Computer Architecture
Lecturel?a: Research Presentatifr

Prof. Onur Mutlu
ETH Zlrich
Fall 2020
30 October 2020

E'H Ziirich SA F A R '

Bit-Exact ECC Recovery (BEER):

Determining DRAM OnrDie ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patel, Jeremie S. Kim
Taha Shahroodi, Hasan Hassan, Onur Mutlu

MICRO 2020

Extended talk for Computer Architecture HS 2020

Error Correction Codes (ECCs)

AKey idea: add metadata that allows the memory
controller to reconstruct corrupt data on a bit flip

metadata
(i.e., parity -check bits)

d.d,d.,d dnd,d,d,|k '
store 0o 1 =3 ECC Encoder S 3|

d.d,d
load < dodldz@ ECC Decoder|—-— P oP1P:

inm

CPU Core / DRAM Controller DRAM

reconstructed using single-bit error
metadata

AMore metadata allows correcting more errors
SAFARI 3

Three Types of DRAM Systems

No-ECC [CPU H DRAI\/IJ

: XL
Rank-level ECC [CPU ECCJH[DRAMJ
On-Die-ECC [CPU]4—» ECC DRAV\a

SAFARI 4

Executive Summary

Problem: DRAM onrdie ECCcomplicates third -party reliability studies

AProprietary design obfuscates raw bit errors in an unpredictable way
Alnterferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1.BEER new testing methodol ogy tumgad
on-die ECC function (i.e., its parity -check matrix)

AExploits ECGfunction -specific uncorrectable error patterns
ARequires no hardware support, inside knowledge, or metadata access

2. BEEE new error profiling methodology that infers the raw bit error
locations of error -prone cells from the observable uncorrectable errors

BEER Evaluations:
AApply BEER to 80 real LPDDRA4 chips from 3 major DRAM manufacturers
AShow correctness in simulation for 115,300 codes (4-247b ECC words)

We hope BEER and BEEP enable valuable studies in the future
SAFARI 5

Talk Outline

Challenges Caused by Unknown On -Die ECCs
BEER: Determining the OnDie ECC Function
Evaluating BEER In Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 6

Third -Party DRAM Users

® 1,

System Architects Test Engineers Research Scientists
Design Error Mitigations Third-Party Testing Error-Characterization

¥ ¥ ¥

(N
Need to understand

a DRAM reidbility dvaacteristics

.
Inter -chip variation? Temperature dependence?
OWeako cel |l oStaastical ermrspfoperties?

Aggregate failure rates? Minimum operating timings?

SAFARI 7

Third -Party DRAM Users

But how do we study
DRAM reliability characteristics?

SAFARI 8

Testing and Error Characterization

No-ECC Rank-level ECC On-Die-ECC
DRAM] [Tester ECC: l Tester |<-> ECC DRAM]
Write dod,dyd; dod;d,ds|p oP1P; dod,dyds
I I Encoding I
(unknown)
DRAM dodl(!idS dod,dyds|p oP1P, dodidydslp oP41P,
Storage I I Decoding I
(unknown)
Read d0d1d2d3 dodldzdglp 0p1p2 ?2°?7°?7
Observed d-- d, - -- do- |- py- 2?2727
Errors O\ 2\)'2 | 7 -

Dependent on errors only
9

SAFARI

Dependent on both
errors and ECC

A Typical DRAM On-Die ECC Design

AL28-bit single -error correcting (SEC) Hamming code

DRAM Chip

4 128)
— . ECC Encoder
External Chip Data
DRAM Bus 128 128+8
<—C #e ECC Decoder S |

Invisible outside Fully contained
the DRAM chip within the chip

SAFARI 10

A Typical DRAM On-Die ECC Design

DRAM Chip
4 128 128+8)
— . p—t— ECC Encoder
External Chip Data
DRAM Busg 128 128+8
<—C /o <+—— ECC Decoder <+—vrF— =iole |

AMany ways to implement a 128-bit Hamming code

ADifferent ECC functions

AKnown asparity -check matrices (i.e., 5 -matrices)
AAll correct 1 error, but act differently on 2+ errors

AManufacturers are free to choose any design
ACircuit optimization goals (e.g., area, power)
ADetails are highly proprietary (even under NDA)

SAFARI 11

Effect of Different On -Die ECC Designs

ASimulating uniform -random errors in a 32b ECC word
OxFF test pattern @ RBER=10

]

~ 0.04 - Nonuniform errors

2> = =

v g A =

22 0.02 1

o 2

(a™ —F— Pre-Correction —— Post-Correction (ECC Function 1)

o —F— Post-Correction (ECC Function 0) —f— Post-Correction (ECC Function 2)
0.00 - .

