
Prof. Onur Mutlu
ETH Zürich
Fall 2020

20 November 2020

Computer Architecture
Lecture 17:

Bottleneck Acceleration

Yesterday and Today
n Heterogeneous Multi-Core Systems

n Bottleneck Acceleration

2

Some Readings
n Suleman et al., “Accelerating Critical Section Execution with

Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE Micro
Top Picks 2010.

n Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

n Joao et al., “Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs,” ISCA 2013.

n Suleman et al., “Data Marshaling for Multi-Core Architectures,”
ISCA 2010, IEEE Micro Top Picks 2011.

n Grochowski et al., “Best of Both Latency and Throughput,” ICCD
2004.

3

Recall: Caveats of Parallelism, Revisited
n Amdahl’s Law

q f: Parallelizable fraction of a program
q N: Number of processors

q Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

n Maximum speedup limited by serial portion: Serial bottleneck
n Parallel portion is usually not perfectly parallel

q Synchronization overhead (e.g., updates to shared data)
q Load imbalance overhead (imperfect parallelization)
q Resource sharing overhead (contention among N processors)

4

Speedup =
1

+1 - f f
N

Recall: Accelerating Parallel Bottlenecks
n Serialized or imbalanced execution in the parallel portion

can also benefit from a large core

n Examples:
q Critical sections that are contended
q Parallel stages that take longer than others to execute

n Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

5

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

6

http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/

Contention for Critical Sections

7

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

8

0

Critical
Section
Parallel
Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Critical
Section
Accelerated
by 2x

Impact of Critical Sections on Scalability
n Contention for critical sections leads to serial execution

(serialization) of threads in the parallel program portion
n Contention for critical sections increases with the number of

threads and limits scalability

9

MySQL (oltp-1)
0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

Sp
ee

du
p

Today

Asymmetric

A Case for Asymmetry
n Execution time of sequential kernels, critical sections, and

limiter stages must be short

n It is difficult for the programmer to shorten these
serialized sections
q Insufficient domain-specific knowledge
q Variation in hardware platforms
q Limited resources
q Performance-debugging tradeoff

n Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

n Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

10

An Example: Accelerated Critical Sections
n Idea: HW/SW ships critical sections to a large, powerful core in an

asymmetric multi-core architecture

n Benefit:
q Reduces serialization due to contended locks
q Reduces the performance impact of hard-to-parallelize sections
q Programmer does not need to (heavily) optimize parallel code à fewer

bugs, improved productivity

n Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

n Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA
2010, IEEE Micro Top Picks 2011.

11

Accelerated Critical Sections

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-
Interconnect

Critical Section
Request Buffer
(CSRB)

1. P2 encounters a critical section (CSCALL)
2. P2 sends CSCALL Request to CSRB
3. P1 executes Critical Section
4. P1 sends CSDONE signal

Core executing
critical section

P4P3P2
P1

Accelerated Critical Sections (ACS)

n Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

13

A = compute()

LOCK X
result = CS(A)

UNLOCK X

print result

Small CoreSmall Core Large Core
A = compute()

CSDONE Response

CSCALL Request
Send X, TPC,

STACK_PTR, CORE_ID

PUSH A
CSCALL X, Target PC

…
…
…

Acquire X
POP A
result = CS(A)
PUSH result
Release X
CSRET X

TPC:

POP result
print result

…
…
…
…

…
…
…

Waiting in
Critical Section
Request Buffer

(CSRB)

False Serialization
n ACS can serialize independent critical sections

n Selective Acceleration of Critical Sections (SEL)
q Saturating counters to track false serialization

14

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section
Request Buffer
(CSRB)

4

4

A

B

32

5

To large core

From small cores

ACS Performance Tradeoffs
n Pluses

+ Faster critical section execution
+ Shared locks stay in one place: better lock locality
+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

n Minuses
- Large core dedicated for critical sections: reduced parallel
throughput
- CSCALL and CSDONE control transfer overhead
- Thread-private data needs to be transferred to large core: worse
private data locality

15

ACS Performance Tradeoffs
n Fewer parallel threads vs. accelerated critical sections

q Accelerating critical sections offsets loss in throughput
q As the number of cores (threads) on chip increase:

n Fractional loss in parallel performance decreases
n Increased contention for critical sections

makes acceleration more beneficial

n Overhead of CSCALL/CSDONE vs. better lock locality
q ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

n More cache misses for private data vs. fewer misses
for shared data

16

Cache Misses for Private Data

17

Private Data:
NewSubProblems

Shared Data:
The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs
n Fewer parallel threads vs. accelerated critical sections

q Accelerating critical sections offsets loss in throughput
q As the number of cores (threads) on chip increase:

n Fractional loss in parallel performance decreases
n Increased contention for critical sections

makes acceleration more beneficial

n Overhead of CSCALL/CSDONE vs. better lock locality
q ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

n More cache misses for private data vs. fewer misses
for shared data
q Cache misses reduce if shared data > private data

18

This problem can be solved

See Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010.

