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Executive Summary

● Motivation: Workloads and systems have varying memory capacity and latency demands.

● Problem: Commodity DRAM makes a static capacity-latency trade-off at design-time.
○ Existing DRAM cannot adapt to varying capacity and latency demands.

● Goal: Design a low-cost DRAM architecture that can be dynamically configured to have high capacity or low 
latency at a fine granularity (i.e., at the granularity of a row).

● CLR-DRAM (Capacity-Latency-Reconfigurable DRAM): 
A single DRAM row can dynamically switch between either:

○ Max-capacity mode with high storage density.
○ High-performance mode with low access latency and low refresh overhead.

● Key Mechanism: 
○ Couple two adjacent cells and sense amplifiers to operate as a high-performance logical cell.
○ Dynamically turn on or off this coupling at row granularity to switch between two modes.

● Results:
○ Reduces key DRAM timing parameters by 35.2% to 64.2%.
○ Improves average system performance by 18.6% and saves DRAM energy by 29.7%.
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Fundamental Capacity-Latency Tradeoff in 
DRAM
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Motivation

● Motivation: Existing systems miss opportunities to improve performance by adapting to 

changes in main memory capacity and latency demands.
○ The memory capacity of a system is usually overprovisioned.
○ Many workloads underutilize the system’s memory capacity. 

■ e.g., HPC [Panwar+, MICRO’19], Cloud [Chen+, ICPADS’18], and Enterprise [Di+, CLUSTER’12].
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● Problem: Commodity DRAM makes a static capacity-latency trade-off at design-time.
○ Existing DRAM cannot adapt to varying capacity and latency demands.
○ Some state-of-the-art heterogeneous DRAM architectures [Lee+, HPCA’13, Son+, ISCA’13] employ 

only a fixed-size and small low-latency region.
■ Does not always provide the best possible operating point within the DRAM 

capacity-latency trade-off spectrum for all workloads.



Goal

● Goal: Design a low-cost DRAM architecture that can be dynamically configured to have 
high capacity or low latency at a fine granularity (i.e., at the granularity of a row).
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DRAM Background - Sense Amplifier
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CLR-DRAM (Capacity-Latency-Reconfigurable DRAM)
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● CLR-DRAM: Enables a single DRAM row to dynamically switch between 
max-capacity mode or high-performance mode with low cost.

● Key Idea: 
Dynamically configure the connections between DRAM cells and sense amplifiers in the 
density-optimized open-bitline architecture.
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Type 2 Type 1

Type 1 Type 2

Max-Capacity Mode
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Max-capacity mode achieves the same storage capacity 
as the conventional open-bitline architecture

● Max-capacity mode mimics the cell-to-SA 
connections as in the open-bitline architecture.

○ Enable Type 1 transistors 
○ Disable Type 2 transistors

SA1

SA2

A B
● Every single cell and its SA operate 

individually.

A B



● Two adjacent DRAM cells in a row coupled as 
a single logical cell.

Type 2

Type 2

Type 1

Type 1
● High-performance mode couples every two 

adjacent DRAM cells in a row and their SAs.

○ Enable Type 1 transistors 
○ Enable Type 2 transistors

High-Performance Mode
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High-performance mode reduces access latency and refresh overhead
via coupled cell/SA operations
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High-Performance Mode Benefits: Coupled Cells
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● A logical cell (two coupled cells) always stores 
opposite charge levels representing the same bit.

bitlinebitline

● This enables three benefits:
○ Reducing latency of charge sharing.
○ Early-termination of charge restoration.
○ Retaining data for longer time.



High-Performance Mode Benefits: Coupled SAs
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● A logical SA operates faster by having two SAs 
driving the same logical cell.

● This enables three benefits:
○ Reducing latency of charge restoration.
○ Reducing latency of precharge.
○ Completing refresh in shorter time.
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Reducing DRAM Latency: Three Ways
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○ Reducing latency of charge sharing.

○ Early-termination of charge restoration.

○ Reducing latency of charge restoration and precharge.

High-performance mode reduces 
activation (tRCD), restoration (tRAS) and precharge (tRP) 

latencies
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1. Reducing Charge Sharing Latency
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● Coupled cells always store opposite charge levels representing the same bit.
○ Drive both bitlines of a SA into opposite directions during charge sharing.
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2. Early Termination of Charge Restoration
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● Observation 1: Charge restoration has a long “tail latency”.

RestoredLast 
25%

~50% Charge 
Restoration time

Terminating charge restoration early 
does not significantly degrade the charge level in the cell

Bitline
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2. Early Termination of Charge Restoration

● Observation 2: A discharged cell restores faster than a charged one.
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Terminating charge restoration early can still 
fully restore the discharged cell.



3. Reducing Charge Restoration & Precharge Latency
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● Logical SA contains two physical SAs.
○ Drive the same logical cell from 

both ends of the bitlines.
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Reducing DRAM Latency: Three Ways
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○ Reducing latency of charge sharing.

○ Early-termination of charge restoration.

○ Reducing latency of charge restoration and precharge.

High-performance mode reduces 
activation (tRCD), restoration (tRAS) and precharge (tRP) 

latencies
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Mitigating Refresh Overhead

28

CLR-DRAM reduces refresh overhead of high-performance rows in two different ways: 

1. Reducing Refresh Latency
- Refresh is essentially activation + precharge.
- All latency reductions (activation, restoration, precharge) apply to               

reduce each refresh operation's latency.

