
Family Name: First Name: Student ID:

Midterm Exam

Computer Architecture (263-2210-00L)

ETH Zürich, Fall 2019
Prof. Onur Mutlu

Problem 1 (80 Points): RowHammer

Problem 2 (60 Points): DRAM Refresh

Problem 3 (60 Points): VRT and DRAM Refresh

Problem 4 (60 Points): In-DRAM Bit Serial Computation

Problem 5 (60 Points): Genome Analysis

Problem 6 (60 Points): Low-Latency DRAM

Total (380 Points):

Examination Rules:

1. Written exam, 180 minutes in total.

2. No books, no calculators, no computers or communication devices. 6 pages of handwritten notes are
allowed.

3. Write all your answers on this document, space is reserved for your answers after each question. Blank
pages are available at the end of the exam.

4. Clearly indicate your final answer for each problem. Answers will only be evaluated if they are readable.

5. Put your Student ID card visible on the desk during the exam.

6. If you feel disturbed, immediately call an assistant.

7. Write with a black or blue pen (no pencil, no green or red color).

8. Show all your work. For some questions, you may get partial credit even if the end result is wrong due
to a calculation mistake. If you make assumptions, state your assumptions clearly and precisely.

9. Please write your initials at the top of every page.

Tips:

• Be cognizant of time. Do not spend too much time on one question.
• Be concise. You may be penalized for verbosity.
• Show work when needed. You will receive partial credit at the instructors’ discretion.
• Write legibly. Show your final answer.

i



Initials: Computer Architecture November 7th, 2019

This page intentionally left blank

Midterm Exam Page 1 of 27



Initials: Computer Architecture November 7th, 2019

1 RowHammer [80 points]

1.1 RowHammer Properties

Determine whether each of following statements is true or false. Note: we will subtract 1 point for each
incorrect answer. (The minimum score you can get for this question is 0 point.)

(a) [2 points] Cells in a DRAM with a smaller technology node are more vulnerable to RowHammer.

1. True 2. False

(b) [2 points] Cells which have shorter retention times are especially vulnerable to RowHammer.

1. True 2. False

(c) [2 points] The vulnerability of cells in a victim row to RowHammer depends on the data stored in
the victim row.

1. True 2. False

(d) [2 points] The vulnerability of cells in a victim row to RowHammer depends on the data stored in
the aggressor row.

1. True 2. False

(e) [2 points] RowHammer-induced errors are mostly repeatable.

1. True 2. False

1.2 RowHammer Attacks

In order to characterize the vulnerability of your DRAM device to RowHammer attacks, you must be
able to induce RowHammer errors. Assume the following about the target system:

• The CPU has a single in-order processor, and does not implement virtual memory.

• The physical memory address is 16 bits.

• The DRAM subsystem consists of two channels, four banks per channel, and 64 rows per bank.

• The memory controller employs open-page policy.

• The DRAM modules and the memory controller do not employ any remapping or scrambling
schemes for the physical address.

• All the cells in the DRAM subsystem are equally vulnerable to RowHammer-induced errors.

You implement codes based on instructions shown in Table 1.

Instruction Description Functionality
B LABEL Unconditional Branch PC = LABEL
STORE IMM, Rs Store word to memory MEM[IMM] = Rs
CLFLUSH IMM Cache line flush Flush cache line containing IMM

Table 1: Instruction Descriptions.

(a) [10 points] You run Code 1 below, but you cannot observe any errors in the target system. You
figured out that the number of activations is much lower than your expectation. Give reason(s) as
to why Code 1 cannot introduce a sufficient amount of activations.

Code 1
1: LOOP:
2: STORE 0x8732, R0
3: CLFLUSH 0x8732
4: B LOOP

Midterm Exam Page 2 of 27



Initials: Computer Architecture November 7th, 2019

(b) [20 points] You try Codes 2a, 2b, and 2c, but find that only one of them can induce RowHammer
errors in your DRAM subsystem. Which code segment is the one that can induce RowHammer
errors? Justify your answer.

