
Computer Architecture
Lecture 12a: Research Presentation

Prof. Onur Mutlu

ETH Zürich

Fall 2020

30 October 2020

Bit-Exact ECC Recovery (BEER):
Determining DRAM On-Die ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patel, Jeremie S. Kim

Taha Shahroodi, Hasan Hassan, Onur Mutlu

MICRO 2020

Extended talk for Computer Architecture HS 2020

DRAMCPU Core DRAM Controller

Error Correction Codes (ECCs)

•Key idea: add metadata that allows the memory
controller to reconstruct corrupt data on a bit flip

3

d0d1d2d3 d0d1d2d3|p0p1p2
store

load

ECC Encoder

ECC Decoder
d0d1d2d3|p0p1p2d0d1d2d3

metadata
(i.e., parity-check bits)

single-bit errorreconstructed using

metadata

•More metadata allows correcting more errors

Three Types of DRAM Systems

4

No-ECC DRAMCPU

Rank-level ECC
XL

DRAM
CPU ECC

DRAMCPU ECCOn-Die-ECC

Executive Summary

Problem: DRAM on-die ECC complicates third-party reliability studies

• Proprietary design obfuscates raw bit errors in an unpredictable way

• Interferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1. BEER: new testing methodology that determines a DRAM chip’s unique
on-die ECC function (i.e., its parity-check matrix)

• Exploits ECC-function-specific uncorrectable error patterns

• Requires no hardware support, inside knowledge, or metadata access

2. BEEP: new error profiling methodology that infers the raw bit error
locations of error-prone cells from the observable uncorrectable errors

BEER Evaluations:

• Apply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers

• Show correctness in simulation for 115,300 codes (4-247b ECC words)

We hope BEER and BEEP enable valuable studies in the future

5

Talk Outline

Challenges Caused by Unknown On-Die ECCs

BEER: Determining the On-Die ECC Function

Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

6

Third-Party DRAM Users

7

Need to understand

a DRAM chip’s reliability characteristics

Minimum operating timings?Aggregate failure rates?

‘Weak’ cell locations?

Inter-chip variation?

Statistical error properties?

Temperature dependence?

System Architects
Design Error Mitigations

Research Scientists
Error-Characterization

Test Engineers
Third-Party Testing

Third-Party DRAM Users

8

Need to understand

a DRAM chip’s reliability characteristics

Minimum operating timings?Aggregate failure rates?

‘Weak’ cell locations?

Inter-chip variation?

Statistical error properties?

Temperature dependence?

System Architects
Design Error Mitigations

Research Scientists
Error-Characterization

Test Engineers
Third-Party TestingBut how do we study

DRAM reliability characteristics?

Testing and Error Characterization

9

DRAM

No-ECC

Tester
XL

DRAM

Rank-level ECC

Tester ECC DRAM

On-Die-ECC

Tester ECC

Write d0d1d2d3

DRAM

Storage

d0d1d2d3

Read d0d1d2d3

d0d1d2d3|p0p1p2

d0d1d2d3|p0p1p2

d0d1d2d3|p0p1p2

d0d1d2d3

d0d1d2d3|p0p1p2

Encoding

(unknown)

d0d1d2d3

Decoding

(unknown)

d0d1d2d3

d0d1d2d3

Observed

Errors
d0- d2-

d0d1d2d3|p0p1p2

d0d1d2d3|p0p1p2

- - d2- |- p1-

d0d1d2d3|p0p1p2

? ? ? ?

? ? ? ?

