also, atomic
operations typically stall the decode stage of the
pipeline until all prior instructions have com-
pleted. This too prevents subsequent loads
from becoming candidates for miss overlap.

Lastly, some programs do have independent
instructions but these lie farther along in the
instruction stream than a limited hardware
structure can handle. In such programs, a
processor with even a reasonably large win-
dow size of as much as 128 instructions will
not find other independent loads that it can
overlap to memory.

Moreover, aggressive speculation only adds
to the complexity and area. The design must
control the aggressiveness using predictors and
rewind mechanisms, and it must implement
structures to correct any miss-speculation.

The following figures illustrate the degree
of MLP obtained when running a database
workload with different core architectures. In
Figure 6, the y-axis shows the number of addi-
tional misses overlapped to memory from a
2-Mbyte unified L2 cache. On the x-axis, we
show different window sizes and different
degrees of speculation. The first bar in each

38

FUTURE TRENDS

IEEE MICRO

3

2.75

2.5

2.25

2

1.75

1.5

1.25

1M
LP

 (
no

. a
dd

iti
on

al
 m

is
se

s
ov

er
la

pp
ed

)

16 32 64 128 Scout

Window sizes (no. of instructions)

Instruction
Data

Figure 6. Database memory parallelism. The left bar of each
set is for a moderately speculative, out-of-order core; the
right bar is for a core with an aggressive issue policy.

Serialization
Dependent store
Missing load

Instruction cache miss
Branch mispredict
Maximum window

100

90

80

70

60

50

40

30

20

10

0
16 32 64 128 Scout

Window sizes (no. of instructions)

W
in

do
w

 te
rm

in
at

io
ns

 (
pe

rc
en

ta
ge

)

Figure 7. Window termination conditions. The left bar of each set is for a
moderately speculative, out-of-order core; the right bar is for a core with an
aggressive issue policy.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

pair represents a moderately speculative, out-
of-order core; the second represents an aggres-
sive issue policy. In particular, the aggressive
policy allows stores to issue out of order with
respect to other stores and allows branches to
issue out of order with respect to other
branches.

Figure 7 identifies the cause that stopped
the processor from examining subsequent
instructions for issue and thus prevented it
from discovering more independent load
misses for overlapping. Serialization caused by
atomic instructions begins to dominate as the
cause.

Hardware scout
To achieve high MLP and thus high single-

thread performance, we must issue indepen-
dent memory requests that can be found fairly
far downstream from an initial load miss. Fur-
thermore, our technique for doing this must
avoid the area, complexity, and window size
restrictions inherent in the traditional out-of-
order approach.

A hardware scout processor achieves MLP
by creating a resumable hardware checkpoint
of program state on encountering a load miss.
The core can then continue issuing instruc-
tions arbitrarily far along in the instruction
stream until the memory subsystem returns
the load data. When the data returns, the
processor resumes execution from the check-
pointed state. Naturally, memory operations
that the processor reissues on the second pass
have the advantage of having been previous-
ly prefetched into the primary caches.

The principal advantage to this approach is
that the scouting distance is proportional to
the number of cycles elapsed waiting for the
load miss data. The size of on-chip struc-
tures—such as the size of an out-of-order issue
window—does not limit scouting. Moreover,
hardware scouting relies only on redeploying
the existing pipeline resources, a more area
efficient approach than having an
autonomous hardware prefetch engine.

In the example in Figure 8, we see an initial
load to register 7 missing and becoming the
cause of a checkpoint. The entire sequence of
instructions in the gray area then issues spec-
ulatively. This approach uses a separate regis-
ter file, called the shadow register file, to make
speculative computational results available for

further address computations while the main
register file safely retains the checkpoint state.

Of course, a subsequent load might have an
address that depends on the original load that
missed. Or, for that matter, it might depend
on a use of the original load miss, another load
miss, a use of a use of a load that missed, or so
on. Since bandwidth is precious, we do not
want to issue memory operations having non-
sensical addresses to the caches. To accomplish
this, each architectural register has an associ-
ated not there (NT) bit. When a load misses,
the NT bit is set for the destination register.
Additionally, the NT bit is set for the desti-
nation register of any instruction that has a
source register NT bit set. That is, the desti-
nation’s NT bit is assigned a logical OR of the
source registers’ NT bits.