Code 2a
1: LOOP:
2: STORE 0x8732, R0
3: STORE 0x98CD, R1
4: CLFLUSH 0x8732
5: CLFLUSH 0x98CD
6: B LOOP

Code 2b
1: LOOP:
2: STORE 0xF1AB, R0
3: STORE 0x0054, R1
4: CLFLUSH 0xF1AB
5: CLFLUSH 0x0054
6: B LOOP

Code 2c
1: LOOP:
2: STORE 0x2B97, R0
3: STORE 0xDA68, R1
4: CLFLUSH 0x2B97
5: CLFLUSH 0xDA68
6: B LOOP

Midterm Exam Page 3 of 27



Initials: Computer Architecture November 7th, 2019

1.3 RowHammer Mitigation Mechanisms

To identify a viable RowHammer mitigation mechanism for your system, you compare the two following
mitigation mechanisms:

Mechanism A. The memory controller maintains a counter for every row, which increments every time the
corresponding row is activated. If the counter value for a row exceeds a threshold value T , the memory
controller activates the row’s two adjacent rows and resets the counter.

Mechanism B. Each time a row is closed (or precharged), the memory controller flips a biased coin with a
probability p of turning up heads, where p << 1. If the coin turns up heads, the memory controller activates
one of its adjacent rows where either of the two adjacent rows are selected with equal probability (p/2).

(a) [5 points] You set T for Mechanism A to 164 K based on the value of the Maximum Activation Count
(MAC, i.e., the maximum number of times a row can be activated without inducing RowHammer
errors in its adjacent rows) reported by the DRAM manufacturer. Calculate the number of bits
required for counters in a memory controller which manages a single channel, 2 ranks per channel,
8 banks per rank, and 215 rows per bank.

(b) [5 points] How does the answer to (a) change when both the number of rows per bank and the
number of banks per chip are doubled?

(c) [10 points] You profile the memory access pattern of the target system, and observe that the same
pattern repeats exactly every 64 ms (the current refresh interval). Table 2 shows the number of
activations for each row within a 64-ms time interval in a descending order. Given values T = 164 K
for Mechanism A and p = 0.001 for Mechanism B, calculate the expected number of additional
activations within a 64-ms time interval under each technique.

Row Index # of ACTs
0x7332F 73 K
0x1802C 64 K
0x03F05 32 K
0x5FF02 10 K

... ...
Total 480 K

Table 2: Number of Activations for Each Row.

Midterm Exam Page 4 of 27



Initials: Computer Architecture November 7th, 2019

(d) [5 points] How does the answer to (c) change when both the number of rows per bank and the
number of banks per chip are doubled? Assume that the memory access pattern does not change.

(e) [10 points] What is the common challenge to implement the above mechanisms in the commodity
systems?

(f) [5 points] How can you address the common challenge?

Midterm Exam Page 5 of 27



Initials: Computer Architecture November 7th, 2019

2 DRAM Refresh [60 points]

2.1 Basics [15 points]

A memory system is composed of eight banks, and each bank contains 216 rows. Every DRAM row
refresh is initiated by a command from the memory controller, and it refreshes a single row in a single
DRAM bank. Each refresh command keeps the command bus busy for 5 ns. We define command bus
utilization as the fraction of total execution time during which the command bus is occupied.

1. [5 points] Given that the refresh interval is 64ms, calculate the command bus utilization of refresh
commands. Show your work step-by-step.

2. [10 points] If 70% of all rows can withstand a refresh interval of 256 ms, how does the command
bus utilization of refresh commands change? Calculate the reduction (1− new

old ) in bus utilization.
Show your work step-by-step.

2.2 VRL: Variable Refresh Latency [45 points]

In this question, you are asked to evaluate "Variable Refresh Latency," proposed by Das et al. in DAC
2018.1

The paper presents two key observations:

• First, a cell’s charge reaches 95% of the maximum charge level in 60% of the nominal latency value
during a refresh operation. In other words, the last 40% of the refresh latency is spent to increase
the charge of a cell from 95% to 100%. Based on this observation, the paper defines two types of
refresh operations: (1) full refresh and (2) partial refresh. Full refresh uses the nominal latency
value and restores the cell charge to 100%, while the latency of partial refresh is only 60% of the
nominal latency value and it restores 95% of the charge.

