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Four Key Directions

« Fundamentally Secure/Reliable/Safe Architectures

« Fundamentally Energy-Efficient Architectures
2 Memory-centric (Data-centric) Architectures

= | Fundamentally Low-Latency Architectures

= Architectures for Genomics, Medicine, Health
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Solving the Hardest Problems

SA FARI Source: https://farm9.staticflickr.com/8571/16376102935 8628150df8 o.jpg
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Solving the Hardest Problems
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Solving the Hardest Problems
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Solving the Hardest Problems
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Solving the Hardest Problems
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Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” actualization:

Book, 1954-1970.

Speed

achvities
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Speed
o Speed &
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needs

Basic

needs

SA FA R l Source: https://www.simplypsychology.org/maslow.html 8



Challenge and Opportunity for Future

Fundamentally
Low-Latency
Computing Architectures

SAFARI



More Motivation tor LLow Latency

« Watch Satya’s (CMU) keynote talk at SYSTOR 2020
o https://youtu.be/u-KygYmbgDc?t=1723
a Edge Computing: A New Disruptive Force
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https://youtu.be/u-KygYmbqDc?t=1723

More Motivation for LLow Latency

« Watch Satya’s (CMU) keynote talk at SYSTOR 2020
o https://youtu.be/u-KygYmbgDc?t=1723
a Edge Computing: A New Disruptive Force

Value Proposition of Edge Computing

What is the edge doing for you? hadev il [
1. Edge analytics in loT Bandwidth
“Scalable real-time sensor analytics” (peak and average)
2. Highly responsive cloud-like services Latency
“New applications and microservices” (mean and tail)
3. Exposure firewall in the loT Privacy
“Crossing the loT Chasm” (control of sensor data)
4. Mask disruption of cloud services Availability
“Disconnected operation for cloud services” (UPS for cloud)

5. Honor data export restnctlons
SAF > bl W) 3533/32845 I
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https://youtu.be/u-KygYmbqDc?t=1723

More Motivation for LLow Latency

« Watch Satya’s (CMU) keynote talk at SYSTOR 2020
o https://youtu.be/u-KygYmbgDc?t=1723
a Edge Computing: A New Disruptive Force

Human Cognition is Amazing

Fast, accurate and robust

- face detection under hostile conditions < 700 ms
(low lighting, distorted optics)

+ face recognition 370 ms — 620 ms

* is this sound from a human? 4 ms

* VR head tracking <16 ms

To be “superhuman’” we need to beat these speeds

Leave time for additional software processing (e.g. database lookup) to add value to user

12
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https://youtu.be/u-KygYmbqDc?t=1723

Future of Genome Sequencing & Analysis

MinlON from ONT

SmidglON from ONT

SAFARI



Recall Our Dream (from 2007)

=« An embedded device that can perform comprehensive
genome analysis in real time (within a minute)

« Still a long ways to go
o Energy efficiency
o Performance (latency)
a  Security

o Huge memory bottleneck

SAFARI
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Data-Centric (Memory-Centric)
Architectures

15




Data-Centric Architectures: Properties

Process data where it resides (where it makes sense)
o Processing in and near memory structures

Low-latency & low-energy data access

a  Low latency memory
o Low energy memory

Low-cost data storage & processing
a2 High capacity memory at low cost: hybrid memory, compression

Intelligent data management
o Intelligent controllers handling robustness, security, cost, scaling

SAFARI 16



Low-Latency & Low-Energy
Data Access




Memory Latency:
Fundamental Tradeoffs




Review: Memory Latency LLags Behind

+~Capacity *Bandwidth *| atency 128
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DRAM Improvement (log)

Memory latency remains almost constant
SAFARI




A Closer Look ...
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Figure 1: DRAM latency trends over time [20, 21, 23, 51].

Chang+, “"Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.

SAFARI 20




DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’|2; [Xu+, ISWC’[2; Umuroglu+,
Clapp+ (Intel), ISWC’15] FPL’15]

-, N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’15]

SAFARI



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance

bottleneck

APACHE
Spark
y
In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’5]

Awan+, BDCloud’ | 5]
SAFARI




New DRAM Types Increase Latency!

= Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload—DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSIim-Ramulator]

Demystifying Complex Workload-DRAM Interactions:
An Experimental Study

Saugata Ghose' Tianshi Li' Nastaran Hajinazar*"
Damla Senol Cali® Onur Mutlu®'
TCarnegie Mellon University *Simon Fraser University SETH Ziirich

SAFARI 23


https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

Why Study Workload—DRAM Interactions? SAFARI

» Manufacturers are developing many new types of DRAM

*DRAM limits performance, energy improvements:
new types may overcome some limitations

* Memory systems now serve a very diverse set of applications:
can no longer take a one-size-fits-all approach

=So which DRAM type works best with which application?
* Difficult to understand intuitively due to the complexity of the interaction

* Can’t be tested methodically on real systems: new type needs a new CPU

= We perform a wide-ranging experimental study to uncover
the combined behavior of workloads and DRAM types

*115 prevalent/emerging applications and multiprogrammed
workloads

*9 modern DRAM types: DDR3, DDR4, GDDRS, HBM, HMC,
LPDDR3, LPDDR4, Wide I/O, Wide I/0 2 Page 24 of 25




Modern DRAM Types: Comparison to DDR3 SAFARI

DRAM B;zi(s Bank |3D-Stac|Low-Po | =Bank gr O\ufps

Type Rank Groups

DDR3 8

DDR4 16 ¢| increased latency l )
GDDRS5 16 V l increased area/power I memory channel

HBM
Hiihiandwidt 16 v = 3D-stacked DRAM
cmor
’ high bandwidth
HMC narrower rows, WtR
Hybrid Memory 256 higher latency ¢ — Through-Silicon
Cube —~— Vias (TSYs;
Wide /O 4 V. V' emory
Wide I/O2 8 4 V' layers
LPDDR3 8 v
LPDDR4 16 V dedicated Logic Layer

Page 25 of 25




4. Need Tor Lower Access Latency:

SAFARI
Performance

= New DRAM types often increase access latency in order to
provide more banks, higher throughput

= Many applications can’t make up for the increased latency
* Especially true of common OS routines (e.g., file I/O, process forking)
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* A variety of desktop/scientific, server/cloud, GPGPU applications

Page 26 of 25




Key Takeaways SAFARI

1. DRAM latency remains a critical bottleneck for
many applications

2. Bank parallelism is not fully utilized by a wide variety
of our applications

3. Spatial locality continues to provide significant
performance benefits if it is exploited by the memory
subsystem

4. For some classes of applications, low-power memory
can provide energy savings without sacrificing

significant performance
Page 27 of 25




Conclusion SAFARI

» Manufacturers are developing many new types of DRAM

*DRAM limits performance, energy improvements:
new types may overcome some limitations

* Memory systems now serve a very diverse set of applications:
can no longer take a one-size-fits-all approach

* Difficult to intuitively determine which DR AM-workload pair works best

» We perform a wide-ranging experimental study to uncover
the combined behavior of workloads, DRAM types

*115 prevalent/emerging applications and multiprogrammed
workloads

*9 modern DRAM types
=12 key observations on DRAM—workload behavior

Open-source tools: https://github.com/CMU-SAFARI/ramulator

Full paper: https: iv. d£/1902.07609




New DRAM Types Increase Latency!

= Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload—DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSIim-Ramulator]

Demystifying Complex Workload-DRAM Interactions:
An Experimental Study

Saugata Ghose' Tianshi Li' Nastaran Hajinazar*"
Damla Senol Cali® Onur Mutlu®'
TCarnegie Mellon University *Simon Fraser University SETH Ziirich

SAFARI 29


https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

The Memory Latency Problem

High memory latency is a significant limiter of system
performance and energy-efficiency

It is becoming increasingly so with higher memory
contention in multi-core and heterogeneous architectures

o Exacerbating the bandwidth need
o Exacerbating the QoS problem

It increases processor design complexity due to the
mechanisms incorporated to tolerate memory latency

SAFARI 3



Retrospective: Conventional Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]

a2 Widely used, simple, effective, but inefficient, passive
2 Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]

a2 Works well for regular memory access patterns
o Prefetching irregular access patterns is difficult, inaccurate, and

hardware-intensive

Multithreading [initially in CDC 6600, 1964]
a2 Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an

ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]
a Tolerates cache misses that cannot be prefetched
a2 Requires extensive hardware resources for tolerating long latencies

=V=FECE

31



Retrospective: Conventional Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
a2 Widely used, simple, effective, but inefficient, passive
2 Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/9 :
. None of These€

Fundamentally Reduce Memory
Latency

Out-of-order execution [initially by Tomasulo, 1967]
a Tolerates cache misses that cannot be prefetched
a2 Requires extensive hardware resources for tolerating long latencies

=v=ECE 32




Runahead Execution




perfect caches:  Runahead Execution Example
Load 1 Hit Load 2 Hit

T o

Small OoO Instruction Window:

Load 1 Miss Load 2 Miss §
Miss 1 [ ] i Miss 2 [ i
Runahead:

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Hit

H' >
- Saved Cycles

Miss 1 [] | i
Miss 2 | |




Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.

3.00
vl Scout
S 200 <
1 4 | Buys 12 MB
§ / t
= 1.50 Buys 7 MB /
e
< 1.00 40% Better
— Performance
0.50 i

256KB512KB 1iMB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size




More on Runahead Execution

« Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"”
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer architecture papers of 2003 selected as Top Picks by
IEEE Micro.

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson § Yale N. Patt §

§ECE Department TMicroprocessor Research fDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com

36


https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

More on Runahead Execution (Short)

« Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"

IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS

37


https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

Runahead Readings

Required
a2 Mutlu et al., "Runahead Execution”, HPCA 2003, Top Picks 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

a2 Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

a2 Armstrong et al., "Wrong Path Events,” MICRO 2004.

