
Computer Architecture
Lecture 15: Emerging Memory

Technologies

Prof. Onur Mutlu

ETH Zürich

Fall 2020

13 November 2020

Limits of Charge Memory

◼ Difficult charge placement and control

❑ Flash: floating gate charge

❑ DRAM: capacitor charge, transistor leakage

◼ Reliable sensing becomes difficult as charge
storage unit size reduces

2

Solution 1: New Memory Architectures

◼ Overcome memory shortcomings with

❑ Memory-centric system design

❑ Novel memory architectures, interfaces, functions

❑ Better waste management (efficient utilization)

◼ Key issues to tackle

❑ Enable reliability at low cost → high capacity

❑ Reduce energy

❑ Reduce latency

❑ Improve bandwidth

❑ Reduce waste (capacity, bandwidth, latency)

❑ Enable computation close to data

3

Solution 1: New Memory Architectures
◼ Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

◼ Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

◼ Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

◼ Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.

◼ Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.

◼ Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

◼ Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

◼ Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.

◼ Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

◼ Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors ,” ISCA 2014.

◼ Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

◼ Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems ,” DSN 2015.

◼ Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.

◼ Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

◼ Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM ,” IEEE CAL 2015.

◼ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

◼ Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

◼ Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

◼ Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.

◼ Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.

◼ Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.

◼ Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.

◼ Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.

◼ Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.

◼ Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.

◼ Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.

◼ Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.

◼ Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.

◼ Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.

◼ Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads ,” MICRO 2016.

◼ Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.

◼ Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies ,” HPCA 2017.

◼ Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.

◼ Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms ,” SIGMETRICS 2017.

◼ Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms ,” SIGMETRICS 2017.

◼ Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions ,” ISCA 2017.

◼ Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.

◼ Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.

◼ Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.

◼ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.

◼ Kim+, “GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies,” BMC Genomics 2018.

◼ Kim+, “The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices,” HPCA 2018.

◼ Boroumand+, “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018.

◼ Das+, “VRL-DRAM: Improving DRAM Performance via Variable Refresh Latency,” DAC 2018.

◼ Ghose+, “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study,” SIGMETRICS 2018.

◼ Kim+, “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines,” ICCD 2018.

◼ Wang+, “Reducing DRAM Latency via Charge-Level-Aware Look-Ahead Partial Restoration,” MICRO 2018.

◼ Kim+, “D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput,” HPCA 2019.

◼ Singh+, “NAPEL: Near-Memory Computing Application Performance Prediction via Ensemble Learning,” DAC 2019.

◼ Ghose+, “Demystifying Workload–DRAM Interactions: An Experimental Study,” SIGMETRICS 2019.

◼ Patel+, “Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices ,” DSN 2019.

◼ Boroumand+, “CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators,” ISCA 2019.

◼ Hassan+, “CROW: A Low-Cost Substrate for Improving DRAM Performance, Energy Efficiency, and Reliability,” ISCA 2019.

◼ Mutlu and Kim, “RowHammer: A Retrospective,” TCAD 2019.

◼ Mutlu+, “Processing Data Where It Makes Sense: Enabling In-Memory Computation,” MICPRO 2019.

◼ Seshadri and Mutlu, “In-DRAM Bulk Bitwise Execution Engine,” ADCOM 2020.

◼ Koppula+, “EDEN: Energy-Efficient, High-Performance Neural Network Inference Using Approximate DRAM ,” MICRO 2019.

◼ Rezaei+, “NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories,” CAL 2020.

◼ Frigo+, “TRRespass: Exploiting the Many Sides of Target Row Refresh,” S&P 2020.

◼ Cojocar+, “Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers,” S&P 2020.

◼ Luo+, “CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic Capacity-Latency Trade-Off,” ISCA 2020.

◼ Kim+, “Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques ,” ISCA 2020.

◼ Wang+, “FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching,” MICRO 2020.

◼ Patel+, “Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics ,” MICRO 2020.

◼ Avoid DRAM:

❑ Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

❑ Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

❑ Seshadri+, “The Dirty-Block Index,” ISCA 2014.

❑ Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

❑ Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps ,” ISCA 2015.

❑ Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016. 4

Solution 2: Emerging Memory Technologies

◼ Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

◼ Example: Phase Change Memory

❑ Data stored by changing phase of material

❑ Data read by detecting material’s resistance

❑ Expected to scale to 9nm (2022 [ITRS 2009])

❑ Prototyped at 20nm (Raoux+, IBM JRD 2008)

❑ Expected to be denser than DRAM: can store multiple bits/cell

◼ But, emerging technologies have (many) shortcomings

❑ Can they be enabled to replace/augment/surpass DRAM?