1Das, A. et al., "VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency." In Proceedings of the
55th Annual Design Automation Conference (DAC), 2018.

Midterm Exam Page 6 of 27



Initials: Computer Architecture November 7th, 2019

• Second, a fully refreshed cell operates correctly even after multiple partial refreshes, but it needs to
be fully refreshed again after a finite number of partial refreshes. The maximum number of partial
refreshes before a full refresh is required varies from cell to cell.

The key idea of the paper is to apply a full refresh operation only when necessary and use partial re-
fresh operations at all other times.

(a) [15 points] Consider a case in which:

• Each row must be refreshed every 64 ms. In other words, the refresh interval is 64 ms.

• Row refresh commands are evenly distributed across the refresh interval. In other words, all
rows are refreshed exactly once in any given 64 ms time window.

• You are given the following plot, which shows the distribution of the maximum number of partial
refreshes across all rows of a particular bank. For example, if the maximum number of refreshes
is three, those rows can be partially refreshed for at most three refresh intervals, and the fourth
refresh operation must be a full refresh.

• If all rows were always fully refreshed, the time that a bank is busy serving the refresh requests
within a refresh interval would be T.

10

40

30

20

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)

M
ax

 N
um

be
r 

of
 P

ar
tia

l R
ef

re
sh

es

Refresh interval: 64ms

20

5

25

40

10

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)

M
ax

 N
um

be
r 

of
 P

ar
tia

l R
ef

re
sh

es

Refresh interval: 128ms Refresh interval: 64ms

How much time does it take (in terms of T) for a bank to refresh all rows within a refresh interval,
after applying Variable Refresh Latency?

Midterm Exam Page 7 of 27



Initials: Computer Architecture November 7th, 2019

(b) [15 points] You find out that you can relax the refresh interval, and define your baseline as follows:

• 75% of the rows are refreshed at every 128ms; 25% of the rows are refreshed at every 64ms.

• Refresh commands are evenly distributed in time.

• All rows are always fully refreshed.

• A single refresh command costs 0.2/N ms, where N is the number of rows in a bank.

• Refresh overhead is defined as the fraction of time that a bank is busy, serving the refresh
requests over a very large period of time.

Calculate the refresh overhead for the baseline.

Midterm Exam Page 8 of 27



Initials: Computer Architecture November 7th, 2019

(c) [15 points] Consider a case where:

• 75% of the rows are refreshed at every 128ms; 25% of the rows are refreshed at every 64ms.

• Refresh commands are evenly distributed in time.

• You are given the following plot, which shows the distribution of the maximum number of partial
refreshes across all rows of a particular bank.

• A single refresh command costs 0.2/N ms, where N is the number of rows in a bank.

• Refresh overhead is defined as the fraction of time that a bank is busy, serving the refresh
requests over a very large period of time.

10

40

30

20

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)
M

ax
 N

um
be

r 
of

 P
ar

tia
l R

ef
re

sh
es

Refresh interval: 64ms

20

5

25

40

10

0 10 20 30 40 50

0

1

3

7

15

Fraction of Rows (%)

M
ax

 N
um

be
r 

of
 P

ar
tia

l R
ef

re
sh

es

Refresh interval: 128ms Refresh interval: 64ms

Calculate the refresh overhead. Show your work step-by-step. Then, compare it against the baseline
configuration (the previous question). How much reduction (1− new

old ) do you see in the performance
overhead of refreshes?

Midterm Exam Page 9 of 27



Initials: Computer Architecture November 7th, 2019

3 VRT and DRAM Refresh [60 points]

You observe that your system suffers from random bit flips in the main memory. All the observations
suggest that the source of these bit errors is likely to be Variable Retention Time (VRT). Unfortunately,
your hardware does not implement any ECC mechanism to correct those bit flips. You need a quick fix
to mitigate these bit errors. Answer the questions for the following system configuration.

• The memory controller refreshes every DRAM row at every 64ms.
• The memory subsystem consists of one channel, one rank, and 16 banks.
• The total capacity of DRAM is 2GB. Each DRAM row contains 4kB. The cache line size is 64B.
• A bank spends 0.5ms busy refreshing rows in a 64ms time window.
• A DRAM cell that is vulnerable to VRT is called VRT cell regardless of its leakage state.
• VRT cells are uniformly distributed across the main memory.
• A VRT cell can retain its data for 128ms and 16ms in low- and high-leakage states, respectively.

