Computer Architecture
Lecture 15: Emerging Memory
Technologies

Prof. Onur Mutlu
ETH Zlrich
Fall 2020
13 November 2020




Limits ot Charge Memory

Difficult charge placement and control

o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

WL BL
.
%} GATE 1 4
- FLOATING GATE
SOURCE — — DRAIN CAP — —
Al SENSE
\Y4

SAFARI



Solution 1: New Memory Architectures

= Overcome memory shortcomings with

a

a

a

Memory-centric system design
Novel memory architectures, interfaces, functions
Better waste management (efficient utilization)

= Key issues to tackle

Q

L O O O O

Enable reliability at low cost = high capacity
Reduce energy

Reduce latency

Improve bandwidth

Reduce waste (capacity, bandwidth, latency)
Enable computation close to data

SAFARI



Solution 1: New Memory Architectures

. Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
. Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
. Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
. Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
. Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
. Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
. Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
. Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
. Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
. Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
. Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
. Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
. Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
. Kim+, "Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
. Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
. Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
. Ahn+, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
. Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015,
. Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
. Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
. Hassan+, "ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
. Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
. Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
. Khan+, "PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
. Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
. Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
. Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
. Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
. Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
. Hashemi+, “Conti T Hardware ion for Memory Intensive Workloads,” MICRO 2016.
. Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
. Hassan+, "SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
. Lee+, "Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
. Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.
. Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
. Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
. Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
. Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
. Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.
. Kim+, “"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics 2018.
. Kim+, “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices,” HPCA 2018.
. Boroumand-, “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018.
. Das+, "VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency,” DAC 2018.
. Ghose+, "What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study,” SIGMETRICS 2018.
. Kim+, “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines,” ICCD 2018.
. Wang+, “Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration,” MICRO 2018.
. Kim+, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput,” HPCA 2019.
. Singh+, "NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning,” DAC 2019.
. Ghose+, “Demystifying Workload-DRAM Interactions: An Experimental Study,” SIGMETRICS 2019.
. Patel+, “Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices,” DSN 2019.
. Boroumand-, “"CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators,” ISCA 2019.
. Hassan+, "CROW: A Low-Cost Substrate for Improving DRAM Performance, Energy Efficiency, and Reliability,” ISCA 2019.
. Mutlu and Kim, "RowHammer: A Retrospective,” TCAD 2019.
. Mutlu+, “Processing Data Where It Makes Sense: Enabling In-Memory Computation,” MICPRO 2019.
. Seshadri and Mutlu, “In-DRAM Bulk Bitwise Execution Engine,” ADCOM 2020.
. Koppula+, “EDEN: Energy-Efficient, High-Performance Neural Network Inference Using Approximate DRAM,” MICRO 2019.
. Rezaei+, “NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories,” CAL 2020.
. Frigo+, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” S&P 2020.
. Cojocar+, “"Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” S&P 2020.
. Luo+, "CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic Capacity-Latency Trade-Off,” ISCA 2020.
. Kim+, “Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques,” ISCA 2020.
. Wang+, “FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching,” MICRO 2020.
. Patel+, “Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics,” MICRO 2020.
. Avoid DRAM:
a Seshadrl+ “The Evicted-Address Fllter A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
a , “Base-Delt: ion: Practical Data Compression for On-Chip Caches,” PACT 2012.
a Seshadri+, “The Dirty-Block Index,” ISCA 2014.
a Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

o

fjaykumar+, ase for Core-Assisted Bottleneck Acceleration in nabling Flexible Data Compression with Assist Warps,” ISCA 2015.

i ﬁneit “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.




Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory 8L
o Data stored by changing phase of material
o Data read by detecting material’s resistance ;
o Expected to scale to 9nm (2022 [ITRS 2009]) w SENSE
o Prototyped at 20nm (Raoux+, IBM JRD 2008) Vv

o Expected to be denser than DRAM: can store multiple bits/cell

PCM

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?

SAFARI .



Solution 2: Emerging Memory Technologies

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM'10, IEEE Micro'10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
Ren+, "ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
Chauhan+, “"NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

Yu+, "Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
Tavakkol+, "MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,” FAST 2018.
Tavakkol+, “FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives,” ISCA 2018.

Sadrosadati+. “LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Software Cooperative Register Prefetching,”
ASPLOS 2018.

Salkhordeh+, “An Analytical Model for Performance and Lifetime Estimation of Hybrid DRAM-NVM Main Memories,” TC 2019.
Wang+, “Panthera: Holistic Memory Management for Big Data Processing over Hybrid Memories,” PLDI 2019.

Song+, “Enabling and Exploiting Partition-Level Parallelism (PALP) in Phase Change Memories,” CASES 2019.

Liu+, "Binary Star: Coordinated Reliability in Heterogeneous Memory Systems for High Performance and Scalability,” MICRO’19.
Song+, “Improving Phase Change Memory Performance with Data Content Aware Access,” ISMM 2020.

SAFARI 6



Charge vs. Resistive Memories

Charge Memory (e.g., DRAM, Flash)
o Write data by capturing charge Q
o Read data by detecting voltage V

Resistive Memory (e.g., PCM, STT-MRAM, memristors)
o Write data by pulsing current dQ/dt
o Read data by detecting resistance R



Promising Resistive Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance



What 1s Phase Change Memory?

