Computer Architecture

Lecture 16a: Opportunities and Challenges of Emerging Memory Tech.

Prof. Onur Mutlu

ETH Zürich

Fall 2020

19 November 2020

Emerging Memory Technologies

Recall: Emerging Memory Technologies

- Some emerging resistive memory technologies seem more scalable than DRAM (and they are non-volatile)
- Example: Phase Change Memory
 - Data stored by changing phase of material
 - Data read by detecting material's resistance
 - Expected to scale to 9nm (2022 [ITRS 2009])
 - Prototyped at 20nm (Raoux+, IBM JRD 2008)

- But, emerging technologies have (many) shortcomings
 - Can they be enabled to replace/augment/surpass DRAM?

Recall: Phase Change Memory: Pros and Cons

Pros over DRAM

- Better technology scaling (capacity and cost)
- □ Non volatile → Persistent
- Low idle power (no refresh)

Cons

- Higher latencies: ~4-15x DRAM (especially write)
- Higher active energy: ~2-50x DRAM (especially write)
- Lower endurance (a cell dies after ~10⁸ writes)
- Reliability issues (resistance drift)
- Challenges in enabling PCM as DRAM replacement/helper:
 - Mitigate PCM shortcomings
 - Find the right way to place PCM in the system

Recall: PCM-based Main Memory (I)

How should PCM-based (main) memory be organized?

- Hybrid PCM+DRAM [Qureshi+ ISCA'09, Dhiman+ DAC'09]:
 - How to partition/migrate data between PCM and DRAM

Recall: PCM-based Main Memory (II)

How should PCM-based (main) memory be organized?

- Pure PCM main memory [Lee et al., ISCA'09, Top Picks'10]:
 - How to redesign entire hierarchy (and cores) to overcome PCM shortcomings

Emerging Memory Technologies: Opportunities and Challenges

Other Opportunities with Emerging Technologies

- Merging of memory and storage
 - e.g., a single interface to manage all data
- New applications
 - e.g., ultra-fast checkpoint and restore
- More robust system design
 - e.g., reducing data loss
- Processing tightly-coupled with memory
 - e.g., enabling efficient search and filtering

TWO-LEVEL STORAGE MODEL

TWO-LEVEL STORAGE MODEL

Non-volatile memories combine characteristics of memory and storage

Two-Level Memory/Storage Model

- The traditional two-level storage model is a bottleneck with NVM
 - □ Volatile data in memory → a load/store interface
 - Persistent data in storage → a file system interface
 - Problem: Operating system (OS) and file system (FS) code to locate, translate,
 buffer data become performance and energy bottlenecks with fast NVM stores

Unified Memory and Storage with NVM

- Goal: Unify memory and storage management in a single unit to eliminate wasted work to locate, transfer, and translate data
 - Improves both energy and performance
 - Simplifies programming model as well

PERSISTENT MEMORY

Provides an opportunity to manipulate persistent data directly

The Persistent Memory Manager (PMM)

```
int main(void)
               // data in file.dat is persistent
              FILE myData = "file.dat";
                                              Persistent objects
              myData = new int[64];
             void updateValue(int n, int value) {
               FILE myData = "file.dat";
               myData[n] = value; // value is persistent
                      Store | Hints from SW/OS/runtime
Software
                    Persistent Memory Manager
Hardware
                    Data Layout, Persistence, Metadata, Security, ...
              DRAM
                          Flash
                                      NVM
                                                  HDD
```

PMM uses access and hint information to allocate, locate, migrate and access data in the heterogeneous array of devices

The Persistent Memory Manager (PMM)

- Exposes a load/store interface to access persistent data
 - □ Applications can directly access persistent memory → no conversion, translation, location overhead for persistent data
- Manages data placement, location, persistence, security
 - To get the best of multiple forms of storage
- Manages metadata storage and retrieval
 - This can lead to overheads that need to be managed
- Exposes hooks and interfaces for system software
 - To enable better data placement and management decisions
- Meza+, "A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory," WEED 2013.