It is worth noting that the NT bits do not
propagate indefinitely. Once a register is rede-
fined and the processor reuses it in the pro-
gram, it clears the register’s NT bit. This
happens automatically because of the OR
operation previously described. An instruc-
tion whose source registers are available (and
is not itself a missing load) will clear the NT
bit for the destination register regardless of

39MAY–JUNE 2005

Figure 8. Example of how a hardware-
scouting processor handles a load miss.

Ld→r7

use r7

br

Ld→r20

br

Ld→r20

br

Ld→r20

br

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

whether it had been previously set.
Besides load misses, hardware scouting

ameliorates other conditions that are tradi-
tionally stalling in nature. For example, a full
store buffer is a stall condition for both tradi-
tional in-order and out-of-order designs. This
becomes, for us, just another reason to take a
checkpoint and begin hardware scouting.
Since the processor uses store addresses to
prefetch cache lines, the scouting will help
ensure that the store buffer can drain more

quickly for stores that will be reached archi-
tecturally once execution resumes from the
checkpoint.

Note that the computational results calcu-
lated while scouting never commit to archi-
tectural state. This permits the freedom to
perform optimizations beneficial to the com-
mon cases without concern for the correct-
ness of a rare situation. As an example, data
from stores that fit in the store buffer bypass
correctly to loads, while stores that overflowed
the store buffer capacity do not. In effect, we
are speculating that loads leading to address
computation do not have read-after-write haz-
ards with the overflowed stores.

The processor will encounter branches and
other control transfer instructions while scout-
ing. Many of these control dependencies are
resolvable, that is, independent of outstanding
load misses. Thus, regardless of whether the
fetch unit predicted them correctly, the scout
thread can proceed down the correct path.
The mispredicted control transfer instructions
result only in a redirection of the fetch unit, as
is normally done.

Upon encountering a control dependency
that is not resolvable (the NT bit is set on the
condition code register), hardware scouting
continues executing along the fetch-unit-pre-
dicted path. This usually results in following
the correct path. Note that there are no cor-
rectness issues associated with executing down
the wrong path since instructions only write
to the shadow register file, and the processor
will eventually restart execution from the
checkpoint. In fact, our results show that the
more difficult to predict branches are usually
associated with small if-else programming
constructs that quickly return scout execution
to the correct path. The experimental simu-
lation results described in this article do not
include this effect because our trace-driven
methodology does not contain the wrong path
instructions. Hence, we simply do not model
scouting through these control dependencies.

Atomic operations (lock acquisition) and
other memory barriers are a significant per-
formance inhibitor to traditional methods for
extracting ILP. In contrast, a scout-capable
processor can scout past these barriers and
prefetch data close to the requesting proces-
sor. Because software locks are typically
uncontested, it is valuable to request the lock-

40

FUTURE TRENDS

IEEE MICRO

450

400

350

300

250

200

150

100

50

0

401

 258

21

79

N
o.

 o
f b

ra
nc

he
s

(m
ill

io
ns

)

80
70
60
50
40
30
20
10
0

130
120
110
100
90

122

 68
N

o.
 o

f t
ar

ge
ts

 (
m

ill
io

ns
)

Resolved, not mispredicted
Not resolved, not mispredicted
Resolved, mispredicted
Not resolved, mispredicted

(a) (b)

17

Figure 9. Simulation results for the database workload,
showing four classes of branch (a) and jump target (b) pre-
diction.

400

300

200

450
400

600

500

800

700

100

0

734

 482

24
72 N

o.
 o

f b
ra

nc
he

s
(m

ill
io

ns
)

40

30

20

10

0

60

50

61.5

 1.83.8

N
o.

 o
f t

ar
ge

ts
 (

m
ill

io
ns

)

Resolved, not mispredicted
Not resolved, not mispredicted
Resolved, mispredicted
Not resolved, mispredicted

(a) (b)

3.2

Figure 10. Simulation results for SPECint2000, showing
four classes of branch (a) and jump target (b) prediction.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

protected cache lines. This is especially true
because it was likely a remote processor that
last used the shared data. Thus, the loads
shortly following the barrier are often fertile
territory for discovering MLP.