ACS Comparison Points

n Conventional
locking

19

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

n Conventional
locking

n Large core executes
Amdahl’s serial part

n Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

n Workloads: 12 critical section intensive applications
q Data mining kernels, sorting, database, web, networking

n Multi-core x86 simulator
q 1 large and 28 small cores
q Aggressive stream prefetcher employed at each core

n Details:
q Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q Small core: 2GHz, in-order, 2-wide, 5-stage
q Private 32 KB L1, private 256KB L2, 8MB shared L3
q On-chip interconnect: Bi-directional ring, 5-cycle hop latency

20

ACS Performance

21

0
20
40
60
80

100
120
140
160

pa
ge

mine
pu

zzl
e

qs
ort

sq
lite

tsp

ipl
oo

ku
p

olt
p-1

olt
p-2

sp
ecj

bb

web
ca

ch
e

hm
ean

Sp
ee

du
p

ov
er

 S
C

M
P

Accelerating Sequential Kernels
Accelerating Critical Sections

Equal-area comparison
Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores
ACMP = 1 large and 28 small cores

269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

22

0
0.5
1
1.5
2
2.5
3
3.5

0 8 16 24 32
0
0.5
1
1.5
2
2.5
3

0 8 16 24 32
0

1

2

3

4

5

0 8 16 24 32
0
1
2
3
4
5
6
7

0 8 16 24 32
0
0.5
1
1.5
2
2.5
3
3.5

0 8 16 24 32
0
2
4
6
8
10
12
14

0 8 16 24 32

0
1
2
3
4
5
6

0 8 16 24 32
0

2

4

6

8

10

0 8 16 24 32
0

2

4

6

8

0 8 16 24 32
0
2
4
6
8
10
12

0 8 16 24 32
0
0.5
1
1.5
2
2.5
3

0 8 16 24 32
0
2
4
6
8
10
12

0 8 16 24 32

Sp
ee

du
p

ov
er

 a
 s

m
al

l c
or

e

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2(h) iplookup (k) specjbb (l) webcache(g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary
n Critical sections reduce performance and limit scalability

n Accelerate critical sections by executing them on a powerful
core

n ACS reduces average execution time by:
q 34% compared to an equal-area SCMP
q 23% compared to an equal-area ACMP

n ACS improves scalability of 7 of the 12 workloads

n Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

23

More on Accelerated Critical Sections
n M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,

"Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures"
Proceedings of the 14th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)

24

https://people.inf.ethz.ch/omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
https://people.inf.ethz.ch/omutlu/pub/suleman_asplos09_talk.ppt

Generalization?

25

Bottleneck Identification and
Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"

Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), London, UK, March 2012.

26

http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/

Bottlenecks in Multithreaded Applications
Definition: any code segment for which threads contend (i.e. wait)

Examples:

n Amdahl’s serial portions
q Only one thread exists à on the critical path

n Critical sections
q Ensure mutual exclusion à likely to be on the critical path if contended

n Barriers
q Ensure all threads reach a point before continuing à the latest thread arriving

is on the critical path

n Pipeline stages
q Different stages of a loop iteration may execute on different threads,

slowest stage makes other stages wait à on the critical path

27

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list
repeat

Lock A
Traverse list A
Remove X from A

Unlock A
Compute on X
Lock B

Traverse list B
Insert X into B

Unlock B
until A is empty

28

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

29

MySQL running Sysbench queries, 16 threads

30

Bottleneck Identification and Scheduling (BIS)

n Key insight:
q Thread waiting reduces parallelism and

is likely to reduce performance
q Code causing the most thread waiting

à likely critical path

n Key idea:
q Dynamically identify bottlenecks that cause

the most thread waiting
q Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

31

Bottleneck Identification and Scheduling (BIS)

while cannot acquire lock
Wait loop for watch_addr

acquire lock
…
release lock

Critical Sections: Code Modifications

…
BottleneckCall bid, targetPC
…

targetPC: while cannot acquire lock
Wait loop for watch_addr

acquire lock
…
release lock
BottleneckReturn bid

32

BottleneckWait bid, watch_addr

…

… Used to keep track of
waiting cycles
Used to enable

acceleration

33

Barriers: Code Modifications
…
BottleneckCall bid, targetPC
enter barrier
while not all threads in barrier