5

Solution 2: Emerging Memory Technologies

◼ Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.

◼ Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

◼ Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

◼ Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

◼ Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

◼ Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

◼ Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

◼ Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.

◼ Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.

◼ Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

◼ Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

◼ Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

◼ Tavakkol+, “MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices,” FAST 2018.

◼ Tavakkol+, “FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives,” ISCA 2018.

◼ Sadrosadati+. “LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/Software Cooperative Register Prefetching ,”
ASPLOS 2018.

◼ Salkhordeh+, “An Analytical Model for Performance and Lifetime Estimation of Hybrid DRAM-NVM Main Memories,” TC 2019.

◼ Wang+, “Panthera: Holistic Memory Management for Big Data Processing over Hybrid Memories,” PLDI 2019.

◼ Song+, “Enabling and Exploiting Partition-Level Parallelism (PALP) in Phase Change Memories,” CASES 2019.

◼ Liu+, “Binary Star: Coordinated Reliability in Heterogeneous Memory Systems for High Performance and Scalability ,” MICRO’19.

◼ Song+, “Improving Phase Change Memory Performance with Data Content Aware Access,” ISMM 2020.

6

Charge vs. Resistive Memories

◼ Charge Memory (e.g., DRAM, Flash)

❑ Write data by capturing charge Q

❑ Read data by detecting voltage V

◼ Resistive Memory (e.g., PCM, STT-MRAM, memristors)

❑ Write data by pulsing current dQ/dt

❑ Read data by detecting resistance R

7

Promising Resistive Memory Technologies

◼ PCM

❑ Inject current to change material phase

❑ Resistance determined by phase

◼ STT-MRAM

❑ Inject current to change magnet polarity

❑ Resistance determined by polarity

◼ Memristors/RRAM/ReRAM

❑ Inject current to change atomic structure

❑ Resistance determined by atom distance

8

What is Phase Change Memory?

◼ Phase change material (chalcogenide glass) exists in two states:

❑ Amorphous: Low optical reflexivity and high electrical resistivity

❑ Crystalline: High optical reflexivity and low electrical resistivity

9

PCM is resistive memory: High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly

How Does PCM Work?

◼ Write: change phase via current injection

❑ SET: sustained current to heat cell above Tcryst

❑ RESET: cell heated above Tmelt and quenched

◼ Read: detect phase via material resistance

❑ amorphous/crystalline

10

Large

Current

SET (cryst)
Low resistance

103-104 W

Small

Current

RESET (amorph)
High resistance

Access

Device

Memory

Element

106-107 W

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages

◼ Scales better than DRAM, Flash

❑ Requires current pulses, which scale linearly with feature size

❑ Expected to scale to 9nm (2022 [ITRS])

❑ Prototyped at 20nm (Raoux+, IBM JRD 2008)

◼ Can be denser than DRAM

❑ Can store multiple bits per cell due to large resistance range

❑ Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

◼ Non-volatile

❑ Retain data for >10 years at 85C

◼ No refresh needed, low idle power

11

12

PCM Resistance → Value

Cell resistance

1 0Cell
value:

13

Multi-Level Cell PCM

⚫ Multi-level cell: more than 1 bit per cell

− Further increases density by 2 to 4x [Lee+,ISCA'09]

⚫ But MLC-PCM also has drawbacks

− Higher latency and energy than single-level cell PCM

14

MLC-PCM Resistance → Value

Cell resistance

11 000110Cell
value:

Bit 1 Bit 0

15

MLC-PCM Resistance → Value

Cell resistance

11 000110Cell
value:

Less margin between values
→ need more precise sensing/modification of cell contents
→ higher latency/energy (~2x for reads and 4x for writes)

Phase Change Memory Properties

◼ Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

◼ Derived PCM parameters for F=90nm

◼ Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

◼ Lee et al., “Phase Change Technology and the Future of

Main Memory,” IEEE Micro Top Picks 2010.