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity

BITLINE

METAL (bitline) |
P
CHALCOGENIDE : :
STORAGE! ;
' l
r

|
HEATER S --

WORDLINE K

ACCESS DEV

METAL (access)

\'4

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly




How Does PCM Work?

A
= Write: change phase via current injection o, | RESET
o SET: sustained current to heat cell above Tcryst 5
o RESET: cell heated above Tmeft and quenched E Trner
. . . (=18
= Read: detect phase via material resistance £ SET T
. = cryst
o amorphous/crystalline
g
Time [ns]

Large Small
Current Current
}
Memory
—
SET (cryst) Access RESET (amorph)
Low resistance Device High resistance

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 10



Opportunity: PCM Advantages

Scales better than DRAM, Flash

o Requires current pulses, which scale linearly with feature size
o Expected to scale to 9nm (2022 [ITRS])

o Prototyped at 20nm (Raoux+, IBM JRD 2008)

Can be denser than DRAM
o Can store multiple bits per cell due to large resistance range
o Prototypes with 2 bits/cell in ISSCC’ 08, 4 bits/cell by 2012

Non-volatile
o Retain data for >10 years at 85C

No refresh needed, low idle power

11



PCM Resistance = Value

Cell 1

value:

0

—
Cell resistance

12



Multi-Level Cell PCM

o Multi-level cell: more than 1 bit per cell
— Further increases density by 2 to 4x [Lee+,ISCA'09]

o But MLC-PCM also has drawbacks
— Higher latency and energy than single-level cell PCM

13



MLC-PCM Resistance = Value

Bitl BitO

[
i
[
o : bt
|

==

Cell resistance

14



MLC-PCM Resistance = Value

Less margin between values
- need more precise sensing/modification of cell contents
- higher latency/energy (~2x for reads and 4x for writes)

Cell
value:

i ==

Cell resistance

15



Phase Change Memory Properties

Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

Derived PCM parameters for F=90nm

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

Lee et al., "Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.

16



Table 1. Technology survey.

Published prototype

Parameter* Horri® Ahn'® Bedeschi'® Oh'* Pellizer'® Chen® Kang™ Bedeschi® Lee'® Lee®
Yoar 2003 2004 2004 2005 2006 2006 2006 2008 2008 =
Process, F{nm) - 120 180 120 a0 - 100 a o a0
Amay size (Mbyles) &4 g &4 . - 256 256 512 =
Matarial GST,N-d  GST, Nd GST GET GST GS,Nd  GST GST GST GST, Nd
Cell size (pm") - 0.2a0 0.2a0 - Q07 G0rm® 0166 QoaT 0047 0,065 o

00a7
Cell size, F? - 201 a = 12.0 - 166 12.0 58 9.0 to

12.0
Access devica - - BT FET BT - FET BT Dioda BT
Read time (ns) - 70 A8 a8 - - &2 - 55 45
Hend Gt (pA] - - 40 - - - - - - 40
Read valtage (V) - an 10 18 15 - 18 - 18 1.0
Hend powes (aW) - - 40 - - - - - - 40
Hend smangy (pJ) . . 3 . - . - - - 30
Sat fime (na) 100 150 150 180 . 80 300 — 400 150
Sat current (A) 200 - 300 200 - 55 - - - 150
Sat voltage (V) - - 20 = . 125 = — - 1.2
Sat power (W) - - 300 - = 344 - - - a0
Sat enangy (pJ) - - A5 - - 28 - - - 135
Reset time (ns) 50 10 40 10 - &0 50 - 50 40
Reset curent (uA) 600 &00 600 &00 400 a0 800 300 600 300
Resat valtage (V) - - 27 - 15 15 - 16 - 1.6
Reset power (uW)  ** - 1620 - = 804 = — - 480
Resotemargy (pJ)  ** - 648 - - 48 - - - 192
Wrile endurance 107 10 1#° e 108 1ot - 10° 10° 109

(ML)

* BJT: bipolar junction vmansistor; FET: field-effect transistor; GST: GeaShaTes; MLC: muliilevel cells; MN-d: nitrogen doped.

** This information i not available in the publication cired.

~|



Phase Change Memory Properties: Latency

= Latency comparable to, but slower than DRAM

MAIN MEMORY SYSTEM HIGH PERFORMANCE DISK SYSTEM
L1 CACHE LAST LEVEL CACHE | : : :
SRAM EDRAM +  DRAM PCM i :  FLASH HARD DRIVE
R — G —_—
5 o8 o5 o7 o9 o1 P o1 o5 o7 919 o 2! o2

-----------------------------------------

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

= Read Latenc
= Write Latenc

a 150ns:
= Write Bandwidth

o 5-10 MB/s:}0.1x DRAM, 1x NAND Flash

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.




Phase Change Memory Properties

Dynamic Energy
o 40 uA Rd, 150 uA Wr

ol 2-43x DRAM, 1x NAND Flash

Endurance
o Writes induce phase change at 650C
o Contacts degrade from thermal expansion/contraction

o 108 writes per cell
o] 10-8x DRAM, 103x NAND Flash

Cell Size
o 9-12F2 using BJT, single-level cells

o] 1.5x DRAM, 2-3x NAND| (will scale with feature size, MLC)

19



Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
a Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
o Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
o Find the right way to place PCM in the system

SAFARI

20



PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU
—
()
| DRAM L DRAM
[ DRAM_DRRpRg DRAM J

= Hybrid PCM+DRAM [Qureshi+ ISCA'09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM

SAFARI 21



PCM-based Main Memory (1)

= How should PCM-based (main) memory be organized?