Because control speculation is our primary
possibility for miss-speculation, we have some
simulation results showing how well the
scouting hardware handles control depen-
dencies. For these results, we collected an
instruction trace of 1.2 billion instructions
from a commercial database workload and
500 instruction trace samples containing 1
million instructions each for both
SPECint2000 and SPECfp2000. Using sim-
ulations, we classified each branch or jump
instruction into one of four categories:
resolved, correctly predicted; unresolved, cor-
rectly predicted; resolved, mispredicted; and
unresolved, mispredicted.

Branch prediction is very good overall, 87
to 98 percent correct. Furthermore, between
37 to 72 percent of branches are resolvable
during speculative execution. Branch predic-
tion for the unresolvable branches is 84 to 97
percent accurate. Overall then, the hardware
can scout in the correct direction 90 percent
of the time for the database workload, as Fig-
ure 9a shows; for the SPECint2000 and
SPECfp2000 codes the prediction is even bet-
ter, as Figures 10a and 11a show.

The jump target predictions illustrated in
Figures 9b, 10b, and 10c show that scouting
is only 4 percent incorrect in the worst case.
Of course, this is no accident. When archi-
tecting a hardware scout processor from a
clean slate, you must consider the importance
of accurate predictions, then size buffers
accordingly. Moreover, you must pay atten-
tion to how predictions made while scouting
interact with predictions made while running
the main thread. As an example, it is advis-
able to make the return address stack part of
the checkpoint to properly predict method
returns after having scouted.

The histograms in Figure 12 show how
deep into the instruction stream scouting can
proceed. The height of each bar indicates how
many scouting events resulted in executing
the number of instructions shown on the x-
axis. The scale on the x-axis is from 0 to 1,000
instructions. These histograms reveal three
natural groupings in the modeled configura-

tion; they correspond to the latencies of the
L2 cache, the L3 cache, and memory. Clear-
ly, the L2 cache satisfies the majority of cache
misses, so we created the second graph to bet-
ter show the clustering at the higher latencies.

For the database workload, we see that the
scouting depth is more smoothly distributed.
Because this multithreaded program has more
primary cache misses, queuing delays in the
memory subsystem somewhat blur the laten-
cy clusterings. The second histogram for the
database workload shows the y-axis scaled log-
arithmically. The last bar is artificially high
because it includes all distances greater than
1,000 instructions.

Scouting can progress 500, 600, even 700
instructions or more. Naturally, this relates to
the memory latency—the longer it takes to
satisfy a load request, the farther execution can
proceed. What is not immediately obvious is
the fact that dependent instructions (instruc-
tions having one or more source registers NT)
can issue faster than independent ones. Recall
that the only operation required of a depen-
dent instruction is the single-bit ORing of the
source NT bits to set the destination NT bit.
Thus, these instructions can group without
regard to pipeline resources such as arithmetic
logic units, memory pipes, and so on.

Additionally, the issue of dependent
instructions can ignore all data dependencies.
For example, if one source register is NT, there
is no point in stalling to wait until a multicy-

41MAY–JUNE 2005

90
80
70
60
50
40

450
400

130
120
110
100

160
150
140

30
20
10
0

61

3.9 1.6

N
o.

 o
f b

ra
nc

he
s

(m
ill

io
ns

)

7

6

5

4

3

2

1

0

11

10

9

8

10.4

 0.027

N
o.

 o
f t

ar
ge

ts
 (

m
ill

io
ns

)

Resolved, not mispredicted
Not resolved, not mispredicted
Resolved, mispredicted
Not resolved, mispredicted

(a) (b)

0.064
0.209

 156

Figure 11. Simulation results for SPECfp2000, showing four
classes of branch (a) and jump target (b) prediction.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

cle instruction produces the other source reg-
ister. In fact, if one of a producer’s sources is
NT, even producers and consumers can issue
together in the same cycle by forwarding the
NT result of the producer to the consumer.

