
Computer Architecture
Lecture 11a: Memory Controllers

Prof. Onur Mutlu
ETH Zürich
Fall 2020

29 October 2020

Memory Controllers

DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that
need to be controlled.

 The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories
 Flash memory
 Other emerging memory technologies

 Phase Change Memory
 Spin-Transfer Torque Magnetic Memory

 These other technologies can also place other demands on the
controller

3

Flash Memory (SSD) Controllers
 Similar to DRAM memory controllers, except:

 They are flash memory specific
 They do much more: complex error correction, wear leveling,

voltage optimization, garbage collection, page remapping, …

4Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory
Lifetime”, ICCD 2012.

Another View of the SSD Controller

5

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf

On Modern SSD Controllers (I)

6https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Many Errors and Their Mitigation [PIEEE’17]

7
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

More Up-to-date Version
 Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

8

https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf

On Modern SSD Controllers (II)
 Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

9

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

On Modern SSD Controllers (III)
 Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim,

Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G.
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

10

https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A

DRAM Types
 DRAM has different types with different interfaces optimized

for different purposes
 Commodity: DDR, DDR2, DDR3, DDR4, …
 Low power (for mobile): LPDDR1, …, LPDDR5, …
 High bandwidth (for graphics): GDDR2, …, GDDR5, …
 Low latency: eDRAM, RLDRAM, …
 3D stacked: WIO, HBM, HMC, …
 …

 Underlying microarchitecture is fundamentally the same
 A flexible memory controller can support various DRAM types
 This complicates the memory controller

 Difficult to support all types (and upgrades)
 Analog interface is different for different DRAM types

11

DRAM Types (circa 2015)

12
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Modern DRAM Types: Comparison to DDR3

Bank groups

 3D-stacked DRAM

Page 13 of 25

DRAM
Type

Banks
per

Rank

Bank
Groups

3D-
Stacked

Low-
Power

DDR3 8
DDR4 16

GDDR5 16

HBM
High-

Bandwidth
Memory

16

HMC
Hybrid Memory

Cube
256

Wide I/O 4

Wide I/O 2 8

LPDDR3 8

LPDDR4 16

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

dedicated Logic Layer

DRAM
Type

Banks
per

Rank

Bank
Groups

3D-
Stacked

Low-
Power

DDR3 8
DDR4 16

GDDR5 16

HBM
High-

Bandwidth
Memory

16

HMC
Hybrid Memory

Cube
256

Wide I/O 4

Wide I/O 2 8

LPDDR3 8

LPDDR4 16

Bank Group Bank Group

Bank Bank Bank Bank

memory channel

increased latency

increased area/power

narrower rows,
higher latency

Ramulator Paper and Source Code
 Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

 Source code is released under the liberal MIT License
 https://github.com/CMU-SAFARI/ramulator

14

http://users.ece.cmu.edu/%7Eomutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

DRAM Types vs. Workloads
 Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,

"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

15

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

DRAM Controller: Functions
 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips
 Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays
 Translate requests to DRAM command sequences

 Buffer and schedule requests for high performance + QoS
 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM
 Turn on/off DRAM chips, manage power modes

16

A Modern DRAM Controller (I)

17

18

A Modern DRAM Controller

Mutlu+, “Stall-Time Fair Memory Scheduling,” MICRO 2007.

DRAM Scheduling Policies (I)
 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate maximize DRAM throughput

 Actually, scheduling is done at the command level
 Column commands (read/write) prioritized over row commands

(activate/precharge)
 Within each group, older commands prioritized over younger ones

19

Review: DRAM Bank Operation

20

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

DRAM Scheduling Policies (II)
 A scheduling policy is a request prioritization order

 Prioritization can be based on
 Request age
 Row buffer hit/miss status
 Request type (prefetch, read, write)
 Requestor type (load miss or store miss)
 Request criticality

 Oldest miss in the core?
 How many instructions in core are dependent on it?
 Will it stall the processor?