16

17

Phase Change Memory Properties: Latency

◼ Latency comparable to, but slower than DRAM

◼ Read Latency

❑ 50ns: 4x DRAM, 10-3x NAND Flash

◼ Write Latency

❑ 150ns: 12x DRAM

◼ Write Bandwidth

❑ 5-10 MB/s: 0.1x DRAM, 1x NAND Flash

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Phase Change Memory Properties

◼ Dynamic Energy

❑ 40 uA Rd, 150 uA Wr

❑ 2-43x DRAM, 1x NAND Flash

◼ Endurance

❑ Writes induce phase change at 650C

❑ Contacts degrade from thermal expansion/contraction

❑ 108 writes per cell

❑ 10-8x DRAM, 103x NAND Flash

◼ Cell Size

❑ 9-12F2 using BJT, single-level cells

❑ 1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

19

Phase Change Memory: Pros and Cons

◼ Pros over DRAM

❑ Better technology scaling (capacity and cost)

❑ Non volatile → Persistent

❑ Low idle power (no refresh)

◼ Cons

❑ Higher latencies: ~4-15x DRAM (especially write)

❑ Higher active energy: ~2-50x DRAM (especially write)

❑ Lower endurance (a cell dies after ~108 writes)

❑ Reliability issues (resistance drift)

◼ Challenges in enabling PCM as DRAM replacement/helper:

❑ Mitigate PCM shortcomings

❑ Find the right way to place PCM in the system
20

PCM-based Main Memory (I)

◼ How should PCM-based (main) memory be organized?

◼ Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:

❑ How to partition/migrate data between PCM and DRAM

21

PCM-based Main Memory (II)

◼ How should PCM-based (main) memory be organized?

◼ Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

❑ How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

22

An Initial Study: Replace DRAM with PCM

◼ Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

❑ Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

❑ Derived “average” PCM parameters for F=90nm

23

Results: Naïve Replacement of DRAM with PCM

◼ Replace DRAM with PCM in a 4-core, 4MB L2 system

◼ PCM organized the same as DRAM: row buffers, banks, peripherals

◼ 1.6x delay, 2.2x energy, 500-hour average lifetime

◼ Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

24

Architecting PCM to Mitigate Shortcomings

◼ Idea 1: Use multiple narrow row buffers in each PCM chip

→ Reduces array reads/writes → better endurance, latency, energy

◼ Idea 2: Write into array at

cache block or word

granularity

→ Reduces unnecessary wear

25

DRAM PCM

Results: Architected PCM as Main Memory

◼ 1.2x delay, 1.0x energy, 5.6-year average lifetime

◼ Scaling improves energy, endurance, density

◼ Caveat 1: Worst-case lifetime is much shorter (no guarantees)

◼ Caveat 2: Intensive applications see large performance and energy hits

◼ Caveat 3: Optimistic PCM parameters?
26

PCM As Main Memory

◼ Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)

One of the 13 computer architecture papers of 2009 selected as Top
Picks by IEEE Micro.
Selected as a CACM Research Highlight.

27

https://people.inf.ethz.ch/omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
https://people.inf.ethz.ch/omutlu/pub/lee_isca09_talk.pdf

More on PCM As Main Memory (II)

◼ Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

28

https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

Intel Optane Memory (Idea Realized in 2019)

◼ Non-volatile main memory

◼ Based on 3D-XPoint Technology

29
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

More on PCM Based Main Memory

◼ HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur
Mutlu,
"Efficient Data Mapping and Buffering Techniques for Multi-Level Cell
Phase-Change Memories"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
December 2014. [Slides (ppt) (pdf)]
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 2015.
[Slides (ppt) (pdf)]
Best (student) presentation award.

30

https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

Some PCM Bits Take Longer to Read…

31

32

Observation 1: Read Asymmetry

⚫ The read latency/energy of Bit 1 is lower than that of Bit 0

⚫ This is due to how MLC-PCM cells are read

33

Observation 1: Read Asymmetry

Capacitor filled
with reference

voltage

MLC-PCM cell
with unknown

resistance

Simplified example

34

Observation 1: Read Asymmetry

Simplified example

35

Observation 1: Read Asymmetry

Simplified example Infer data value

36

Observation 1: Read Asymmetry

Voltage

Time

37

Observation 1: Read Asymmetry

Voltage

Time

11 000110

38

Observation 1: Read Asymmetry

Voltage

Time

Initial voltage (fully charged capacitor)

11 000110

39

Observation 1: Read Asymmetry

Voltage

Time

PCM cell connected → draining capacitor

11 000110

40

10

Observation 1: Read Asymmetry

Voltage

Time

Capacitor drained → data value known (01)