Dependent on errors only Dependent on both
errors and ECC

A Typical DRAM On-Die ECC Design

•128-bit single-error correcting (SEC) Hamming code

Data

Store

Chip

I/O

ECC Encoder

ECC Decoder

128

128 128+8

128+8

External

DRAM Bus

DRAM Chip

Fully contained
within the chip

Invisible outside
the DRAM chip

10

A Typical DRAM On-Die ECC Design

Data

Store

Chip

I/O

ECC Encoder

ECC Decoder

128

128 128+8

128+8

External

DRAM Bus

DRAM Chip

•Many ways to implement a 128-bit Hamming code
• Different ECC functions

• Known as parity-check matrices (i.e., 𝑯-matrices)

• All correct 1 error, but act differently on 2+ errors

•Manufacturers are free to choose any design
• Circuit optimization goals (e.g., area, power)

• Details are highly proprietary (even under NDA)

11

0xFF test pattern @ RBER=10-4

Effect of Different On-Die ECC Designs

•32-bit single-error correction Hamming codes

•Three different parity-check matrices

Nonuniform errors

•Simulating uniform-random errors in a 32b ECC word

12

0xFF test pattern @ RBER=10-4

Effect of Different On-Die ECC Designs

•32-bit single-error correction Hamming codes

•Three different parity-check matrices

Nonuniform errors

•Simulating uniform-random errors in a 32b ECC word

13

The same error characteristics

can appear very different

with different ECC functions

Challenges for Third Parties

• On-die ECC forces system architects to support unpredictable,
chip-dependent memory reliability characteristics

System Architects: Designing Error Mitigations

• On-die ECC hides the root-causes of uncorrectable errors
and defeats test patterns designed to target physical cells

Test/Validation Engineers: Post-Manufacturing Testing

• On-die ECC conflates raw bit errors with ECC artifacts,
effectively obfuscating the true physical cell characteristics

Research Scientists: Error-Characterization Studies

14

Challenges for Third Parties

• On-die ECC forces system architects to support unpredictable,
chip-dependent memory reliability characteristics

System Architects: Designing Error Mitigations

• On-die ECC hides the root-causes of uncorrectable errors
and defeats test patterns designed to target physical cells

Test/Validation Engineers: Post-Manufacturing Testing

• On-die ECC conflates raw bit errors with ECC artifacts,
effectively obfuscating the true physical cell characteristics

Research Scientists: Error-Characterization Studies

15

These challenges all arise

from the inability to predict

how ECC transforms error patterns

Overcoming Challenges of On-Die ECC

Our goal: Determine the on-die ECC function without:

(1) hardware support or tools

(2) prior knowledge about on-die ECC

(3) access to ECC metadata (e.g., syndromes)

•Reveals how on-die ECC scrambles errors (BEER)

•Allows inferring raw bit error locations (BEEP)

Data

Store

DRAM

Chip

I/O

𝑭𝒆𝒏𝒄𝒐𝒅𝒆

𝑭𝒅𝒆𝒄𝒐𝒅𝒆

16

Talk Outline

Challenges Caused by Unknown On-Die ECCs

BEER: Determining the On-Die ECC Function

Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

17

𝑑𝑎𝑡𝑎𝑤𝑜𝑟𝑑′ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑′

Decoder

𝑑𝑎𝑡𝑎𝑤𝑜𝑟𝑑 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑

Encoder

Typical On-Die ECC Function

18

Data

Store

DRAM

Chip

I/O

Encoder

Decoder

128

128 128+8

128+8

•Encoder and decoder both use linear operations

............................
....𝒅 = 𝒄 =

𝑮

.....................

𝑯

....𝒅′ = 𝒄′ =

....
𝒅

∗

.......∗

𝒄′

𝑻

Define the ECC function

Error Correction During Decoding

19

•Two-step decoding algorithm: syndrome decoding
1. Calculate an error syndrome that points to error(s)

2. Correct detected errors (if any)

𝑯

𝒄′

𝒔
...

.....................

.......
=∗

Correctable Errors Uncorrectable Errors

𝑯

𝒄′

𝒔
...

.....................

.......
=∗

𝒔 points to the
error location

(if any)

𝒔 points to an arbitrary
𝑯-dependent position

Error Correction During Decoding

20

•Two-step decoding algorithm: syndrome decoding
1. Calculate an error syndrome that points to error(s)

2. Correct detected errors (if any)

𝑯

𝒄′

𝒔
...

.....................

.......
=∗

Correctable Errors Uncorrectable Errors

𝑯

𝒄′

𝒔
...

.....................