BottleneckWait bid, watch_addr
exit barrier
…

targetPC: code running for the barrier
…
BottleneckReturn bid

34

Pipeline Stages: Code Modifications

BottleneckCall bid, targetPC
…

targetPC: while not done
while empty queue

BottleneckWait prev_bid
dequeue work
do the work …
while full queue

BottleneckWait next_bid
enqueue next work

BottleneckReturn bid

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

35

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

n Performance-limiting bottleneck identification and
acceleration are independent tasks

n Acceleration can be accomplished in multiple ways
q Increasing core frequency/voltage
q Prioritization in shared resources [Ebrahimi+, MICRO’11]
q Migration to faster cores in an Asymmetric CMP

36

Large core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

37

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

38

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0bid=x4500, waiters=1, twc = 1bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5bid=x4500, waiters=2, twc = 7bid=x4500, waiters=2, twc = 9bid=x4500, waiters=1, twc = 9bid=x4500, waiters=1, twc = 10bid=x4500, waiters=1, twc = 11bid=x4500, waiters=0, twc = 11bid=x4500, waiters=1, twc = 3bid=x4500, waiters=1, twc = 4bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread
waiting cycles (TWC)
for each bottleneck

2. Accelerate bottleneck(s)
with the highest TWC

Binary containing
BIS instructions

Compiler/Library/Programmer Hardware

39

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

40

Small Core 1 Large Core 0

Small Core 2

Bottleneck
Table (BT)

…

Scheduling Buffer (SB)
bid=x4700, pc, sp, core1

Acceleration
Index Table (AIT)

BottleneckCall x4600
Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

ß twc < Threshold

ß twc > Threshold

Execute locallyExecute remotely

BIS Mechanisms
n Basic mechanisms for BIS:

q Determining Thread Waiting Cycles ü
q Accelerating Bottlenecks ü

n Mechanisms to improve performance and generality of BIS:
q Dealing with false serialization
q Preemptive acceleration
q Support for multiple large cores

41

Hardware Cost
n Main structures:

q Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

q Scheduling Buffers (SB): one table per large core,
as many entries as small cores

q Acceleration Index Tables (AIT): one 32-entry table
per small core

n Off the critical path

n Total storage cost for 56-small-cores, 2-large-cores < 19 KB

42

BIS Performance Trade-offs
n Faster bottleneck execution vs. fewer parallel threads

q Acceleration offsets loss of parallel throughput with large core counts

n Better shared data locality vs. worse private data locality
q Shared data stays on large core (good)
q Private data migrates to large core (bad, but latency hidden with Data

Marshaling [Suleman+, ISCA’10])

n Benefit of acceleration vs. migration latency
q Migration latency usually hidden by waiting (good)
q Unless bottleneck not contended (bad, but likely not on critical path)

43

Evaluation Methodology

n Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications
q Data mining kernels, scientific, database, web, networking, specjbb

n Cycle-level multi-core x86 simulator
q 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT
q 1 large core is area-equivalent to 4 small cores

n Details:
q Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q Small core: 4GHz, in-order, 2-wide, 5-stage
q Private 32KB L1, private 256KB L2, shared 8MB L3
q On-chip interconnect: Bi-directional ring, 2-cycle hop latency

44

BIS Comparison Points (Area-Equivalent)
n SCMP (Symmetric CMP)

q All small cores

n ACMP (Asymmetric CMP)
q Accelerates only Amdahl’s serial portions
q Our baseline

n ACS (Accelerated Critical Sections)
q Accelerates only critical sections and Amdahl’s serial portions
q Applicable to multithreaded workloads

(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

n FDP (Feedback-Directed Pipelining)
q Accelerates only slowest pipeline stages
q Applicable to pipeline-parallel workloads (rank, pagemine)

45

BIS Performance Improvement

46

Optimal number of threads, 28 small cores, 1 large core

n BIS outperforms ACS/FDP by 15% and ACMP by 32%
n BIS improves scalability on 4 of the benchmarks

barriers, which ACS
cannot accelerate

limiting bottlenecks change over timeACS FDP

Why Does BIS Work?