11 0001

41

Observation 1: Read Asymmetry

⚫ In existing devices

– Both MLC bits are read at the same time

– Must wait maximum time to read both bits

⚫ However, we can infer information about Bit 1 before this time

42

Observation 1: Read Asymmetry

Voltage

Time

11 000110

43

Observation 1: Read Asymmetry

Voltage

Time

11 000110

44

Observation 1: Read Asymmetry

Voltage

Time

11 000110

Time to determine
Bit 1's value

45

Observation 1: Read Asymmetry

Voltage

Time

11 000110

Time to determine
Bit 0's value

Some PCM Bits Take Longer to Write…

46

More on PCM Latencies and Exploiting Them

HanBin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu,
"Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-
Change Memories"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
December 2014. [Slides (ppt) (pdf)]
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 2015.
[Slides (ppt) (pdf)]
Best (student) presentation award.

47

https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_taco14.pdf
http://taco.acm.org/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.ppt
https://people.inf.ethz.ch/omutlu/pub/data-mapping-buffering-for-phase-change-memory_meza_hipeac15-talk.pdf

STT-RAM as Main Memory

48

STT-MRAM as Main Memory

◼ Magnetic Tunnel Junction (MTJ) device

❑ Reference layer: Fixed magnetic orientation

❑ Free layer: Parallel or anti-parallel

◼ Magnetic orientation of the free layer
determines logical state of device

❑ High vs. low resistance

◼ Write: Push large current through MTJ to

change orientation of free layer

◼ Read: Sense current flow

◼ Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons

◼ Pros over DRAM

❑ Better technology scaling (capacity and cost)

❑ Non volatile → Persistent

❑ Low idle power (no refresh)

◼ Cons

❑ Higher write latency

❑ Higher write energy

❑ Poor density (currently)

❑ Reliability?

◼ Another level of freedom

❑ Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)

50

Architected STT-MRAM as Main Memory

◼ 4-core, 4GB main memory, multiprogrammed workloads

◼ ~6% performance loss, ~60% energy savings vs. DRAM

51

88%

90%

92%

94%

96%

98%

P
e
rf

o
rm

a
n

c
e

v
s
.

D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%

20%

40%

60%

80%

100%

E
n

e
rg

y

v
s
.

D
R

A
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

More on STT-MRAM as Main Memory

◼ Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,

"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

52

http://users.ece.cmu.edu/~omutlu/pub/sttram_ispass13.pdf
http://www.ispass.org/ispass2013/
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kultursay_ispass13_talk.pdf

Hybrid Main Memory

53

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best

Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of

Multiple Metrics

with

Multiple Memory Technologies

55

Challenge and Opportunity

56

Heterogeneous,

Configurable,

Programmable

Memory Systems

Hybrid Memory Systems: Issues

◼ Cache vs. Main Memory

◼ Granularity of Data Move/Manage-ment: Fine or Coarse

◼ Hardware vs. Software vs. HW/SW Cooperative

◼ When to migrate data?

◼ How to design a scalable and efficient large cache?

◼ …

57

One Option: DRAM as a Cache for PCM

◼ PCM is main memory; DRAM caches memory rows/blocks

❑ Benefits: Reduced latency on DRAM cache hit; write filtering

◼ Memory controller hardware manages the DRAM cache

❑ Benefit: Eliminates system software overhead

◼ Three issues:

❑ What data should be placed in DRAM versus kept in PCM?

❑ What is the granularity of data movement?

❑ How to design a low-cost hardware-managed DRAM cache?

◼ Two idea directions:

❑ Locality-aware data placement [Yoon+ , ICCD 2012]

❑ Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

58

DRAM as a Cache for PCM

◼ Goal: Achieve the best of both DRAM and PCM/NVM

❑ Minimize amount of DRAM w/o sacrificing performance, endurance

❑ DRAM as cache to tolerate PCM latency and write bandwidth

❑ PCM as main memory to provide large capacity at good cost and power

59

DATA

PCM Main Memory

DATAT

DRAM Buffer

PCM Write Queue

T=Tag-Store

Processor

Flash

Or

HDD

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Write Filtering Techniques

◼ Lazy Write: Pages from disk installed only in DRAM, not PCM

◼ Partial Writes: Only dirty lines from DRAM page written back

◼ Page Bypass: Discard pages with poor reuse on DRAM eviction

◼ Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.