The value of relaxing the issue rules for
dependent instructions is that the processor
encounters load misses more quickly. This
helps ensure that the memory system will have
responded with the data in a timely fashion.
If it requires N cycles to reach a missing load
instruction during normal execution, the
scouting hardware will reach that same
instruction in fewer than N cycles. This allows
more time for the data to return to the
pipeline.

The key to high performance in modern
server microprocessors is the ability to over-
lap long cache misses. To quantify this effect,

consider the metric of MLP, which we define
as the average number of outstanding mem-
ory requests over the time period when there
is at least one request outstanding.12 Figure 13
show the overall MLP for our benchmarks as
well as the MLP when we consider only loads,
stores, or prefetch instructions in isolation.
These figures show the relative improvement
in MLP as compared to a moderately aggres-
sive, out-of-order processor.

Clearly, scouting’s effect on MLP is dra-
matic. Overall, it increases MLP for the data-
base workload by more than 20 percent; for
SPECint2000, 32 percent; and for
SPECfp2000, 70 percent. Considering loads
alone, scouting increase MLP by more than
49 percent. Loads are arguably the most crit-
ical to overall performance, but stores also
matter because they do accumulate in a finite-

42

FUTURE TRENDS

IEEE MICRO

N
o.

 o
f s

co
ut

in
g

ev
en

ts
 (

m
ill

io
ns

)

0

7

6

5

4

3

2

1

Scouting distance (no. of instructions)

N
o.

 o
f s

co
ut

in
g

ev
en

ts
 (

ba
se

 2
)

0

25

20

15

10

5

Scouting distance (no. of instructions)

(a) (b)

N
o.

 o
f s

co
ut

in
g

ev
en

ts
 (

m
ill

io
ns

)

0

6

5

4

3

2

1

Scouting distance (no. of instructions)

N
o.

 o
f s

co
ut

in
g

ev
en

ts
 (

th
ou

sa
nd

s)

0

100

10

20

30

40

50

60

70

80

90

Scouting distance (no. of instructions)

(c) (d)

Figure 12. Histograms showing the incidence of scouting on the database workload, for all latencies plotted linearly (a) and
plotted semi-logarithmically (b). Similar SPECint2000 histograms are for all latencies (c) and for just the higher latencies (d).
These show the natural three latency groupings.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

size store buffer. Again, we see that scouting
increases the MLP of stores by approximate-
ly 20 percent. The figures also show prefetch
MLP, but the result for the database workload
is anomalous in that scouting decreases MLP.
Our analysis shows that scouting finds the
prefetches early and also ends them early. Fur-
thermore, the number of prefetch instructions
in the database trace is low, so the effect is
actually small in absolute terms.

The cycles spent in scouting benefit the
architectural thread in several ways. First, as
mentioned, load misses are issued to the mem-
ory subsystem and so you can think of scout-
ing as a sophisticated hardware prefetch
engine that not only prefetches exactly what
the processor will need, but also does so
through the reuse of existing execution
resources. The processor can use this “prefetch
engine” precisely when it is most useful—
when the pipelines would otherwise stall.
Moreover, the address computation uses the
same instructions and register values that
would otherwise later result in a load miss.

Secondly, hardware scouting primes other
on-chip structures. It warms up the instruc-
tion cache, for example, with instructions that
the processor will need in the immediate
future. Thus, future instruction cache misses
overlap with the current data cache miss.
Additionally, the branch prediction array and
jump target buffer both learn how to correct-
ly predict upcoming control transfers.

For the case of a classic two-bit branch pre-
dictor, a designer ought to account for
whether the branch is resolved speculatively
or architecturally when updating the counter.
In particular, the strongly taken backward
branch at the end of a loop should not be
updated to a not-taken state upon architec-
turally exiting the loop. (A naïve implemen-
tation might update this end-of-loop branch
twice, once during scouting and again when
reaching it architecturally. Such a double
update might first update strongly taken to
weakly taken and then to not-taken, an unde-
sirable outcome.)

Scouting also results in higher performance.
Figure 14 illustrate the improvement in IPC
for various cache sizes. For example, the data-
base workload shows a 40 percent improve-
ment in performance for a 512-Kbyte L2
cache. Or, comparing points having approx-

imately equal performance, a 1-Mbyte cache
offers the performance of an 8-Mbyte one.
Or, a 4-Mbyte cache offers the performance of
a 16-Mbyte cache.