47

n Coverage: fraction of program critical path that is actually identified as bottlenecks
q 39% (ACS/FDP) to 59% (BIS)

n Accuracy: identified bottlenecks on the critical path over total identified bottlenecks
q 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

48

Performance increases with:

1) More small cores
n Contention due to bottlenecks

increases
n Loss of parallel throughput due

to large core reduces

2) More large cores
n Can accelerate

independent bottlenecks
n Without reducing parallel

throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary
n Serializing bottlenecks of different types limit performance of

multithreaded applications: Importance changes over time

n BIS is a hardware/software cooperative solution:
q Dynamically identifies bottlenecks that cause the most thread waiting

and accelerates them on large cores of an ACMP
q Applicable to critical sections, barriers, pipeline stages

n BIS improves application performance and scalability:
q Performance benefits increase with more cores

n Provides comprehensive fine-grained bottleneck acceleration
with no programmer effort

49

More on Bottleneck Identification & Scheduling
n Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,

"Bottleneck Identification and Scheduling in Multithreaded
Applications"
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

50

https://people.inf.ethz.ch/omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_asplos12_talk.pdf

Improving on BIS?

51

Utility-Based Acceleration of
Multithreaded Applications

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-

Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

52

https://people.inf.ethz.ch/omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/joao_isca13_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/joao_isca13_talk.pdf

Bottlenecks

T0
T1
T2
T3

Barrier 1 Barrier 2

T0
T1
T2
T3

Barrier 1 Barrier 2

Accelerating Critical Sections (ACS), Suleman et al., ASPLOS’09

Bottleneck Identification and Scheduling (BIS), Joao et al., ASPLOS’12

53

Lagging Threads

54

T0

T1

T2

T3

Barrier 1

Progress P0 =

P1 =

P2 =

P3 =

40%

50%

30%

40%

Barrier 2t1 Barrier 2t2

Lagging thread = potential future bottleneck

T2: Lagging thread

Execution time reduction

Two Problems

55

1) Do we accelerate bottlenecks or lagging threads?

2) Multiple applications: which application do we accelerate?

T0
T1
T2
T3

Application 1

T0
T1
T2
T3

Application 2

t1

Acceleration decisions need to consider both:
- the criticality of code segments
- how much speedup they get

from any running application
for bottlenecks and lagging threads

Utility-Based Acceleration (UBA)

n Goal: identify performance-limiting bottlenecks or
lagging threads from any running application
and accelerate them on large cores of an ACMP

n Key insight: A New Utility of Acceleration metric
that combines speedup and criticality of each code segment

n Utility of accelerating code segment c of length t
on an application of length T:

56

T
TUc

D
= ÷

ø
ö

ç
è
æ
D
D

´÷
ø
ö

ç
è
æ´÷

ø
ö

ç
è
æ D=

t
T

T
t

t
t

Local Speedup
of Segment

Fraction of Exec Time
Spent on Segment

Global
Criticality
of Segment

Utility-Based Acceleration (UBA)

Bottleneck
Identification

Lagging Thread
Identification

Acceleration
Coordination

Set of Highest-Utility
Lagging Threads

Set of Highest-Utility
Bottlenecks

Large core control

57

UBA Results

58

2-application workloads, 60 small cores, 1 large core

UBA outperforms BIS and another alternative approach by ~8%.

551

More on Utility-Based Acceleration

n Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications
on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt)
Slides (pdf)

59

http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

Better Bottleneck Acceleration

60

Handling Private Data Locality:
Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"

Proceedings of the 37th International Symposium on Computer Architecture (ISCA),
pages 441-450, Saint-Malo, France, June 2010.