2. Reducing Refresh Rate
- A logical cell has larger capacitance. 
- Tolerates more leakage. 
- Can be refreshed less frequently.

High-performance mode reduces 
refresh latency (tRFC) and refresh rate (increases tREFW)
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SPICE Simulation
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Methodology 
● Model a DRAM subarray based on Rambus DRAM technology parameters [1].
● Scaled to 22 nm according to the ITRS roadmap [2].
● 22nm PTM-HP transistor model [3]. 

[1] Rambus, “DRAM Power Model (2010),” http://www.rambus.com/energy
[2] ITRS Roadmap, http://www.itrs2.net/itrs-reports.html
[3] http://ptm.asu.edu/



SPICE Simulation: High-Performance Mode Latencies

32*The tRP reduction of coupling precharge units also applies to max-capacity mode.

(Row Close) (Write)
(Row Open)

60.1% 64.2% 46.4% 35.2%

(Row Close) (Write)(Activation)

Max-capacity

High-performance
w/o early termination

High-performance
w/ early termination

(Restoration)

CLR-DRAM reduces DRAM latency by 35.2% to 64.2% 
in high-performance mode
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System-Level Evaluation - Methodology
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Simulator: 
Cycle-level DRAM simulator: Ramulator [Kim+, CAL’15] 

Workloads: 
• 41 single-core workloads from SPEC CPU2006, TPC, MediaBench
• 30 in-house synthetic random and stream access workloads
• 90 multi-programmed four-core workloads

• By randomly choosing from our real single-core workloads

System Parameters:
• 1/4 core system with 8MB LLC
• 5 configurations: X% of the DRAM rows configured to high-performance mode.

• X = 25, 50, 75, 100. Plus a X=0 case where all rows are max-capacity 
mode.

• Map X% of the most accessed pages of workloads to high-performance 
mode rows.



Fraction of High-Performance Rows

CLR-DRAM Performance
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Fraction of High-Performance Rows

12.4%

*GMEAN is the geometric mean of the speed up of the 41 real single-core workloads.

*

CLR-DRAM improves system performance for 
both single-core and multi-core workloads

18.6%

  L, M, H stand for different multi-core workload groups with different memory-intensity.

Single-core Multi-core



Fraction of High-Performance Rows

Multi-core

Fraction of High-Performance Rows

Single-core

CLR-DRAM Energy Savings
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29.7%

CLR-DRAM saves DRAM energy for 
both single-core and multi-core workloads

19.7%

*GMEAN is the geometric mean of the speed up of the 41 real single-core workloads.

*

  L, M, H stand for different multi-core workload groups with different memory-intensity.



Mitigating Refresh Overhead
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CLR-DRAM significantly reduces DRAM refresh energy 

Fraction of High-Performance RowsFraction of High-Performance Rows

18.6% 17.8%66.1% 87.1%



Overhead of CLR-DRAM
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Memory Capacity Overhead:
● X% of the rows in high-performance mode incurs X/2% capacity overhead.

DRAM Chip Area Overhead:
● 3.2% based on our conservative estimates (real overhead is likely lower).

CLR-DRAM is a low-cost architecture 

[More details in the paper]



Other Results, Analyses and Design Details in the Paper
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Sensitivity Study of Reducing Refresh Rate (increasing tREFW)
● The trade-off between less refresh operations (increase tREFW) and increased 

access latency (tRCD and tRAS).
● The system-level performance and DRAM refresh energy impact of the trade-off.

Modifications to Subarray Column Access Circuitry
● Column (read/write) access to a high-performance row maintain full bandwidth.

Efficient Control of the Bitline Mode Select Transistors
● Only two control signals required per-bank for all its subarrays.

○ Ensures correct SA operation in max-capacity mode.
○ Maximizing latency-reduction in high-performance mode.



CLR-DRAM Outline
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Conclusion

● We introduce CLR-DRAM (Capacity-Latency-Reconfigurable DRAM)
A new DRAM architecture enabling dynamic fine-grained reconfigurability between 
high-capacity and low-latency operation. 

● CLR-DRAM can dynamically reconfigure every single DRAM row to operate in either
○ Max-capacity mode: almost the same storage density as the baseline density-optimized 

architecture by letting each DRAM cell operate separately.
○ High-performance: low access latency and low refresh overhead by coupling every two 

adjacent DRAM cells in the row and their sense amplifiers.

● Key Results
○ Reduces four major DRAM timing parameters by 35.2-64.2%.
○ Improves average system performance by 18.6% and saves DRAM energy by 29.7%.

● We hope that CLR-DRAM can be exploited to develop more flexible systems that can 
adapt to the diverse and changing DRAM capacity and latency demands of workloads.
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Future Works, Challenges, and Opportunities
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The Opportunity: 
CLR-DRAM enables a new kind of heterogeneous memory system.
● It offers two memory domains: fast memory and normal memory.
● The capacity of these two domains can be adjusted at a fine granularity.

New and management policies for the CLR-DRAM heterogeneous memory system.
● Data placement policies.
● Management policies (e.g., when and how to migrate data).
● Identifying applications that can benefit from CLR-DRAM.

How to change applications and systems to benefit from CLR-DRAM?
● New software designs and algorithms.
● Semantically rich cross-layer system interfaces.
● New memory controller designs.
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