38



Retrospective: Conventional Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
a2 Widely used, simple, effective, but inefficient, passive
2 Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/9 :
. None of These€

Fundamenta\ly Reduce
Memory Latency

Out-of-order execution [initially by Tomasulo, 1967]
a Tolerates cache misses that cannot be prefetched
a2 Requires extensive hardware resources for tolerating long latencies

=v=FECE 39




Two Major Sources of Latency Inetficiency

= Modern DRAM is not designed for low latency
a2 Main focus is cost-per-bit (capacity)

« Modern DRAM latency is determined by worst case
conditions and worst case devices

a2 Much of memory latency is unnecessary

3l: Reduce Memory Latency

Our &0 f the Problem

at the Source O

SA 40



Truly Reducing Memory Latency




What Causes
the Long Memory Latency?




Why the LLong Memory Latency?

=« Reason 2: “"One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips

Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels

Same latency parameters for all application data

o U U 0o 0 U

SAFARI 43



Briet Review:

Inside A DRAM Chip




DRAM Module and Chip

HTHHT U

fruiatiannnnnt
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Goals

Cost
Latency
Bandwidth
Parallelism
Power
Energy
Reliability

46



DRAM Chip

8111 Cioos

Row Decoder

Row Decoder

Cell Array

Array of Sense Ampl

Cell Array

Cell Array

Array of Sense Amplifiers

Cell Array
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Sense Amplifier

enable

A

bottom

Inverter
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Sense Amplifier — Two Stable States

74 0

¥ |
Y A

0 VDD

A

) 4

Logical “1” Logical “0”
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Sense Amplifier Operation

VDD

A

50



DRAM Cell — Capacitor

e i

Empty State Fully Charged State

Logical “0” Logical “1”

0 Small — Cannot drive circuits

9 Reading destroys the state
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Capacitor to Sense Amplifier

e i




DRAM Cell Operation

¢lM

A
+

day —

b/ 4

DD



DRAM Subarray — Building Block for
DRAM Chip

Cell Array

Array of Sense Amplifiers (Row Buffer) 8Kb -y

S
i
o
O
S
T
o
S
O
o

Cell Array




DRAM Bank

!

Address

S
@
-]
o
(S}
@
o
3
o
-2

Cell Array

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

Array of Sense Amplifiers

Cell Array

Bank 1/O (64b)

Data

Address
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DRAM Chip

Shared internal bus

Cell Array

Array of Sense

Cell Array

Cell Array

Array of Sense

Cell Array

Bank I/0

0/1>lueg

Aewry 1|22

asuas jo Aewry

Aewry 1122

Aewry 1|22

asuas jo Aewry

Aewry 1122

19p0o2ag moy
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13p03ag Moy

13p03ag Moy

Row Decoder

Row Decoder

Row Decoder

Row Decoder

Cell Array Cell Array

Array of Sense
Amplifiers

Array of Sense

Cell Array Cell Array

Cell Array Cell Array

Array of Sense
Amplifiers

Array of Sense

Cell Array Cell Array

Bank 1/0

Bank 1/0

o/iues | ofprjueg
Aewy |20 Aeny |20

s1a,
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Aewy |20 Aeny |20
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13p02ag moy
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Row Decoder

Row Decoder

Row Decoder

Row Decoder

Cell Array

Array of Sense
Amplifiers

Cell Array

Cell Array

Array of Sense
Amplifiers

Cell Array

Bank I/0

0/1>ueg

Aewry 1193

sty dwy
asuas jo Aeury

Aewry 1|22

Aewy 1193
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Aewry 1|22

Memory channel - 8bits
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DRAM Operation

€ ACTIVATE Row
—

_ €) READ/WRITE Column
Cell Array
€) PRECHARGE

Row Decoder

Row Address

Row Decoder

Bank I/O

Data

Column Address
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More on DRAM Operation: Section 2

« Vivek Seshadri and Onur Mutluy,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Ziurich

visesha@microsoft.com onur .mutlu@inf.ethz.ch

SAFARI >8


https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Why the LLong Memory Latency?

=« Reason 2: “"One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips

Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels

Same latency parameters for all application data

o U U 0o 0 U

SAFARI >



Tiered Latency DRAM




What Causes the Long Latency?
DRAM Chip

subarray

I/0

channel‘ E
DRAM Latency {(Subarray Latemoy Y- /D lattemoy

Dominant




Why is the Subarray So Slow?