0 5 10 15 20 25 30
Bit Index in 32-Bit ECC Word

A32-bit single -error correction Hamming codes
AThree different parity -check matrices

SAFARI 12

Effect of Different On -Die ECC Designs

The same error characteristics
can appear very different
with different ECC functions

SAFARI 13

Challenges for Third Parties

[System Architects: Designing Error Mitigations]_

A Ondie ECC forces system architects to suppogredictable
chip-dependentmemory reliability characteristics

[Test/VaIidation Engineers: PostManufacturing Testing]_

A Ondie EC@idesthe root-causes of uncorrectable errors
anddefeatstest patterns designed to target physical cells

[Research Scientists: Error-Characterization Studies]_

A Ondie ECConflatesraw bit errors with ECC artifacts,
effectivelyobfuscatingthe true physical cell characteristics

SAFARI 14

Challenges for Third Parties

These challenges all arise
from the Inablility to predict
how ECC transforms error patterns

SAFARI 15

Overcoming Challenges of On -Die ECC

Our goal: Determine the on -die ECC function without :
(1) hardware support or tools
(2) prior knowledge about on -die ECC
(3) access to ECC metadata (e.g., syndromes)

4)
DRAM Tme - ™ Data
CI:/rgp Store
=| H -_L ., 1 -
\ J

AReveals how ondie ECC scrambles errors (BEER)
AAllows inferring raw bit error locations (BEEP)

SAFARI 16

Talk Outline

Challenges Caused by Unknown OfDie ECCs
BEER: Determining the On -Die ECC Function
Evaluating BEER In Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 17

Typical On -Die ECC Function

. 128 128+8)
Encoder
Decoder
\ y
AENncoder and decoder both use linear operations
Encoder
|
QGO GO ET Q
> >
B (....) R)

Decoder W Define the ECC function
AL
"”"::y HE QB0

Jllfwl lllllll l

Qwo wo € |if/
<
-&llllll

SAFARI 18

Error Correction During Decoding

ATwo-step decoding algorithm: syndrome decoding
1. Calculate an error syndrome that points to error(s)
2. Correct detected errors (if any)

Correctable Errors Uncorrectable Errors
b =
T] v 1 S
[:::::::]z: [l [:::::::]z: [l
vpoints to the vpoints to an arbitrary
error location 51 -dependent position
(if any)

SAFARI 0

Error Correction During Decoding

Key idea: exploit the 5-dependence

of uncorrectable errors
to disambiguate ECC functions

SAFARI

Determining the On -Die ECC Function

AApproach: iteratively isolate linear components of 3
ADemonstrated by [Cojocar+ , SP & 19 JlevefRCE r an k

AL AL AL

r e T

8 Inject error % 1l % A

0] inbit[0] 0 000000 0

0 » |0 > 0oo0000|“%|o

0 0 000000 0

0 0 0

0. 0. 0. /
v 7 Aln

ACan systematically extract each column of T
ADetermine entire 5 by extracting all columns

SAFARI 2t

Determining the On -Die ECC Function

On-die ECC causes twochallenges:
1. No way to inject errors in bit[n]

2. No way to observe error syndromes

SAFARI “

Challenge 1: Injecting Errors

AKey idea: deliberately induce data -retention errors

cl:m?q”éa: REE REp Data-Retention
— : : Error
CPU Pause S o
or DRAM Refresh = &
< et
FPGA | p &3 .
Initially .
DISCHARGED Time

ADifference between CHARGED and DISCHARGED cel
allows us to restrict errors to specific bit positions

Tedtat t er n Encoded Data
11000 > 00
e Y _
CHARGED Assume data is stored unmodified Possible errors

(systematic encoding) are limited

SAFARI 23 to certain bits

Challenge 2: Inferring Error Syndromes

Tedtatt ern Encoded Data
c/lp|lbp|p — c/p|lbp|p | D|D c|
Induce data-retention errors | Parity -check bits
Possible Error Patterns Different 7] L generate
No error different error syndromes
C - -] | e ¥
Correctable Post-Correction Data