CPU CPU
o) = L )
- - cd- &
- -G - -GD

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

SAFARI 22



An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density
> 9 -12F% using BJT
> 1.5x DRAM

Endurance

> 1E+08 writes

> 1E-08x DRAM

SAFARI

Latency
> 50ns Rd, 150ns Wr

> 4x,12x DRAM

Energy
> 40uA Rd, 150uA Wr

> 2x,43x DRAM

23



Results: Naive Replacement ot DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :; 2048Bx1 Buffer FPCM Endurance :;: 2048Bx1 Buffer
344 02
-Delaj,.r
32 -Energyhﬂem
014

0.16|
0.12|
T 0.1
0.08|
0.06/
0.04]
0.02|

cg 5 mg rad oce art egu swi avg cg ] rng rad ot::e art  eqgu sm avg

0.18;

kRS
oW

Mormalized to DRAM
=] - i i =3 B B
Years

0 = b o R R

oo
B
3

o=
ra

(=3
=

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 20009.

SAFARI 24



Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes = better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity DRAM PCM
- Reduces unnecessary wear { data array j { data array J
sense amplifiers - ( )
[ (buffer) J sense amplifiers
p. _/
¢ 1o ¢
latches
(buffer)
¢ /O

SAFARI 25



Results: Architected PCM as Main Memory

1.2x delay, 1.0x energy, 5.6-year average lifetime
Scaling improves energy, endurance, density

FCM Performance :: 512Bx4 Buffer

18— I L e s B B B e o ——
Bl Delay

| Il DiffLine (64B) |
1.6/ M@ EnergyMem

FCM Endurance :: 512Bx4 Buffer

14/

al | I DiffWord (4B) |
12|
2|
10|
|| || N l| " | ' ﬂ

cg is mg rad oce art equ swi avg cg is mg

—

Mormalized to DRAM
[ =]
w -
Years

o
o
=

=
S
B

o
i
ha

rad oce art equ SWI avg

Caveat 1: Worst-case lifetime is much shorter (no guarantees)

Caveat 2: Intensive applications see large performance and energy hits

Caveat 3: Optimistic PCM parameters?
SAFARI 26



PCM As Main Memory

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM Alternative”
Proceedings of the 36th International Symposium on Computer

Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)

One of the 13 computer architecture papers of 2009 selected as Top
Picks by IEEE Micro.

Selected as a CACM Research Highlight.

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Leet Engin Ipeki Onur Mutlu: Doug Burger;

+Computer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu

SAFARI 27


https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
https://people.inf.ethz.ch/omutlu/pub/lee_isca09_talk.pdf

More on PCM As Main Memory (1I)

= Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

PHASE-CHANGE TECHNOLOGY AND THE
FUTURE OF MAIN MEMORY

SAFARI 28


https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

Intel Optane Memory (Idea Realized 1n 2019)

= Non-volatile main memory
= Based on 3D-XPoint Technology

) (rraes lu.wnmk t
Assembled i Tarwan
8089.A 2184000000209
NMA1XBD1286QS s
Ve T
72665 J26180.909
rranty Void If Label Re ed

Wa

SAFARI https://www.storagereview.com/intel optane dc persistent memory module pmm



https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

More on PCM Based Main Memory

HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur
Mutlu,

"Efficient Data Mapping and Buffering Techniques for Multi-Level Cell
Phase-Change Memories"

ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
December 2014. [Slides (ppt) (pdf)]

Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January 2015.
[Slides (ppt) (pdf)]

Best (student) presentation award.

Efficient Data Mapping and Buffering Techniques for Multilevel Cell
Phase-Change Memories

HANBIN YOON™ and JUSTIN MEZA, Carnegie Mellon University
NAVEEN MURALIMANOHAR, Hewlett-Packard Labs

NORMAN P. JOUPPI™, Google Inc.

ONUR MUTLU, Carnegie Mellon University

SAFARI S


https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

Some PCM Bits Take LLonger to Read...

Bitkme ™11 10 o1 00 ) (Vo110 0x o0x )
= WIS WND |
R S VT
t1 2 3 4 time tl 2 time
. J " J
Vi Vi
V. Latch 1 Latch 0 V., Latch 1 Latch O
Clock —pP O « 15 Clock —D> O —iXI*
MSB LSB MSB LSB
(a) Sensing time is longer for higher cell resistances. (b) One bit is determined before the other.

Fig. 3. MLC PCM cell read operation [Qureshi et al. 2010b].

SAFARI 31



Observation 1: Read Asymmetry

« The read latency/energy of Bit 1 is lower than that of Bit 0

e This is due to how MLC-PCM cells are read

SAFARI

32



Observation 1: Read Asymmetry

Simplified example l \01

Capacitor filled  MLC-PCM cell
with reference  with unknown
voltage resistance

SAFARI

33



Observation 1: Read Asymmetry

Simplified example E—O?

