
Computer Architecture
Lecture 14: Simulation

(with a Focus on Memory)

Prof. Onur Mutlu

ETH Zürich

Fall 2020

12 November 2020

Simulating (Memory) Systems

2

Evaluating New Ideas

for New (Memory) Architectures

Potential Evaluation Methods

◼ How do we assess how an idea will affect a target metric X?

◼ A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling/estimation

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation

4

The Difficulty in Architectural Evaluation

◼ The answer is usually workload dependent

❑ E.g., think caching

❑ E.g., think pipelining

❑ E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

◼ Workloads change

◼ System has many design choices and parameters

❑ Architect needs to decide many ideas and many parameters
for a design

❑ Not easy to evaluate all possible combinations!

◼ System parameters may change

5

Simulation: The Field of Dreams

Dreaming and Reality

◼ An architect is in part a dreamer, a creator

◼ Simulation is a key tool of the architect

❑ Allows the evaluation & understanding of non-existent systems

◼ Simulation enables

❑ The exploration of many dreams

❑ A reality check of the dreams

❑ Deciding which dream is better

◼ Simulation also enables

❑ The ability to fool yourself with false dreams

7

Why High-Level Simulation?

◼ Problem: RTL simulation is intractable for design space
exploration → too time consuming to design and evaluate

❑ Especially over a large number of workloads

❑ Especially if you want to predict the performance of a good
chunk of a workload on a particular design

❑ Especially if you want to consider many design choices

◼ Cache size, associativity, block size, algorithms

◼ Memory control and scheduling algorithms

◼ In-order vs. out-of-order execution

◼ Reservation station sizes, ld/st queue size, register file size, …

◼ …

◼ Goal: Explore design choices quickly to see their impact on
the workloads we are designing the platform for

8

Different Goals in Simulation
◼ Explore the design space quickly and see what you want to

❑ potentially implement in a next-generation platform

❑ propose as the next big idea to advance the state of the art

❑ the goal is mainly to see relative effects of design decisions

◼ Match the behavior of an existing system so that you can

❑ debug and verify it at cycle-level accuracy

❑ propose small tweaks to the design that can make a difference in
performance or energy

❑ the goal is very high accuracy

◼ Other goals in-between:

❑ Refine the explored design space without going into a full
detailed, cycle-accurate design

❑ Gain confidence in your design decisions made by higher-level
design space exploration

9

Tradeoffs in Simulation

◼ Three metrics to evaluate a simulator

❑ Speed

❑ Flexibility

❑ Accuracy

◼ Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

◼ Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

◼ Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

◼ The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

10

Trading Off Speed, Flexibility, Accuracy

◼ Speed & flexibility affect:

❑ How quickly you can make design tradeoffs

◼ Accuracy affects:

❑ How good your design tradeoffs may end up being

❑ How fast you can build your simulator (simulator design time)

◼ Flexibility also affects:

❑ How much human effort you need to spend modifying the
simulator

◼ You can trade off between the three to achieve design
exploration and decision goals

11

High-Level Simulation

◼ Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

◼ Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

◼ Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
12

Simulation as Progressive Refinement

◼ High-level models (Abstract, C)

◼ …

◼ Medium-level models (Less abstract)

◼ …

◼ Low-level models (RTL with everything modeled)

◼ …

◼ Real design

◼ As you refine (go down the above list)

❑ Abstraction level reduces

❑ Accuracy (hopefully) increases (not necessarily, if not careful)

❑ Flexibility reduces; Speed likely reduces except for real design

❑ You can loop back and fix higher-level models
13

Making The Best of Architecture

◼ A good architect is comfortable at all levels of refinement

❑ Including the extremes

◼ A good architect knows when to use what type of
simulation

❑ And, more generally, what type of evaluation method

◼ Recall: A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation

14

An Example Simulator

15

Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15]

16

Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed

17

Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards

18

Case Study: Comparison of DRAM Standards

19

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

20

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Bonus Assignment as Part of HW #4

◼ Review the Ramulator paper

❑ Same points as any other BONUS review in HW #4

21

An Example Study using Ramulator

22

An Example Study with Ramulator (I)

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

23

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

Why Study Workload–DRAM Interactions?