(a) [15 points] Evaluate the idea of increasing the refresh rate. To avoid having VRT-related bit errors,
refresh rate should support the worst retention time.

What should be the new refresh rate? How much time would refresh operations keep a bank busy
in a 64ms of time window? Is increasing refresh rate a viable solution?

Midterm Exam Page 10 of 27



Initials: Computer Architecture November 7th, 2019

(b) [15 points] Your company also bought the newer generation of the same DRAM model with larger
storage capacity that implements the same channel/rank/bank organization. Due to the higher
capacity in the same chip area, the new generation employs smaller cells, which may have smaller
retention time. Assume that:

• The retention time of a DRAM cell is halved for both low- and high-leakage states (i.e., 64ms in
low-leakage and 8ms in high-leakage),
• The latency of refreshing one row remains the same.
• The capacity of new DRAM model is 64GB.

What should be the new refresh rate? How much time would refresh operations keep a bank busy
in a 64ms of time window? Is increasing refresh rate a viable solution?

(c) [30 points] Since this system is dedicated to run a particular workload, you need to analyze the
workload access pattern to assess opportunities of having a low-cost solution. As the first step, you
will consider a single VRT cell, which is located in Row A. Note that:

• The workload accesses to Row A exactly every 64ms, as shown at timestamps t1 and t3 below.
• The memory controller refreshes Row A every 64ms, as shown at timestamps t0 and t2 below.
• Refresh operations are not synchronized with the workload accesses. Assume that t2 can happen

at any timestamp between t1 and t3 with equal probability.
• The cell changes its leakage state with a 30% of probability when the wordline is enabled.
• The cell initializes at low-leakage state, and gets immediately refreshed, as shown at timestamp

t0 below.
• The cell retains its data for 128ms in low-leakage state and for 16ms in high-leakage state.

Calculate the probability of not violating the retention time of the cell for 64ms of exe-
cution. (Hint: You can create a tree for the probabilistic state transitions, as we partially provide
below.)

Midterm Exam Page 11 of 27



Initials: Computer Architecture November 7th, 2019

Low 
Leakage

t0

Low 
Leakage

High 
Leakage

Time window of interest

time

64ms

64ms

t0
Row A

is refreshed

t1
Workload
accesses 
to Row A 

t2
Row A

is refreshed

t3
Workload
accesses 
to Row A 

Cell is in low- 
leakage state 

here.

Calculate the probability 
of no retention time
violation at this point.

Midterm Exam Page 12 of 27



Initials: Computer Architecture November 7th, 2019

4 In-DRAM Bit Serial Computation [60 points]

Recall that in class, we discussed Ambit, which is a DRAM design that can greatly accelerate bulk
bitwise operations by providing the ability to perform bitwise AND/OR of two rows in a subarray and
NOT of one row. Since Ambit is logically complete, it is possible to implement any other logic gate (e.g.,
XOR). To be able to implement arithmetic operations, bit shifting is also necessary. There is no way of
shifting bits in DRAM with a conventional layout, but it can be done with a bit-serial layout, as Figure 1
shows. With such a layout, it is possible to perform bit-serial arithmetic computations in Ambit.

A[0]_3

A[0]_2

A[0]_1

A[0]_0

A[1]_3

A[1]_2

A[1]_1

A[1]_0

A[2]_3

A[2]_2

A[2]_1

A[2]_0

A[3]_3

A[3]_2

A[3]_1

A[3]_0

A[4]_3

A[4]_2

A[4]_1

A[4]_0

SA SA SA SA SA

Figure 1: In-DRAM bit-serial layout for array A, which contains five 4-bit elements. DRAM cells in the
same bitline contain the bits of an array element: A[i]_j represents bit j of element i.

We want to evaluate the potential performance benefits of using Ambit for arithmetic computations by
implementing a simple workload, the element-wise addition of two arrays. Listing 1 shows a sequential
code for the addition of two input arrays A and B into output array C.

