
Family Name: First Name: Student ID:

Final Exam

Computer Architecture (263-2210-00L)

ETH Zürich, Fall 2019
Prof. Onur Mutlu

Problem 1 (40 Points): GPUs and SIMD

Problem 2 (35 Points): Vector Processing

Problem 3 (25 Points): Emerging Memory Technologies

Problem 4 (40 Points): Data Prefetching

Problem 5 (30 Points): Asymmetric Multicore

Problem 6 (25 Points): Bottleneck Acceleration

Problem 7 (35 Points): Cache Coherence

Problem 8 (35 Points): Memory Consistency

Total (265 Points):

Examination Rules:

1. Written exam, 180 minutes in total.

2. No books, no calculators, no computers or communication devices. 10 single-sided A4 pages of handwritten
notes are allowed.

3. Write all your answers on this document, space is reserved for your answers after each question. Blank
pages are available at the end of the exam.

4. Clearly indicate your final answer for each problem. Answers will only be evaluated if they are readable.

5. Put your Student ID card visible on the desk during the exam.

6. If you feel disturbed, immediately call an assistant.

7. Write with a black or blue pen (no pencil, no green or red color).

8. Show all your work. For some questions, you may get partial credit even if the end result is wrong due
to a calculation mistake. If you make assumptions, state your assumptions clearly and precisely.

9. Please write your initials at the top of every page.

Tips:

• Be cognizant of time. Do not spend too much time on one question.
• Be concise. You may be penalized for verbosity.
• Show work when needed. You will receive partial credit at the instructors’ discretion.
• Write legibly. Show your final answer.

i

Initials: Computer Architecture December 20th, 2019

This page intentionally left blank

Final Exam Page 1 of 26

Initials: Computer Architecture December 20th, 2019

1 GPUs and SIMD [40 points]

We define the SIMD utilization of a program that runs on a GPU as the fraction of SIMD lanes that are
kept busy with active threads during the run of a program. As we saw in lecture and practice exercises,
the SIMD utilization of a program is computed across the complete run of the program.

The following code segment is run on a GPU. A warp in the GPU consists of 32 threads, and there are
32 SIMD lanes in the GPU. Each thread executes a single iteration of the shown loop. Assume that
the data values of the arrays A and B are already in vector registers so there are no loads and stores in
this program. The value of k is constant across all iterations and 0 < k ≤ 32. (Hint: Notice that there
are 2 instructions in each iteration. The two comparisons in the if statement are executed as a single
instruction.)

for (i = 0; i < 3072; i++) {
if (i % k == 0 || A[i % k] > 0) { // Instruction 1

B[i] = A[i] + 1; // Instruction 2
}

}

Please answer the following four questions.

(a) [5 points] How many warps does it take to execute this program?

(b) [10 points] What needs to be true about array A to achieve 100% utilization? Show your work. (Hint:
The warp scheduler does not issue instructions where no threads are active).

Final Exam Page 2 of 26

Initials: Computer Architecture December 20th, 2019

(c) [15 points] Provide an analytical expression that determines the SIMD utilization as a function of
k. Show your work.

(d) [10 points] What needs to be true about array A and k to achieve SIMD utilization of 2
3? Show your

work. (Please cover all cases in your answer.)

Final Exam Page 3 of 26

Initials: Computer Architecture December 20th, 2019

2 Vector Processing [35 points]

A vector processor implements the following ISA:

Opcode Operands Latency (cycles) Description
LD VSTR, #n 1 VSTR ← n (VSTR = Vector Stride Register)
LD VLEN , #n 1 VLEN ← n (VLEN = Vector Length Register)
LDM Vi 1 VMSK ← LSB(Vi) (VMSK = Vector Mask Register)
CM 1 VMSK ← 1 (clears VMSK to enable writeback for all vector elements)
VLD Vi, #Address X, pipelined Vi ←Mem[Address]
VST Vi, #Address X, pipelined Mem[Address]← Vi

VADD Vi, Vj , Vk 4, pipelined Vi ← Vj + Vk

VNOT Vi 4, pipelined Vi ← BitwiseNOT (Vi)
VCMPZ Vi, Vj , Vk 4, pipelined if(Vj == Vk) Vi ← 0xFFFF; else Vi ← 0x0000

Assume the following:

• For the vector instructions (i.e., VLD, VST, VADD), the above table denotes the latency of pro-
cessing a single vector element.

• All vector units are fully pipelined, and thus a vector unit outputs a vector element each cycle after
the first element.