 Interference caused to other cores
 …

21

Row Buffer Management Policies
 Open row

 Keep the row open after an access
+ Next access might need the same row row hit
-- Next access might need a different row row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)
+ Next access might need a different row avoid a row conflict
-- Next access might need the same row extra activate latency

 Adaptive policies
 Predict whether or not the next access to the bank will be to

the same row and act accordingly

22

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read
Open row Row 0 Row 1 (row

conflict)
Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

23

DRAM Power Management
 DRAM chips have power modes
 Idea: When not accessing a chip power it down

 Power states
 Active (highest power)
 All banks idle
 Power-down
 Self-refresh (lowest power)

 Tradeoff: State transitions incur latency during which the
chip cannot be accessed

24

Difficulty of DRAM Control

Why Are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness
 There are many (50+) timing constraints in DRAM
 tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
 tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
 …

 Need to keep track of many resources to prevent conflicts
 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh
 Need to manage power consumption
 Need to optimize performance & QoS (in the presence of constraints)

 Reordering is not simple
 Fairness and QoS needs complicates the scheduling problem

26

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

27

More on DRAM Operation
 Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

28

Why So Many Timing Constraints? (I)

29

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

30

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

 Heterogeneous agents: CPUs, GPUs, and HWAs
 Main memory interference between CPUs, GPUs, HWAs
 Many timing constraints for various memory types
 Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
31

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream
 Reality: It is difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
 Too many things to think about
 Continuously changing workload and system behavior

 Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

32

Memory Controller: Performance Function

How to schedule requests to maximize system performance?

33

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
 Problem: DRAM controllers are difficult to design

 It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

 Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent
 It dynamically and continuously learns and employs the best

scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers
 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

35

Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … (0 ≤ γ < 1)

http://users.ece.cmu.edu/%7Eomutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
 Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
 Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
 Schedule command with highest estimated long-term reward value in

each state
 Continuously update reward values for <state, action> pairs based on

feedback from system

36

Self-Optimizing DRAM Controllers
 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

37

http://users.ece.cmu.edu/%7Eomutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

38

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

39

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

40

More on Self-Optimizing DRAM Controllers
 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

41

http://users.ece.cmu.edu/%7Eomutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures

42

System Architecture Design Today

 Human-driven
 Humans design the policies (how to do things)

 Many (too) simple, short-sighted policies all over the system

 No automatic data-driven policy learning

 (Almost) no learning: cannot take lessons from past actions

43

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

 Data-driven
 Machine learns the “best” policies (how to do things)

 Sophisticated, workload-driven, changing, far-sighted policies

 Automatic data-driven policy learning

 All controllers are intelligent data-driven agents

44

We need to rethink design
(of all controllers)

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
45

46Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

We Need to Think Across the Entire Stack

47

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step

Computer Architecture
Lecture 11a: Memory Controllers

Prof. Onur Mutlu
ETH Zürich
Fall 2020

29 October 2020

Memory Interference

49

Inter-Thread/Application Interference
 Problem: Threads share the memory system, but memory

system does not distinguish between threads’ requests

 Existing memory systems
 Free-for-all, shared based on demand
 Control algorithms thread-unaware and thread-unfair
 Aggressive threads can deny service to others
 Do not try to reduce or control inter-thread interference

50

51

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

52

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

53

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

54

Chart1

		matlab

		gcc

Column1

Slowdown

1.07

3.04

Sheet1

				Column1		Series 2		Series 3

		matlab		1.07		2.4		2

		gcc		3.04		4.4		2

		h264ref		4.72		1.8		3

		omnetpp		7.74		2.8		5

				To resize chart data range, drag lower right corner of range.

55

DRAM Controllers

 A row-conflict memory access takes significantly longer
than a row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput
 But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

56

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

 Vulnerable to denial of service (DoS)
 Unable to enforce priorities or SLAs
 Low system performance

Uncontrollable, unpredictable system

57

Chart1

		libquantum

		hmmer

		h264ref

		omnetpp

Column1

Slowdown

1.05

1.85

4.72

7.74

Sheet1

				Column1		Series 2		Series 3

		libquantum		1.05		2.4		2

		hmmer		1.85		4.4		2

		h264ref		4.72		1.8		3

		omnetpp		7.74		2.8		5

				To resize chart data range, drag lower right corner of range.

