EDEN

Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

MICRO 2019

Summary

<u>Motivation</u>: Deep Neural Networks (DNNs) are important in many domains <u>Problem</u>: *DRAM* can increase the energy consumption and the execution *latency* of DNN inference

<u>Goal</u>: reduce energy and latency of DNN workloads by using DRAM with reduced voltage and timing parameters (approximate DRAM) <u>Challenge</u>: approximate DRAM introduce bit errors

EDEN: Enabling Efficient DNN Inference Using Approximate DRAM

- **Tolerate approximate DRAM bit errors** by retraining the DNN for a target accuracy
- Map DNN data types with different error tolerance to DRAM partitions with different error rates

Results:

- Average 21%/37%/31% DRAM energy savings on CPU/GPU/DNNaccelerators
- Average **8% speedup** on CPU

EDEN is applicable to other DRAM parameters and memory technologies

SAFARI

Outline

1. Motivation and Problem

2. DNN and DRAM Background

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

- 4. Evaluation
- 5. Conclusion

Outline

1. Motivation and Problem

2. DNN and DRAM Background

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

- 4. Evaluation
- 5. Conclusion

Motivation

Deep neural networks (DNNs) are critical in computer vision, robotics, and many other domains

Modern platforms for DNN inference use DRAM

Mobile CPUs

GPUs

Data Center Accelerators

Edge Device Accelerators

Challenges of DNN Inference

DRAM has high energy consumption

• **25% to 70% of system energy** is consumed by DRAM in common DNN inference accelerators

DRAM can bottleneck performance

• **Reducing DRAM latency** can potentially enable **19% speedup** for some DNN workloads on CPU

How can we **reduce DRAM energy** and **improve DRAM performance** for DNN inference?

Outline

1. Motivation and Problem

2. DNN and DRAM Background

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

- 4. Evaluation
- 5. Conclusion

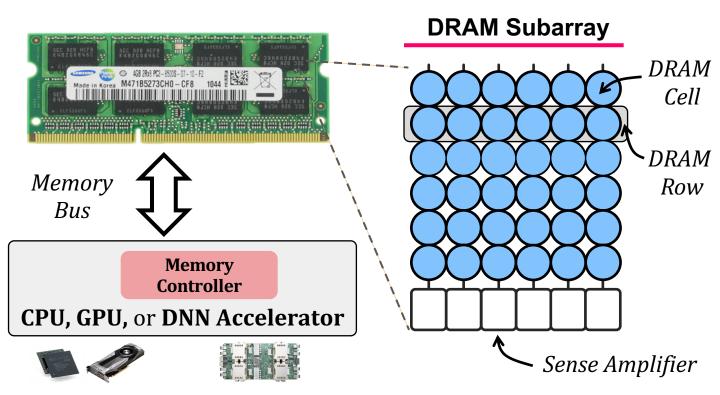
Deep Neural Network Inference

- **DNN Inference:** classifies inputs that the network has never seen
- Three main data types compose a DNN layer:
 - 1. Weights
 - 2. Input Feature Maps (IFMs)
 - 3. Output Feature Maps (OFMs)
- Modern DNNs can have hundreds of layers and between 10⁵ and 10⁹ weights
- Large DNN weight/IFM counts enable high learning capacity