- A persistent memory exposes a large, persistent address space
 - But it may use many different devices to satisfy this goal
 - From fast, low-capacity volatile DRAM to slow, high-capacity nonvolatile HDD or Flash
 - And other NVM devices in between
- Performance and energy can benefit from good placement of data among these devices
 - Utilizing the strengths of each device and avoiding their weaknesses, if possible
 - For example, consider two important application characteristics: locality and persistence

Applications or system software can provide hints for data placement

Evaluated Systems

HDD Baseline

- Traditional system with volatile DRAM memory and persistent HDD storage
- Overheads of operating system and file system code and buffering

NVM Baseline (NB)

- Same as HDD Baseline, but HDD is replaced with NVM
- Still has OS/FS overheads of the two-level storage model

Persistent Memory (PM)

- Uses only NVM (no DRAM) to ensure full-system persistence
- All data accessed using loads and stores
- Does not waste time on system calls
- Data is manipulated directly on the NVM device

Performance Benefits of a Single-Level Store

Energy Benefits of a Single-Level Store

On Persistent Memory Benefits & Challenges

Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, and Onur Mutlu,
 "A Case for Efficient Hardware-Software
 Cooperative Management of Storage and Memory"
 Proceedings of the 5th Workshop on Energy-Efficient
 Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
 Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza* Yixin Luo* Samira Khan*[‡] Jishen Zhao[†] Yuan Xie^{†§} Onur Mutlu*
*Carnegie Mellon University [†]Pennsylvania State University [‡]Intel Labs [§]AMD Research

Challenge and Opportunity

Combined Memory & Storage

Challenge and Opportunity

A Unified Interface to All Data

Intel Optane Persistent Memory (2019)

- Non-volatile main memory
- Based on 3D-XPoint Technology

UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
- Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips.
- Replaces standard DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process
 - Large amounts of compute & memory bandwidth

One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all memory is persistent?

- Two extremes
 - Programmer transparent: Let the system handle it
 - Programmer only: Let the programmer handle it
- Many alternatives in-between...

CRASH CONSISTENCY PROBLEM

Add a node to a linked list

System crash can result in inconsistent memory state

Explicit interfaces to manage consistency

- NV-Heaps [ASPLOS'11], BPFS [SOSP'09], Mnemosyne [ASPLOS'11]

```
AtomicBegin {
    Insert a new node;
} AtomicEnd;
```

Limits adoption of NVM

Have to rewrite code with clear partition between volatile and non-volatile data

Burden on the programmers

Explicit interfaces to manage consistency

- NV-Heaps [ASPLOS'11], BPFS [SOSP'09], Mnemosyne [ASPLOS'11]

Example Code update a node in a persistent hash table

```
void hashtable update (hashtable t* ht,
              void *key, void *data)
  list t* chain = get chain(ht, key);
  pair t* pair;
  pair t updatePair;
  updatePair.first = key;
  pair = (pair t*) list find(chain,
                       pair->second = data;
```

```
void TMhashtable update (TMARCGDECL
hashtable t* ht, void *key,
void*data) {
  list t* chain = get chain(ht, key);
  pair t* pair;
  pair t updatePair;
  updatePair.first = key;
  pair = (pair t*) TMLIST FIND (chain,
                         &updatePair);
  pair->second = data;
```

Manual declaration of persistent components

void TMhashtable_update(TMARCGDECL

```
void*data) {
  list t* chain = get chain(ht, key);
  pair t* pair;
  pair t updatePair;
  updatePair.first = key;
  pair = (pair t*) TMLIST FIND (chain,
                         &updatePair);
  pair->second = data;
```