.......
=∗

𝒔 points to the
error location

(if any)

𝒔 points to an arbitrary
𝑯-dependent position

Key idea: exploit the 𝑯-dependence

of uncorrectable errors

to disambiguate ECC functions

Determining the On-Die ECC Function

21

•Approach: iteratively isolate linear components of 𝑯
• Demonstrated by [Cojocar+, SP’19] for rank-level ECC

𝑯

𝒄′

𝒔
...

. 0 0 0 0 0 0

. 0 0 0 0 0 0

. 0 0 0 0 0 0

1
0
0
0
0
0
0

=∗

•Can systematically extract each column of 𝑯

•Determine entire 𝑯 by extracting all columns

Inject error

in bit[0]

𝒄
0
0
0
0
0
0
0

𝒄′
1
0
0
0
0
0
0

𝒔 = 𝑯 col[0]

Determining the On-Die ECC Function

22

•Approach: iteratively isolate linear components of 𝑯
• Demonstrated by [Cojocar+, SP’19] for rank-level ECC

𝑯

𝒄′

𝒔
...

. 0 0 0 0 0 0

. 0 0 0 0 0 0

. 0 0 0 0 0 0

1
0
0
0
0
0
0

=∗

•Can systematically extract each column of 𝑯

•Determine entire 𝑯 by extracting all columns

Inject error

in bit[0]

𝒄
0
0
0
0
0
0
0

𝒄′
1
0
0
0
0
0
0

𝒔 = 𝑯 col[0]

On-die ECC causes two challenges:
1. No way to inject errors in bit[n]

2. No way to observe error syndromes

Challenge 1: Injecting Errors

•Key idea: deliberately induce data-retention errors

CPU

or

FPGA

Pause

DRAM Refresh

Data-Retention

Error

D
R
A

M
 C

e
ll

V
o
lt

a
g
e

Time

REF REF

VSAFE

Initially

CHARGED

Initially

DISCHARGED

1 0 0 0 1 0 0 0
𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟

Test Pattern Encoded Data

? ? ?

Assume data is stored unmodified
(systematic encoding)

•Difference between CHARGED and DISCHARGED cells
allows us to restrict errors to specific bit positions

Possible errors
are limited

to certain bits

CHARGED

23

- - C

Challenge 2: Inferring Error Syndromes

C D D D

Test Pattern

C D D D D D C
𝐸𝑛𝑐𝑜𝑑𝑒

Encoded Data

C - - - - - C

D - - -

C - - - - - D

D - - - - - D

Induce data-retention errors

Possible Error Patterns

𝐷𝑒𝑐𝑜𝑑𝑒

Post-Correction Data

C D D D𝑯𝑨

No error

Correctable

Uncorrectable

𝑯𝑩 C C D D

𝑯𝑪 C D C D

𝑯𝑫 C D D C

Different 𝑯𝑿 generate

different error syndromes

24

Parity-check bits

Challenge 2: Inferring Error Syndromes

C D D D

Test Pattern

C D D D D D C
𝐸𝑛𝑐𝑜𝑑𝑒

Encoded Data

C - - - - - C

D - - - - - C

C - - - - - D

D - - - - - D

Induce data-retention errors

Possible Error Patterns

𝐷𝑒𝑐𝑜𝑑𝑒

Post-Correction Data

C D D D𝑯𝑨

No error

Correctable

Uncorrectable

𝑯𝑩 C C D D

𝑯𝑪 C D C D

𝑯𝑫 C D D C

Different 𝑯𝑿 cause different

uncorrectable errors
We can differentiate error syndromes

from uncorrectable error patterns

25

Choosing a Set of Test Patterns

•We consider the “𝑛-CHARGED” test patterns:

C D D D D C D D D D D C1-CHARGED = { }, , . . . ,
C C D D C D C D D D C C2-CHARGED = { }, , . . . ,
C C C D C D C C D D C C3-CHARGED = { }, , . . . ,

•Our paper explains that the combined {1,2}-CHARGED
patterns are sufficient to identify the ECC function

•For each test pattern, we find all possible
uncorrectable errors that can occur
• Exploit uniform-randomness of data-retention errors
• Even one DRAM chip provides millions of samples