D| - |- |-|-]-]|c]

cl-|-|-|-1|-|pf

Uncorrectable
p|-|[-]- | i D|

SAFARI 24

Challenge 2: Inferring Error Syndromes

We can differentiate error syndromes
from uncorrectable error patterns

SAFARI 25

Choosing a Set of Test Patterns

ANe consi d-EHARBEDO test pa

p-CHARGED ={c[p[o[p] [p[c|p[p] ... [p[p[p[c]}
q-C—ARGE:):ECCDD c[oJe[p] ... [op[c]c]}
()'—C—ARGE:):ECCCD c|pfcfe] ... [p]pcfc|}

A4

AOur paper explains that the combined plt -CHARGEL
patterns are sufficient to identify the ECC function

AFor each test pattern, we find all possible
uncorrectable errors that can occur
AExploit uniform -randomness of data-retention errors

AEven one DRAM chip provides millions of samples
AE.g., 2 GiB DRAM module yields 24 128-bit words

SAFARI 26

BEER: BitExact ECC Recovery

errors using plt -CHARGEst patterns

@ For each test pattern, identify
all possible uncorrectable errors

@ Solve for the ECC function with the
observed behavior using a SAT solver

@ [Experimentally induce data -retention J

SAFARI 27

Talk Outline

Challenges Caused by Unknown OfDie ECCs
BEER: Determining the OnDie ECC Function
Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 28

Experimental Methodology

A80 LPDDR4 chips from 3 DRAM manufacturers

AManufacturers anonymized as 6 Ad, O0Bd&, an
ATemperature -controlled testing infrastructure
AControl over DRAM timings (including refresh)

ARefresh windows between 1-30 minutes at 30-80%
Al eads to bit error rates (BERS) between 107 and 103
ABERSar larger than those of unwanted soft errors

SAFARI 29

Applying BEER to LPDDR4 Chips

AStudy the uncorrectable errors in the 1-CHARGEDatterns

_ _ Variation between manufacturers
Miscorrections indicates different ECC functions

Rarely-Observed Error Frequently-Observed Error
BER =0 |t b L BER = 1073

96

64 §
32

1-CHARGED Pattern ID
(CHARGED Bit Index)

Bit Index Within ECClDataword

Data retention errors Repeating patterns indicate
within CHARGED bits structure in the H -matrix

SAFARI 30

Applying BEER to LPDDR4 Chips

1. Different manufacturers appear to use
different on-die ECC functions

2. Chips of the same model number

appear to use identical ECC functions
(shown in our paper)

SAFARI 31

Solving for the ECC Function

AWe use the Z3* SAT solver to identify the =5 -matrix

AWe demonstrate BEER for SEC Hamming codes, but it
should readily extend to all linear block codes (e.g., BCH)

AWe open-source our BEER implementation on GitHub
Ahttps://qgithub.com/CMU_-SAFARI/BEER

AUnfortunately, we face two limitations to validation:

1. No way to check the final results since we cannot see
Into the on -die ECC implementation

2. We cannot share our final matrices due to
confidentiality reasons

A_. De Moura and N.Bjgrner, 0 Z EffienA®IMT Sol ver, 6 TACAS,
SAFARI 32

Solving for the ECC Function

We validate BEER insimulation to:
1. Evaluate correctness

2. Overcome confidentiality issues
3. Test a larger set of ECC codes

SAFARI

Simulation Methodology

AWe use the EINSIm DRAM errokecorrection simulator

AWe simulate 115,300 different SEC Hamming codes
AECCdataword lengths from 4 to 247 bits
Al-, 2-, 3-, and {1,2} -CHARGED test patterns

AFor each test pattern:
ASimulate 10°ECC wo r d &iBf{ordl284bit Words)
ASimulate data-retention errors with BER between 10 -5 and 102

Pat el dJhderatdnding andl Modeling On-Die Error Correction in Modern DRAM:
An Experimental Study Using Real Devices 6 DSN, 2019.