61

http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/

Staged Execution Model (I)
n Goal: speed up a program by dividing it up into pieces
n Idea

q Split program code into segments
q Run each segment on the core best-suited to run it
q Each core assigned a work-queue, storing segments to be run

n Benefits
q Accelerates segments/critical-paths using specialized/heterogeneous cores
q Exploits inter-segment parallelism
q Improves locality of within-segment data

n Examples
q Accelerated critical sections, Bottleneck identification and scheduling
q Producer-consumer pipeline parallelism
q Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)
q Special-purpose cores and functional units

62

63

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

64

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

65

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances
of S0

Instances
of S1

Instances
of S2

66

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

n Accelerated Critical Sections [Suleman et al., ASPLOS 2009]
q Idea: Ship critical sections to a large core in an asymmetric CMP

n Segment 0: Non-critical section
n Segment 1: Critical section

q Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

n Producer-Consumer Pipeline Parallelism
q Idea: Split a loop iteration into multiple “pipeline stages” where

one stage consumes data produced by the previous stage à each
stage runs on a different core
n Segment N: Stage N

q Benefit: Stage-level parallelism, better locality à faster execution

67

68

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data
n Accelerated Critical Sections [Suleman et al., ASPLOS 2010]

q Idea: Ship critical sections to a large core in an ACMP
q Problem: Critical section incurs a cache miss when it touches data

produced in the non-critical section (i.e., thread private data)

n Producer-Consumer Pipeline Parallelism
q Idea: Split a loop iteration into multiple “pipeline stages” à each

stage runs on a different core
q Problem: A stage incurs a cache miss when it touches data

produced by the previous stage

n Performance of Staged Execution limited by inter-segment
cache misses

69

70

What if We Eliminated All Inter-segment Misses?

71

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache
block written by one segment
and consumed by the next
segment

Generator instruction:
The last instruction to write to an
inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea
n Observation: Set of generator instructions is stable over

execution time and across input sets

n Idea:
q Identify the generator instructions
q Record cache blocks produced by generator instructions
q Proactively send such cache blocks to the next segment’s

core before initiating the next segment

n Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

72

Data Marshaling

1. Identify generator
instructions

2. Insert marshal
instructions

1. Record generator-
produced addresses

2. Marshal recorded
blocks to next coreBinary containing

generator prefixes &
marshal Instructions

Compiler/Profiler Hardware

73

Data Marshaling

1. Identify generator
instructions

2. Insert marshal
instructions

1. Record generator-
produced addresses

2. Marshal recorded
blocks to next coreBinary containing

generator prefixes &
marshal Instructions

Hardware

74

Compiler/Profiler

75

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Mark as Generator
Instruction

Inter-segment data

76

Marshal Instructions

LOAD X
STORE Y

G: STORE Y
MARSHAL C1

LOAD Y
….

G:STORE Z
MARSHAL C2

0x5: LOAD Z
….

When to send (Marshal)

Where to send (C1)

DM Support/Cost
n Profiler/Compiler: Generators, marshal instructions
n ISA: Generator prefix, marshal instructions
n Library/Hardware: Bind next segment ID to a physical core

n Hardware
q Marshal Buffer

n Stores physical addresses of cache blocks to be marshaled
n 16 entries enough for almost all workloads à 96 bytes per core

q Ability to execute generator prefixes and marshal instructions
q Ability to push data to another cache

77

DM: Advantages, Disadvantages
n Advantages

q Timely data transfer: Push data to core before needed
q Can marshal any arbitrary sequence of lines: Identifies

generators, not patterns
q Low hardware cost: Profiler marks generators, no need for

hardware to find them

n Disadvantages
q Requires profiler and ISA support
q Not always accurate (generator set is conservative): Pollution

at remote core, wasted bandwidth on interconnect
n Not a large problem as number of inter-segment blocks is small

78

79

Accelerated Critical Sections with DM

Small Core 0

Marshal
Buffer

Large Core

LOAD X
STORE Y

G: STORE Y
CSCALL

LOAD Y
….

G:STORE Z
CSRET

Cache Hit!

L2
Cache

L2
CacheData Y

Addr Y

Critical
Section

Accelerated Critical Sections: Methodology

n Workloads: 12 critical section intensive applications
q Data mining kernels, sorting, database, web, networking
q Different training and simulation input sets

n Multi-core x86 simulator
q 1 large and 28 small cores
q Aggressive stream prefetcher employed at each core

n Details:
q Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage
q Small core: 2GHz, in-order, 2-wide, 5-stage
q Private 32 KB L1, private 256KB L2, 8MB shared L3
q On-chip interconnect: Bi-directional ring, 5-cycle hop latency

80

81

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

ine

puzzl
e

qso
rt

tsp

maze

nque
en

sq
lite

iploo
ku

p

mys
ql-1

mys
ql-2

web
ca

ch
e

hmea
n

Sp
ee

du
p

ov
er

 A
C

S

DM
Ideal

168 170

8.7%

82

Pipeline Parallelism

Core 0

Marshal
Buffer

Core 1

LOAD X
STORE Y

G: STORE Y
MARSHAL C1

LOAD Y
….