SAFARI

34



Observation 1: Read Asymmetry
Simplified example w Infe’r;Iasta‘ v;vlue

SAFARI

35



Observation 1: Read Asymmetry

Voltage

Time

SAFARI



Observation 1: Read Asymmetry

Voltage

Time

SAFARI



Observation 1: Read Asymmetry

Initial voltage (fully charged capacitor)

Voltage

Time

SAFARI

38



Observation 1: Read Asymmetry

PCM cell connected - draining capacitor

Voltage

Time

SAFARI

39



Observation 1: Read Asymmetry

Capacitor drained - data value known (01)

Voltage

Time

SAFARI

40



Observation 1: Read Asymmetry

o In existing devices
— Both MLC bits are read at the same time
— Must wait maximum time to read both bits

« However, we can infer information about Bit 1 before this time

SAFARI

41



Observation 1: Read Asymmetry

Voltage

Time

SAFARI



Observation 1: Read Asymmetry

Voltage

Time

SAFARI



Observation 1: Read Asymmetry

Time to determine
Bit 1's value

Moi

Voltage

L U

Time

SAFARI

44



Observation 1: Read Asymmetry

Time to determine
Bit 0's value

Voltage

v l
ud l
l

Time

SAFARI *



Some PCM Bits Take Longer to Write...

Efficient Data Mapping and Buffering Techniques for MLC PCM

MSB LSB

0.3x

40:7

MSB LSB

0

0 <

MSB LSB0 ; MSB LSB
3x
0(0|: 1011
0 0.84x -
' 0.84x
0 f‘0.2>< + 1 1
— O.8><;
MSB LSB MSB LSB

(a) All possible cell state transitions.

A

h

0.3x

0.2x

MSB write

%MOI

GlllmﬂS’]

110]-

MSB LSB

0.8%

11

MSB LSB

(b) Cell state transitions when modifying only

the MSB or the LSB.

Fig. 4. MLC PCM cell write latencies [Joshi et al. 2011; Nirschl et al. 2007; Happ et al. 2006].

SAFARI

46



More on PCM Latencies and Exploiting Them

HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu,
"Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-
Change Memories"

ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
December 2014. [Slides (ppt) (pdf)]

Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January 2015.
[Slides (ppt) (pdf)]

Best (student) presentation award.

Efficient Data Mapping and Buffering Techniques for Multilevel Cell
Phase-Change Memories

HANBIN YOON™ and JUSTIN MEZA, Carnegie Mellon University
NAVEEN MURALIMANOHAR, Hewlett-Packard Labs

NORMAN P. JOUPPI™, Google Inc.

ONUR MUTLU, Carnegie Mellon University

SAFARI 47


https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

STT-RAM as Main Memory




STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

SAFARI

Logical 0
Reference Layer )

—)

Free Layer

Logical 1
Reference Layer )

<4

Free Layer

Word Line

1

|l = |
Access

Transistor
Bit Line

Sense Line



STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
a Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
a Poor density (currently)
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MT)J)

SAFARI

50



Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base) B STT-RAM (opt)

98%

8 z 96% -
g é 949% -
E 92% -
5 O 90% -
h [
s g 880/0 1 T T T T T T T T T T T
S T T R (- T S T (< T WY . N < S N -
S & &SNS L =
EACT+PRE DWB ERB
100%
80%
>~z 60°/0
o § °
'q', 40%
e - ittt int
o o

K & K

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

&Qé\ @Qé\ ®Q® @& @Qd\

SAFARI 2



More on STT-MRAM as Main Memory

= Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative”
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative

Emre Kiiltiirsay®, Mahmut Kandemir®, Anand Sivasubramaniam®, and Onur Mutluf
*The Pennsylvania State University and TCarnegie Mellon University

SAFARI 52



http://users.ece.cmu.edu/~omutlu/pub/sttram_ispass13.pdf
http://www.ispass.org/ispass2013/
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pdf

Hybrid Main Memory




A More Viable Approach: Hybrid Memory Systems

CPU

DRAM  PCM
Ctrl  Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI




Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies

SAFARI



Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable

Memory Systems

SAFARI

56



Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?

SAFARI >7



One Option: DRAM as a Cache tor PCM

PCM is main memory; DRAM caches memory rows/blocks
o Benefits: Reduced latency on DRAM cache hit; write filtering
Memory controller hardware manages the DRAM cache

o Benefit: Eliminates system software overhead

Three issues:

o What data should be placed in DRAM versus kept in PCM?
o What is the granularity of data movement?

o How to design a low-cost hardware-managed DRAM cache?

Two idea directions:

o Locality-aware data placement [Yoon+ , ICCD 2012]

o Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
SAFARI 58



DRAM as a Cache for PCM

Goal: Achieve the best of both DRAM and PCM/NVM

o Minimize amount of DRAM w/o sacrificing performance, endurance

o DRAM as cache to tolerate PCM latency and write bandwidth

o PCM as main memory to provide large capacity at good cost and power

PCM Main Memory

DATA
Processor DRAM Buffer
T DATA Flash
> - < »| Or

HDD

'
T=Tag-Store I‘i ‘
PCM Write Queue

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 59



Write Filtering Techniques

Lazy Write: Pages from disk installed only in DRAM, not PCM
Partial Writes: Only dirty lines from DRAM page written back
Page Bypass: Discard pages with poor reuse on DRAM eviction

PCM Main Memory
DATA

Processor DRAM Buffer
e E DATA] | Flash

> Or
HDD

Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.