Listing 1: Sequential CPU implementation of element-wise addition of arrays A and B.

for(int i = 0; i < num_elements; i++){
C[i] = A[i] + B[i];

}

We compare two possible implementations of the element-wise addition of two arrays: a CPU-based and
an Ambit-based implementation. We make two assumptions. First, we use the most favorable layout for
each implementation (i.e., conventional layout for CPU, and bit-serial layout for Ambit). Second, both
implementations can operate on array elements of any size (i.e., bits/element):

• CPU-based implementation: This implementation reads elements of A and B from memory, adds
them, and writes the resulting elements of C into memory.

Since the computation is simple and regular, we can use a simple analytical performance model for
the execution time of the CPU-based implementation: tcpu = K × num_operations+

num_bytes
M ,

where K represents the cost per arithmetic operation and M is the DRAM bandwidth.

• Ambit-based implementation: This implementation assumes a bit serial layout for arrays A, B, and
C. It performs additions in a bit serial manner, which only requires XOR, AND, and OR operations,
as you can see in the 1-bit full adder in Figure 2.

Ambit implements these operations by issuing back-to-back ACTIVATE (A) and PRECHARGE
(P) operations. For example, to compute AND, OR, and XOR operations, Ambit issues the
sequence of commands described in Table 3, where AAP (X,Y ) represents double row activation
of rows X and Y followed by a precharge operation, and AAAP (X,Y, Z) represents triple row
activation of rows X, Y, and Z followed by a precharge operation.

Midterm Exam Page 13 of 27



Initials: Computer Architecture November 7th, 2019

XOR

XOR

AND

AND

OR

A
B
Cin S

Cout

Figure 2: 1-bit full adder.

In those instructions, Ambit copies the source rows Di and Dj to auxiliary rows (Bi). Control rows
Ci dictate which operation (AND/OR) Ambit executes. The DRAM rows with dual-contact cells
(i.e., rows DCCi) are used to perform the bitwise NOT operation on the data stored in the row.
Basically, the NOT operation copies a source row to DCCi, flips all bits of the row, and stores the
result in both the source row and DCCi. Assume that:

– The DRAM row size is 8 Kbytes.

– An ACTIVATE command takes 20ns to execute.

– A PRECHARGE command takes 10ns to execute.

– DRAM has a single memory bank.

– The syntax of an Ambit operation is: bbop_[and/or/xor] destination, source_1, source_2.

– The rows at addresses 0x00700000, 0x00800000, and 0x00900000 are used to store partial
results. Initially, they contain all zeroes.

– The rows at addresses 0x00A00000, 0x00B00000, and 0x00C00000 store arrays A, B, and C,
respectively.

– These are all byte addresses. All these rows belong to the same DRAM subarray.

Table 3: Sequences of ACTIVATE and PRECHARGE operations for the execution of Ambit’s AND,
OR, and XOR.

Dk = Di AND Dj Dk = Di OR Dj Dk = Di XOR Dj

AAP (Di, B0)
AAP (Dj , B1)
AAP (C0, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP B0, Dk

AAP (Di, B0)
AAP (Dj , B1)
AAP (Di, DCC0)
AAP (Dj , DCC1)
AAP (C0, B2)
AAAP (B0, DCC1, B2)
AAP (C0, B2)
AAAP (B1, DCC0, B2)
AAP (C1, B2)
AAAP (B0, B1, B2)
AAP (B0, Dk)

(a) [10 points] For the CPU-based implementation, you want to obtain K and M . To this end, you
run two experiments. In the first experiment, you run your CPU code for the element-wise array
addition for 65,536 4-bit elements and measure tcpu = 100 us. In the second experiment, you run the
STREAM-Copy benchmark for 102,400 4-bit elements and measure tcpu = 10 us. The STREAM-
Copy benchmark simply copies the contents of one input array A to an output array B. What are
the values of K and M?

Midterm Exam Page 14 of 27



Initials: Computer Architecture November 7th, 2019

(b) [20 points] Write the code for the Ambit-based implementation of the element-wise addition of arrays
A and B. The resulting array is C.

