
EDEN
Enabling	Energy-Efficient,	High-Performance

Deep	Neural	Network	Inference
Using	Approximate	DRAM

Skanda	Koppula Lois	Orosa A.	Giray Yaglikci
Roknoddin Azizi				Taha	Shahroodi Konstantinos	Kanellopoulos Onur Mutlu

MICRO	2019



Summary
Motivation:	Deep	Neural	Networks	(DNNs)	are	important	in	many	domains
Problem: DRAM can	increase	the	energy	consumption	and	the	execution	
latency	of	DNN	inference
Goal:	reduce	energy	and	latency	of	DNN	workloads	by	using	DRAM	with	

reduced	voltage	and	timing	parameters	(approximate	DRAM)
Challenge:		approximate	DRAM	introduce	bit	errors

EDEN:	Enabling	Efficient	DNN	Inference	Using	Approximate	DRAM
● Tolerate	approximate	DRAM	bit	errors	by	retraining	the	DNN	for	a	
target	accuracy

● Map DNN	data	types	with	different	error	tolerance	to DRAM	partitions
with	different	error	rates

Results:
● Average	21%/37%/31%	DRAM	energy	savings on	CPU/GPU/DNN-
accelerators

● Average	8%	speedup	on	CPU
EDEN	is	applicable	to	other	DRAM	parameters and	memory	technologies

2



Outline

1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation
Enabling	EDEN	Using	Error	Models

3

2.			DNN		and	DRAM	Background

5.			Conclusion



Outline

1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation
Enabling	EDEN	Using	Error	Models

4

2.			DNN		and	DRAM	Background

5.			Conclusion



Motivation

Deep	neural	networks	(DNNs)	are	critical
in	computer	vision,	robotics,	and	many	other	domains

Modern	platforms	for	DNN	inference	use	DRAM

Mobile	CPUs
GPUs Data	Center	Accelerators Edge	Device	Accelerators

5



Challenges	of	DNN	Inference

DRAM	has	high	energy	consumption
● 25%	to	70%	of	system	energy is	consumed	by	DRAM	in	common	

DNN	inference	accelerators

DRAM	can	bottleneck	performance
● Reducing	DRAM	latency	can	potentially	enable	19%	speedup	for	some	
DNN	workloads	on	CPU

6

How	can	we	reduce	DRAM	energy
and	improve	DRAM	performance

for	DNN	inference?



Outline

1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation
Enabling	EDEN	Using	Error	Models

7

2.			DNN	and	DRAM	Background

5.			Conclusion



8

● DNN	Inference:	classifies	inputs	that	the	network	has	never	
seen

● Three	main	data	types compose	a	DNN	layer:
1.Weights
2. Input	Feature	Maps	(IFMs)
3. Output	Feature	Maps	(OFMs)

● Modern	DNNs	can	have	hundreds	of	layers and	between	105
and	109weights

● Large	DNN	weight/IFM	counts	enable	high	learning	capacity

Deep	Neural	Network	Inference



9

Deep	Neural	Network	Training
● Before	inference,	the	DNN	must	be	trained

● Training	is	the	process	of	estimating	the	best	set	of	
weights that	maximize	the	accuracy	of	DNN	inference

● Two	passes:
1. Forward	pass:	

■ The	same	process	as	DNN	inference	
■ Compare	the	DNN	results	with	golden	results
■ Calculates	the	loss (or	error)	of	the	model	

2. Backward	pass:	
■ Update	the	weights	towards	values	that	make	

the	DNN	to	get	more	accurate	results



Memory	
Bus

CPU,	GPU, or	DNN	Accelerator

Memory	
Controller

10

DRAM	Basics

DRAM
Row

Sense	Amplifier

DRAM
Cell

DRAM Subarray



Memory	
Bus

CPU,	GPU, or	DNN	Accelerator

Memory	
Controller	(MC)

11

Accessing	data	follows	a	
sequence	of	MC	commands
with standard	timing	
parameters

DRAM	operates	at	a	standard	
voltage		(e.g.,	DDR3	at	1.35V)

DRAM	Parameters



Memory	
Bus

Compute	Unit

Memory	
Controller	(MC)

Approximate	DRAM

● Approximate	DRAM	operates	with	
reduced	parameters
● Voltage
● Timing	parameters