60



Results: DRAM as PCM Cache (I)

= Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles,
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

= Assumption: PCM 4x denser, 4x slower than DRAM
= DRAM block size = PCM page size (4kB)

1.1 -
L
2 091
F 08 -
S 07 W 8GB DRAM
5 i W 32GB PCM
g 00 I B 32GB DRAM
1“; 0.5 1 I B 32GB PCM + 1GB DRAM
é’ 0.4 1
el | B
el B ]
i ' a -
Nl | B ™ '8 B -

dbl db2 gsort bsearch kmeans gauss daxpy  vdotp gmean

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 61



Results: DRAM as PCM Cache (1)

PCM-DRAM Hybrid performs similarly to similar-size DRAM
Significant energy savings with PCM-DRAM Hybrid
Average lifetime: 9.7 years (no guarantees)

2.2

N

W 8GB DRAM
W Hybrid (32GB PCM+ 1GB DRAM)
0 32GB DRAM

=
©

=
o

=
I

=
N

[N

o
o

o
o

Value Normalized to 8SGB DRAM

o
[N

Power Energy Energy x Delay

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009. 62



More on DRAM-PCM Hybrid Memory

= Scalable High-Performance Main Memory System

Using Phase-Change Memory Technology.
Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers

Appears in the International Symposium on Computer
Architecture (ISCA) 2008.

Scalable High Performance Main Memory System Using
Phase-Change Memory Technology

Moinuddin K. Qureshi Vijayalakshmi Srinivasan Jude A. Rivers

IBM Research
T. J. Watson Research Center, Yorktown Heights NY 10598

{mkquresh, viji, jarivers}@us.ibm.com

03


http://dl.acm.org/citation.cfm?id=1555760

Data Placement in Hybrid Memory

Memory Controllers

Channel A IDLE|Channel B

Memory A
(Fast, Small)

Memory B
(Large, Slow)

Which memory do we place each page in,
to maximize system performance?

= Memory A is fast, but small
= Load should be balanced on both channels?

= Page migrations have performance and energy overhead
SAFARI 64




Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, "Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

SAFARI 65



Key Observation & Idea

e Row buffers exist in both DRAM and PCM

— Row hit latency similar in DRAM & PCM [Lee+ IscA’09]
— Row miss latency small in DRAM, large in PCM

 Place data in DRAM which

— is likely to miss in the row buffer (low row buffer
locality)=2> miss penalty is smaller in DRAM

AND

— is reused many times = cache only the data

worth the movement cost and DRAM space
66



Hybrid vs. AllI-PCM/DRAM [1ccp’12]

m16GB PCM ®RBLA-Dyn ©O16GB DRAM

2 1.2
_%—1.8 — g -
1.6 29% — 3

I =
% 1.4 So8 -
2 1.2 4 31% - c>é
- — 206 -
I ©
(€D

31% better performance than all PCM,
within 29% of all DRAM performance

N .

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.

Naormalized Weigh
o
o

o
N
|




More on Hybrid Memory Data Placement

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,
and Onur Mutluy,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories”
Proceedings of the 30th IEEE International Conference on Computer
Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides
(pptx) (pdf)
Best paper award (in Computer Systems and Applications
track).

Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur } @cmu.edu, rhardin@mit.edu

SAFARI 68



https://people.inf.ethz.ch/omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pdf

Weaknesses of Existing Solutions

= They are all heuristics that consider only a /limited part of
memory access behavior

= Do not direct/y capture the overall system
performance impact of data placement decisions

= Example: None capture memory-level parallelism (MLP)

o Number of concurrent memory requests from the same
application when a page is accessed

o Affects how much page migration helps performance

SAFARI 69



Importance of Memory-Level Parallelism

Before migration: Before migration:

requests to Page 1( Mem. B )

requests to Page 2( Mem.B )
|

requests to Page 3( Mem. B j
| |

After migration:

|
|
|
requests to Page 1 @\ WAN :
|
|
|

|
T

I
I
I
I
I
I
I
I
|
I
I
I
|
I
|
I
|
I
1
I
-
I
|

requests to Page 3( Mem. B ;I
i ' >
time Migrating one page time Must migrate two pages

reduces stall time by T 1 to reduce stall time by T:
migrating one page alone
does not help

Page migration decisions need to consider MLP




Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory

SAFARI n



Utility-Based Hybrid Memory Management

A memory manager that works for any hybrid memory
o e.g., DRAM-NVM, DRAM-RLDRAM

Key Idea

o For each page, use comprehensive characteristics to
calculate estimated wutility (i.e., performance impact)
of migrating page from one memory to the other in the
system

o Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
SAFARI 72



Key Mechanisms of UH-MEM

For each page, estimate utility using a performance model

o Application stall time reduction

How much would migrating a page benefit the performance of the
application that the page belongs to?

o Application performance sensitivity

How much does the improvement of a single application’s
performance increase the overall system performance?