60

Processor

DATA

PCM Main Memory

DATAT

DRAM Buffer

Flash

Or
HDD

Results: DRAM as PCM Cache (I)

◼ Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles,
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

◼ Assumption: PCM 4x denser, 4x slower than DRAM

◼ DRAM block size = PCM page size (4kB)

61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

db1 db2 qsort bsearch kmeans gauss daxpy vdotp gmean

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

8GB DRAM

32GB PCM

32GB DRAM

32GB PCM + 1GB DRAM

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Results: DRAM as PCM Cache (II)

◼ PCM-DRAM Hybrid performs similarly to similar-size DRAM

◼ Significant energy savings with PCM-DRAM Hybrid

◼ Average lifetime: 9.7 years (no guarantees)

62

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Power Energy Energy x Delay

V
a

lu
e

 N
o

rm
a

li
z
e

d
 t

o
 8

G
B

 D
R

A
M 8GB DRAM

Hybrid (32GB PCM+ 1GB DRAM)

32GB DRAM

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

More on DRAM-PCM Hybrid Memory

◼ Scalable High-Performance Main Memory System
Using Phase-Change Memory Technology.

Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers
Appears in the International Symposium on Computer
Architecture (ISCA) 2009.

63

http://dl.acm.org/citation.cfm?id=1555760

Data Placement in Hybrid Memory

◼ Memory A is fast, but small

◼ Load should be balanced on both channels?

◼ Page migrations have performance and energy overhead
64

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in,

to maximize system performance?

Cores/Caches

Memory Controllers

Data Placement Between DRAM and PCM

◼ Idea: Characterize data access patterns and guide data
placement in hybrid memory

◼ Streaming accesses: As fast in PCM as in DRAM

◼ Random accesses: Much faster in DRAM

◼ Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

◼ Yoon+, “Row Buffer Locality-Aware Data Placement in

Hybrid Memories,” ICCD 2012 Best Paper Award.

65

Key Observation & Idea

• Row buffers exist in both DRAM and PCM

– Row hit latency similar in DRAM & PCM [Lee+ ISCA’09]

– Row miss latency small in DRAM, large in PCM

• Place data in DRAM which

– is likely to miss in the row buffer (low row buffer
locality)→ miss penalty is smaller in DRAM

AND

– is reused many times → cache only the data
worth the movement cost and DRAM space

66

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt

Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

li
ze

d
 W

ei
g
h

te
d

 S
p

ee
d

u
p

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 M

a
x
.
S

lo
w

d
o

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31% better performance than all PCM,
within 29% of all DRAM performance

31%

29%

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.

More on Hybrid Memory Data Placement

◼ HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding,
and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for Hybrid
Memories"
Proceedings of the 30th IEEE International Conference on Computer
Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides
(pptx) (pdf)
Best paper award (in Computer Systems and Applications
track).

68

https://people.inf.ethz.ch/omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/yoon_iccd12_talk.pdf

Weaknesses of Existing Solutions

◼ They are all heuristics that consider only a limited part of
memory access behavior

◼ Do not directly capture the overall system

performance impact of data placement decisions

◼ Example: None capture memory-level parallelism (MLP)

❑ Number of concurrent memory requests from the same

application when a page is accessed

❑ Affects how much page migration helps performance

69

Importance of Memory-Level Parallelism

70

requests to Page 1

requests to Page 3

requests to Page 1

requests to Page 3

time

Before migration:

After migration:

requests to Page 2

requests to Page 2

time

Before migration:

After migration:

Mem. B

Mem. B

Mem. A

Mem. A

Mem. B

Mem. A

T T

Migrating one page
reduces stall time by T

Must migrate two pages
to reduce stall time by T:

migrating one page alone
does not help

Mem. B

Page migration decisions need to consider MLP

Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between

any two types of memory

2. Places only the performance-critical data

in the fast memory

71

Utility-Based Hybrid Memory Management

◼ A memory manager that works for any hybrid memory

❑ e.g., DRAM-NVM, DRAM-RLDRAM

◼ Key Idea

❑ For each page, use comprehensive characteristics to

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the

system

❑ Migrate only pages with the highest utility
(i.e., pages that improve system performance the most

when migrated)

◼ Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.

72

Key Mechanisms of UH-MEM

◼ For each page, estimate utility using a performance model

❑ Application stall time reduction

How much would migrating a page benefit the performance of the
application that the page belongs to?

❑ Application performance sensitivity

How much does the improvement of a single application’s
performance increase the overall system performance?