SAFARI 34

BEER Correctness Evaluation

AEvaluate the number of SAT solutions found by BEER
AShows whether the O6unique?d

v
32 : X 1-CHARGED
':E)_g 102 - ¢ 2-CHARGED
= G § A 3-CHARGED
@) -
E'—'? 101 + {1,2}-CHARGED
Q0
T x A NN NE= S 1™
> 100 4 % NG & & kafikichin
>~

32 64 128 256

4 8 16
Dataword Length (k) f
1-,2-, 3-CHARGED
patterns individually do {1,2} -CHARGED patterns
not always succeed succeed for all test cases

SAFARI 35

BEER Correctness Evaluation

BEERsuccessfully 1dentifies
the ECC function using
the {1,2} -CHARGELest patterns

SAFARI 36

Two Other Evaluations in the Paper

1. Practicality of BEEROs S

AMeasure SAT problem runtime and memory consumption
ANegligible for short codes (i.e., < 1 minute, <1 MiBRAM)

ARealistic for long codes given that BEER is run offline
Ae.g., 57.1 hours + 6.3 GiB RAM for 128bit code

2. Analytical experimental runtime analysis
AMajority time is spent waiting for data -retention errors
A4.2 hours of testing per chip in our experiments

SAFARI 37

Talk Outline

Challenges Caused by Unknown OfDie ECCs
BEER: Determining the OnDie ECC Function
Evaluating BEER In Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

SAFARI 38

Practical Use Cases for BEER

" BEEP:identifying raw bit error locations
Error PI’OfIlIng { corresponding to observed post-correction errors

SAFARI 39

BEEP: Profiling for Raw Bit Errors

AKey idea: knowing the ECC function (i.e., via BEER)
enables calculating raw bit error positions

Observed Errors

Raw Error Pattern (Uncorrectable)
ECC Decode
El-|-|-|E|E]|E - | E|E]| -

Can calculate

(explained in the paper)

ABEEP infers whichphysical cells are susceptible to
data-retention errors using only the observed errors

SAFARI 40

BEEP: HighLevel Algorithm

Alteratively test each bit in the ECC word and keep
track of the error -prone cells it identifies

For each bit in the ECC word 3

@ Craft a test pattern |
L targeting the bit under test)
4
é)
@ Test for data -retention errors
\, J
é * .)
@ Calculate raw bit error locations
_corresponding to uncorrectable errors |

SAFARI 41

Eval uati ng BEEPOS

AWe e v al u a tuece BIE Bfidsntifying raw
bit errors in simulation
Avarying ECC word lengths and bit error rates
A100 ECC words simulated per measurement

I 31-Bit Codeword @21 63-Bit Codeword E= 127-Bit Codeword
[Plerror] = 1.0 [Plerror] = 0.75 3 Plerror] = 0.5

100% - s
75% -
50% -
25% -

0% -

I Plerror] = 0.25

BEEP Success Rate

2 3 4 5 10 15 20 25
Number of Errors Injected per Codeword

SAFARI 42

Eval uati ng BEEPOS

BEEP ianore successful for:
1.Longer ECC words
2. Higher-probabllity errors

SAFARI

Other Information in the Paper

AFormalism for BEER and the¢ -CHARGED test patterns

ABEERevaluations using experiment and simulation

ASensitivity to experimental noise
AAnalysis of experimental runtime
APracticality of the SAT problem (i.e., runtime, memory)

ABEEPevaluations in simulation

AAccuracy at different error rates
ASensitivity to different ECC codes and word sizes

ADetailed discussion of use-cases for BEER

ADi scussi onmeqoresmeB<E Brid Bngtations

SAFARI 44

Executive Summary

Problem: DRAM onrdie ECCcomplicates third -party reliability studies
AProprietary design obfuscates raw bit errors in an unpredictable way
Alnterferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1.BEER new testing met hodol ogy tumgad
on-die ECC function (i.e., its parity -check matrix)

2. BEEFE new error profiling methodology that infers the raw bit error
locations of error -prone cells from the observable uncorrectable errors

BEER Evaluations:
AApply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers
AShow correctness in simulation for 115,300 codes (4-247b ECC words)

hitps://qithub.com/CMU_ -SAFARI/BEER

We hope that both BEER and BEEP
enable many valuable studies going forward

SAFARI 45

E'H Ziirich SA F A R '

Bit-Exact ECC Recovery (BEER):

Determining DRAM OnrDie ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patel, Jeremie S. Kim
Taha Shahroodi, Hasan Hassan, Onur Mutlu

MICRO 2020

Extended talk for Computer Architecture HS 2020