Greater Problem with More Cores

 Vulnerable to denial of service (DoS)
 Unable to enforce priorities or SLAs
 Low system performance

Uncontrollable, unpredictable system

58

More on Memory Performance Attacks
 Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

59

http://users.ece.cmu.edu/%7Eomutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_usenix-security07_talk.ppt

How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory
resources
 Memory controller
 Interconnect
 Caches

 We need to control it
 i.e., design an interference-aware (QoS-aware) memory system

60

QoS-Aware Memory Scheduling

 How to schedule requests to provide
 High system performance
 High fairness to applications
 Configurability to system software

 Memory controller needs to be aware of threads

61

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory: Readings (I)
 Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

62

http://users.ece.cmu.edu/%7Eomutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/%7Eomutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_micro07_talk.ppt

QoS-Aware Memory: Readings (II)
 Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

63

http://users.ece.cmu.edu/%7Eomutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/%7Eomutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_isca08_talk.ppt

QoS-Aware Memory: Readings (III)
 Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

64

http://users.ece.cmu.edu/%7Eomutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/%7Eomutlu/pub/kim_hpca10_talk.pptx

QoS-Aware Memory: Readings (IV)
 Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-

Balter,
"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

65

http://users.ece.cmu.edu/%7Eomutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/%7Eomutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/kim_micro10_talk.pdf

QoS-Aware Memory: Readings (V)
 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

66

http://users.ece.cmu.edu/%7Eomutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/%7Eomutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/bliss_lavanya_iccd14-talk.pdf

QoS-Aware Memory: Readings (VI)
 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

67

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/%7Esafari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

QoS-Aware Memory: Readings (VII)
 Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

68

http://users.ece.cmu.edu/%7Eomutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/%7Eomutlu/pub/rachata_isca12_talk.pptx

QoS-Aware Memory: Readings (VIII)
 Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

69

https://users.ece.cmu.edu/%7Eomutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/%7Eomutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/%7Eomutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

QoS-Aware Memory: Readings (IX)
 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

70

http://users.ece.cmu.edu/%7Eomutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/%7Elizhang/HPCA19/
http://users.ece.cmu.edu/%7Eomutlu/pub/subramanian_hpca13_talk.pptx

QoS-Aware Memory: Readings (X)
 Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

71

https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/%7Eomutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

	�Computer Architecture�Lecture 11a: Memory Controllers
	Memory Controllers
	DRAM versus Other Types of Memories
	Flash Memory (SSD) Controllers
	Another View of the SSD Controller
	On Modern SSD Controllers (I)
	Many Errors and Their Mitigation [PIEEE’17]
	More Up-to-date Version
	On Modern SSD Controllers (II)
	On Modern SSD Controllers (III)
	DRAM Types
	DRAM Types (circa 2015)
	Modern DRAM Types: Comparison to DDR3
	Ramulator Paper and Source Code
	DRAM Types vs. Workloads
	DRAM Controller: Functions
	A Modern DRAM Controller (I)
	A Modern DRAM Controller
	DRAM Scheduling Policies (I)
	Review: DRAM Bank Operation
	DRAM Scheduling Policies (II)
	Row Buffer Management Policies
	Open vs. Closed Row Policies
	DRAM Power Management
	Difficulty of DRAM Control
	Why Are DRAM Controllers Difficult to Design?
	Many DRAM Timing Constraints
	More on DRAM Operation
	Why So Many Timing Constraints? (I)
	Why So Many Timing Constraints? (II)
	DRAM Controller Design Is Becoming More Difficult
	Reality and Dream
	Memory Controller: Performance Function
	Self-Optimizing DRAM Controllers
	Self-Optimizing DRAM Controllers
	Self-Optimizing DRAM Controllers
	Self-Optimizing DRAM Controllers
	States, Actions, Rewards
	Performance Results
	Self Optimizing DRAM Controllers
	More on Self-Optimizing DRAM Controllers
	Challenge and Opportunity for Future
	System Architecture Design Today
	An Intelligent Architecture
	Architectures for Intelligent Machines
	슬라이드 번호 46
	We Need to Think Across the Entire Stack
	�Computer Architecture�Lecture 11a: Memory Controllers
	Memory Interference
	Inter-Thread/Application Interference
	Uncontrolled Interference: An Example
	A Memory Performance Hog
	What Does the Memory Hog Do?
	Unfair Slowdowns due to Interference
	DRAM Controllers
	Effect of the Memory Performance Hog
	Greater Problem with More Cores
	Greater Problem with More Cores
	More on Memory Performance Attacks
	How Do We Solve The Problem?
	QoS-Aware Memory Scheduling
	QoS-Aware Memory: Readings (I)
	QoS-Aware Memory: Readings (II)
	QoS-Aware Memory: Readings (III)
	QoS-Aware Memory: Readings (IV)
	QoS-Aware Memory: Readings (V)
	QoS-Aware Memory: Readings (VI)
	QoS-Aware Memory: Readings (VII)
	QoS-Aware Memory: Readings (VIII)
	QoS-Aware Memory: Readings (IX)
	QoS-Aware Memory: Readings (X)