• The latency of VLD and VST is unknown to you and is denoted as X.

• The processor dispatches instructions to execution units in the program order.

• An execution unit cannot start executing a new vector instruction until the execution unit completes
the execution of the already dispatched instruction, i.e., until all pipeline stages are cleared.

• The VLD and VST instructions share the same load/store execution unit. Similarly, VADD,
VNOT, and VCMPZ share the same arithmetic execution unit. LD, LDM, and CM instructions
have their own execution units.

• The size of a vector data element is 4 bytes.

• Each vector register Vi contains VLEN vector elements. The total number of vector registers is 8.

• The LD and LDM instructions execute in one single cycle.

• LDM moves the least-significant bit (LSB) of each vector element in a vector register Vi into the
corresponding position in VMSK .

• VSTR and VLEN are 16-bit registers. VMSK has VLEN bits.

• VMSK enables predicated execution. Assume a simple implementation in which all VLEN operations
are executed, but the result writeback is turned off according to VMSK (0 means writeback is turned
off). Assume the LDM instruction is not subject to the mask (i.e., the result writeback is turned
on for every vector element). Except LDM and CM, all other vector instructions are subject to
the mask register.

• VMSK is initialized with all 1’s in the beginning of a program so that writeback is on for all vector
elements until the VMSK is modified.

• The main memory is byte addressable.

• The main memory has 64 banks. Vector elements stored in consecutive memory addresses are
interleaved between the memory banks. For instance, if a vector element at address A maps to
bank B, a vector element at address A + 4 maps to bank (B + 1) % 64, where % is the modulo
operator.

• There is one single memory port, which is used for reads and writes.

• The processor does not support chaining between vector functional units.

Final Exam Page 4 of 26

Initials: Computer Architecture December 20th, 2019

(a) [5 points] Assuming a vector stride of 1, what could be the maximum value of VLD/VST latency
X if the processor does not stall when executing a single VLD or VST instruction? Explain why.

Consider the following piece of code:

for (i = 0; i < 32; i++){
if (A[i] != B[i])

C[i] = B[i];
else

C[i] = A[i] + B[i];
}

(b) [15 points] Translate the code into assembly language with theminimum number of instructions
by using the provided ISA. Note that you may need to make use of the mask register VMSK to write
a program with a minimum number of instructions. Also, note that you need to set the Vector
Length (VLEN) and the Vector Stride (VSTR) registers appropriately.

Final Exam Page 5 of 26

Initials: Computer Architecture December 20th, 2019

(c) [15 points] What is the total number of cycles needed to execute the program in part (b)? As a
VLD/VST latency, use the maximum latency value you found in part (a). Show your work.

Final Exam Page 6 of 26

Initials: Computer Architecture December 20th, 2019

3 Emerging Memory Technologies [25 points]

Computer scientists at ETH developed a new non-volatile memory technology, ETH-RAM. The ETH-
RAM’s access latency is close to that of DRAM while providing a higher density compared to the latest
DRAM technologies. However, ETH-RAM has one shortcoming: it has limited endurance, i.e., a memory
cell fails after 107 writes are performed to the cell (known as cell wear-out).

A bright ETH student has built a computer system using ETH-RAM as main memory. ETH-RAM
exploits a perfect wear-leveling mechanism, i.e., a mechanism that equally distributes the writes over all
of the cells of the main memory.

(a) [15 points] This student is worried about the lifetime of the computer system she has built. She
executes a test program to wear out the entire ETH-RAM as quickly as possible. The test program
runs special instructions to bypass the cache hierarchy and repeatedly writes data into different pages
until all the ETH-RAM cells are worn-out. The student’s measurements show that ETH-RAM stops
functioning (i.e., all its cells are worn-out) in 2.5 years. Assume the following:

• The processor is in-order, and there is no memory-level parallelism.

• It takes 16 ns to send a memory request from the processor to the memory controller, and it
takes 26 ns to send the request from the memory controller to ETH-RAM. The write latency
of ETH-RAM is 86 ns. The total latency of a write request is 128 ns (16 ns + 26 ns + 86 ns),
which cannot be overlapped by the latency of another write request (i.e., write requests are
fully serialized).

• ETH-RAM requests are issued at page-level granularity. Thus, each write request writes 4096
bytes to memory.

• ETH-RAM works in the multi-level cell (MLC) mode in which each memory cell stores 4 bits
of a page.

What is the capacity of ETH-RAM? Show your work. Hint: 2.5 years ≈ 8 ×1016 ns.