For SPECint2000, scouting yields a 12 per-
cent performance boost for a 512-Kbyte
cache, an attractive gain considering the low
miss rate of these benchmarks. Similarly, a 1-
Mbyte cache in a scouting processor is as effec-
tive as a 2-Mbyte cache in a processor
incapable of scouting. The SPECfp2000
workload shows some of the most dramatic
gains. With a 512-Kbyte cache, scouting
increases SPECfp2000 performance by 34
percent. With a 1-Mbyte cache, the scouting
processor’s performance exceeds that of a
processor without scouting that has a 64-
Mbyte L2 cache.

43MAY–JUNE 2005

19.38

Stores

−39.93

PrefetchesLoads

45.95

Memory

49.2650
40
30
20
10
0

−10
−20
−30
−40

M
LP

 im
pr

ov
em

en
t

(p
er

ce
nt

ag
e)

(a)

Loads

20.1

Stores

38.13

Prefetches

8.14

Memory

32.07

40

30
35

25
20

0
5

10
15

M
LP

 im
pr

ov
em

en
t

(p
er

ce
nt

ag
e)

(b)

Loads

57.09

Stores

107.27

Prefetches

20.1

Memory

70.75

120

80

100

60

40

0

20M
LP

 im
pr

ov
em

en
t

(p
er

ce
nt

ag
e)

(c)

Figure 13. Percentage MLP improvement from scouting for
the database (a), SPECint2000 (b), and SPECfp2000 (c)
workloads.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

CMT processors offer a way
to significantly improve the

performance of computer sys-
tems. The return on investment
for multithreading is among the
highest in computer microarchi-
tectural techniques. If you design
a core from scratch to support
multithreading, gains as high as
3× are possible for just a 20 per-
cent increase in area. Few
microarchitectural techniques
can offer this level of improve-
ment for the same additional
area. Likewise, the availability of
hundreds of millions to a few bil-
lion transistors permits building
a network of multithreaded cores
that can also offer excellent scal-
ability. Here again, the key is to
design the network with CMT
in mind. In other words, the
many wires and high frequency
available on chip—as opposed to
on a board or backplane—
should dictate what the network
will look like. If architected
properly, linear scalability for a
large set of applications is possi-
ble.

Even with throughput perfor-
mance as the main target, we
have shown that the microarchi-
tecture necessary to support
threads on a CMT can also
achieve high single-thread per-
formance. Hardware scouting,
which Sun is implementing on
the Rock microprocessor, can
increase the single-thread per-
formance of applications by up
to 40 percent. Alternatively,
scouting is a technique that
makes the on-chip caches appear
much larger, performance wise.
Finally, it is a performance
robustness technique, making
up for code tailored for different
on-chip cache sizes or even a dif-
ferent number and levels of
caches.

We have attempted to show
that to fully exploit the promis-

44

FUTURE TRENDS

IEEE MICRO

L2 cache size (Mbytes)

40% better
performance

Buys 7 Mbytes
Buys 12 Mbytes

Scouting
No scouting

3

2.75

2.5

2.25

2

1.75

1.5

1.25

1

0.75

0.5

N
or

m
al

iz
ed

 IP
C

0.25 0.50 1 2 4 8 16 32 64
(a)

L2 cache size (Mbytes)

N
or

m
al

iz
ed

 IP
C

0.25 0.50 1 2 4 8 16 32 64
(b)

L2 cache size (Mbytes)

N
or

m
al

iz
ed

 IP
C

0.50 1 2 4 8 16 32 64
(c)

1.4

1.3

1.2

1.1

1

0.9

0.8

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

Buys 1 Mbyte

12% better
performance

Buys 5 Mbytes

Performance improvement over 64-Mbyte cache

34% better
performance

Scouting
No scouting

Scouting
No scouting

Figure 14. Normalized IPC improvement from scouting for the database (a),
SPECint2000 (b), and SPECfp2000 (c) workloads. IPC improvement varies
with cache size.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

es of multithreading and multicores, you must
architect for it from the very beginning. In the
future, we will show how going down the path
of CMT and hardware scouting leads to a new
execution model that does not fit into the nor-
mal classification of in-order or out-of-order
processors. We will show how to attain even
higher single-thread performance by building
on top of hardware scouting and combining
some of our earlier work on speculative mul-
tithreading.2 MICRO

References
1. M. Tremblay, “MAJC: An Architecture for the

New Millennium,” Hot Chips 11, 1999;
http://www.hotchips.org/archives/hc11/3_Tue/
hc99.s8.2.Tremblay.pdf.