◼ Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

◼ Periodically adjust migration threshold

73

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = ∆𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒𝑖 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖

Results: System Performance

74

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0% 25% 50% 75% 100%

N
o

rm
a

li
z
e

d
W

e
ig

h
te

d
 S

p
e

e
d

u
p

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

14%

5%3%

9%

UH-MEM improves system performance
over the best state-of-the-art hybrid memory manager

Results: Sensitivity to Slow Memory Latency

◼ We vary 𝑡𝑅𝐶𝐷 and 𝑡𝑊𝑅 of the slow memory

75

1.8

2.2

2.6

3.0

3.4

3.8

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Slow Memory Latency Multiplier

ALL FREQ RBLA UH-MEM

13%13%

8% 6%

14%

UH-MEM improves system performance
for a wide variety of hybrid memory systems

𝑡𝑅𝐶𝐷:
𝑡𝑊𝑅:

More on UH-MEM

◼ Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

76

https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17.pdf
https://cluster17.github.io/
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/utility-based-hybrid-memory-management_cluster17-talk.pdf

Challenge and Opportunity

Enabling

an Emerging Technology

to Augment DRAM

Managing Hybrid Memories

77

Another Challenge

78

Designing Effective

Large (DRAM) Caches

One Problem with Large DRAM Caches

◼ A large DRAM cache requires a large metadata (tag +
block-based information) store

◼ How do we design an efficient DRAM cache?

79

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X → DRAM

X

Idea 1: Tags in Memory

◼ Store tags in the same row as data in DRAM

❑ Store metadata in same row as their data

❑ Data and metadata can be accessed together

◼ Benefit: No on-chip tag storage overhead

◼ Downsides:

❑ Cache hit determined only after a DRAM access

❑ Cache hit requires two DRAM accesses

80

Cache block 2Cache block 0 Cache block 1

DRAM row
Tag

0
Tag

1
Tag

2

Idea 2: Cache Tags in SRAM

◼ Recall Idea 1: Store all metadata in DRAM

❑ To reduce metadata storage overhead

◼ Idea 2: Cache in on-chip SRAM frequently-accessed

metadata

❑ Cache only a small amount to keep SRAM size small

81

Idea 3: Dynamic Data Transfer Granularity

◼ Some applications benefit from caching more data

❑ They have good spatial locality

◼ Others do not

❑ Large granularity wastes bandwidth and reduces cache utilization

◼ Idea 3: Simple dynamic caching granularity policy

❑ Cost-benefit analysis to determine best DRAM cache block size

❑ Group main memory into sets of rows

❑ Different sampled row sets follow different fixed caching

granularities

❑ The rest of main memory follows the best granularity

◼ Cost–benefit analysis: access latency versus number of cachings

◼ Performed every quantum

82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

83

TIMBER Performance

-6%

Reduced channel
contention and

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

0

0.2

0.4

0.6

0.8

1

1.2

SRAM Region TIM TIMBER TIMBER-Dyn

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 p
e

r
W

at
t

(f
o

r
M

e
m

o
ry

 S
ys

te
m

)

84

TIMBER Energy Efficiency

Fewer migrations reduce
transmitted data and
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

On Large DRAM Cache Design

◼ Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,

"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

85

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/

DRAM Caches: Many Recent Options

86

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

Banshee [MICRO 2017]

◼ Tracks presence in cache using TLB and Page Table

❑ No tag store needed for DRAM cache

❑ Enabled by a new lightweight lazy TLB coherence protocol

◼ New bandwidth-aware frequency-based replacement policy

87

More on Banshee

◼ Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

88

https://people.inf.ethz.ch/omutlu/pub/banshee-bandwidth-efficient-DRAM-cache_micro17.pdf
http://www.microarch.org/micro50/

Other Opportunities with Emerging Technologies

◼ Merging of memory and storage

❑ e.g., a single interface to manage all data

◼ New applications

❑ e.g., ultra-fast checkpoint and restore

◼ More robust system design

❑ e.g., reducing data loss

◼ Processing tightly-coupled with memory

❑ e.g., enabling efficient search and filtering

89

Recall: In-Memory

Bulk Bitwise Operations

90

In-Memory Bulk Bitwise Operations

◼ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

◼ At low cost

◼ Using analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation

◼ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

◼ New memory technologies enable even more opportunities

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

❑ Can operate on data with minimal movement

91

Pinatubo: RowClone and Bitwise Ops in PCM

92https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

93https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

New: In-Memory

Crossbar Array Operations

94

In-Memory Crossbar Array Operations

◼ Some emerging NVM technologies have crossbar array
structure

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

◼ Crossbar arrays can be used to perform dot product
operations using “analog computation capability”

❑ Can operate on multiple pieces of data using Kirchoff’s laws

◼ Bitline current is a sum of products of wordline V x (1 / cell R)

❑ Computation is in analog domain inside the crossbar array

◼ Need peripheral circuitry for D->A and A->D conversion of

inputs and outputs

95

In-Memory Crossbar Computation

96Shafiee+, “ISAAC: A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars”, ISCA 2016.