• E.g., 2 GiB DRAM module yields 224 128-bit words

26

BEER: Bit-Exact ECC Recovery

Experimentally induce data-retention
errors using {1,2}-CHARGED test patterns1

Solve for the ECC function with the

observed behavior using a SAT solver3

For each test pattern, identify

all possible uncorrectable errors2

27

Talk Outline

Challenges Caused by Unknown On-Die ECCs

BEER: Determining the On-Die ECC Function

Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

28

Experimental Methodology

•80 LPDDR4 chips from 3 DRAM manufacturers
• Manufacturers anonymized as ‘A’, ‘B’, and ‘C’

• Temperature-controlled testing infrastructure

• Control over DRAM timings (including refresh)

•Refresh windows between 1-30 minutes at 30-80◦C
• Leads to bit error rates (BERs) between 10-7 and 10-3

• BERs far larger than those of unwanted soft errors

29

Applying BEER to LPDDR4 Chips

• Study the uncorrectable errors in the 1-CHARGED patterns

Repeating patterns indicate
structure in the H-matrix

Variation between manufacturers
indicates different ECC functions

Data retention errors
within CHARGED bits

Miscorrections

30

Applying BEER to LPDDR4 Chips

• Study the uncorrectable errors in the 1-CHARGED patterns

Repeating patterns indicate
structure in the H-matrix

Variation between manufacturers
indicates different ECC functions

Data retention errors
within CHARGED bits

Miscorrections

31

1. Different manufacturers appear to use

different on-die ECC functions

2. Chips of the same model number

appear to use identical ECC functions
(shown in our paper)

Solving for the ECC Function

•We use the Z3† SAT solver to identify the 𝑯-matrix
•We demonstrate BEER for SEC Hamming codes, but it
should readily extend to all linear block codes (e.g., BCH)

•We open-source our BEER implementation on GitHub
• https://github.com/CMU-SAFARI/BEER

•Unfortunately, we face two limitations to validation:
1. No way to check the final results since we cannot see

into the on-die ECC implementation

2. We cannot share our final matrices due to
confidentiality reasons

†L. De Moura and N. Bjørner, “Z3: An Effient SMT Solver,” TACAS, 2008.

32

Solving for the ECC Function

•We use the Z3† SAT solver to identify the 𝑯-matrix
•We demonstrate BEER for SEC Hamming codes, but it
should readily extend to all linear block codes (e.g., BCH)

•We open-source our BEER implementation on GitHub
• https://github.com/CMU-SAFARI/BEER

•Unfortunately, we face two limitations to validation:
1. No way to check the final results since we cannot see

into the on-die ECC implementation

2. We cannot share our final matrices due to
confidentiality reasons

†L. De Moura and N. Bjørner, “Z3: An Effient SMT Solver,” TACAS, 2008.

33

We validate BEER in simulation to:

1. Evaluate correctness

2. Overcome confidentiality issues

3. Test a larger set of ECC codes

Simulation Methodology

•We use the EINSim† DRAM error-correction simulator

•We simulate 115,300 different SEC Hamming codes
• ECC dataword lengths from 4 to 247 bits

• 1-, 2-, 3-, and {1,2}-CHARGED test patterns

•For each test pattern:
• Simulate 109 ECC words (≈14.9 GiB for 128-bit words)

• Simulate data-retention errors with BER between 10-5 and 10-2

†Patel et al., “Understanding and Modeling On-Die Error Correction in Modern DRAM:

An Experimental Study Using Real Devices,” DSN, 2019.