G:STORE Z
MARSHAL C2

0x5: LOAD Z
….

Cache Hit!

L2
Cache

L2
CacheData Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

n Workloads: 9 applications with pipeline parallelism
q Financial, compression, multimedia, encoding/decoding
q Different training and simulation input sets

n Multi-core x86 simulator
q 32-core CMP: 2GHz, in-order, 2-wide, 5-stage
q Aggressive stream prefetcher employed at each core
q Private 32 KB L1, private 256KB L2, 8MB shared L3
q On-chip interconnect: Bi-directional ring, 5-cycle hop latency

83

84

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

bla
ck

co
mpre

ss

de
du

pD

de
du

pE

fer
ret

im
ag

e

mtw
ist

ran

k

sig
n

hm
ean

Sp
ee

du
p

ov
er

 B
as

el
in

e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

n High coverage of inter-segment misses in a timely manner
n Medium accuracy does not impact performance

q Only 5.0 and 6.8 cache blocks marshaled for average segment
85

0
10
20
30
40
50
60
70
80
90
100

ACS Pipeline

Pe
rc
en
ta
ge

Coverage
Accuracy
Timeliness

Scaling Results

n DM performance improvement increases with
q More cores
q Higher interconnect latency
q Larger private L2 caches

n Why? Inter-segment data misses become a larger bottleneck
q More cores à More communication
q Higher latency à Longer stalls due to communication
q Larger L2 cache à Communication misses remain

86

87

Other Applications of Data Marshaling

n Can be applied to other Staged Execution models
q Task parallelism models

n Cilk, Intel TBB, Apple Grand Central Dispatch
q Special-purpose remote functional units
q Computation spreading [Chakraborty et al., ASPLOS’06]
q Thread motion/migration [e.g., Rangan et al., ISCA’09]

n Can be an enabler for more aggressive SE models
q Lowers the cost of data migration

n an important overhead in remote execution of code segments
q Remote execution of finer-grained tasks can become more

feasible à finer-grained parallelization in multi-cores

Data Marshaling Summary
n Inter-segment data transfers between cores limit the benefit

of promising Staged Execution (SE) models

n Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core
q Significantly reduces cache misses for inter-segment data
q Low cost, high-coverage, timely for arbitrary address sequences
q Achieves most of the potential of eliminating such misses

n Applicable to several existing Staged Execution models
q Accelerated Critical Sections: 9% performance benefit
q Pipeline Parallelism: 16% performance benefit

n Can enable new modelsà very fine-grained remote execution
88

More on Bottleneck Identification & Scheduling

n M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"
Proceedings of the 37th International Symposium on Computer
Architecture (ISCA), pages 441-450, Saint-Malo, France, June
2010. Slides (ppt)

89

https://people.inf.ethz.ch/omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca10_talk.ppt

Other Uses of Asymmetry

90

Use of Asymmetry for Energy Efficiency
n Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The

Potential for Processor Power Reduction,” MICRO 2003.

n Idea:
q Implement multiple types of cores on chip
q Monitor characteristics of the running thread (e.g., sample energy/perf

on each core periodically)
q Dynamically pick the core that provides the best energy/performance

tradeoff for a given phase
n “Best core” à Depends on optimization metric

91

Use of Asymmetry for Energy Efficiency

92

Use of Asymmetry for Energy Efficiency
n Advantages

+ More flexibility in energy-performance tradeoff
+ Can execute computation to the core that is best suited for it (in terms of

energy)

n Disadvantages/issues
- Incorrect predictions/sampling à wrong core à reduced performance or

increased energy
- Overhead of core switching
- Disadvantages of asymmetric CMP (e.g., design multiple cores)
- Need phase monitoring and matching algorithms

- What characteristics should be monitored?
- Once characteristics known, how do you pick the core?

93

Asymmetric vs. Symmetric Cores
n Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
+ Schedule computation to the core type that can best execute it

n Disadvantages
- Need to design more than one type of core. Always?
- Scheduling becomes more complicated

- What computation should be scheduled on the large core?
- Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources
94

How to Achieve Asymmetry
n Static

q Type and power of cores fixed at design time
q Two approaches to design “faster cores”:

n High frequency
n Build a more complex, powerful core with entirely different uarch

q Is static asymmetry natural? (chip-wide variations in frequency)

n Dynamic
q Type and power of cores change dynamically
q Two approaches to dynamically create “faster cores”:

n Boost frequency dynamically (limited power budget)
n Combine small cores to enable a more complex, powerful core
n Is there a third, fourth, fifth approach?