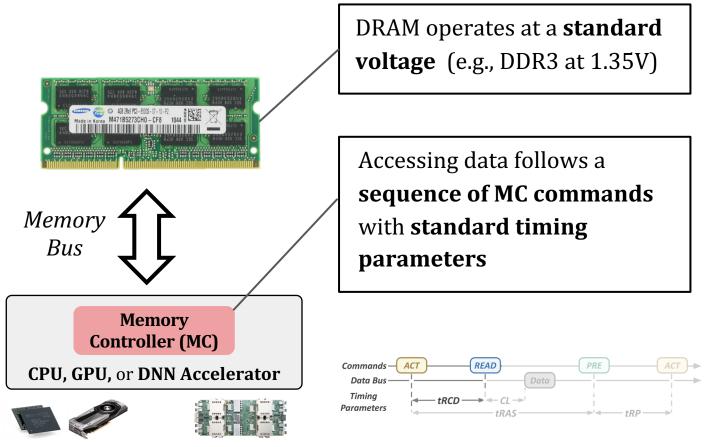
Deep Neural Network Training

- Before inference, the **DNN must be trained**
- Training is the process of estimating the best set of weights that maximize the accuracy of DNN inference
- Two passes:
 - 1. Forward pass:
 - The same process as DNN inference
 - Compare the **DNN results** with **golden results**
 - Calculates the **loss** (or error) of the model
 - 2. Backward pass:
 - Update the weights towards values that make the DNN to get more accurate results

DRAM Basics

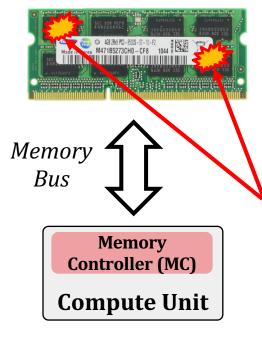


DRAM Parameters



SAFARI

Approximate DRAM



- Approximate DRAM operates with
 reduced parameters
 - Voltage
 - Timing parameters
- It enables to reduce DRAM energy and latency
 - It might introduce bit errors
- It can only store data that is tolerable to errors

Outline

1. Motivation and Problem

2. DNN and DRAM Background

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

- 4. Evaluation
- 5. Conclusion

Observations

1. DNNs have an **intrinsic robustness to errors** in input, weight, and output data types

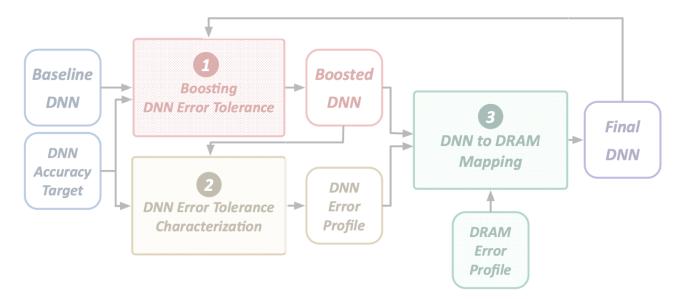
2. DRAM can be **more energy-efficient** and **lower latency** at the cost of introducing **bit errors**

Approximate DRAM can provide higher energy-efficiency and performance for error-tolerant DNN inference workloads

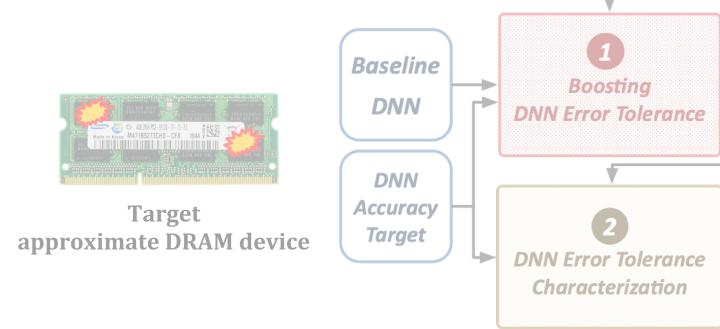
EDEN: Overview

<u>Key idea</u>: Enabling accurate, efficient DNN inference using approximate DRAM

EDEN is an iterative process that has 3 key steps



EDEN: Inputs



Step 1: Boosting DNN Error Tolerance

<u>Goal</u>: Maintain accuracy when the DNN is exposed to bit errors

<u>Key idea</u>: Retrain the DNN with **approximate DRAM** to adapt the DNN to unreliable DRAM cells