In-Memory Crossbar Computation

Required Peripheral Circuitry

S&H S&H S&H S&H

Shift & Add

ADC

DAC

AnalogD
ig

it
a

l

Digital

DAC: Digital to Analog

ADC: Analog to Digital

S&H: Sample and Hold

Shift and add: used to summarize the final output

Mapping Computation onto the Crossbar

…

… ……

…
…

A NVM cell

A weight value

6
4

PIM Array

Padding: 2

Stride: 1

64

2
2
4
3
3

64

64
3

3

2
2
4

64

3
*3
*6
4
=
5
7
6

224*224

A convolution
operation in
neural network
application

An NVM-based
PIM array

Input Kernel Output

An Overview of NVM-Based PIM System

NVM-based PIM array:
the core processing unit for vector-matrix multiplication

Non-linear function array:
the processing unit for non-linear functions (e.g., ReLU operations in neural networks)

Multiplier array:
handles element-wise operations

Example Readings on NVM-Based PIM

◼ Shafiee+, “ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars”,

ISCA 2016.

◼ Chi+, “PRIME: A Novel Processing-in-memory Architecture
for Neural Network Computation in ReRAM-based Main

Memory”, ISCA 2016.

◼ Prezioso+, “Training and Operation of an Integrated
Neuromorphic Network based on Metal-Oxide Memristors,”

Nature, 2015

101

Other Opportunities with Emerging Technologies

◼ Merging of memory and storage

❑ e.g., a single interface to manage all data

◼ New applications

❑ e.g., ultra-fast checkpoint and restore

◼ More robust system design

❑ e.g., reducing data loss

◼ Processing tightly-coupled with memory

❑ e.g., enabling efficient search and filtering

102

TWO-LEVEL STORAGE MODEL

C
P

U
M

E
M

O
R

Y
ST

O
R

A
G

E

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

BLOCK ADDR

Ld/St

FILE
I/O

DRAM

103

TWO-LEVEL STORAGE MODEL

C
P

U
M

E
M

O
R

Y
ST

O
R

A
G

E

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

BLOCK ADDR

Ld/St

FILE
I/O

DRAM

104

PCM, STT-RAM

NVM

Non-volatile memories combine
characteristics of memory and storage

Two-Level Memory/Storage Model
◼ The traditional two-level storage model is a bottleneck with NVM

❑ Volatile data in memory → a load/store interface

❑ Persistent data in storage → a file system interface

❑ Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

105

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM

◼ Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data

❑ Improves both energy and performance

❑ Simplifies programming model as well

106

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

PERSISTENT MEMORY

C
P

U
P

ER
SISTEN

T
M

E
M

O
R

Y

Provides an opportunity to manipulate
persistent data directly

Ld/St

NVM

107

The Persistent Memory Manager (PMM)

108

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

The Persistent Memory Manager (PMM)

◼ Exposes a load/store interface to access persistent data

❑ Applications can directly access persistent memory → no conversion,
translation, location overhead for persistent data

◼ Manages data placement, location, persistence, security

❑ To get the best of multiple forms of storage

◼ Manages metadata storage and retrieval

❑ This can lead to overheads that need to be managed

◼ Exposes hooks and interfaces for system software

❑ To enable better data placement and management decisions

◼ Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

109

Efficient Data Mapping among Heterogeneous Devices

◼ A persistent memory exposes a large, persistent address space

❑ But it may use many different devices to satisfy this goal

❑ From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

❑ And other NVM devices in between

◼ Performance and energy can benefit from good placement of
data among these devices

❑ Utilizing the strengths of each device and avoiding their weaknesses,
if possible

❑ For example, consider two important application characteristics:
locality and persistence