Final Exam Page 7 of 26

Initials: Computer Architecture December 20th, 2019

(b) [10 points] The student decides to improve the lifetime of ETH-RAM cells by using the single-level
cell (SLC) mode. When ETH-RAM is used in SLC mode, the lifetime of each cell improves by a
factor of 10, and the write latency decreases by n%. By how much must ETH-RAM’s write latency
decrease, assuming the lifetime of the system using SLC mode increases by 2x? Assume we repeat
the experiment in part (a), with everything else remaining the same in the system, and the capacity
of ETH-RAM while working in the MLC mode to be S. Show your work.

Final Exam Page 8 of 26

Initials: Computer Architecture December 20th, 2019

4 Data Prefetching [40 points]

Qualtel is designing a next-gen low-power mobile processor codenamed Nemo. You and your colleagues
are tasked with designing the prefetcher for Nemo. Nemo has a single core, one level of cache, and a
DRAM-based main memory system.

You need to examine different prefetcher designs and analyze the trade-offs involved.

• For all parts of this question, you need to compute the coverage, accuracy and bandwidth over of
the prefetcher in its steady state.

• If there is a request to a cache block that has gone to main memory, a new request for the same
cache block will not go to main memory as the outstanding request has not yet completed. Instead
the new request will be merged with the already outstanding request in the MSHR.

You run an application libclassical that has the following memory access pattern (note that these
are cache block addresses):

A, A+ 1, A+ 2, A+ 7, A+ 8, A+ 9, A+ 14, A+ 15, A+ 16, A+ 21, A+ 22, A+ 23, ...

Assume this pattern continues for a long time.

(a) [5 points] You first design a stride prefetcher that observes the last three cache block requests. If
there is a constant stride S between the last three requests, the prefetcher issues a prefetch to the
next cache block using the stride S. In absence of a constant stride, the prefetcher refrains from
prefetching. What is the coverage of your stride prefetcher for libclassical? Show your work.
Prefetcher coverage is defined as

Total number of correctly predicted prefetch requests

Total number of unique cache block requests without the prefetcher

(b) [5 points] What is the the accuracy of your stride prefetcher for libclassical? Show your work.
Prefetcher accuracy is defined as

Total number of correctly predicted prefetch requests

Total number of prefetched requests

Final Exam Page 9 of 26

Initials: Computer Architecture December 20th, 2019

(c) [10 points] Your colleague designs a new prefetcher that, on a cache block access, prefetches the next
N cache blocks. The coverage and accuracy of this prefetcher are 66.67% and 50% respectively for
libclassical. What is the value of N? Show your work.

(d) [5 points] The bandwidth overhead of the prefetcher can be defined as

Total number of unique cache block requests with the prefetcher

Total number of unique cache block requests without the prefetcher

What is the bandwidth overhead of this next-N-block prefetcher for libclassical? Show your
work.

(e) [5 points] What is the minimum value of N required to achieve a 100% prefetch coverage for
libclassical? Show your work. Remember that you should consider the prefetcher’s coverage
in its steady state.

(f) [5 points] What is the bandwidth overhead at this value of N? Show your work.

Final Exam Page 10 of 26

Initials: Computer Architecture December 20th, 2019

(g) [5 points] However, you are not happy with the bandwidth overhead required to achieve a prefetch
coverage of 100% with a next-N-block prefetcher. You aim to design a prefetcher that achieves a
coverage of 100% with a 1× bandwidth overhead. Propose a prefetcher design that accomplishes
this goal. Be concrete and clear.

Final Exam Page 11 of 26

Initials: Computer Architecture December 20th, 2019

5 Asymmetric Multicore [30 points]

A microprocessor manufacturer asks you to design an asymmetric multicore processor for modern work-
loads. Your design contains one large core and several small cores, which share the same die. Assume
the total die area is A units. The table below describes the area, performance, and power specifications
for each core type.

Type of Core Area (mm2) Performance Dynamic Power (W) Static Power (W)
Large S

√
S S 1

4 × S
Small 1 1 1 0.5

The serial portion of a workload executes only on the large core, while the parallel portion executes on
both large and small cores. On this multiprocessor, we will execute a workload where a fraction P of its
work is parallel, and 1−P of its work is serial. You will fit as many small cores as possible, after placing
the large core. Consider the following two configurations:

• Configuration X: A = 32, S = 4.

• Configuration Y: A = 32, S = 16.

Please answer the following questions. Show your work. Express your equations and solve them.

(a) [6 points] For what values of P does the workload run faster on Y than on X? Show your work.