Manual declaration of persistent components

```
void TMhashtable update (TMARCGDECL
void*data) {
  list_t* chain = get_chain(ht, key)
  pair t* pair; Need a new implementation
  updatePair.first = key;
  pair = (pair t*) TMLIST FIND (chain,
                         &updatePair);
  pair->second = data;
```

Manual declaration of persistent components

```
void TMhashtable update(TMARCGDECL
void*data) {
  list_t* chain = get_chain(ht, key);
pair_t* pair; Need a new implementation
pair_t updatePair;
  updatePair.first
  pair = (pair t*)
  pair->second = Third party code air);
                            be inconsistent
```

Manual declaration of persistent components

```
void TMhashtable update (TMARCGDECL
void*data) {
                get_chain(ht, key)
  list_t* chain
  pair t* pair; Need a new implementation
  updatePair.first
  pair = (pair t*) TMLIST FIND
                  Third party code
   Prohibited
                  can be inconsistent
```

Burden on the programmers

OUR APPROACH: ThyNVM

Goal:

Software transparent consistency in persistent memory systems

Key Idea:
Periodically checkpoint state;
recover to previous checkpt on crash

ThyNVM: Summary

A new hardware-based checkpointing mechanism

- Checkpoints at multiple granularities to reduce both checkpointing latency and metadata overhead
- Overlaps checkpointing and execution to reduce checkpointing latency
- Adapts to DRAM and NVM characteristics

Performs within 4.9% of an *idealized DRAM* with zero cost consistency

2. OVERLAPPING CHECKPOINTING AND EXECUTION

time

More About ThyNVM

 Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu,

"ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems"

Proceedings of the <u>48th International Symposium on</u>

<u>Microarchitecture</u> (**MICRO**), Waikiki, Hawaii, USA, December 2015.

[<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session Slides (pptx) (pdf)</u>] [<u>Poster</u>

(pptx) (pdf)]
[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems

Jinglei Ren*† Jishen Zhao[‡] Samira Khan[†]′ Jongmoo Choi⁺† Yongwei Wu* Onur Mutlu[†]

†Carnegie Mellon University *Tsinghua University

*University of California, Santa Cruz 'University of Virginia +Dankook University

Another Key Challenge in Persistent Memory

Programming Ease to Exploit Persistence

Tools/Libraries to Help Programmers

 Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
 "NVMove: Helping Programmers Move to Byte-Based Persistence"

Proceedings of the 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads (INFLOW), Savannah, GA, USA, November 2016.

[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan *	Irina Calciu	Vijay Chidambaram
UT Austin	VMware Research Group	UT Austin
Eric Schkufza	Onur Mutlu	Pratap Subrahmanyam
VMware Research Grou	ıp ETH Zürich	VMware

Another Key Challenge in Persistent Memory

Security and Data Privacy Issues

Security and Privacy Issues of NVM

■ Endurance problems → Wearout attacks

■ Hybrid memories → Performance attacks

■ Data not erased after power-off → Privacy breaches

Conclusion

The Future of Emerging Technologies is Bright

- Regardless of challenges
 - in underlying technology and overlying problems/requirements

Can enable:

- Orders of magnitude improvements
- New applications and computing systems

Yet, we have to

- Think across the stack
- Design enabling systems

If In Doubt, Refer to Flash Memory

- A very "doubtful" emerging technology
 - for at least two decades

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

ABSTRACT | NAND flash memory is ubiquitous in everyday life today because its capacity has continuously increased and

KEYWORDS | Data storage systems; error recovery; fault tolerance; flash memory; reliability; solid-state drives

Many Research & Design Opportunities

- Enabling completely persistent memory
- Computation in/using NVM based memories
- Hybrid memory systems
- Security and privacy issues in persistent memory
- Reliability and endurance related problems
- Virtual memory systems for NVM → virtual block interface

Computer Architecture

Lecture 16a: Opportunities and Challenges of Emerging Memory Tech.

Prof. Onur Mutlu

ETH Zürich

Fall 2020

19 November 2020