34

BEER Correctness Evaluation

•Evaluate the number of SAT solutions found by BEER
• Shows whether the ‘unique’ solution is identified

1-, 2-, 3-CHARGED
patterns individually do

not always succeed
{1,2} -CHARGED patterns
succeed for all test cases

35

BEER Correctness Evaluation

•Evaluate the number of SAT solutions found by BEER
• Shows whether the ‘unique’ solution is identified

1-, 2-, 3-CHARGED
patterns individually do

not always succeed
{1,2} -CHARGED patterns
succeed for all test cases

BEER successfully identifies

the ECC function using

the {1,2}-CHARGED test patterns

36

Two Other Evaluations in the Paper

37

1. Practicality of BEER’s SAT problem
•Measure SAT problem runtime and memory consumption

• Negligible for short codes (i.e., < 1 minute, < 1 MiB RAM)

• Realistic for long codes given that BEER is run offline
• e.g., 57.1 hours + 6.3 GiB RAM for 128-bit code

2. Analytical experimental runtime analysis
•Majority time is spent waiting for data-retention errors

• 4.2 hours of testing per chip in our experiments

Talk Outline

Challenges Caused by Unknown On-Die ECCs

BEER: Determining the On-Die ECC Function

Evaluating BEER in Experiment and Simulation

BEEP and Other Practical Use Cases for BEER

38

Practical Use Cases for BEER

•We provide 5 use cases in our paper to show how
knowing the ECC function is useful in practice

System Design
Architecting DRAM controller error mitigations

that are informed about on-die ECC

Error
Characterization

Studying the statistical properties

of raw bit errors (e.g., spatial distributions)

Testing

Crafting worst-case test patterns

to enable efficient testing and validation

Root-cause analysis for uncorrectable errors

39

BEEP: identifying raw bit error locations

corresponding to observed post-correction errors
Error Profiling

BEEP: Profiling for Raw Bit Errors

40

•Key idea: knowing the ECC function (i.e., via BEER)
enables calculating raw bit error positions

E - - - E E E - E E -
ECC Decoder

Raw Error Pattern

Observed Errors

(Uncorrectable)

• BEEP infers which physical cells are susceptible to
data-retention errors using only the observed errors

Known

Can calculate
(explained in the paper)

BEEP: High-Level Algorithm

41

• Iteratively test each bit in the ECC word and keep
track of the error-prone cells it identifies

Craft a test pattern

targeting the bit under test1

Calculate raw bit error locations

corresponding to uncorrectable errors3

Test for data-retention errors2

For each bit in the ECC word

Evaluating BEEP’s Accuracy

42

•We evaluate BEEP’s success rate of identifying raw
bit errors in simulation
• Varying ECC word lengths and bit error rates

• 100 ECC words simulated per measurement

Evaluating BEEP’s Accuracy

43

•We evaluate BEEP’s success rate of identifying raw
bit errors in simulation
• Varying ECC word lengths and bit error rates

• 100 ECC words simulated per measurement

BEEP is more successful for:

1.Longer ECC words

2.Higher-probability errors

Other Information in the Paper

•Formalism for BEER and the 𝑛-CHARGED test patterns

•BEER evaluations using experiment and simulation

• Sensitivity to experimental noise
• Analysis of experimental runtime
• Practicality of the SAT problem (i.e., runtime, memory)

•BEEP evaluations in simulation

• Accuracy at different error rates
• Sensitivity to different ECC codes and word sizes

•Detailed discussion of use-cases for BEER

•Discussion on BEER’s requirements and limitations

44

Executive Summary
Problem: DRAM on-die ECC complicates third-party reliability studies

• Proprietary design obfuscates raw bit errors in an unpredictable way

• Interferes with (1) design, (2) test & validation, and (3) characterization

Goal: understand exactly how on-die ECC obfuscates errors

Contributions:

1. BEER: new testing methodology that determines a DRAM chip’s unique
on-die ECC function (i.e., its parity-check matrix)

2. BEEP: new error profiling methodology that infers the raw bit error
locations of error-prone cells from the observable uncorrectable errors

BEER Evaluations:

• Apply BEER to 80 real LPDDR4 chips from 3 major DRAM manufacturers

• Show correctness in simulation for 115,300 codes (4-247b ECC words)

https://github.com/CMU-SAFARI/BEER

We hope that both BEER and BEEP
enable many valuable studies going forward

45

Bit-Exact ECC Recovery (BEER):
Determining DRAM On-Die ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patel, Jeremie S. Kim

Taha Shahroodi, Hasan Hassan, Onur Mutlu

MICRO 2020

Extended talk for Computer Architecture HS 2020