Final Exam Page 12 of 26

Initials: Computer Architecture December 20th, 2019

(b) [6 points] For what values of P does the workload consumes less energy when running on Y than on
X? Show your work.

5.1 Accelerating Single-Thread Execution

Assume that two large cores can operate in a collaborative manner to achieve the single-thread
performance of an even “larger” core that is N× faster than the largest core on the chip. When
executing the serial portion of the workload, the functional units of both large cores are merged into
the same pipeline to have a faster core. The collaborative execution mode is only enabled during the
serial portion of the workload. During the parallel portion, the two large cores separate from each
other (on-the-fly) and operate as two independent cores. The serial portion executes only on the
“dual-core", and the parallel portion executes on all the cores. The table below describes the area
and performance specifications for each core for this design.

Type of Core Area (mm2) Performance
Large1 S1

√
S1

Large2 S2

√
S2

Large1 + Large2 S1 + S2 N×
√
Max(S1, S2)

Small 1 1

Consider the following configuration:

• Configuration Z: A = 32, S1 = 9, S2 = 4.

Final Exam Page 13 of 26

Initials: Computer Architecture December 20th, 2019

(c) [6 points] For what values of N does the workload run faster on Z than on X? Assume P = 0.8.
Show your work.

(d) [6 points] For what values of P does the workload run faster on Z than on X? Assume N = 1.5.
Show your work.

(e) [6 points] Suppose you are executing workloads where a fraction P of its work is infinitely paralleliz-
able. Which configuration would you choose? Z or Y? Why?

Final Exam Page 14 of 26

Initials: Computer Architecture December 20th, 2019

6 Bottleneck Acceleration [25 points]

In this question, you are asked to analyze the performance and scalability benefits of accelerating the
critical section in the following piece of code.

while (!problem_solved){
Lock(X) //start of the critical section

SubProblem = PQ.Dequeue();
Unlock(X) //end of the critical section

problem_solved = Solve(SubProblem)
if(problem_solved)

break;
}

Assume that

• the while loop iterates 12 times.

• there is no data dependency across iterations.

(a) [15 points] We observe that the application’s performance saturates when the iterations are dis-
tributed across four threads (i.e., running more than four threads does not improve the performance).
We are interested in the ratio of time spent executing critical sections to the total execution time
for each iteration. Calculate the range of all possible values for this ratio. (Hint: The performance
saturates with P threads if it can achieve speedup from increasing the number of threads from P-1
to P, and not from P to P+1.)

Final Exam Page 15 of 26

Initials: Computer Architecture December 20th, 2019

(b) [10 points] In order to improve the performance and scalability of the program, we decide to accelerate
the critical section by migrating its execution to a more powerful core. The execution of the critical
section on the powerful core completes faster, including the cost of migration between cores. We use
the powerful core only for executing the critical section, while the rest of the iteration executes on
smaller less powerful cores. Then, we observe that the application’s scalability increases up to six
cores.

Assume that the critical section initially takes the minimum ratio of execution time that you found
in the previous section. How much does the powerful core increase the performance of the critical
section in this case? Show the range for possible performance improvements.

Final Exam Page 16 of 26

Initials: Computer Architecture December 20th, 2019

7 Cache Coherence [35 points]

We have a system with 4 processors {P0, P1, P2, P3} that can access memory at byte granularity. Each
processor has a private data cache with the following characteristics:

• Capacity of 256 bytes

• Direct-mapped

• Write-back

• Block size of 64 bytes

Each processor has also a dedicated private cache for instructions. The characteristics of the instruction
caches are not necessary to solve this question.

All data caches are connected to and actively snoop a global bus, and cache coherence is maintained
using the MESI protocol, as we discussed in class. Note that on a write to a cache block in the S state,
the block will transition directly to the M state. The range of accessible memory addresses is from
0x00000 to 0xfffff.

The semantics of the instructions used in this question is the following:

Opcode Operands Description
ld rx,[ry] rx ← Mem[ry]
st rx,[ry] rx → Mem[ry]

addi rx,#VAL rx ← rx + VAL
j TARGET jump to TARGET

beq rx,ry,TARGET if([rx]==[ry]) jump to TARGET

Each processor executes the following instructions in a sequentially consistent manner:

P0
0 ld r1,[r2]
1 addi r1,#1
2 st r1,[r2]
3 LP : ld r1,[r2]
4 beq r1,r4,END
5 j LP
6 END: st r4, [r2]