Utility = AStallTime; X Sensitivity;

Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

Periodically adjust migration threshold

SAFARI 3



Results: System Performance

BALL OFREQ ORBLA mUH-MEM

Normalized
Weighted Spe
|

o
I

o
©

0% 25% 50% 75% 100%
Workload Memory Intensity Category

UH-MEM improves system performance

over the best state-of-the-art hybrid memory manager

SAFARI 74



Results: Sensitivity to Slow Memory Latency

= We vary ty-p and tyr of the slow memory
- ALL OFREQ ©RBLA mUH-MEM

R N B —

3.0 41 {f | I Eidl N
2.6 - I S ! S|  E— Il — | ]
2.2

15 1B

trep: X3.0 x4.0 x4.5 x6.0 X7.5
twr: X3.0 x4.0 x12 x16 x20

Slow Memory Latency Multiplier

Weighted Speedup
|

UH-MEM improves system performance

for a wide variety of hybrid memory systems




More on UH-MEM

= Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutluy,
"Utility-Based Hybrid Memory Management”
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

Utility-Based Hybrid Memory Management

Yang Lil Saugata Ghosel Jongmoo Choit Jin Sun' Hui Wang™ Onur Mutlu*
[ Carnegie Mellon University t Dankook University *Beihang Universily Y ETH Ziirich

SAFARI 76


https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17.pdf
https://cluster17.github.io/
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pdf

Challenge and Opportunity

Enabling
an Emerging Technology
to Augment DRAM

Managing Hybrid Memories

SAFARI



Another Challenge

Designing Effective
Large (DRAM) Caches

SAFARI



One Problem with Large DRAM Caches

= A large DRAM cache requires a large metadata (tag +
block-based information) store

= How do we design an efficient DRAM cache?

CPU

LOAD X

Metadata:
X =2 DRAM

N

Access X

SAFARI 7



Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

€ DRAM row

>

0O

Benefit: No on-chip tag storage overhead

Downsides:
o Cache hit determined only after a DRAM access
o Cache hit requires two DRAM accesses

SAFARI

Tag
1

Tag
2

80



Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small

SAFARI

81



Idea 3: Dynamic Data Transter Granularity

Some applications benefit from caching more data
o They have good spatial locality

Others do not
o Large granularity wastes bandwidth and reduces cache utilization

Idea 3: Simple dynamic caching granularity policy
o Cost-benefit analysis to determine best DRAM cache block size
o Group main memory into sets of rows

o Different sampled row sets follow different fixed caching
granularities

o The rest of main memory follows the best granularity
Cost—benefit analysis: access latency versus number of cachings
Performed every quantum

SAFARI 82



TIMBER Performance

SRAM

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and

Reduced channel
contention and
improved spatial locality

Region

TIM

TIMBER

TIMBER-Dyn

83

Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.



TIMBER Energy Efficiency

O
00

Fewer migrations reduce
transmitted data and
channel contention

o
N

Normalized Performance per Watt
(for Memory System)
o o
N o

O — — —
SRAM Region TIM TIMBER  TIMBER-Dyn

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

84



On Large DRAM Cache Design

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
[EEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza® Jichuan Chang®™ HanBin Yoon™ Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University tHewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com

SAFARI 85


http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs - We assume perfect way
prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use
different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

| Scheme [| DRAM Cache Hit | DRAM Cache Miss || Replacement Traffic | Replacement Decision | Large Page Caching |
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec.data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,
frequency based

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

SAFARI

86



Banshee [MICRO 2017]

= Tracks presence in cache using TLB and Page Table
o No tag store needed for DRAM cache
o Enabled by a new lightweight lazy TLB coherence protocol

= New bandwidth-aware frequency-based replacement policy

2.0

._______.‘—-—o 2.0}

—_
o

|
]

o=@ Banshee
o= Alloy

o=@ Banshee
s=h  Alloy

Norm. Speedup

Norm. Speedup
()

o
o

o

o

m=m TDC | “lm=m TDC
M= |Jnison =3¢ Unison
00 0.0
|1 00% 66% 50% 8X 4X| 2X

DRAM Cache Latenc DRAM Cache Bandwidth
SAFAR. y 87




More on Banshee

= Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,

"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xian a0 Yl,ll Christo her . Hu he 52 Nadathur Satish2 Onur 1\/[1.1,[11.13 Sl'il'li vas Dev adas 1
gy P g
IMIT 2Intel Labs 3ETH Ziirich

SAFARI 88


https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

= Merging of memory and storage
o e.g., a single interface to manage all data

= New applications
o e.g., ultra-fast checkpoint and restore

= More robust system design
o e.g., reducing data loss

= |Processing tightly-coupled with memory

o e.g., enabling efficient search and filtering

SAFARI 89



Recall: In-Memory
Bulk Bitwise Operations




In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

SAFARI o1



Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou*?, Jishen Zhao®, Yu Lu*, and Yuan Xie*
University of California, Santa Barbara®, Hewlett Packard Labs?

University of California, Santa Cruz?, Qualcomm Inc.%, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu’

SAFARI htips://cseweb.ucsd.edu/~jzhaoffiles/Pinatubo-dac2016.pdf 72



https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

All data via the
Narmrow DDR bus

-

D &

Row-ADR

Operand Row 1
\\ Operand Row 2

Operand Row 1

Operand Row 2

1 Operand Row n

{ Operand Row n

Result Row

S

Result Row

VM-based Main Memory
(a) Conventional Approach (b) Pinatubo

Figure 2: Overview: (a) Computing-centric ap-

proach, moving tons of data to CPU and write back.

(b) The proposed Pinatubo architecture, performs

n-row bitwise operations inside NVM in one step.

SAFARI htips://cseweb.ucsd.edu/~jzhaoffiles/Pinatubo-dac2016.pdf 93



https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

New: In-Memory
Crossbar Array Operations




In-Memory Crossbar Array Operations

= Some emerging NVM technologies have crossbar array
structure

o Memristors, resistive RAM, phase change mem, STT-MRAM, ...