Midterm Exam Page 15 of 27



Initials: Computer Architecture November 7th, 2019

(c) [20 points] Compute the maximum throughput (in arithmetic operations per second, OPS) of the
Ambit-based implementation as a function of the element size (i.e., bits/element).

(d) [10 points] Determine the element size (in bits) for which the CPU-based implementation is faster
than the Ambit-based implementation (Note: Use the same array size as in the previous part).

Midterm Exam Page 16 of 27



Initials: Computer Architecture November 7th, 2019

5 Genome Analysis [60 points]

During a process called read mapping in genome analysis, each read (i.e., genomic subsequence) is
mapped to one or more locations in the reference genome based on the similarity between the read and
the reference genome segment at that location. Potential mapping locations are identified based on the
presence of exact short segments (i.e., k-mers where k is the length of the short segment) from the read
sequence, in the reference genome. The locations of the k-mers in the reference genome are usually
determined using a hash table. Each entry of the hash table stores a key-value pair, where the key is a
k-mer and the value is a list of locations at which the k-mer occurs in the reference genome.

A challenge in designing such a hash table is deciding which k-mers to use as keys, as it affects the size
of the hash table and the number of potential mapping locations, which affect the execution time of read
mapping. In this question, you will be exploring the trade-offs between two strategies of k-mer selection:

(1) Non-overlapping 4-mers: Every non-overlapping 4-mers in the reference genome is used as a
key in the hash table. For example, the reference AAAATTCA contains only two non-overlapping
4-mers: AAAA and TTCA. Thus, the hash table would have the following entries: {AAAA} → {1}
and {TTCA} → {5}, where 1 and 5 are the start locations of the non-overlapping 4-mers (keys) in
the reference.

(2) Non-overlapping 4-mer minimizers: For every non-overlapping 4-mer in the reference genome,
the lexicographically minimum 4-mer of it and the two subsequent non-overlapping 4-mers is used as
a key in the hash table. For example, the segment AAAATTCAACGGGCAG contains only two non-
overlapping 4-mer minimizers, AAAA and ACGG. This is because AAAA is the lexicographically
minimum k-mer among the first three consecutive k-mers (i.e., AAAA, TTCA, ACGG), and ACGG is
the lexicographically minimum k-mer among the next three consecutive k-mers (i.e., TTCA, ACGG,
and GCAG). Thus, the hash table would have the following entries: {AAAA} → {1} and {ACGG}
→ {9}, where 1 and 9 are the start locations of the minimizers (keys) in the reference.

Suppose that you would like to map a set of reads to the following reference genome. Note that the
4-mers are separated by ‘_’ only to help you identify the 4-mers easily, so you should not count them
when creating a list of locations for a key.

AAAA_ATAC_TGAT_CCTT_ATAC_GTTG_TAAG_GTTT_CAAA_GTTG_ATAC_TAAG_TGAT

Answer the following questions based on the information given above:

(a) [10 points] Please list all {key} → {value} entries in the hash table if we use all non-overlapping
4-mers as keys? The order of the entries is not important.

Midterm Exam Page 17 of 27



Initials: Computer Architecture November 7th, 2019

(b) [10 points] Please list all {key} → {value} entries in the hash table if we use all non-overlapping
4-mer minimizers as keys? Please list all the entries of this hash table. The order of the entries is
not important.

(c) [20 points] Assume that we calculate the size of the hash table allocated in memory as: 2dlog2 ee + p
bytes, where e is the total number of hash table entries and p is the total number of locations stored
across all values. Calculate the memory footprint (in bytes) of each of the two hash tables you
designed in (a) and (b). Show your work.

Midterm Exam Page 18 of 27



Initials: Computer Architecture November 7th, 2019

(d) [20 points] Now assume we can query the hash table in log2 e cycles, where e is the total number of
entries in the hash table. A read mapper queries the hash table using the first 4-mer of the read and
calculates the edit distance between the read and the reference segment at each location returned by
the hash table. Calculating the edit distance takes l2 cycles where l is the length of the read. If the
edit distance between the read and a segment in the reference is higher than a certain threshold, the
read mapper discards the location. We refer to cycles spent calculating the edit distance for segments
at discarded locations as wasted cycles. When we profile read mapping with non-overlapping 4-mers
and non-overlapping 4-mer minimizers strategies, we find the wasted cycles

total cycles ratios to be 0.9 and 0.8,
respectively. Assume that we want to align the read: GTTGACCAATGA to the reference genome
above. What are the wasted cycles when aligning the read using 1) non-overlapping 4-mers and 2)
non-overlapping 4-mer minimizers strategies? Please show your work.