● It	enables	to	reduce	DRAM energy	and	
latency

● It	might	introduce	bit	errors

● It	can	only	store	data	that	is	tolerable	
to	errors



1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation

Enabling	EDEN	Using	Error	Models

13

2.			DNN	and	DRAM	Background

Outline

5.			Conclusion



1.	DNNs	have	an	intrinsic	robustness to	errors
in	input,	weight,	and	output	data	types

2.	DRAM	can	be	more	energy-efficient and	lower	latency
at	the	cost	of	introducing	bit	errors

Approximate	DRAM
can	provide	higher	energy-efficiency and	

performance
for error-tolerant	DNN	inference	workloads

14

Observations



15

Key	idea:	Enabling	accurate,	efficient DNN	inference	
using	approximate	DRAM

EDEN is	an	iterative process	that	has	3	key	steps

EDEN:	Overview



16

EDEN:	Inputs

Target	
approximate	DRAM	device



Goal:	Maintain	accuracy	when	the	DNN	is	exposed	to	bit	
errors
Key	idea:	Retrain the	DNN	with	approximate	DRAM to	
adapt	the	DNN	to	unreliable	DRAM	cells

● Forward pass uses approximate DRAM
○ To get the output and the loss in the presence of
bit errors

● Backward pass uses DRAMwith standard parameters
○ To update weights reliably

17

Step	1:	Boosting	DNN	Error	Tolerance



1. The	error	tolerance	of	common	DNNs	is	not	
sufficient	to	enable	significant	DRAM	parameter	
reductions
○ For	high	bit	error	rates,	the	accuracy	collapses	at	
the	start	of	retraining

2. Bit	errors	might	affect	most	significant	bits	of	the	
weights	(exponent	bits)
○ Can	create	enormously	large	values	that	
propagates	through	the	DNN	layers

18

Step	1:	Challenges

These	issues	can	create	
accuracy	collapse	in	the	DNN



1. Gradually	increase	the	bit	error	rate of	approximate	DRAM	
during	retraining	
○ The	goal	is	to	build	error	tolerance
○ Avoids	accuracy	collapse	in	retraining
○ We	increase	the	BER	by	decreasing	the	timing	parameters

2. Correcting	implausible	values	that	are	out-of-range
○ The	valid	range	is	calculated	during	training	of	the	baseline	
DNN

○ E.g.,:	weights	in	SqueezeNet are	within	the	range	[-5,5]
○ Zero	out	the	out-of-range	values
○ The	mechanism	can	be	implemented	in	the	memory	
controller	at	low	cost

19

Step	1:	Solutions



1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation

Enabling	EDEN	Using	Error	Models

20

2.			DNN	and	DRAM	Background

Outline

5.			Conclusion



Goal: Find	the	highest	tolerable	error	rates of	the	DNN	and	
the	corresponding	DRAM	parameters

Key	idea:	Systematically	measure	error	resilience of	each	
DNN	data	type on	the	approximate	DRAM

Two	ways	to	perform	the	DNN	characterization:
1. Coarse-grained

■ Determine	the	highest BER	that	can	be	applied	
uniformly	to	the	entire	DNN

2. Fine-grained
■ Determine	the	maximum	tolerable	BER for	each

individual	DNN data	type	and	layer

21

Step	2:	DNN	Error	Tolerance	Characterization

Adjust	the	BER by tuning	the	parameters	of	approximate	DRAM



22

● Coarse-Grained	DNN	Error	Tolerance	Characterization
● Can	be	applied	in	off-the-shelf	DRAM
● Limited voltage/latency	reduction

● Fine-Grained DNN	Error	Tolerance	Characterization
● Requires non-commodity	DRAM to	reduce	some	
parameters	(e.g.,	Vdd)

● More aggressive	voltage/latency	reduction

Step	2:	Coarse-Grained	VS	Fine-Grained



23

Step	2:	Example	ResNet-50	Characterization

- Error	tolerance of	DNN	layers	varies	greatly
- Coarse-Grained:	maximum tolerable	BER	is 2%
- Fine-Grained:	tolerable	BER	between 2%	and 13%



1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation

Enabling	EDEN	Using	Error	Models

24

2.			DNN	and	DRAM	Background

Outline

5.			Conclusion



● Goal:	Match	error	tolerance of	DNN	with	DRAM	bit	error	
rates	(BER)