Subarray Cell
cell i
“ . 2 wordline
. - @ s
— Q _- ~ -
% 8 t /// _L\\\ -&,
Qo N 8 4 \ fl:
S ™~ | = —
Y 1 ) 1 9 ‘ access | Q
S L] 1 G transistor || & g
S S 3 | 8T =z ©
= o ©w S e
E E k \\\ // &
S o _7 <
~~~~~ Q
--.\n
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost [1 Small area

— Large bitline capacitance [ High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYATAYTA
Tra e-Off. Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency

4
= 35
é 3 [ Fancy DRAM
Q 2.5 S«'I:ncz Bitl; Commodity
'8 8 2 or ITiine DRAM
= E Long Bitline
© 1.5
c
| -
o
=

0 10 20 30 40 50 60 70
Latency (ns)

aamsrram——



Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area M

' N7 N/ 7/ \

M Low Latency
1) [ )

0)0/0/® (DD
0)0.0/® 0)00/®
e

Need Add Isolation
Isolation Transistors

tline [] Fast
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Approximating the Best of Both Worlds

Long Bitlin Tiered-Latency DRAM \ort Bitline

small Area Small Area M

' N/ N/ N/ \

M Low Latency Low Latency

Small area
using long

bitline §
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Commodity DRAM vs. TL-DRAM [HpPcA 2013)
* DRAM Latency (tRC) * DRAM Power

160% +49%

160%
0
1‘2}80;0 140%
0

100% 120%
-

80%
60% -
40%
20% -

0% - 0%
Commodity Near | Far Commodity Near | Far
DRAM TL-DRAM DRAM TL-DRAM

e DRAM Area Overhead

~3%: mainly due to the isolation transistors

Latency
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Trade-Off: Area (Die-Area) vs. Latency

4
= 35 32
3
8 3 2.5 64
N5’ 28
Tg 1.5 256— 512 cells/bitline
@ @
g Near Segment Far Segment

0 10 20 30 40 50 60 70
Latency (ns)
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Leveraging Tiered-Latency DRAM

* TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

* Many potential uses

1. Use near segment as hardware-managed inclusive
cache to far segment )

Ao
2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system
4 Simply replace DRAM with TL-DRAM

v,

69
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Near Segment as Hardware-Managed Cache

TL-DRAM

far segment

near segment
olifier

I/0

channel A

main
memory

cache

{- Challenge 1: How to efficiently migrate a row between}

segments?

* Challenge 2: How to efficiently manage the cache?
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Inter-Segment Migration

* Goal: Migrate source row into destination row

* Naive way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte

— High latency

Far Segment

/

Isolation Transistor

Destination

] Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from source to destination across
shared bitlines concurrently

\

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier
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Inter-Segment Migration

* Our way:
— Source and destination cells share bitlines

— Transfer data from so .
shared bitlines concu Step 1: Activate source row

Migration is overlapped with source row access
Additional ~“4ns over row access latency

Step 2: Activate destination
row to connect cell and bitline

Near Segment

Sense Amplifier
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Near Segment as Hardware-Managed Cache

TL-DRAM

far segment

near segment
olifier

I/0

channel A

main
memory

cache

* Challenge 1: How to efficiently migrate a row between

segments?

* Challenge 2: How to efficiently manage the cache?
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Performance & Power Consumption

o 120% 120%
I

& 100%: s 10006=23% =24% ~26%
£ 3

§ 80% 1 8 80%

T o]

a 60% 2 60%

ge) —_

S 40% - £ 40% -

'T? 5

£ 20% - > 20% -

(@]

2 0% 0%

1 (1-ch)2 (2-ch)4 (4-ch)
Core-Count (Channel)

1 (1-ch)2 (2-ch)4 (4-ch)
Core-Count (Channel)

Using near segment as a cache improves

performance and reduces power consumption
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Single-Core: Varying Near Segment Length

Maximum IPC
Improvement

14%
12%
10%

8% .
° Larger cache capacity

6%
~ NN NNENNNEN

Higher cache access latency
2% .
0% - : . , : : : ,
1 2 4 8 16 32 64 128 256
Near Segment Length (cells)

By adjusting the near segment length, we can
trade off cache capacity for cache latency

Performance Improvement
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More on TL-DRAM

= Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture”
Proceedings of the 19th International Symposium on
High-Performance Computer Architecture (HPCA), Shenzhen,
China, February 2013. Slides (pptx)

Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture

Donghyuk Lee  Yoongu Kim  Vivek Seshadri  Jamie Liu = Lavanya Subramanian =~ Onur Mutlu

Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx

LISA: Low-Cost Inter-Linked Subarrays
[HPCA 2016]




Problem: Inefficient Bulk Data
Movement

Bulk data movement is a key operation in many
applications

— memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+

e
=t rr !
| ' SIrC

P e e ]

LLC
Memory
Controller
"\
Q)

-

0
-~
=
®
N4

__________________________

CPU Memory

Long latency and high energy
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Moving Data Inside DRAM?

Bank @ 5L2’
.- rows

Bank e I I I I I
\ cell

Bank

Bank

DRA

Goal: Provide a new substrate to enable

wide connectivity between subarrays
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Key Ildea and Applications

* Low-cost Inter-linked subarrays (LISA)
— Fast bulk data movement between subarrays
— Wide datapath via isolation transistors: 0.8% DRAM chip area

[_. Subarray | _.]
AL AL -+ AL A

( Subarray 2 )
* LISA is a versatile substrate — new applications
Fast bulk data copy: Copy latency 1.363ms—0.148ms (9.2x)

— 66% speedup, -55% DRAM energy

In-DRAM caching: Hot data access latency 48.7ns—21.5ns (2.2x)
— 5% speedup

Fast precharge: Precharge latency 13.1ns—5.0ns (2.6x)
— 8% speedup

8l



New DRAM Command to Use LISA

Row Buffer Movement (RBM): Move a row of data in
an activated row buffer to a precharged one

Subarray | = V.

Activated [ & & &
EEE
RBM: SAI->SA2 ) |\ ’| Charg
e

Sharin o

RBM transfers an entire row b/w subarrays




RBM Analysis

* The range of RBM depends on the DRAM design

— Multiple RBMs to move data across > 3 subarrays

Subarray |

NN

Subarray 2

VXN

Subarray 3

* Validated with SPICE using worst-case cells
— NCSU FreePDK 45nm library

*4KB data in 8ns (w/ 60% guardband)
— 500 GB/s, 26x bandwidth of a DDR4-2400 channel

*0.8% DRAM chip area overhead [0+ ISCA’14]
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1. Rapid Inter-Subarray Copying (RISC)

* Goal: Efficiently copy a row across subarrays

* Key idea: Use RBM to form a new command
sequence

Subarray /
Q’Q’Q’Q Src row

1 Activate src row

RBM SA|->SA2

Reduces row-copy latency by 9.2x,

DRAM energy by 48.1x
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2. Variable Latency DRAM (VILLA)

* Goal: Reduce DRAM latency with low area overhead

* Motivation: Trade-off between area and latency

Short Bitline
(RLDRAM)

Long Bitline
(DDRXx)

‘Shorter bitlines — faster

activate and precharge

High area overhead:
>40%

ains

:%l
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2. Variable Latency DRAM (VILLA)

* Key idea: Reduce access latency of hot data via a

heterogeneous DRAM design [Lee+ HPCA’I3, Son+
ISCA’13]

* VILLA: Add fast subarrays as a cache in each bank

Slow Subarray $h®lenge: VILLA cache requires
églfiént movement of data rows

Reduces hot data access latency by 2.2x

at only 1.6% area overhead
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3. Linked Precharge (LIP)

* Problem: The precharge time is limited by the
strength of one precharge unit

* Linked Precharge (LIP): LISA precharges a subarray
using multiple precharge units

| e

Reduces precharge latency by 2.6x
(43% guardband)




More on LLISA

« Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutlu,
"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast
Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

Slides (pptx) (pdf)]

[Source Code]

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. Channg, Prashant J. Nair*, Donghyuk Leel, Saugata Ghose', Moinuddin K. Qureshi*, and Onur Mutlu'
fCarnegie Mellon University ~ *Georgia Institute of Technology

SAFARI 88


https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

CROW: The Copy Row Substrate
[ISCA 2019}




Challenges of DRAM Scaling

Q access latency

@) refresh overhead

€ exposure to vulnerabilities

SAFARI 90
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Conventional DRAM

)

DRAM Subarray

sense amplifier

SAFAR

AAAAAAAAAAAAAAAAAAA
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Copy Row DRAM (CROW)

DRAM Subarray

Multiple row activation

sense amplifier

SAFAR 92
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Use Cases of CROW

02020202020
OROR0ROROR0

OCROW-cache 40:-0:0:0.0:-0
v/reduces access latency

OCROW-ref
v'reduces DRAM refresh overhead

A mechanism for protecting against RowHammer

SAFAR 93
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Key Results

CROW-cache + CROW-ref
*20% speedup
*22% less DRAM energy

Hardware Overhead
*0.5% DRAM chip area
*1.6% DRAM capacity
*11.3 KiB memory controller storage

SAFARI

AAAAAAAAAAAAAAAAAAA
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More on CROW

« Hasan Hassan, Minesh Patel, Jeremie S. Kim, A. Giray Yaglikci, Nandita Vijaykumar,
Nika Mansourighiasi, Saugata Ghose, and Onur Mutlu,
"CROW: A Low-Cost Substrate for Improving DRAM Performance, Energy
Efficiency, and Reliability"
Proceedings of the 46th International Symposium on Computer Architecture (ISCA),
Phoenix, AZ, USA, June 2019.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Lightning Talk Video (3 minutes)]
[Full Talk Video (16 minutes)]
[Source Code for CROW (Ramulator and Circuit Modeling)]

CROW: A Low-Cost Substrate for Improving
DRAM Performance, Energy Efficiency, and Reliability

Hasan Hassan”  Minesh Patel” Jeremie S. Kim™  A. Giray Yaglikci'
Nandita Vijaykumar™  Nika Mansouri Ghiasi’  Saugata Ghose®  Onur Mutlu'S

YETH Ziirich 3 Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19.pdf
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19.pdf
http://iscaconf.org/isca2019/
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19-poster.pdf
https://www.youtube.com/watch?v=8Ml5sz63Jbc
https://www.youtube.com/watch?v=FckbkwW1u_E
https://github.com/CMU-SAFARI/CROW

CLR-DRAM: Capacity-Latency Recontigurability

= Haocong Luo, Taha Shahroodi, Hasan Hassan, Minesh Patel, A.
Giray Yaglikci, Lois Orosa, Jisung Park, and Onur Mutlu,
"CLR-DRAM: A Low-Cost DRAM Architecture Enabling
Dynamic Capacity-Latency Trade-Off"

Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.

Slides (pptx) (pdf)]

Lightning Talk Slides (pptx) (pdf)]

[ Talk Video (20 minutes)]

[Lightning Talk Video (3 minutes)]

CLR-DRAM: A Low-Cost DRAM Architecture

Enabling Dynamic Capacity-Latency Trade-Off
Haocong Luo$t Taha Shahroodi$ Hasan Hassan® Minesh PatelS
A. Giray Yaghkei® Lois Orosa¥ Jisung Park® Onur Mutlu$

SETH Ziirich T ShanghaiTech University
SAFARI %6



https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20.pdf
http://iscaconf.org/isca2020/
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-lightning-talk.pdf
https://www.youtube.com/watch?v=L3Y1eOF9C7U
https://www.youtube.com/watch?v=zg1RO9uaymY

CLR-DRAM: Capacity-Latency
Recontigurable DRAM [ISCA 2020]




CLR-DRAM:

A Low-Cost DRAM Architecture
Enabling Dynamic Capacity-Latency Trade-off

Haocong Luo Taha Shahroodi Hasan Hassan Minesh Patel
A. Giray Yaglik¢1 Lois Orosa Jisung Park Onur Mutlu

. SAFARI é iR A
zur'Ch SAFARI Research Gro UP %’ 5 ShanghaiTech University




Motivation & Goal

e Workloads and systems have varying main memory capacity and latency