2. M. Tremblay et al., “The MAJC Architecture:
A Synthesis of Parallelism and Scalability,”
IEEE Micro, vol. 20, no. 6, Nov.-Dec. 2000,
pp. 12-25.

3. S. Kapil, “Gemini: A Power-Efficient Chip
Multi-Threaded UltraSPARC Processor,” Hot
Chips 15, 2003; http://www.hotchips.org/
archive/hc15/pdf/12.sun.pdf.

4. Q. Jacobson, “UltraSPARC IV Processors,”
Microprocessor Forum, In-Stat, 2003.

5. D. Greenley, “Sun UltraSPARC IV+
Processor,” Microprocessor Forum, In-Stat,
2004.

6. P. Kongetira, K. Aingaran, and K. Olukotun,
“Niagara: A 32-Way Multithreaded Sparc
Processor,” IEEE Micro, vol. 25, no. 2, Mar.-
Apr. 2005, pp. 21-29.

8. J. Tendler et al., “Power4 System
Microarchitecture,” IBM J. Research and
Development, vol. 46, no. 1, Jan. 2002, pp.
5-25.

9. J. Clabes et al., “Design and Implementation
of the Power5 Microprocessor,” Proc. 41st
Ann. Conf. Design Automation (DAC 04),
ACM Press, 2004, pp. 670-672.

10. S. Kunkel et al., “A Performance
Methodology for Commercial Servers,” IBM
J. Research and Development, vol. 44, no.
6, Nov. 2000, pp. 851-872.

11. K. Flautner et al., “Thread Level Parallelism
and Interactive Performance of Desktop
Applications,” ACM SIGPLAN Notices, vol.
35, no. 11, Nov. 2003, pp. 129-138.

12. Y. Chou, B. Fahs, and S. Abraham,
“Microarchitecture Optimizations for

Exploiting Memory-Level Parallelism,” Proc.
31st Ann. Int’l Symp. Computer Architecture
(ISCA 04), IEEE Press, 2004, pp. 76-89.

Shailender Chaudhry is a distinguished engi-
neer at Sun Microsystems where he is chief
architect of the Rock processor. His experi-
ence includes work on the MAJC architec-
ture, picoJava II, microJava, and space-time
computing. His research interests include
computer systems architecture, algorithms,
and protocols. Chaudhry has a BS and an MS
in computer engineering from Syracuse Uni-
versity.

Paul Caprioli is a senior staff engineer at Sun
Microsystems where he is the Rock core archi-
tect and leads the performance modeling
group. His research interests include computer
architectures and high-performance technical
computing. Caprioli has an MS and a PhD in
mathematics from Rensselaer Polytechnic
Institute.

Sherman Yip is an engineer at Sun Microsys-
tems where he is a member of the Rock archi-
tecture team and responsible for performance
modeling. His research interests include
processor simulation, visualization, and Java
performance and design. Yip has a BS in com-
puter science from the University of Califor-
nia at Davis.

Marc Tremblay is a Sun Fellow and distin-
guished engineer at Sun Microsystems, where
he is chief architect of the Scalable Systems
Group. His research interests include chip
multiprocessing, chip multithreading, specu-
lative multithreading, and assist threading.
Tremblay has an MS and a PhD in computer
science from UCLA and a BS in physics engi-
neering from Laval University in Canada. He
holds 97 US patents in various areas of com-
puter architecture. He is a member of the
IEEE and the ACM.

Direct questions and comments about this
article to Marc Tremblay, Sun Microsystems
Inc., 430 North Mary Ave., Sunnyvale, CA
94085; marc.tremblay@sun.com.

45MAY–JUNE 2005

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on November 27,2020 at 15:03:22 UTC from IEEE Xplore. Restrictions apply.