110

111

Efficient Data Mapping among Heterogeneous Devices

112

X

Columns in a column store that are
scanned through only infrequently

→ place on Flash

Efficient Data Mapping among Heterogeneous Devices

113

X

Columns in a column store that are
scanned through only infrequently

→ place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

→ place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applications or system software can provide hints for data placement

Evaluated Systems
◼ HDD Baseline

❑ Traditional system with volatile DRAM memory and persistent HDD storage

❑ Overheads of operating system and file system code and buffering

◼ NVM Baseline (NB)

❑ Same as HDD Baseline, but HDD is replaced with NVM

❑ Still has OS/FS overheads of the two-level storage model

◼ Persistent Memory (PM)

❑ Uses only NVM (no DRAM) to ensure full-system persistence

❑ All data accessed using loads and stores

❑ Does not waste time on system calls

❑ Data is manipulated directly on the NVM device

114

Performance Benefits of a Single-Level Store

115

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

116

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges

◼ Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutlu,

"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

117

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf

Challenge and Opportunity

Combined

Memory & Storage

118

Challenge and Opportunity

119

A Unified Interface to
All Data

Intel Optane Persistent Memory (2019)

◼ Non-volatile main memory

◼ Based on 3D-XPoint Technology

120
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm

UPMEM Processing-in-DRAM Engine (2019)

121

◼ Processing in DRAM Engine

◼ Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

One Key Challenge in Persistent Memory

◼ How to ensure consistency of system/data if all
memory is persistent?

◼ Two extremes

❑ Programmer transparent: Let the system handle it

❑ Programmer only: Let the programmer handle it

◼ Many alternatives in-between…

122

CRASH CONSISTENCY PROBLEM

123

Add a node to a linked list

1. Link to next2. Link to prev

System crash can result in
inconsistent memory state

CURRENT SOLUTIONS
Explicit interfaces to manage consistency

– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits adoption of NVM
Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
124

CURRENT SOLUTIONS

125

void hashtable_update(hashtable_t* ht,
void *key, void *data)

{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain,

&updatePair);
pair->second = data;

}

Example Code
update a node in a persistent hash table

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

CURRENT SOLUTIONS

126

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

CURRENT SOLUTIONS

127

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

CURRENT SOLUTIONS

128

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

CURRENT SOLUTIONS

129

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

CURRENT SOLUTIONS

130

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) TMLIST_FIND(chain,

&updatePair);
pair->second = data;

}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

Prohibited
Operation

Burden on the programmers

OUR APPROACH: ThyNVM

131

Goal:
Software transparent consistency in

persistent memory systems

Key Idea:
Periodically checkpoint state;

recover to previous checkpt on crash

ThyNVM: Summary

132

• Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

• Overlaps checkpointing and execution to
reduce checkpointing latency

• Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM
with zero cost consistency

A new hardware-based
checkpointing mechanism

Running

time

Checkpointing Running Checkpointing

time

Epoch 0

Epoch 1

Epoch 2

Epoch 0 Epoch 1
Running Checkpointing Running Checkpointing

Running Checkpointing

Epoch 0 Epoch 1

2. OVERLAPPING
CHECKPOINTING AND EXECUTION

More About ThyNVM

134

◼ Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_micro15.pdf
http://www.microarch.org/micro48/
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-lightning_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/ThyNVM-transparent-crash-consistency-for-persistent-memory_khan-micro15-poster.pdf
https://github.com/CMU-SAFARI/ThyNVM

Another Key Challenge in Persistent Memory

Programming Ease

to Exploit Persistence

135

Tools/Libraries to Help Programmers

◼ Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,

"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.

[Slides (pptx) (pdf)]

136

https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16.pdf
https://www.usenix.org/conference/osdi16
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NVMove-byte-based-persistence-tool_inflow16-talk.pdf

The Future of Emerging Technologies is Bright

◼ Regardless of challenges

❑ in underlying technology and overlying problems/requirements

137

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, Refer to Flash Memory

◼ A very “doubtful” emerging technology

❑ for at least two decades

138
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642

Many Research & Design Opportunities

◼ Enabling completely persistent memory

◼ Computation in/using NVM based memories

◼ Hybrid memory systems

◼ Security and privacy issues in persistent memory

◼ Reliability and endurance related problems

◼ …

139

Computer Architecture
Lecture 15: Emerging Memory

Technologies

Prof. Onur Mutlu

ETH Zürich

Fall 2020

13 November 2020

We Did Not Cover The Rest of the Slides.

They Are For Your Benefit.

141