● DNN	to	DRAM	mapping:
1. Coarse-grained:	assign	the	single	best	DRAM	voltage/latency

value that	meets	the	target	DNN	accuracy

2. Fine-grained:	a	greedy	algorithm that	matches	first	the	most	
error	sensitive	DNN	data	to	the	most	reliable	DRAM	partitions

• Require	DRAM BER	Characterization
• Test BER	for reduced	voltage	and	latency	for	different	data	

patterns

• Similar	methodology	to	previous	DRAM	characterization	

mechanisms	[1][2]

25

Step	3:	DNN	to	DRAM	Mapping

[1]	“Understanding	Reduced-Voltage	Operation	in	Modern	DRAM	Devices:	Experimental	Characterization,	Analysis,	and	Mechanisms”,		Chang+,	

SIGMETRICS’17

[2]	“Understanding	Latency	Variation	in	Modern	DRAM	Chips:	Experimental	Characterization,	Analysis,	and	Optimization”,	Chang+,	SIGMETRICS’17



26

Mapping	example	of	ResNet-50:

Step	3:	Coarse-Grained	DNN	to	DRAM	Mapping

The	DRAM	should	not	introduce	more	than	2%	BER



27

Mapping	example	of	ResNet-50:

Step3:	Fine-Grained	DNN	to	DRAM	Mapping

Map	DNN	layers	more	tolerable	to	errors	to	DRAM	
partitions	with	lower	voltage/latency

1

2 3
4

<2%	BER
<5%	BER <6%	BER

<8%	BER

4	DRAM	partitions	with	different	error	rates



1.		Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation

Enabling	EDEN	Using	Error	Models

28

2.			DNN	and	DRAM	Background

Outline

5.			Conclusion



29

Problem: Retraining	is	not	always	feasible
on	the	approximate	DRAM	device

○ Example:	some	edge-devices have	limited	
hardware	resources

Goal: Perform	retraining	and	DNN	error	
characterization	 in	a	system	that	is	
different	from	the	target	approximate	
system

Key	Idea:	use	error	models	to	emulate	the	
bit	errors	of	the	target	approximate	DRAM

Enabling	EDEN	Using	Error	Models



● Error	models	Contain	information	about	the	spatial	
distribution	of	weak	cells	in	the	DRAM	modules

● Use	the	error	models	to	inject	errors	in	each	DRAM	access

● EDEN	uses	four probabilistic	error	models
○ Observed	in	real	approximate	DRAMmodules

1
1

1

Model	0:
Uniform	Random

Model	1:
Wordline Correlated

Model	2:
Bitline Correlated

Model	3:
Bit	Value	Dependent

30

DRAM	Error	Models



1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

4.			Evaluation
Enabling	EDEN	Using	Error	Models

31

2.			DNN	and	DRAM	Background

5.			Conclusion

Outline



32

DNN	Accuracy	Evaluation:	Methodology

● 8	DNN	workloads
○ YOLO,	YOLO-Tiny,	MobileNetV2,	SqueezeNet1.1,	VGG-16,	
DenseNet201,	ResNet-101,	AlexNet

○ Four	quantization	levels	
○ int4,	int8,	int16,	FP32

● FPGA-based	framework	[1]	to	run	inference	data	accesses	
on	real	DDR3	DRAM	modules

● Custom	PyTorch-based	DNN	framework	to	run	DNN	
inference	with	 error	models

[1]	"SoftMC:	A	flexible	and	practical	open-source	infrastructure	for	enabling	experimental	DRAM	studies”,	Hassan+,	HPCA’17



33

Boosting	Error	Tolerance	of	ResNet101

DNN	tolerance	boosting can
improve	a	DNN’s bit	error	tolerance

by	5-10x

Tolerance	boost:	10x



Our	boosting	mechanism	helps	reducing	DRAM	voltage	
and	latency	while maintain	accuracy

on	real	DRAM	modules

34

DNN	Accuracy	of	LeNeT using	Real	DRAM

-4.5	ns-0.25	V



35

System	Level	Evaluation:	Methodology

● 6	DNN	workloadswith	int8 and	FP32 quantizations
● Yolo-Tiny,	Yolo,	ResNet,	VGG,	SqueezeNet,	DenseNet