demands.

e Existing commodity DRAM makes static capacity-latency trade-off at design time.

e Systems miss opportunities to improve performance by adapting to changes in
main memory capacity and latency demands.

e Goal: Design a low-cost DRAM architecture that can be dynamically configured to have
high capacity or low latency at a fine granularity (i.e., at the granularity of a row).

2\

DRAM Row X

High Storage Capacity Low Latency

SAFARI %
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CLR-DRAM (Capacity-Latency-Reconfigurable DRAM)

e CLR-DRAM (Capacity-Latency-Reconfigurable DRAM):
o Alow cost DRAM architecture that enables a single DRAM row to dynamically switch
between max-capacity mode or high-performance mode.

e Keyldea:
Dynamically configure the connections between DRAM cells and sense amplifiers in the
density-optimized open-bitline architecture.

Each bitline is
connected to
only one SA

bitline mode
select
transistors

SAFARI Open-bitline (Baseline) CLR-DRAM 100



CLR-DRAM (Capacity-Latency-Reconfigurable DRAM)

e Max-capacity mode e High-performance mode

mimics the cell-to-SA coupled
connections as in the cells
open-bitline architecture

coupled
sense amplifiers

The same storage capacity as the Reduced latency and refresh overhead
conventional open-bitline architecture via coupled cell /SA operation

SAFARI o1



Key Results

120%

e DRAM Latency Reduction:

Activation latency (tRCD) by 60.1%
Restoration latency (tRAS) by 64.2%
Precharge latency (tRP) by 46.4%
Write-recovery latency (tWR) by 35.2%

100%

80%

60%

40%

20%

Normalized Access Latency

o O O O

0%

tRCD tRAS tRP tWR
B Max-capacity B High-performance

e System-level Benefits:

We hope that CLR-DRAM can be exploited to
develop more flexible systems that can
o DRAM energy reduction: 29.7% adapt to the diverse and changing DRAM

o DRAM refresh energy reduction: 66.1% capacity and latency demands of workloads.

o Performance improvement: 18.6%
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More on CLR-DRAM

= Haocong Luo, Taha Shahroodi, Hasan Hassan, Minesh Patel, A.
Giray Yaglikci, Lois Orosa, Jisung Park, and Onur Mutlu,
"CLR-DRAM: A Low-Cost DRAM Architecture Enabling
Dynamic Capacity-Latency Trade-Off"

Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.

Slides (pptx) (pdf)]

Lightning Talk Slides (pptx) (pdf)]

[ Talk Video (20 minutes)]

[Lightning Talk Video (3 minutes)]

CLR-DRAM: A Low-Cost DRAM Architecture

Enabling Dynamic Capacity-Latency Trade-Off
Haocong Luo$t Taha Shahroodi$ Hasan Hassan® Minesh PatelS
A. Giray Yaghkei® Lois Orosa¥ Jisung Park® Onur Mutlu$

SETH Ziirich T ShanghaiTech University
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https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20.pdf
http://iscaconf.org/isca2020/
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20-lightning-talk.pdf
https://www.youtube.com/watch?v=L3Y1eOF9C7U
https://www.youtube.com/watch?v=zg1RO9uaymY

SALP: Reducing DRAM Bank
Contlict Impact

Kim, Seshadri, Lee, Liu, Mutlu

A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM

ISCA 2012.
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http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf

SALP: Problem, Goal, Observations

Problem: Bank conflicts are costly for performance and energy
o serialized requests, wasted energy (thrashing of row buffer, busy wait)
Goal: Reduce bank conflicts without adding more banks (low cost)

Observation 1: A DRAM bank is divided into subarrays and each
subarray has its own local row buffer

Logical Bank Physical Bank

=

v
I

Local Row-Buffer

Subarray

Row-Buffer

Global Row-Buffer
SAFHH' 105



SALP: Key Ideas

= Observation 2: Subarrays are mostly independent
o Except when sharing global structures to reduce cost

Global Row-Buffer

Key Idea of SALP: Minimally reduce sharing of global structures

Reduce the sharing of ...
Global decoder [ Enables almost parallel access to subarrays

Global row buffer [J Utilizes multiple local row buffers

SAFARI 106



SALP: Reduce Sharing of Global Decoder

Instead of a global latch, have per-subarray latches

S
v
i
O
O
O
O
g
o'
RS,
O

SAFARI

_ Zocal
row-buffer

Zocal
row-buffer

Global
row-buffer
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SALP: Reduce Sharing of Global Row-Buffer

Selectively connect local row-buffers to global
row-buffer using a Designated single-bit latch

Global bitlines

.« Y 4

— 7 Switch

. D E

7 71 Switch

| -
Global
READ  ~ row-buffer '—m——

|
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SALP: Baseline Bank Organization

Global
bitlines

p -
v
3
O
O
O
O
g
Ro!
RS,
O

row-buffer
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SALP: Proposed Bank Organization

Global
bitlines

p -
v
O
O
O
O
O
g
Ro!
RS,
O

Overhead of SALP in DRAM chip: 0.15%

1. Global latch [ per-subarray local latches -
2. Designated bit latches and wire to selectively row bUffer

enable a subarray 10




SALP: Results

= Wide variety of systems with different #channels, banks,

ranks, subarrays

= Server, streaming, random-access, SPEC workloads

« Dynamic DRAM energy reduction: 19%
o DRAM row hit rate improvement: 13%
« System performance improvement: 17%
a2 Within 3% of ideal (all independent banks)
« DRAM die area overhead: 0.15%
2 VS. 36% overhead of independent banks

SAFARI

SALP-1 H SALP-2 m MASA E "Ideal"

) °
@ 20%

o (o)

© 20% ‘—Iwﬂﬁ—o
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£ 10% 1%
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& gy L

Die-Size < 0.15% 0.15% | 36.3%
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More on SALP

= Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu,
and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM"
Proceedings of the 39th International Symposium on
Computer Architecture (ISCA), Portland, OR, June
2012. Slides (pptx)

A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM

Yoongu Kim Vivek Seshadri Donghyuk Lee Jamie Liu Onur Mutlu

Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

More on SALP

DRAM Process Scaling Challenges

+* Refresh

o Niffictilt ta hiuild hiah-asneect ratio cell canacitare decreasina cell canacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongdJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

IC / oy ==
Plate P 7 ' % >
o Time
Refresh tWR VRT
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More on SALP

Sub-array Level Parallelism with tWR Relaxation

+ tWR relaxation
* Relaxing tWR results in DRAM yield improvement but can degrade performance
requiring new compensating features
* By increasing tWR 5X (from 15ns to 75ns), fail bit counts are expected to reduce by
1 to 2 orders of magnitudes

+ Sub-array level parallelism (SALP)
+ Allows a page in another sub-array in the same bank to be opened in parallel with the
currently activated sub-array

* Results in performance gain by increasing the row access parallelism within a bank
= Used to compensate for the performance loss caused by tWR relaxation

~e- Spec WL_12

—o— Spec x5

DRAM sub-array_0

Page buffer_0

DRAM sub-array_1

Page buffer_1

WL_75

tWR Fail Bit Count
log scale [A.U.]
= N W A 01 OO N

DRAM sub-array_2

2x (measured)
2y~1z (simulated) Page buffer_2

1 1

2x 2y 2z 1x 1y 1z

o Single bank with multiple sub-arrays
™ TT DRAM Process g
'll:'he Memoc. y 4/12 @ (|nte| >

—— orum
—1
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http://www.cs.utah.edu/thememoryforum/kang_slides.pdf

More on SALP

Performance Impact of SALP and tWR relaxation

+» Performance simulations run for various workloads when tWR is relaxed by
2X and 3X, and when SALP is applied with 2 sub-banks

+» Results show that performance is reduced by ~5% and ~2% in average if tWR
is relaxed by 3X and 2X, respectively

+ Results also show that performance is compensated, and even improved to up
to ~3% in average when SALP is applied, even with tWR relaxed by 3X

w
R

5%

8
1
i
|
]
§
-
-
ﬂ
——
—_—
—
5
|
i
ﬁ
|
|
n
ﬂ
-
-
—_
-—
-
%
-
-
%
%
-

Relative Performance vs 1xtWR (%)

PEEYNEIEELSESE JIIEEPIEIEQISYFEZSS
= 2 N &8 T o= @ > — 2 = - 0
Ee3 TS 2Fg28q EQ B EEEEEEEEREEEEEREER
£ P2 a4 FTpIESSSE SEc g RG22 EERS
Rggvss s 7 ¢% gh$§3mgvg§§; S g @
- =3 Qg ~ o L - T3 < o v < ]

- ~ m <

- ¥ e -
SPEC CPU 2006 -

2xtWR H 3xtWR B 3xtWR SALP

/12 I (inteD)

SAFARI http://www.cs.utah.edu/thememoryforum/kang slides.pdf 115



http://www.cs.utah.edu/thememoryforum/kang_slides.pdf

Why the LLong Memory Latency?

= Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

« | Reason 2: “One size fits all” approach to latency specification
Same latency parameters for all temperatures
Same latency parameters for all DRAM chips
Same latency parameters for all parts of a DRAM chip

Same latency parameters for all supply voltage levels
Same latency parameters for all application data
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Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

Adaptive-Latency DRAM [HPCA 2015]

Flexible-Latency DRAM [SIGMETRICS 2016]

Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]

Voltron [SIGMETRICS 2017]

DRAM Latency PUF [HPCA 2018]

Solar DRAM [ICCD 2018]

DRAM Latency True Random Number Generator [HPCA 2019]

[ e I e N N

We would like to find sources of latency heterogeneity and
exploit them to minimize latency (or create other benefits)

SAFARI 17



Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

DRAM DRAM DRAM

E . : . Cl
Slow cells

/7
/

Lo «Z OO EO——> Hie

w DRAM Latency h
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Why is Latency High?

* DRAM latency: Delay as specified in DRAM standards
— Doesn’t reflect true DRAM device latency

* Imperfect manufacturing process — latency variation
* High standard latency chosen to increase yield

DRAM DRAM DRAM Standard
Manufacturin
g

I . . Latency
Variatio

w DRAM Latency h
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What Causes the LLong Memory Latency?

Conservative timing margins!

DRAM timing parameters are set to cover the worst case

Worst-case temperatures

o 85 degrees vs. common-case

o to enable a wide range of operating conditions
Worst-case devices

2 DRAM cell with smallest charge across any acceptable device
o to tolerate process variation at acceptable yield

This leads to large timing margins for the common case
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Understanding and Exploiting
Variation in DRAM Latency




DRAM Stores Data as Charge

DRAM Cell

i

Three steps of
charge movement

S8
)
VVVVVVVVVVVb

! Sense-Amplifier
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1. Sensing
2. Restore
3. Precharge



DRAM Charge over Time

‘ Cell A Cell

/\
\t

Sense-Amplifier

Data 1

Sense-Amplifier

charge

Timing :

Parameter Sensing Restore
I meorys-

In practicel

Why does DRAM need the extra timing margin?
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1 VV U INWCUIVIITOD TV IIIIIIIIS

Margin

1. Process Variation
— DRAM cells are not equal

— Leads to extra timing margin for a cell that can
store a large amount of charge

2. Temperature Dependence
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DRAM Cells are Not Equa

Ideal Real Smallest
Cell

I

Sam ize [

Samﬁaélﬁ%rg aﬁauon IBIH rent ﬁrge L]

Same@rgenvgriation Wf‘F 4 atency
Large variation in access latency
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Process Variation
DRAM Cell

o € Cell Capacitance

. @ Contact Resistance
Capacitor

€©) Transistor Performance

Small cell can store small
charge

*Small cell capacitance
*High contact resistance
ACCESS *Slow access transistor

[] High access latency

Contact
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1 VV U INWCUIVIITOD TV IIIIIIIIS