- Forward pass uses approximate DRAM
 - To get the **output and the loss** in the presence of bit errors
- **Backward pass** uses DRAM with standard parameters
 - To update weights reliably

Step 1: Challenges

- 1. The **error tolerance** of common **DNNs is not sufficient** to enable significant DRAM parameter reductions
 - For **high bit error rates**, the **accuracy collapses** at the start of retraining
- 2. Bit errors might affect most significant bits of the weights (exponent bits)
 - Can create enormously large values that propagates through the DNN layers

These issues can create accuracy collapse in the DNN

Step 1: Solutions

- 1. Gradually **increase the bit error rate** of approximate DRAM during retraining
 - The goal is to **build error tolerance**
 - Avoids accuracy collapse in retraining
 - We increase the BER by decreasing the timing parameters
- 2. Correcting implausible values that are out-of-range
 - The valid range is calculated during training of the baseline DNN
 - **E.g.,:** weights in SqueezeNet are within the range [-5,5]
 - Zero out the out-of-range values
 - The mechanism can be implemented in the memory controller at low cost

Outline

1. Motivation and Problem

- 2. DNN and DRAM Background
- 3. EDEN Mechanism
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization
 - iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

Step 2: DNN Error Tolerance Characterization

<u>Goal</u>: Find the highest tolerable error rates of the DNN and the corresponding DRAM parameters

Key idea: Systematically **measure error resilience** of **each DNN data type** on the approximate DRAM

<u>**Two ways**</u> to perform the <u>**DNN characterization**</u>:

- 1. Coarse-grained
 - Determine the highest BER that can be applied uniformly to the entire DNN
- 2. Fine-grained
 - Determine the maximum tolerable BER for each individual DNN data type and layer

Adjust the **BER** by **tuning the parameters** of approximate DRAM

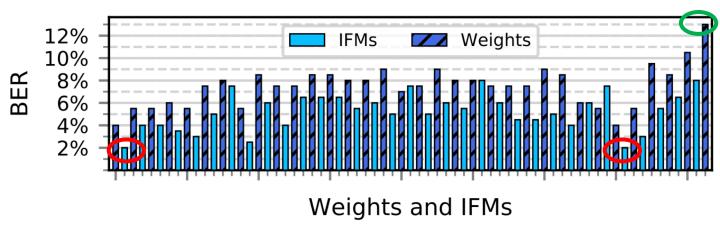
SAFARI

Step 2: Coarse-Grained VS Fine-Grained

- **Coarse-Grained** DNN Error Tolerance Characterization
 - Can be applied in off-the-shelf DRAM 😳
 - Limited voltage/latency reduction
- Fine-Grained DNN Error Tolerance Characterization
 - Requires non-commodity DRAM to reduce some parameters (e.g., V_{dd})
 - More aggressive voltage/latency reduction

••)

Step 2: Example ResNet-50 Characterization



- Error tolerance of DNN layers varies greatly
- Coarse-Grained: maximum tolerable BER is 2%
- Fine-Grained: tolerable BER between 2% and 13%

Outline

1. Motivation and Problem

- 2. DNN and DRAM Background
- 3. EDEN Mechanism
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization

iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

Step 3: DNN to DRAM Mapping

- <u>Goal</u>: Match error tolerance of DNN with DRAM bit error rates (BER)
- DNN to DRAM mapping:
 - 1. **Coarse-grained:** assign the single best **DRAM voltage/latency** value that **meets the target DNN accuracy**
 - 2. Fine-grained: a greedy algorithm that matches first the most error sensitive DNN data to the most reliable DRAM partitions
- Require DRAM BER Characterization
 - Test BER for reduced voltage and latency for different data patterns
 - Similar methodology to previous DRAM characterization mechanisms [1][2]