= Crossbar arrays can be used to perform dot product
operations using “analog computation capability”
o Can operate on multiple pieces of data using Kirchoff's laws
= Bitline current is a sum of products of wordline V x (1 / cell R)
o Computation is in analog domain inside the crossbar array

= Need peripheral circuitry for D->A and A->D conversion of
inputs and outputs

SAFARI 7>



In-Memory Crossbar Computation

—DAC '

V1

=
) ]

11=V1.G1

V2
G2

12 =V2.G\2

S&H S&H [s&H S&H
| l |

l=11+12= AE)C
(a) Multiply-Accumulate operation (b) Vector-Matrix Multiplier

Fig. 1. (a) Using a bitline to perform an analog sum of products operation.
(b) A memristor crossbar used as a vector-matrix multiplier.

SAFARI Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator 96
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.



In-Memory Crossbar Computation

Vv,

sty

P, QWAL ALY,
Y/
Kl h

Ay
hﬂﬂ"lﬂ[ﬂ_ﬂ#'l%

N -Y’]ll Zair i

S gl

I5E nwllmrm a
\R) d ’%Iﬂ 12
4

1(

V2 TN

» ¢
[ %

(01 O2 O3 04)

SAFARI



Required Peripheral Circuitry

DAC: Digital to Analog
ADC: Analog to Digital
S&H: Sample and Hold
Shift and add: used to summarize the final output

Digital

SAFARI



An Example of 2D Convolution

Output feature map

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
Input feature map - Kernel) / Stride + 1

SAFARI



Mapping Computation onto the Crossbar

Input Kernel Output
64 64
A convolution c‘,‘t"‘
. Padding: 2
operation in -
| et y 64 Stride: 1 N
neura ne WOor ‘—_-_-_-_-_(-J3 NN
application - /“"“J3
N
N
....... 1224:‘224
T—( gl) ANVM cell

An NVM-based
PIM array

\

A weight value

— PIM Array

SAFARI



An Overview of NVM-Based PIM System

[T (T
Normal memory Private
Memory interconnects data ports

Subarrays

CPU

Memory
Controller

LR LR LA & . i?
. 1] -

Buffer Subarrays| | .- sE||e > . £

00000000 = ® = T

L . HIEEE L

VM Processing AR =

' Sub zc|(z> 5

DRAM ||| based uparrays 3 = E
PIM

NVM-based PIM array:

core processing unit for vector-matrix multiplication
Non-linear function array:

processing unit for non-linear functions (e.g., ReLU operations in neural networks)
Multiplier array:

handles element-wise operations

SAFARI



Example Readings on NVM-Based PIM

= Shafiee+, "ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

= Chi+, "PRIME: A Novel Processing-in-memory Architecture for
Neural Network Computation in ReRAM-based Main Memory”,
ISCA 2016.

= Prezioso+, “Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors”,
Nature 2015

= Ambrogio+, “Equivalent-accuracy accelerated neural-network
training using analogue memory”, Nature 2018.

SAFARI 102



We Did Not Cover The Rest of the Slides.
They Are For Your Benetit.

103




Computer Architecture
Lecture 15: Emerging Memory
Technologies

Prof. Onur Mutlu
ETH Zlrich
Fall 2020
13 November 2020




Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 105



TWO-LEVEL STORAGE MODEL

5

> PR VOLATILE
e

= = BYTE ADDR
NONVOLATILE

S SLOW

. BLOCK ADDR

106



TWO-LEVEL STORAGE MODEL

CPU

VOLATILE

FAST
BYTE ADDR
NONVOLATILE

SLOW
BLOCK ADDR

/0 STTRA

STORAGE § MEMORY

Non-volatile memories combine

characteristics of memory and storage



Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

~_ Two-Level Store

Load/Store __ fopghn, fread, fwrite, ...

Processor
and caches

Main Memory Stotegeot$SD/HDD)

SAFARI 108




Unified Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager :
Processor
and caches

Load/Store Feedback

Persistent (e.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 109
SAFARI Storage and Memory,” WEED 2013.



PERSISTENT MEMORY

1 4 = f B
O 5 o v
tamtinttin? Retntmbnsriattnin it ""'li“fllfl if

A
s 3
wn
<&
o -
R
<5

Provides an opportunity to manipulate
persistent data directly

110



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData[n] = value; // value is persistent

O 00 1 ON DN & Wi =~

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

| DRAM | Fiash | Nvm || HDD |

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




The Persistent Memory Manager (PMM)

Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

112



Etticient Data Mapping among Heterogeneous Devices

A persistent memory exposes a large, persistent address space
o But it may use many different devices to satisfy this goal

o From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

o And other NVM devices in between

Performance and energy can benefit from good placement of
data among these devices

o Utilizing the strengths of each device and avoiding their weaknesses,
if possible

o For example, consider two important application characteristics:
locality and persistence