Margin

1. Process Variation

— DRAM cells are not equal

— Leads to extra timing margin for a cell that can
store a large amount of charge

ey  w Y wm F oy R o w A ¥ Y ey > Ay w
) ‘.’,o,o‘. ’. o

— DRAM leaks more charge at higher
temperature

— Leads to extra timing margin for cells that

a a a - a
ala - - el aaly n
N o e e - - - » ) < =
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Temperature

Hot Temp. (85°C)
900/¢10®

Cells stergllSiaeiagaarge at giga ltemygrerature
and large charge at low temperature

[] Large variation in access latency
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DRAM Timing Parameters

* DRAM timing parameters are dictated by
the worst-case

— The smallest cell with the smallest charge in
all DRAM products

— Operating at the highest temperature

* Large timing margin for the
common-case
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Adaptive-Latency DRAM [HPCA 2015]

Idea: Optimize DRAM timing for the common case
a Current temperature
a2 Current DRAM module

Why would this reduce latency?

2 A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

a2 More charge in a DRAM cell

[] Faster sensing, charge restoration, precharging
[] Faster access (read, write, refresh, ...)

SAFAR/I Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.



Extra Charge [J Reduced Latency

1. Sensing
Sense cells with extra charge faster
[0 Lower sensing latency

2. Restore
No need to fully restore cells with extra charge

[0 Lower restoration latency

3. Precharge
No need to fully precharge bitlines for cells with

extra charge

[0 Lower precharge latency
SAFARI



DRAM Characterization Infrastructure

emperatuie’ 5
Contrdller

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



DRAM Characterization Infrastructure

=

= Hasan Hassan et al., SoftMC: A v H\eat/
Flexible and Practical Chamber
Open-Source Infrastructure ‘\

for Enabling Experimental
DRAM Studies, HPCA 2017.

-~

. Flexible L f |
« Easy to Use (C++ API) | & Co-ll-\etTopller ’f
= Open-source Heater B

-

github.com/CMU-SAFARI/SoftMC |l =
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

« https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich ~ 2TOBB University of Economics & Technology  >Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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Observation 1. Faster Sensing

Typical DIMM at 115 DIMM

Low Temperature Characterization
Vore Ch Timing

‘ " ' ore Charge (tRCD)
Strong Charge

2% ; Flow 17% l,

_ Faster Sensing No Errors

Typical DIMM at Low Temperature

[] More charge [] Faster sensing
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Observation 2. Reducing Restore Time

Typical DIMM at 115 DIMM
Low Temperature Characterization
ess Leakage [
xtra Charge Read (tRAS)

37% |

o Need to Fully Write (tWR)

estore Charge
54% |

No Errors

Typical DIMM at lower temperature

[1 More charge [] Restore time reduction
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AL-DRAM

* Key idea
— Optimize DRAM timing parameters online

* Two components
— DRAM manufacturer provides multiple sets of

(UELIEILYAVY Rl EIEIUEE at different

temperatures for each DIMM

— System monitorslA\\/Re=Tes ol EIIEE] & uses
appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015. 137/



DRAM Temperature

* DRAM temperature measurement
e Server cluster: Operates at under 34°C

* Desktop: Operates at under 50°C
 DRAM standard optimized for 85°C

DRAM operates at low

temperatures in the common-case

* Previous works — iViaintain low DRAIV

temperature
* David+ ICAC 2011
* Liu+ ISCA 2007

* Zhu+ ITHERM 2008
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Latency Reduction Summary of 115 DIMMs

* Latency reduction for read & write (55°C)
— Read Latency: 32.7%
— Write Latency: 55.1%

* Latency reduction for each timing
parameter (55°C)
—Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

* System

— CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

‘E Average
g 2% - uSingle Core ke [mprovement
§ 200 e
o TR R B
g 10% g W
50/ ............................................. 877 5.0%
g% - 2] M |
s V7%
O T 0w > = O O
§ Qggegsggz 2 2 10
= Q - = O o0 3 B 2 8 ¢
~ o @) i -
& ? o L 8 52
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T T « N
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o) 5=
©

AL-DRAM improves performance on a rea

system
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AL-DRAM: Multi-Core Evaluation

- Average
3 25%
£
>
Q
S
o
L~
§ X 5 © T E 0 X 5 9 O O
s S EEL£ S5 8EFES |33 1S
. O o) 2 O c c 1%
g @ o S 8 3¢
% " E E (3
& F o
AL-DRAM provides higher performafce foF

multi-programmed & multi-threaded

workloads
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Reducing Latency Also Reduces Energy
AL-DRAM reduces DRAM power consumption by 5.8%

Major reason: reduction in row activation time
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AL-DRAM: Advantages & Disadvantages

Advantages

+ Simple mechanism to reduce latency
+ Significant system performance and energy benefits
+ Benefits higher at low temperature

+ Low cost, low complexity

Disadvantages

- Need to determine reliable operating latencies for different

temperatures and different DIMMs

higher testing cost

(might not be that difficult for low temperatures)

SAFARI
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More on AL-DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on
High-Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.

[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu

Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Ditterent Types of Latency Variation

AL-DRAM exploits latency variation
o Across time (different temperatures)
o Across chips

Is there also latency variation within a chip?
o Across different parts of a chip
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Variation in Activation Errors

Results from 7500 rounds over 240

; Max

. o EN6hlP€T Many efrors S
i 10 1 Frors LeT TS // '’ \\\
W 103 | A L
N—r’ 10_3 [ \ /' \\\_—’/
o 10, oo :
5 102 Rife w/ errors
2 %8’6 : <« — — Quartiles
S 107
= 10 | ! .Very few
= 100 | .- errorklin

[3.Ins 12.5 10.0 {30 20 2.9

standar tRCD (ns

Modern DRAM chips exhibit

significant variation in activation latency
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Spatial Locality of Activation Errors

One DIMM @

16 FtRCD=75ns— 1 B0.27 ¢
14 | 1 024 ©
_12¢ ! B0.21 5
§ 10 | | ®0.18 —
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27 10.03 ¢

0 S o [
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Activation errors are concentrated

at certain columns of cells
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Mechanism to Reduce DRAM Latency

* Observation: DRAM timing errors (slow DRAM
cells) are concentrated on certain regions

* Flexible-LatencY (FLY) DRAM

— A software-transparent design that reduces latency

* Key idea:
|) Divide memory into regions of different latencies

2) Memory controller: Use lower latency for regions without
slow cells; higher latency for other regions

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.



https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

FLY-DRAM Configurations

2  100%
S 80% tRCD
“6 600/0 -75ns
g 40% ®210ns
:‘é 20% 013ns
b 0
0% Baseline

(DDR3)
2 100%
O 80% tRP
© 60% o7 5ne
.S 40% 810ns
“g 20% 013ns
o 0%

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization"”,” SIGMETRICS 2016.



https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Results

1.25
9 1.2 19.5% L% %
c
g 1.15
o 1.1 *Baseline (DDR3)
B -FLY-DRAM (D1)
1.05 p
- FLY-DRAM (D2)
§ -LY-DRAM (D3)
=Upper Bound

FLY-DRAM improves performance

by exploiting spatial latency variation in DRAM

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.


https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

FLY-DRAM: Advantages & Disadvantages

Advantages
+ Reduces latency significantly
+ Exploits significant within-chip latency variation

Disadvantages

- Need to determine reliable operating latencies for different
parts of a chip [ higher testing cost

- Slightly more complicated controller
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Analysis of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.

Slides (pptx) (pdf)]

[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang* Abhijith Kashyap* Hasan Hassan'?
Saugata Ghose* Kevin Hsieh' Donghyuk Lee' Tianshi Li*?
Gennady Pekhimenko' Samira Khan* Onur Mutlu®

LCarnegie Mellon University 2TOBB ETU 2Peking University *University of Virginia "ETH Zurich
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

Putting It All Together:
Solar-DRAM




Solar-DRAM: Putting It Together

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutly,
"Solar-DRAM: Reducing DRAM Access Latency by
Exploiting the Variation in Local Bitlines"

Proceedings of the 36th IEEE International Conference on
Computer Design (ICCD), Orlando, FL, USA, October 2018.
[Slides (pptx) (pdf)]

[Talk Video (16 minutes)]

Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines

Jeremie S. Kim?*$ Minesh PatelS Hasan Hassan® Onur Mutlu$?
j5Carnegie Mellon University SETH Zirich
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18-talk.pdf
https://www.youtube.com/watch?v=WPmDIx1mKrU

Why Is There
Spatial Latency Variation
Within a Chip?




Variation?

across column —SIOW inherently
. / slow
distance from = %
. . @)
wordline dnvera_ =
=3 across row
g distance from
= sense
< [} ]
2 _» amplifier
n Q
wn
~—

Inherently
fast sense amplifiers
Systematic variation in cell access times

caused by the physical organization of DRAM
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DIVA Online Profiling

Design-Induced-Variation-Aware

inherently
slow

JDALIP dul|pJom

: sense ampljfier : :
Profile only slowregions to determine min.

Dynamic & Iow@&?ﬁ@’tency optimization
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DIVA Online Profiling

Design-Induced-Variation-Aware

inherently
slow cells
o | . S|Q\al
process = ‘ design-induced
L Q. > o
variation =3 variation
random error g localized error
8 3 $
®
error-correctin online
g code profiling

: sense amplifier .
Combine error-correc?i'?\g codes & online

Reliably rB&ﬂféQ@ﬂRAM latency
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DIVA-DRAM Reduces Latency

Read Writa o412 5 400
S 50% [ 35 [ 0.387 93930
- L A
2 0% 40% 3 0275 =" 1 g
i
o
35 30%[ 30% |- s = =
D
i 20% |- 20% |- SN .
o
QC) 10% t- 10% |- .
=
O
— 0% 0% ) :
DIV

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells
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DIVA-DRAM: Advantages & Disadvantages

Advantages

++ Automatically finds the lowest reliable operating latency
at system runtime (lower production-time testing cost)

+ Reduces latency more than prior methods (w/ ECC)
+ Reduces latency at high temperatures as well

Disadvantages

- Requires knowledge of inherently-slow regions
- Requires ECC (Error Correcting Codes)
- Imposes overhead during runtime profiling

SAFARI 1ol



Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutly,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/
http://www.sigmetrics.org/sigmetrics2017/

Understanding & Exploiting the
Voltage-Latency-Reliability
Relationshr




Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutly,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke1' Saugata Ghose”  Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap' Donghyuk Lee! Mike O’Connor®* Hasan Hassan®  Onur Mutlu®'

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/
http://www.sigmetrics.org/sigmetrics2017/

Reducing Memory Latency to
Support Security Primitives




Using Memory tor Security

= |Generating True Random Numbers (using DRAM)
Kim et al., HPCA 2019