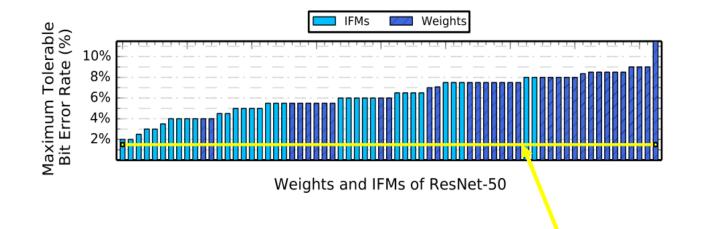
[1] "Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms", Chang+, SIGMETRICS'17

[2] "Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization", Chang+, SIGMETRICS'17

25

Step 3: Coarse-Grained DNN to DRAM Mapping

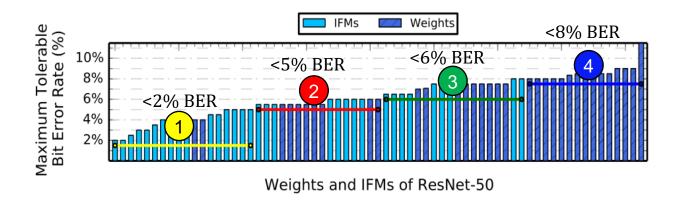
Mapping example of ResNet-50:



The DRAM should not introduce more than 2% BER

Step3: Fine-Grained DNN to DRAM Mapping

Mapping example of ResNet-50:



Map DNN layers more tolerable to errors to DRAM partitions with lower voltage/latency

4 DRAM partitions with different error rates

Outline

1. Motivation and Problem

- 2. DNN and DRAM Background
- 3. EDEN Mechanism
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization
 - iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

Enabling EDEN Using Error Models

<u>Problem</u>: Retraining is **not always feasible** on the approximate DRAM device

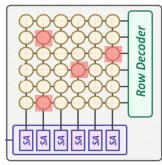
Example: some edge-devices have limited hardware resources

<u>Goal</u>: Perform retraining and DNN error characterization **in a system that is different from the target approximate system**

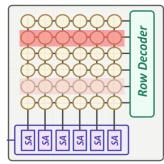
<u>Key Idea</u>: use **error models** to emulate the bit errors of the target approximate DRAM

DRAM Error Models

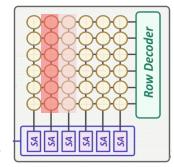
- Error models Contain information about the **spatial distribution** of weak cells in the DRAM modules
- Use the error models to **inject errors** in each DRAM access
- EDEN uses four probabilistic error models
 Observed in real approximate DRAM modules



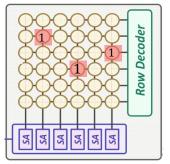
Model 0: **Uniform Random**



Model 1: Wordline Correlated



Model 2: Bitline Correlated



Model 3: **Bit Value Dependent**

SAFARI

Outline

1. Motivation and Problem

2. DNN and DRAM Background

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

DNN Accuracy Evaluation: Methodology

• 8 DNN workloads

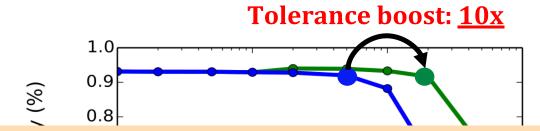
 YOLO, YOLO-Tiny, MobileNetV2, SqueezeNet1.1, VGG-16, DenseNet201, ResNet-101, AlexNet

• Four quantization levels

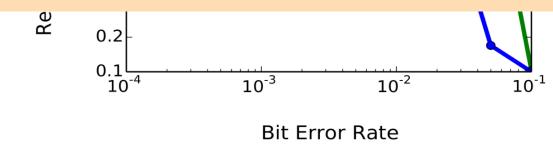
- int4, int8, int16, FP32
- **FPGA-based** framework [1] to run inference data accesses on **real DDR3 DRAM modules**
- Custom **PyTorch**-based DNN framework to run DNN inference with **error models**