▪Manufacturers are developing many new types of DRAM

• DRAM limits performance, energy improvements:

new types may overcome some limitations

• Memory systems now serve a very diverse set of applications:

can no longer take a one-size-fits-all approach

▪ So which DRAM type works best with which application?

• Difficult to understand intuitively due to the complexity of the interaction

• Can’t be tested methodically on real systems: new type needs a new CPU

▪We perform a wide-ranging experimental study to uncover

the combined behavior of workloads and DRAM types

• 115 prevalent/emerging applications and multiprogrammed

workloads

• 9 modern DRAM types: DDR3, DDR4, GDDR5, HBM, HMC,

LPDDR3, LPDDR4, Wide I/O, Wide I/O 2 Page 24 of 25

Modern DRAM Types: Comparison to DDR3

▪Bank groups

▪ 3D-stacked DRAM

Page 25 of 25

DRAM

Type

Banks

per

Rank

Bank

Groups

3D-

Stacked

Low-

Power

DDR3 8

DDR4 16 ✓

GDDR5 16 ✓

HBM
High-

Bandwidth

Memory

16 ✓

HMC
Hybrid Memory

Cube

256 ✓

Wide I/O 4 ✓ ✓

Wide I/O 2 8 ✓ ✓

LPDDR3 8 ✓

LPDDR4 16 ✓

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

dedicated Logic Layer

DRAM

Type

Banks

per

Rank

Bank

Groups

3D-

Stacked

Low-

Power

DDR3 8

DDR4 16 ✓

GDDR5 16 ✓

HBM
High-

Bandwidth

Memory

16 ✓

HMC
Hybrid Memory

Cube

256 ✓

Wide I/O 4 ✓ ✓

Wide I/O 2 8 ✓ ✓

LPDDR3 8 ✓

LPDDR4 16 ✓

Bank Group Bank Group

Bank Bank Bank Bank

memory channel

increased latency

increased area/power

narrower rows,
higher latency

4. Need for Lower Access Latency: Performance

▪New DRAM types often increase access latency in order to

provide more banks, higher throughput

▪Many applications can’t make up for the increased latency

• Especially true of common OS routines (e.g., file I/O, process forking)

• A variety of desktop/scientific, server/cloud, GPGPU applications

Page 26 of 25

0.8

0.9

1.0

1.1

1.2

sh
el

l (
0

.2
)

b
o

o
tu

p
 (

1
.1

)

fo
rk
b
en

ch
…

U
D

P
_R

R
 (

0
.1

)

TC
P

_R
R

 (
0

.1
)

U
D
P
_S
TR

EA
M
…

TC
P
_S
TR

EA
M
…

Te
st

 4
 (

3
.4

)

Te
st

 1
1

 (
4

.5
)

Te
st

 1
0

 (
4

.7
)

Te
st

 9
 (

4
.7

)

Te
st

 8
 (

4
.7

)

Te
st

 5
 (

1
0

.1
)

Te
st

 3
 (

1
3

.3
)

Te
st

 1
 (

1
3

.6
)

Te
st

 7
 (

1
3

.7
)

Te
st

 1
2

 (
1

5
.4

)

Te
st

 2
 (

1
5

.6
)

Te
st

 0
 (

1
5

.7
)

Te
st

 6
 (

1
6

.5
)

Sp
e

e
d

u
p

DDR4 GDDR5 HBM HMC

Netperf IOZone, 64MB File

Several applications don’t benefit from more parallelism

Key Takeaways

1. DRAM latency remains a critical bottleneck for

many applications

2. Bank parallelism is not fully utilized by a wide variety

of our applications

3. Spatial locality continues to provide significant

performance benefits if it is exploited by the memory

subsystem

4. For some classes of applications, low-power memory

can provide energy savings without sacrificing

significant performance
Page 27 of 25

Conclusion

▪Manufacturers are developing many new types of DRAM

• DRAM limits performance, energy improvements:

new types may overcome some limitations

• Memory systems now serve a very diverse set of applications:

can no longer take a one-size-fits-all approach

• Difficult to intuitively determine which DRAM–workload pair works best

▪We perform a wide-ranging experimental study to uncover

the combined behavior of workloads, DRAM types

• 115 prevalent/emerging applications and multiprogrammed

workloads

• 9 modern DRAM types

▪ 12 key observations on DRAM–workload behavior

Page 28 of 25

Open-source tools: https://github.com/CMU-SAFARI/ramulator

Full paper: https://arxiv.org/pdf/1902.07609

For More Information…

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

29

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

Ramulator for Processing in Memory

30

Simulation Infrastructures for PIM

◼ Ramulator extended for PIM

❑ Flexible and extensible DRAM simulator

❑ Can model many different memory standards and proposals

❑ Kim+, “Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

❑ https://github.com/CMU-SAFARI/ramulator-pim

❑ https://github.com/CMU-SAFARI/ramulator

❑ [Source Code for Ramulator-PIM]

31

https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

Ramulator for PIM

◼ Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.
[Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code for Ramulator-PIM]

32

https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim

What We Discussed Is Applicable to

Other Types of Simulation

Case Study:

COVID-19 Spread

Modeling and Prediction

COVID-19 Measures: Evaluation Methods

◼ How do we assess how an idea will affect a target metric X?

◼ A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling/estimation

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation
35

Simulating COVID-19 Spread

◼ An architect is in part a dreamer, a creator

◼ Simulation is a key tool of the architect

❑ Allows the evaluation & understanding of non-existent systems

◼ Simulation enables

❑ The exploration of many dreams

❑ A reality check of the dreams

❑ Deciding which dream is better

◼ Simulation also enables

❑ The ability to fool yourself with false dreams

36

Goals in Simulating COVID-19 Spread
◼ Explore the design space quickly and see what you want to

❑ potentially implement in a next-generation platform

❑ propose as the next big idea to advance the state of the art

❑ the goal is mainly to see relative effects of design decisions

◼ Match the behavior of an existing system so that you can

❑ debug and verify it at cycle-level accuracy

❑ propose small tweaks to the design that can make a difference in
performance or energy

❑ the goal is very high accuracy

◼ Other goals in-between:

❑ Refine the explored design space without going into a full
detailed, cycle-accurate design

❑ Gain confidence in your design decisions made by higher-level
design space exploration

37

Tradeoffs in Simulation

◼ Three metrics to evaluate a simulator

❑ Speed

❑ Flexibility

❑ Accuracy

◼ Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

◼ Flexibility: How quickly one can modify the simulator to
evaluate different algorithms and design choices?

◼ Accuracy: How accurate the performance (energy) numbers
the simulator generates are vs. a real design (Simulation
error)

◼ The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

38

Trading Off Speed, Flexibility, Accuracy

◼ Speed & flexibility affect:

❑ How quickly you can make design tradeoffs

◼ Accuracy affects:

❑ How good your design tradeoffs may end up being

❑ How fast you can build your simulator (simulator design time)

◼ Flexibility also affects:

❑ How much human effort you need to spend modifying the
simulator

◼ You can trade off between the three to achieve design
exploration and decision goals

39

High-Level Simulation

◼ Key Idea: Raise the abstraction level of modeling to give up
some accuracy to enable speed & flexibility (and quick
simulator design)

◼ Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

◼ Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
40

Simulation as Progressive Refinement

◼ High-level models (Abstract, C)

◼ …

◼ Medium-level models (Less abstract)

◼ …

◼ Low-level models (RTL with everything modeled)

◼ …

◼ Real design

◼ As you refine (go down the above list)

❑ Abstraction level reduces

❑ Accuracy (hopefully) increases (not necessarily, if not careful)

❑ Flexibility reduces; Speed likely reduces except for real design

❑ You can loop back and fix higher-level models
41

Making The Best of Architecture

◼ A good architect is comfortable at all levels of refinement

❑ Including the extremes

◼ A good architect knows when to use what type of
simulation

❑ And, more generally, what type of evaluation method

◼ Recall: A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation

42

Computer Architecture
Lecture 14: Simulation

(with a Focus on Memory)

Prof. Onur Mutlu

ETH Zürich

Fall 2020

12 November 2020