P1
0 LP : ld r1,[r4]
1 beq r1,r3,END
2 j LP
3 END: addi r1,#1
4 st r1,[r4]
-
-

P2
0 LP : ld r1,[r5]
1 beq r1,r3,END
2 j LP
3 END: addi r1,#1
4 st r1,[r5]
-
-

P3
0 LP : ld r1,[r2]
1 beq r1,r3,END
2 j LP
3 END: addi r1,#1
4 st r1,[r2]
-
-

Final Exam Page 17 of 26

Initials: Computer Architecture December 20th, 2019

The initial state of the caches is unknown. After an arbitrarily large amount of time, all cores finish
executing their code. The final tag store state of each data cache is as follows:

Final Tag Store States

Cache for P0
Set Tag MESI state
0 0x100 M
1 0xfff M
2 0x010 S
3 0x110 I

Cache for P1
Set Tag MESI state
0 0x100 I
1 0xfff I
2 0x010 S
3 0x110 I

Cache for P2
Set Tag MESI state
0 0x100 I
1 0xfff I
2 0x011 E
3 0x110 S

Cache for P3
Set Tag MESI state
0 0x100 I
1 0xff1 S
2 0x010 I
3 0x10f S

(a) [25 points] What are the initial values of the registers in each of the 4 processors that ensure that
the above final tag store states are deterministic (i.e., the final states are independent of the order
in which the memory requests are issued to memory)? Explain your answer.

Final Exam Page 18 of 26

Initials: Computer Architecture December 20th, 2019

(b) [10 points] Fill in the following tables with the initial tag store states (i.e., Tag and MESI state)
before having executed the instructions shown above. Answer X if a tag value is unknown, and for
the MESI states, write in all possible values (i.e., M, E, S, and/or I).

Initial Tag Store States

Cache for P0
Set Tag MESI state
0
1
2
3

Cache for P1
Set Tag MESI state
0
1
2
3

Cache for P2
Set Tag MESI state
0
1
2
3

Cache for P3
Set Tag MESI state
0
1
2
3

Final Exam Page 19 of 26

Initials: Computer Architecture December 20th, 2019

8 Memory Consistency [35 points]

A programmer writes the following two C code segments. She wants to run them concurrently on a
multicore processor, called SC, using two different threads, each of which will run on a different core.
The processor implements sequential consistency, as we discussed in the lecture.

Thread T0
Instr. T0.0 X[0] = 2;
Instr. T0.1 flag[0] = 1;
Instr. T0.2 a = X[0]*2;
Instr. T0.3 b = Y[0]-1;
Instr. T0.4 c = X[0];

Thread T1
Instr. T1.0 X[0] = 1;
Instr. T1.1 X[0] += 2;
Instr. T1.2 while(flag[0] == 1);
Instr. T1.3 a = flag[0];
Instr. T1.4 X[0] = 2;
Instr. T1.5 Y[0] = 10;

X and flag have been allocated in main memory. Thread 0 and Thread 1 have their private processor
registers to store the values of a , b, and c. A read or write to any of these variables generates a single
memory request. The initial values of all memory locations and variables are 1. Assume each line of the
C code segment of a thread is a single instruction.

(a) [5 points] Do you find something that could be wrong in the C code segments? Explain your answer.

(b) [10 points] What could be possible final values of X[0] in the SC processor, after executing both C
code segments? Explain your answer. Provide all possible values.

Final Exam Page 20 of 26

Initials: Computer Architecture December 20th, 2019

(c) [5 points] What could be possible final values of a in the SC processor, after executing both C code
segments? Explain your answer. Provide all possible values.

(d) [5 points] What could be possible final values of b in the SC processor, after both threads finish
execution? Explain your answer. Provide all possible values.

Final Exam Page 21 of 26

Initials: Computer Architecture December 20th, 2019

(e) [10 points] With the aim of achieving higher performance, the programmer tests her code on a new
multicore processor, called NC, that does not implement memory consistency. Thus, there is no
guarantee on the ordering of instructions as seen by different cores.

What is the final value of X[0] in the NC processor, after executing both threads? Explain your
answer.

Final Exam Page 22 of 26

Initials: Computer Architecture December 20th, 2019

- SCRATCHPAD -

Final Exam Page 23 of 26

Initials: Computer Architecture December 20th, 2019

- SCRATCHPAD -

Final Exam Page 24 of 26

Initials: Computer Architecture December 20th, 2019

- SCRATCHPAD -

Final Exam Page 25 of 26

Initials: Computer Architecture December 20th, 2019

- SCRATCHPAD -

Final Exam Page 26 of 26