[1] "SoftMC: A flexible and practical open-source infrastructure for enabling experimental DRAM studies", Hassan+, HPCA'17

Boosting Error Tolerance of ResNet101

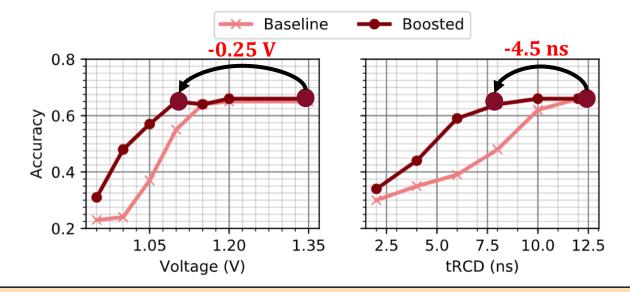


DNN tolerance boosting can **improve** a DNN's **bit error tolerance** by **5-10x**



SAFARI

DNN Accuracy of LeNeT using Real DRAM



Our boosting mechanism helps reducing DRAM voltage and latency while maintain accuracy on real DRAM modules

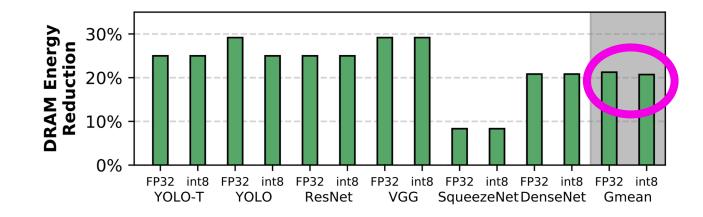
System Level Evaluation: Methodology

- 6 DNN workloads with int8 and FP32 quantizations
 - Yolo-Tiny, Yolo, ResNet, VGG, SqueezeNet, DenseNet
- Inference libraries from **DarkNet**, Intel OpenVINO, TVM
- **Simulators: Ramulator, ZSim, GPGPUSim**, and **SCALE-Sim** used for DRAM, CPU, GPU, Eyeriss, and TPU simulation

• Configurations:

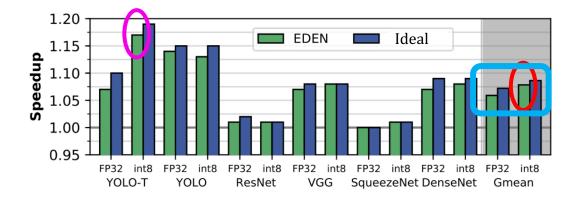
- <u>CPU</u>: 4 Core, 8MB L3 per core, 8GB DDR4
- GPU: 28 SMs, 12GB GDDR5 (Titan X)
- Eyeriss: 12x14 PEs, 4GB LPDDR4
- <u>TPU</u>: 256 x 256 PEs, 4GB LPDDR4
- More detail in the paper

CPU: DRAM Energy Evaluation



Average 21% DRAM energy reduction maintaining accuracy within 1% of original

CPU: Performance Evaluation



Average 8% system speedup Some workloads achieve 17% speedup

EDEN achieves **close to the ideal** speedup possible via tRCD scaling

GPU, Eyeriss, and TPU: Energy Evaluation

• <u>GPU</u>: average 37% energy reduction

• **Everiss**: average **31% energy reduction**

• <u>TPU</u>: average **32% energy reduction**

Other Results in the Paper

- Error resiliencies across different DNNs and quantizations
- Validation of the boosting mechanism
- Supporting data for error models using real DRAM modules
- Comparison of different DRAM error models
- Breakdown of energy savings on different workloads for GPU and TPU

Outline

1. Motivation and Problem

2. DNN and DRAM Background

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

Conclusion

<u>Motivation</u>: Deep Neural Networks (DNNs) are important in many domains <u>Problem</u>: *DRAM* can increase the energy consumption and the execution latency of DNN inference