« |Evaluating Physically Unclonable Functions (using DRAM)
Kim et al., HPCA 2018

« Quickly Destroying In-Memory Data (using DRAM)
o Orosa et al., arxiv 2019
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DRAM Latency PUFs

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutly,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in
Modern DRAM Devices"

Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
Lightning Talk Video]

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim'$ Minesh Patel® Hasan Hassan® Onur Mutlu$t
TCarnegie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf

DRAM Latency True Random Number Generator

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance
Computer Architecture (HPCA), Washington, DC, USA, February 2019.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim?$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$?
iCarnegie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
http://hpca2019.seas.gwu.edu/

Reducing Refresh Latency




Reducing Refresh Latency

=« Anup Das, Hasan Hassan, and Onur Mutlu,

"VRL-DRAM: Improving DRAM Performance via
Variable Refresh Latency"”

Proceedings of the 55th Design Automation
Conference (DAC), San Francisco, CA, USA, June 2018.

VRL-DRAM: Improving DRAM Performance
via Variable Refresh Latency

Anup Das Hasan Hassan Onur Mutlu
Drexel University ETH.Ziirieh ETH Ziirich
Philadelphia, PA, USA Zurich, Switzerland Zurich, Switzerland

anup.das@drexel.edu hhasan@ethz.ch

omutlu@gmail.com
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Reducing Memory Latency by
Exploiting Memory Access Patterns




ChargeCache: Exploiting Access Patterns

= Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

[Slides (pptx) (pdf)]

[Source Code]

ChargeCache: Reducing DRAM Latency
by Exploiting Row Access Locality

Hasan Hassan*, Gennady Pekhimenko!, Nandita Vijaykumar'
Vivek Seshadrif, Donghyuk Leel, Oguz Ergin*, Onur Mutluf

"Carnegie Mellon University *TOBB University of Economics & Technology


https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Partial Restoration ot Cell Charge

= Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri
Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad
Sadrosadati, and Onur Mutlu,

"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead
Partial Restoration”

Proceedings of the 51st International Symposium on
Microarchitecture (MICRO), Fukuoka, Japan, October 2018.

Reducing DRAM Latency
via Charge-Level-Aware Look-Ahead Partial Restoration

Yaohua WangJr§ Arash Tavakkol! Lois Orosal* Saugata Ghose!  Nika Mansouri Ghiasi'
Minesh Patelf Jeremie S. Kim*T Hasan Hassan| Mohammad Sadrosadatil Onur Mutlu*

TETH Ziirich SNational University of Defense Technology
iCarnegie Mellon University *University of Campinas
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Parallelizing Refreshes and Accesses

= Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses”
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014. [Summary]

[Slides (pptx) (pdf)]

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishtif
Alaa R. Alameldeent Chris Wilkerson? Yoongu Kim Onur Mutlu

Carnegie Mellon University {Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
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On DRAM Power Consumption




VAMPIRE DRAM Power Model

= Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X.
Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor,
and Onur Mutlu,

"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study”

Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.

[Abstract]

[POMACS Journal Version (same content, different format)]

[Slides (pptx) (pdf)]

[VAMPIRE DRAM Power Model]

What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study

Saugata Ghose' Abdullah Giray Yaglikcr* Raghav Gupta' Donghyuk Lee®
Kais Kudrolli” ~ William X. Liu"  Hasan Hassan*  Kevin K. Chang’
Niladrish Chatterjee® Aditya Agrawal® Mike O’Connor® Onur Mutlu*?

"Carnegie Mellon University *ETH Ziirich SNVIDIA TUniversity of Texas at Austin
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https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pdf
https://github.com/CMU-SAFARI/VAMPIRE

Summary: LLow-Latency Memory




Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures

SAFARI



Summary: Tackling Long Memory Latency

= | Reason 1: Design of DRAM Micro-architecture
o Goal: Maximize capacity/area, not minimize latency

« | Reason 2: “One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip
Same latency parameters for all supply voltage levels
Same latency parameters for all application data
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Takeaway 1

We Can Reduce
Memory Latency
with Change of Mindset

SAFARI



Takeaway 11

Main Memory Needs
Intelligent Controllers
to Reduce Latency

SAFARI



Some Solution Principles (More Compact)

= Data-centric design

= All components intelligent

= Better cross-layer communication, better interfaces
= Better-than-worst-case design

= Heterogeneity

. Flexibility, adaptability Open minds
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Four Key Directions

« | Fundamentally Secure/Reliable/Safe Architectures

« | Fundamentally Energy-Efficient Architectures
2 Memory-centric (Data-centric) Architectures

= | Fundamentally Low-Latency Architectures

=« | Architectures for Genomics, Medicine, Health
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Solar-DRAM




Solar-DRAM: Putting It Together

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutly,
"Solar-DRAM: Reducing DRAM Access Latency by
Exploiting the Variation in Local Bitlines"

Proceedings of the 36th IEEE International Conference on
Computer Design (ICCD), Orlando, FL, USA, October 2018.
[Slides (pptx) (pdf)]

[Talk Video (16 minutes)]

Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines

Jeremie S. Kim?*$ Minesh PatelS Hasan Hassan® Onur Mutlu$?
j5Carnegie Mellon University SETH Zirich
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Spatial Distribution of Failures

How are activation failures spatially distributed in DRAM?
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Activation failures are highly constrained
to local bitlines



Short-term Variation

Does a bitline’s probability of failure change over time?
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A weak bitline is likely to remain weak and
a strong bitline is likely to remain strong over time



Short-term Variation

Does a bitline’s probability of failure change over time?

We can rely on a static profile of weak bitlines
to determine whether an access will cause failures

A weak bitline is likely to remain weak and
a strong bitline is likely to remain strong over time



Write Operations

. . )
How are write operations affected by reduced t_ .

Weak bitline

A

! ! !
Cache line \/

V .nn
W ~ N N
HTHIOT-

{ Row Decoder

Local Row Buffi \/WVRITE} /)

We can reliably issue write operations
with significantly reduced t, . (e.g., by 77%) 191



Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM: VLC (1)

Weak bitline Strong bitline
AN s
P
= Cache line
S I
o
Q
-
S
o
e
—

L.ocal Row Buffer

[dentify cache lines comprised of strong bitlines
Access such cache lines with a reduced t,
194



Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Solar-DRAM: RSC (II)

Cacheline 0 Cacheline 1

Cache line
|

{ Row Decoder J

L.ocal Row Buffer

Remap cache lines across DRAM at the memory
controller level so cache line 0 will likely map to
a strong cache line 196



Solar-DRAM

Uses a static profile of weak subarray columns
* Identifies subarray columns as weak or strong
* Obtained in a one-time profiling step

Three Components

1. Variable-latency cache lines (VLC)
2. Reordered subarray columns (RSC)
3. Reduced latency for writes (RLW)
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Understanding & Exploiting the
Voltage-Latency-Reliability
Relationshr




Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and u,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke1' Saugata Ghose”  Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap! Donghyuk Lee! =~ Mike O’Connor** Hasan Hassan®  Onur Mutlu® "

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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High DRAM Power Consumption

* Problem: High DRAM (memory) power in today’s
systems

>40% in POWER7 (Ware+, HPCA'10)  >40% in GPU (Paul+, ISCA'15)
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Low-Voltage Memory

» Existing DRAM designs to help reduce DRAM power
by lowering supply voltage conservatively

— Power « Voltage?

 DDR3L (low-voltage) reduces voltage from 1.5V to
.35V (-10%)

 LPDDR4 (low-power) employs low-power |/O
interface with 1.2V (lower bandwidth)

Can we reduce DRAM power and energy by
further reducing supply voltage?
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Goals

1 Understand and characterize the various
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by

lowering voltage while keeping performance loss
within a target

SAFARI 202



Key Questions

* How does reducing voltage affect
reliability (errors)?

* How does reducing voltage affect
DRAM latency!

* How do we design a new DRAM energy
reduction mechanism?
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Supply Voltage Control on DRAM

" DRAM Module
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Supply Voltage

Adjust the supply voltage to every chip on the same
module
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Custom Testing Platform

SOoftMC [Hassan+, HPcA'17): FPGA testing platform to

|) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users

DRAM i r! g ottt B + P~ | Voltage
YalE — controller

https://github.com/CMU-SAFARI/DRAM-Voltage-Study
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https://github.com/CMU-SAFARI/DRAM-Voltage-Study

Tested DRAM Modules

* 124 DDR3L (low-voltage) DRAM chips
— 31 SO-DIMMs
— 1.35V (DDR3 uses 1.5V)
— Density: 4Gb per chip
— Three major vendors/manufacturers
— Manufacturing dates: 2014-2016

* |teratively read every bit in each 4Gb chip under a

wide range of supply voltage levels: .35V to |.0V
(-26%)
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Reliability Worsens with Lower Voltage

® Vendor A ® VendorB A Vendor C

10°
s 10
S 100 Errors induced by
@ X 10~ reduced-voltage operation
S P a2
8 S 10
s 107°
SS 107™ Min. voltage (V__ )
= 2 4075 without errors Nominal
% Voltage
£ 107 / \

Reducing voltage below V . causes

an increasing number of errors
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Source of Errors

Detailed circuit simulations (SPICE) of a DRAM cell array to

model the behavior of DRAM operations
https://github.com/CMU-SAFARI/DRAM-Voltage-Study

21 eActivate =Precharge

i 17, .
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gl 13 Voltage
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Supply Voltage (V)
Reliable low-voltage operation requires higher

latency
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DIMMs Operating at Higher Latency

Measured minimum latency that does not cause errors in DRAM modules
40% of modules

0.1
14 | Distribution of latency. in 100% of modules
0.90.3:0.4 0. :
- o1 " | the total population /
0.29§.0.9 1.0 1.0 1.0 1.0 1.0 1.0

—
o O

Measured Minimum
Activate Latency (ns)
N

DRAM requires longer latency to access

data without errors at lower voltage
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Spatial Locality of Errors

A module under 1.175V (12% voltage reduction)
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Errors concentrate in certain regions
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Summary of Key Experimental Observations