113



Etticient Data Mapping among Heterogeneous Devices

A
Less Locality

More Locality
Ve >
Temporary Persistent

114



Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

More Locality
Ve >
Temporary Persistent

115



Etticient Data Mapping among Heterogeneous Devices

Columns in a column store that are
scanned through only infrequently

A - place on Flash
Less Locality X

Frequently-updated index for a
Content Delivery Network (CDN)
- place in DRAM

More Locality X
Ve >
Temporary Persistent

Applications or system software can provide hints for data placement

116




Evaluated Systems

= HDD Baseline
o Traditional system with volatile DRAM memory and persistent HDD storage

o Overheads of operating system and file system code and buffering

= NVM Baseline (NB)

Q

a

Same as HDD Baseline, but HDD is replaced with NVM
Still has OS/FS overheads of the two-level storage model

= Persistent Memory (PM)

a

a

a

Uses only NVM (no DRAM) to ensure full-system persistence
All data accessed using loads and stores

Does not waste time on system calls

Data is manipulated directly on the NVM device

117



Performance Benefits ot a Single-lLevel Store

M User CPU [ User Memory B Syscall CPU @ Syscall I/O

1.0 ~24X
£ 08 \
I_
5 \
§ 0.6
n
S 0.4
N
C_EU \
S 02 ~5X
0

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 118
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store

M User CPU [J SyscallCPU m DRAM [ NVM @ HDD
1.0 ~16X

\

o
oo

O
oy

—
~

Fraction of Total Energy

o
N

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 119
SAFARI Storage and Memory,” WEED 2013.



On Persistent Memory Benefits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Enerqgy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza*  Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University  'Pennsylvania State University  ¥Intel Labs  SAMD Research

SAFARI 120


http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined
Memory & Storage

SAFARI



Challenge and Opportunity

A Unified Interface to
All Data

SAFARI



Intel Optane Persistent Memory (2019)

= Non-volatile main memory
= Based on 3D-XPoint Technology

) (el TIN ol T
Assemblec ﬂh:-nk t
8089.A 2184000000209
NMA1XBD128GQS

TS
» B T
BL 10868 [
12665 J26180.909
rranty Void If Label Re ed

Wa

) 123
SAFARI https://www.storagereview.com/intel optane dc persistent memory module pmm



https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandwidth

% 8GE/128xDPU FIM R-DIMM Module

LIPMEM UPMERA LIPRAE M LIPMEN LIPMERA LIPRAE N UPRER UPMEM
ER Pk 1] Pkl PImA [N ] PliM FIkA
chip chip thip chip chip ehig chiip chip

htips:/lwww.anandiech.com/show/I4750/hot-chips-3T-analysSiS-inmemory-processing-by-upmem 124
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...

SAFARI 125



CRASH CONSISTENCY PROBLEM

Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

iInconsistent memory state



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Hea PS (aspiosia, BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

127



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV'HeapS [ASPLOS'11], BPFS [SOSP’09], Mnemosyne [ASPLOS'11]

- T
Example Code

update a node In a persistent hash table

S EEEEEEEEE—————————————————

vold hashtable update (hashtable t* ht,
~volid *key, void *data)
{

list t* chain = get chain(ht, key);
pair t* pair; -
palir t updatePalr,

updaEePalr first = key;
pailr = (palr t*) 1list find(chain,
&updatePair) ;

palir—->second = data;



CURRENT SOLUTIONS

vold TMhashtable update (TMARCGDECL
hashtable t* ht, void *key,
void*data) {

list t* chain = get chain (ht, key);

palr t* pair; -

palr t updatePair;

updatePair.first = key;

pair = (pair t*) TMLIST FIND (chain,

supdatePair) ;

palr—->second = data;



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

130



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

131



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL
get chain (ht, key)

Need a new implementation

TMLIST FIND

Third party code
can be inconsistent

132



CURRENT SOLUTIONS

Manual declaration of persistent components

void TMhashtable update (TMARCGDECL

get chain (ht, key)

Need a new implementation

TMLIST FIND

Prohibited Third party code
Operation can be inconsistent

Burden on the programmers



OUR APPROACH: ThyNVM

Goal: | |
Software transparent consistency In
persistent memory systems

~ Keyldea:
Periodically checkpoint state;
recover to previous checkpt on crash

134



ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency



2. OVERLAPPING
CHECKPOINTING AND EXECUTION

time

— —>
‘ Epoch 0 ‘ Epoch 1 ‘

Checkpointing

Epoch 0
Epoch 1
Epoch 2




More About ThyNVM

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,

"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"”

Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]

[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*’ Jishen Zhao* Samira Khan Jongmoo Choi*" Yongwei Wu* Onur Mutlu®

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia TDankook University

SAFARI 157



https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI



Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the 4th Workshop on Interactions of NVIM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware

SAFARI 159


https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

The Future of |

“merging Technologies 1s Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Problem

Program/Language

System Software

SW/HW Interface

Yet, we have to
- Think across the stack

- Design enabling systems

SAFARI

140



If In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
a for at least two decades

% PAPER Proceedings of the IEEE, Sept, 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Ca1, SaucaTta GHosg, EricH F. HaraTtsch, YIXiN Luo, aND ONUR MuTLU

today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

ABSTRACT | nano flash memory is ubiquitous in everyday life KEYWORDS | Data storage systems; error recovery; fault

SAFARI https://arxiv.org/pdf/1706.08642

141



https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Many Research & Design Opportunities

= Enabling completely persistent memory

= Computation in/fusing NVM based memories

= Hybrid memory systems

= Security and privacy issues in persistent memory
= Reliability and endurance related problems

SAFARI 142