<u>Goal</u>: reduce energy and latency of DNN workloads by using DRAM with reduced voltage and timing parameters (approximate DRAM) <u>Challenge</u>: approximate DRAM introduce bit errors

EDEN: Enabling Efficient DNN Inference Using Approximate DRAM

- **Tolerate approximate DRAM bit errors** by retraining the DNN for a target accuracy
- **Map DNN data types** with different error tolerance **to DRAM partitions** with different error rates

<u>Results</u>:

- Average 21%/37%/31% DRAM energy savings on CPU/GPU/DNNaccelerators
- Average **8% speedup** on CPU

EDEN is applicable to other DRAM parameters and memory technologies

SAFARI

EDEN

Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula **Lois Orosa** A. Giray Yaglikci Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

Coarse-Grained Scaling

	FP32			int8			
Model	BER	ΔV_{DD}	Δt_{RCD}	BER	ΔV_{DD}	Δt_{RCD}	
ResNet101	4.0%	-0.30V	-5.5ns	4.0%	-0.30V	-5.5ns	
MobileNetV2	1.0%	-0.25V	-1.0ns	0.5%	-0.10V	-1.0ns	
VGG-16	5.0%	-0.35V	-6.0ns	5.0%	-0.35V	-6.0ns	
DenseNet201	1.5%	-0.25V	-2.0ns	1.5%	-0.25V	-2.0ns	
SqueezeNet1.1	0.5%	-0.10V	-1.0ns	0.5%	-0.10V	-1.0ns	
AlexNet	3.0%	-0.30V	-4.5ns	3.0%	-0.30V	-4.5ns	
YOLO	5.0%	-0.35V	-6.0ns	4.0%	-0.30V	-5.5ns	
YOLO-Tiny	3.5%	-0.30V	-5.0ns	3.0%	-0.30V	-4.5ns	

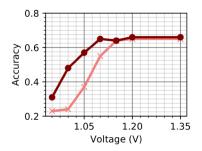
tRCD or voltage scaling that yields <1% accuracy degradation on a target DDR3 module

DNN Workload List and Baseline Accuracies

Model	Dataset	Model Size	IFM+Weight Size	int4	int8	int16	FP32
				mu	mo	mitio	11.52
ResNet101 [59]	CIFAR10 [4]	163.0MB	100.0MB	89.11%	93.14%	93.11%	94.20%
MobileNetV2 [146]	CIFAR10 [4]	22.7MB	68.5MB	51.00%	70.44%	70.46%	78.35%
VGG-16 [156]	ILSVRC2012 [140]	528.0MB	218.0MB	59.05%	70.48%	70.53%	71.59%
DenseNet201 [63]	ILSVRC2012 [140]	76.0MB	439.0MB	0.31%	74.60%	74.82%	76.90%
SqueezeNet1.1 [64]	ILSVRC2012 [140]	4.8MB	53.8MB	8.07%	57.07%	57.39%	58.18%
Alexnet [84]	CIFAR10 [4]	233.0MB	208.0MB	83.13%	86.04%	87.21%	89.13%
YOLO [137]	MSCOCO [104]	237.0MB	360.0MB	-	44.60%	-	55.30%
YOLO-Tiny [137]	MSCOCO [104]	33.8MB	51.3MB	-	14.10%	-	23.70%
LeNet* [89]	CIFAR10 [4]	1.65MB	2.30MB	-	61.30%	-	67.40%

Key Steps:

- **1.** Decrease $tRCD/V_{dd}$ of DRAM module
- **2.** Run DNN inference
- **3.** Measure accuracy on validation dataset
- **4.** If accuracy < target: terminate.



Decreasing voltage and DNN accuracy

Key Steps:

- 1. Decrease parameter of DRAM/DNN partition
- **2.** Run DNN inference
- **3.** Measure accuracy on validation dataset
- **4.** If accuracy < target: roll-back parameter decrease
- **5.** Repeat for all DNN partitions, parameter levels