* Voltage-induced errors increase as
voltage reduces further below V__

* Errors exhibit spatial locality

* Increasing the latency of DRAM operations
mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce
Energy

* Goal: Exploit the trade-off between voltage and latency
to reduce energy consumption

* Approach: Reduce DRAM voltage reliably

— Performance loss due to increased latency at lower voltage

<} i

< 40 Performance DRAM Power Savings
b é/ ~ \High Power Low Power
6 o 30 Savings Savings
- & 20 Bad-P frce———\ Good
qc) 0 10 Perfor e
£~ 0 L—
VU
7 %l
5 £ .20\ y, . y,
£ 2 0.9 | N 1.2 1.3

Supply Voltage (V)
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Voltron Overview

Voltro
r A
. J
User specifies the Select the minimum DRAM voltage
performance loss target without violating the target

How do we predict performance loss due to
increased latency under low DRAM voltage?
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Linear Model to Predict Performance

Voltro
( )
_ - < > S o v N
Application’s . S
Min. -
characteristics ‘ ¢ »[-1%, -3%, ]» Voles {:/mﬁ:l
oL Predicted . & e° a8
[13V,125,..] mmp (R, performance T%e
DRAM Voltage | jnear regressid®ss .
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Regression Model to Predict Performance

* Application’s characteristics for the model:
— Memory intensity. Frequency of last-level cache misses

— Memory stall time: Amount of time memory requests stall
commit inside CPU

* Handling multiple applications:
— Predict a performance loss for each application

— Select the minimum voltage that satisfies the performance
target for all applications
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Comparison to Prior Work

* Prior work: Dynamically scale frequency and voltage of the
entire DRAM based on bandwidth demand [David+, ICAC’| 1]

— Problem: Lowering voltage on the peripheral circuitry
decreases channel frequency (memory data throughput)

* Voltron: Reduce voltage to only DRAM array without changing
the voltage to peripheral circuitry

Peripher DRA Peripher DRA

Prior

ﬁ Off-chip channel Work f Off-chip channel
Low frequency Y¥or High frequency e
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that
observe errors under low voltage

— Benefit: Higher performance

Peripher
al

CdntroIJ
Logic

Off-chip channel

SAFARI

DRAM Array

Bank

Vo

High latency Low latency

Bank
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Voltron Evaluation Methodology

* Cycle-level simulator: Ramulator [CALI5]

— McPAT and DRAMPower for energy measurement
https://github.com/CMU-SAFARI/ramulator

* 4-core system with DDR3L memory
e Benchmarks: SPEC2006, YCSB

* Comparison to prior work: MemDVFS [pavid+, icaci1]
— Dynamic DRAM frequency and voltage scaling
— Scaling based on the memory bandwidth consumption
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Energy Savings with Bounded Performance

MemDVFS =Voltron

[David+, ICAC’1 1] Meets performance target
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Voltron: Advantages & Disadvantages

Advantages

+ Can trade-off between voltage and latency to improve
energy or performance

+ Can exploit the high voltage margin present in DRAM

Disadvantages
- Requires finding the reliable operating voltage for each

chip

SAFARI

higher testing cost
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Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and u,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke1' Saugata Ghose”  Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap! Donghyuk Lee! =~ Mike O’Connor** Hasan Hassan®  Onur Mutlu® "

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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Reducing Memory Latency to
Support Security Primitives




Using Memory tor Security

= |Generating True Random Numbers (using DRAM)
Kim et al., HPCA 2019

« |Evaluating Physically Unclonable Functions (using DRAM)
Kim et al., HPCA 2018

« Quickly Destroying In-Memory Data (using DRAM)
o Orosa et al., arxiv 2019
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D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu

GAFAR| HFCAY
ETH i Carnegie Mellon




D-RaNGe Executive Summary

e Motivation: High-throughput true random numbers enable system
security and various randomized algorithms.

* Many systems (e.g., IoT, mobile, embedded) do not have dedicated True
Random Number Generator (TRNG) hardware but have DRAM devices

* Problem: Current DRAM-based TRNGs either
1. do not sample a fundamentally non-deterministic entropy source
2. are too slow for continuous high-throughput operation

* Goal: A novel and effective TRNG that uses existing commodity DRAM
to provide random values with 1) high-throughput, 2) low latency and
3) no adverse effect on concurrently running applications

 D-RaNGe: Reduce DRAM access latency below reliable values and
exploit DRAM cells’ failure probabilities to generate random values

* Evaluation:
1. Experimentally characterize 282 real LPDDR4 DRAM devices
2. D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)

3. D-RaNGe (100ns) has significantly lower latency (180x)
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DRAM Latency Characterization of
282 LPDDR4 DRAM Devices

*Latency failures come from accessing DRAM with
reduced timing parameters.

*Key Observations:

1. A cell’slatency failure probability is determined
by random process variation

2. Some cells fail randomly
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DRAM Accesses and Failures
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DRAM Accesses and Failures
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D-RaNGe Key Idea
Low % chance to fail

High % chance to fail with reduced t

with reduced teco ,

Row Decoder

Fails randomly
with reduced t,
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D-RaNGe Key Idea

We refer to cells that fail randomly

when accessed with a reduced tco
as RNG cells
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Our D-RaNGe Evaluation

*We generate random values by repeatedly
accessing RNG cells and aggregating the data
read

*The random data satisfies the NIST statistical
test suite for randomness

*The D-RaNGE generates random numbers
- Throughput: 717.4 Mb/s
- Latency: 64 bits in <1us
-Power: 4.4 n]/bit
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D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu

SAFAR|] HPCA2019
ETH i Carnegie Mellon




More on D-RaNGe

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance

Computer Architecture (HPCA), Washington, DC, USA, February 2019.
Slides (pptx) (pdf)]

Full Talk Video (21 minutes)]

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim?*$ Minesh Patel® Hasan Hassan® Lois Orosa® Onur Mutlu$?
iCarnegie Mellon University SETH Ziirich
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The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

SAFARI
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DL-PUF: Executive Summary

e Motivation:

* We can authenticate a system via unique signatures if we can
evaluate a Physical Unclonable Function (PUF) on it

* Signatures (PUF response) reflect inherent properties of a device
 DRAM is a promising substrate for PUFs because it is widely used

* Problem: Current DRAM PUFs are 1) very slow, 2) require a DRAM
reboot, or 3) require additional custom hardware

* Goal: To develop a novel and effective PUF for existing commodity
DRAM devices with low-latency evaluation time and low system
interference across all operating temperatures

e DRAM Latency PUF: Reduce DRAM access latency below reliable
values and exploit the resulting error patterns as unique identifiers

e Evaluation:
1. Experimentally characterize 223 real LPDDR4 DRAM devices

2. DRAM latency PUF (88.2 ms) achieves a speedup of 102x/860x
at 70°C/55°C over prior DRAM PUF evaluation mechanisms
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Motivation

We want a way to ensure that a system’s
components are not compromised

* Physical Unclonable Function (PUF): a function we evaluate
on a device to generate a signature unique to the device

* We refer to the unique signature as a PUF response
* Often used in a Challenge-Response Protocol (CRP)

Input:

Trusted Device Challeng
Checking <O_

utput:
PUF .
FESPORAS PUF Response,

Authenticated
Device

Evaluating
PUF. .

236/4
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Motivation

1. We want a runtime-accessible PUF

- Should be evaluated quickly with minimal impact
on concurrent applications

- Can protect against attacks that swap system
components with malicious parts

2. DRAM is a promising substrate for
evaluating PUFs because it is ubiquitous in
modern systems

- Unfortunately, current DRAM PUFs are slow and get
exponentially slower at lower temperatures

237/4
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DRAM Latency Characterization of
223 LPDDR4 DRAM Devices

*Latency failures come from accessing
DRAM with reduced timing parameters.

*Key Observations:

1. A cell’'slatency failure probability is
determined by random process variation

2. Latency failure patterns are repeatable and

unique to a device
SAFARI 238/8



DRAM Latency PUF Key Idea

* A cell’s latency failure probability is inherently related
to random process variation from manufacturing

* We can provide repeatable and unique device
signatures using latency error patterns

High % chance to fail Low % chance to
with reduced t *fail with reduced
RCD t
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DRAM Latency PUF Key Idea

The key idea is to compose a PUF response
using the DRAM cells that fail

with high probability
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The DRAM Latency PUF Evaluation

*We generate PUF responses using
latency errors in a region of DRAM

*The latency error patterns satisty PUF
requirements

*The DRAM Latency PUF generates PUF
responses in 88.2ms
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency
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Results - PUF Evaluation Latency

] - DRAM Retention PUF
1[]4-E 8KiB memory segment Manufacturer A [0
. 1
— 1[]—'—§ DRAM Latency PUF
w ] . All Manufacturers
= 1 64KiB memory segment
= 102,
S
T 10 | 64MiB memory segment
TR
LIJ 4
10°
| 17.3x 8KiB memory segment 11.5x
107
56 qi 6() 62 G i) Gl /0)
[Cmperature (°C)
DRAM latency PUF is

1. Fast and constant latency (88.2ms)

SAFARI



Results - PUF Evaluation Latency
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1. Fast and constant latency (88.2ms)

2. 0n average, 102x/860x faster than the previous
DRAM PUF with the same DRAM capacity overhead (64KiB)
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Other Results in the Paper

*How the DRAM latency PUF meets the basic
requirements for an effective PUF

*A detailed analysis on:

- Devices of the three major DRAM manufacturers
- The evaluation time of a PUF

*Further discussion on:
- Optimizing retention PUFs
- System interference of DRAM retention and latency PUFs
- Algorithm to quickly and reliably evaluate DRAM latency PUF
- Design considerations for a DRAM latency PUF
- The DRAM Latency PUF overhead analysis
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DRAM Latency PUFs

« Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in
Modern DRAM Devices"

Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
Lightning Talk Video]

Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim'$ Minesh Patel® Hasan Hassan® Onur Mutlu$t
TCarnegie Mellon University SETH Ziirich
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Reducing Memory Latency by