Midterm Exam Page 19 of 27



Initials: Computer Architecture November 7th, 2019

6 Low-Latency DRAM [60 points]

In class, we have seen the idea of Tiered-Latency DRAM (TL-DRAM). Recall that in TL-DRAM, each
bitline of a subarray is segmented into two portions by adding isolation transistors in between, creating
two segments on the bitline: the near segment and the far segment. The near segment is close to the
sense amplifiers whereas the far segment is far away.

(a) [5 points] Why is accessing a row in the near segment faster in TL-DRAM compared to a commodity
DRAM chip?

(b) [5 points] Why is accessing a row in the far segment slower in TL-DRAM compared to a commodity
DRAM chip?

Now, assume that:

• We have a system that uses the near segment as a cache to the far segment, and the far segment
contains main memory locations.

• The near segment is not visible to software and the rows that are cached in it are completely
managed by the memory controller.

• The far segment is inclusive of the near segment.

• In each subarray, the far segment contains 496 rows whereas the total number of rows in the
subarray is 512.

(c) [5 points] What is the capacity loss in main memory size when we use TL-DRAM as opposed to
commodity DRAM with the same number of total DRAM rows? Express this as a fraction of total
memory capacity lost (no need to simplify the fraction).

Midterm Exam Page 20 of 27



Initials: Computer Architecture November 7th, 2019

(d) [10 points] What is the tag store size that needs to be maintained on a per subarray basis in the
DRAM controller if the near segment is used as a fully-associative write-back cache? Assume the
replacement algorithm is Most Recently Used (MRU) and use the minimum number of bits
possible to implement the replacement algorithm. Show your work.

Now assume near segment and far segment are exclusive. In other words, both contain memory rows,
and a memory row can only be in one of the segments. When a memory row in the far segment is
referenced, it is brought into the near segment by exchanging the MRU row in the near segment with
the row in the far segment. Note that a row can end up in a different location in the far segment
after being moved to the near segment and then back to the far segment.

(e) [5 points] When the near segment is used as an exclusive cache to the far segment, what is the
capacity loss in main memory size when we use TL-DRAM as opposed to commodity DRAM with
the same number of total DRAM rows? Express this as a fraction of total memory capacity lost (no
need to simplify the fraction).

(f) [10 points] What is the tag store size that needs to be maintained on a per subarray basis in the
DRAM controller if the near segment is used as an exclusive fully-associative write-back cache?
Assume the replacement algorithm is MRU and use the minimum number of bits possible to
implement the replacement algorithm. Show your work.

Midterm Exam Page 21 of 27



Initials: Computer Architecture November 7th, 2019

(g) [20 points] Assume the near and far segments are visible to the operating system (OS) and the OS
can allocate physical pages in either of the segments. Answer the following questions as True or
False and provide explanation to your answer.

• The OS cannot manage the near segment as a cache at granularity smaller than the physical
page granularity.

• If the near segment is used as an OS-managed cache to store frequently-accessed pages, the
cache can only be exclusive.

• There is zero memory capacity loss when the near segment is used as OS-managed cache.

Midterm Exam Page 22 of 27



Initials: Computer Architecture November 7th, 2019

• An OS-managed near segment cache does not incur any tag store overhead in the memory
controller.

Midterm Exam Page 23 of 27



Initials: Computer Architecture November 7th, 2019

- SCRATCHPAD -

Midterm Exam Page 24 of 27



Initials: Computer Architecture November 7th, 2019

- SCRATCHPAD -

Midterm Exam Page 25 of 27



Initials: Computer Architecture November 7th, 2019

- SCRATCHPAD -

Midterm Exam Page 26 of 27



Initials: Computer Architecture November 7th, 2019

- SCRATCHPAD -

Midterm Exam Page 27 of 27