● Inference	libraries	from	DarkNet,	Intel	OpenVINO,	TVM

● Simulators:	Ramulator,	ZSim,	GPGPUSim,	and	SCALE-Sim used	
for	DRAM,	CPU,	GPU,	Eyeriss,	and	TPU	simulation

● Configurations:
● CPU:	4	Core,	8MB	L3	per	core,	8GB	DDR4
● GPU:	28	SMs,	12GB	GDDR5	(Titan	X)
● Eyeriss:	12x14	PEs,	4GB	LPDDR4
● TPU:	256	x	256	PEs,	4GB	LPDDR4

● More	detail	in	the	paper



36

CPU:	DRAM	Energy	Evaluation

Average	21%DRAM	energy reduction
maintaining	accuracy	within	1%	of	original



37

Average	8% system	speedup
Some	workloads	achieve 17% speedup

CPU:	Performance	Evaluation

EDEN	achieves	close	to	the	ideal	speedup
possible	via	tRCD scaling

Ideal



38

GPU,	Eyeriss,	and	TPU:		Energy	Evaluation

• GPU:	average	37%	energy	reduction

• Eyeriss:	average	31%	energy	reduction

• TPU:	average	32%	energy	reduction



- Error	resiliencies	across	different	DNNs	and	
quantizations

- Validation	of	the	boosting	mechanism
- Supporting	data	for	error	models	using	real	
DRAM	modules

- Comparison	of	different	DRAM	error	models
- Breakdown	of	energy	savings	on	different	
workloads	for	GPU	and	TPU

39

Other	Results	in	the	Paper



1.	Motivation	and	Problem

3.			EDEN	Mechanism

ii.			DNN	Error	Tolerance	Characterization
i.					Boosting	DNN	Error	Tolerance

iii.		DNN	to	DRAM	Mapping

5.			Conclusion

Enabling	EDEN	Using	Error	Models

40

2.			DNN	and	DRAM	Background

Outline

4.			Evaluation



Conclusion
Motivation:	Deep	Neural	Networks	(DNNs)	are	important	in	many	domains
Problem: DRAM can	increase	the	energy	consumption	and	the	execution	
latency	of	DNN	inference
Goal:	reduce	energy	and	latency	of	DNN	workloads	by	using	DRAM	with	

reduced	voltage	and	timing	parameters	(approximate	DRAM)
Challenge:		approximate	DRAM	introduce	bit	errors

EDEN:	Enabling	Efficient	DNN	Inference	Using	Approximate	DRAM
● Tolerate	approximate	DRAM	bit	errors	by	retraining	the	DNN	for	a	
target	accuracy

● Map DNN	data	types	with	different	error	tolerance	to DRAM	partitions
with	different	error	rates

Results:
● Average	21%/37%/31%	DRAM	energy	savings on	CPU/GPU/DNN-
accelerators

● Average	8%	speedup	on	CPU
EDEN	is	applicable	to	other	DRAM	parameters and	memory	technologies

41



EDEN
Enabling	Energy-Efficient,	High-Performance

Deep	Neural	Network	Inference
Using	Approximate	DRAM

Skanda	Koppula Lois	Orosa A.	Giray Yaglikci
Roknoddin Azizi				Taha	Shahroodi Konstantinos	Kanellopoulos Onur Mutlu



Coarse-Grained	Scaling

43

tRCD	or	voltage	scaling	that	yields	<1%	accuracy
degradation	on	a	target	DDR3	module

Coarse-Grained	Scaling



44

DNN	Workload	List	and	Baseline	Accuracies



Key	Steps:
1. Decrease	tRCD/Vdd of	DRAM	module2. Run	DNN	inference
3. Measure	accuracy	on	validation	dataset
4. If	accuracy	<	target:	terminate.

Decreasing	voltage	and	DNN	accuracy

Coarse-Grained	Characterization	Algorithm

45



Key	Steps:
1. Decrease	parameter	of	DRAM/DNN	partition
2. Run	DNN	inference
3. Measure	accuracy	on	validation	dataset
4. If	accuracy	<	target:	roll-back	parameter	decrease
5. Repeat	for	all	DNN	partitions,	parameter	levels

46

Coarse-Grained	Characterization	Algorithm