Exploiting Memory Access Patterns




ChargeCache: Executive Summary

* Goal: Reduce average DRAM access latency with no
modification to the existing DRAM chips

* Observations:
1) A highly-charged DRAM row can be accessed with low latency

2)  Arow’s charge is restored when the row is accessed
3) Arecently-accessed row is likely to be accessed again:
Row Level Temporal Locality (RLTL)

 KeylIdea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

 ChargeCache:
— Low cost & no modifications to the DRAM

— Higher performance (8.6-10.6% on average for 8-core)

— Lower DRAM energy (7.9% on average)

SAFARI



DRAM Charge over Time

Ready to Ready to Access
Precharge Charge Level

Ready to Access

Cell

. % Sense-Amplifier

5 entqe. Data 0
Amplifier . , , "
‘Sensing ~ Restore Precharge time

2w Il PRE
tRAS
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Accessing Highly-charged Rows

Ready to
Ready to Access Precharge
A Cell
C 4 - ¢ = - \
~ ~2 \ Data 1
_____ =" L " R S
L - o \
?I_________(::”—-, \
< Sense-Amplifier
Data 0
' , : : >
Sensing Restore  Precharge time
“-pm
tRAS

>
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Observation 1

A highly-charged DRAM row can be
accessed with low latency

°

* tRCD: 44%
* tRAS: 37%

How does a row become
highly-charged?
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How Does a Row Become Highly-Charged?

DRAM cells lose charge over time
Two ways of restoring a row’s charge:
e Refresh Operation

* Access
A
QL \]\%\
2
S
S
i : f —>
Refresh Access Refresh time
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Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?
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Row Level Temporal Locality (RLTL)

A recently-accessed DRAM row is likely to be
accessed again.

e t-RLTL: Fraction of rows that are accessed

within time ¢ after their previous access
97%

100%
80%
60%
40%
20%
0%

‘ R v < p 0 ,.\ Q\ 9 A QO A (\
VISP

SR S

Fraction of Accesses

Snss—R ML foorsaight-core workloads 2
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Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if
such rows are accessed again
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ChargeCache Overview
DRAM

Memory Controller

ChargeCache

mHD OW B

Requests: A D A

Cbbege€GabbdHit: Wse hofaaltTimingss
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Area and Power Overhead
e Modeled with CACTI

*Area
— ~5KB for 128-entry ChargeCache

—0.24% of a 4MB Last Level Cache (LLC)
area

* Power Consumption
—0.15 mW on average (static + dynamic)
—0.23% of the 4MB LLC power consumption

SAFARI



Methodology

e Simulator

— DRAM Simulator (Ramulator [Kim+, CAL’15])
https://github.com/CMU-SAFARI/ramulator

e Workloads

— 22 single-core workloads
 SPEC CPU2006, TPC, STREAM

— 20 multi-programmed 8-core workloads
* By randomly choosing from single-core workloads

— Execute at least 1 billion representative instructions per
core (Pinpoints)

* System Parameters
— 1/8 core system with 4MB LLC
— Default tRCD/tRAS of 11/28 cycles
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Single-core Performance

NUAT I chargecache

- ChargeCache + NUAT - LL-DRAM (Upper bound)

16%
14%
g‘ 12%
~ 10%
8 8%
6%
VQ)- 4%
2%
0%

N, . P T . T .

ChargeCache improves
single-core performance

SAFARI 261




Eight-core Performance

NUAT 2 .59 - ChargeCache 99

- ChargeCache + NUAT - LL-DRAM (Upperbound) 139,

NER
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o

multi-core performance
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DRAM Energy Savings

15%
13%
S 11%

0
O 5%
o 3%
1%

-1% Single-core Eight-core

BAverage ®"Maximum
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e
=3

DRAM Energy
ductio

ChargeCache reduces DRAM energy
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More on ChargeCache

= Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality"
Proceedings of the 22nd International Symposium on
High-Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

[Slides (pptx) (pdf)]

[Source Code]

ChargeCache: Reducing DRAM Latency
by Exploiting Row Access Locality

Hasan Hassan*, Gennady Pekhimenko!, Nandita Vijaykumar'
Vivek Seshadrif, Donghyuk Leel, Oguz Ergin*, Onur Mutluf

"Carnegie Mellon University *TOBB University of Economics & Technology


https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Partial Restoration ot Cell Charge

= Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri
Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad
Sadrosadati, and Onur Mutlu,

"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead
Partial Restoration”

Proceedings of the 51st International Symposium on
Microarchitecture (MICRO), Fukuoka, Japan, October 2018.

Reducing DRAM Latency
via Charge-Level-Aware Look-Ahead Partial Restoration

Yaohua WangJr§ Arash Tavakkol! Lois Orosal* Saugata Ghose!  Nika Mansouri Ghiasi'
Minesh Patelf Jeremie S. Kim*T Hasan Hassan| Mohammad Sadrosadatil Onur Mutlu*

TETH Ziirich SNational University of Defense Technology
iCarnegie Mellon University *University of Campinas
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VAMPIRE DRAM Power Model

= Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X.
Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor,
and Onur Mutlu,

"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study”

Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.

[Abstract]

[POMACS Journal Version (same content, different format)]

[Slides (pptx) (pdf)]

[VAMPIRE DRAM Power Model]

What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study

Saugata Ghose' Abdullah Giray Yaglikcr* Raghav Gupta' Donghyuk Lee®
Kais Kudrolli” ~ William X. Liu"  Hasan Hassan*  Kevin K. Chang’
Niladrish Chatterjee® Aditya Agrawal® Mike O’Connor® Onur Mutlu*?

"Carnegie Mellon University *ETH Ziirich SNVIDIA TUniversity of Texas at Austin
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https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pdf
https://github.com/CMU-SAFARI/VAMPIRE

Power I\ irement Platform SAFARI

Keysight 34134A
DC Current Probe

DDR3L
SO-DIMM

JET-5467A
g§” Riser Board

Page 268 of 20



Power Measurement Methodology SAFARI

»SoftMC: an FPGA-based memory controller [Hassan+ HPCA *17]

* Modified to repeatedly loop commands
* Open-source: https://github.com/CMU-SAFARI/SoftMC

» Measure current consumed by a module during a SoftMC
test

= Tested 50 DDR3L DRAM modules (200 DRAM chips)

*Supply voltage: 1.35V
* Three major vendors: A, B, C
* Manufactured between 2014 and 2016

= For each experimental test that we perform

* 10 runs of each test per module

e Atleast 10 current samples per run
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1. Real DRAM Power Varies Widely from IDD

Values
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IDD4R
Read

2

= Different vendors have very different margins (i.e.,

guardbands)

= [ .ow variance among

different modules from same vendor

Datasheet

Q1
oViPeCed

=
B C

Current consumed by real DRAM modules

varies significantly for all IDD values that we measure
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2. DRAM Power is Dependent on Data Values SAFARI

e ggg_OVendor A + TE/ gggl |
o 600" Vendor B -+ | £ 600 8- ii;
£ 500| VendorC ,-° 25§ 500 RRRiR 2
I eSS S
O 30048 ud | O 3007 Vendor A \
5 200 | $  2001mVvendor B |
9 1007 | E éoo'”Venldor c | | |
0 100 200 300 400 500 0O 100 200 300 400 500
Number of Ones in a Cache Number of Ones in a Cache
Line Line

=Some variation due to infrastructure — can be subtracted
= Without infrastructure variation: up to 230 mA of change
= Toggle affects power consumption, but < 0.15 mA per bit

DRAM power consumption depends strongly

on the data value
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J. dtructural Variation Artects DRAM Power

U SAFARI
sage
2 oH2 s Vendor C: variation in
(] % ] .
£ SHG idle current across
O UK
Z 4 banks
\ﬁaééc;r A V%ég@"h Vendcbrit.?»7 4
N g
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ST in read current across
Z 0
- - (Vseééér A éléécfor B gén@f} E banks
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= o LD
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in activation based on

Significant structural variation:

DRAM power varies systematically by bank and row
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4. Generational Savings Are smaller 1han

Expected
IDDO
Activate—Precharge
400
=O--Datasheet {1 Measured
<3004 O
& ~
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c 200 - Seao
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- @
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SAFARI

IDD4W
Write

- O--Datasheet —{}—Measured

@=L Z200.2mA

e

~®
-147.4mA

2010 2011 2012 2013 2014 2015

Year Manufactured

= Similar trends for idle and read currents

Actual power savings of newer DRAM is much lower

than the savings indicated in the datasheets
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summary of New Observations on DRAM
Power

1. Real DRAM modules often consume less power
than vendor-provided IDD values state

SAFARI

2. DRAM power consumption is dependent on the data value
that is read/written

3. Across banks and rows, structural variation affects power
consumption of DRAM

4. Newer DRAM modules save less power than indicated in
datasheets by vendors

Detailed observations and analyses in the paper
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A New Variation-Aware DRAM Power Model

SAFARI

= VAMPIRE: Variation-Aware model of Memory Power
Informed by Real Experiments

Inputs

(from memory system
simulator)

Trace of DRAM
commands, timing

Data that is
being written

VAMPIRE

Data-Dependent

{ Read/Write and

Power Modeling

|

[

Idle/Activate/Precharge
Power Modeling

|

[

Structural Variation Aware
Power Modeling

]

Outputs

Per-vendor
power
consumption

Range for
each vendor
(optional)

= VAMPIRE and raw characterization data are open-source:

https://github.com/CMU-SAFARI/VAMPIRE

Page 275 of 20



https://github.com/CMU-SAFARI/VAMPIRE

VAMPIRE Ras Lower Error 1 han Existing
Models

= Validated using new power measurements: details in the

SAFARI

QL .. 1
s 250% #Micron Model E-DRAMPower oVAMPIRE
= 200%: !
Q : %
g 150%: :
T .100% i
= :
== 0% "
8 8 Ll 0
Kal Q%
=< Vendor A Vendor B VendorC GMean

(8 modules) (7 modules) (7 modules)

VAMPIRE has very low error for a4/l vendors: 6.8%

Much more accurate than prior models
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VAMPIRE Enables Several New Studies SAFARI

= Taking advantage of structural variation to perform
variation-aware physical page allocation to reduce power

»Smarter DRAM power-down scheduling

*Reducing DRAM energy with data-dependency-aware
cache line encodings

sBaseline ©BDI :-Optlmlzed SV&I

*23 applications from
the SPEC 2006
benchmark suite

* Traces collected using
Pin and Ramulator

Normalized
DRAM Energy

-Vendor Vendor Vendor GMean
A B C

= We expect there to be many other new studies in the future
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VAMPIRE DRAM Power Model

= Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X.
Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor,
and Onur Mutlu,

"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed
Experimental Study”

Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.

[Abstract]

[POMACS Journal Version (same content, different format)]

[Slides (pptx) (pdf)]

[VAMPIRE DRAM Power Model]

What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study
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SAFARI 278



https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pdf
https://github.com/CMU-SAFARI/VAMPIRE