95

Prof. Onur Mutlu
ETH Zürich
Fall 2020

20 November 2020

Computer Architecture
Lecture 17:

Bottleneck Acceleration

We Did Not Cover The Rest of the Slides.
They Are For Your Benefit.

97

Asymmetry via Frequency Boosting

Asymmetry via Boosting of Frequency
n Static

q Due to process variations, cores might have different
frequency

q Simply hardwire/design cores to have different frequencies

n Dynamic
q Annavaram et al., “Mitigating Amdahl’s Law Through EPI

Throttling,” ISCA 2005.
q Dynamic voltage and frequency scaling

99

EPI Throttling
n Goal: Minimize execution time of parallel programs while

keeping power within a fixed budget

n For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism
q P = EPI •IPS
q P = fixed power budget
q EPI = energy per instruction
q IPS = aggregate instructions retired per second

n Idea: For a fixed power budget
q Run sequential phases on high-EPI processor
q Run parallel phases on multiple low-EPI processors

100

EPI Throttling via DVFS
n DVFS: Dynamic voltage frequency scaling

n In phases of low thread parallelism
q Run a few cores at high supply voltage and high frequency

n In phases of high thread parallelism
q Run many cores at low supply voltage and low frequency

101

Possible EPI Throttling Techniques
n Grochowski et al., “Best of both Latency and Throughput,”

ICCD 2004.

102

Boosting Frequency of a Small Core vs. Large Core

n Frequency boosting implemented on Intel Nehalem, IBM
POWER7

n Advantages of Boosting Frequency
+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

n Disadvantages
- Does not improve performance if thread is memory bound
- Does not reduce Cycles per Instruction (remember the

performance equation?)
- Changing frequency/voltage can take longer than switching to a

large core
103

A Case for
Asymmetry Everywhere

Onur Mutlu,
"Asymmetry Everywhere (with Automatic Resource Management)"

CRA Workshop on Advancing Computer Architecture Research: Popular
Parallel Programming, San Diego, CA, February 2010.

Position paper

104

http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-talk.pdf
http://iacoma.cs.uiuc.edu/acar1/
http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-position-paper.pdf

Asymmetry Enables Customization

n Symmetric: One size fits all
q Energy and performance suboptimal for different phase behaviors

n Asymmetric: Enables tradeoffs and customization
q Processing requirements vary across applications and phases
q Execute code on best-fit resources (minimal energy, adequate perf.)

105

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere
n Design each hardware resource with asymmetric, (re-

)configurable, partitionable components
q Different power/performance/reliability characteristics
q To fit different computation/access/communication patterns

106

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Thought Experiment: Asymmetry Everywhere

n Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase
q Satisfy performance/SLA with minimal energy
q Dynamically stitch together the “best-fit” chip for each phase

107

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Phase 1
Phase 2
Phase 3

Thought Experiment: Asymmetry Everywhere

n Morph software components to match asymmetric HW
components
q Multiple versions for different resource characteristics

108

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

Version 1
Version 2
Version 3

Many Research and Design Questions
n How to design asymmetric components?

q Fixed, partitionable, reconfigurable components?
q What types of asymmetry? Access patterns, technologies?

n What monitoring to perform cooperatively in HW/SW?
q Automatically discover phase/task requirements

n How to design feedback/control loop between components and
runtime system software?

n How to design the runtime to automatically manage resources?
q Track task behavior, pick “best-fit” components for the entire workload

109

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

110

n Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+
ASPLOS’12,ISCA’13]

n Programmer can write less optimized, but more likely correct programs

Serial Parallel

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

111

n Execute each code block on the most efficient execution backend
for that block [Fallin+ ICCD’14]
n Enables a much more efficient and still high performance core design

OoO
Backend

VLIW Backend

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

112

n Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies
n More efficient and higher performance than general purpose hierarchy

Streaming R
a
n
d
o
m
a
c
c
e
s
s

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

113

n Execute bandwidth-sensitive threads on a bandwidth-optimized
network, latency-sensitive ones on a latency-optimized network
[Das+ DAC’13]
n Higher performance and energy-efficiency than a single network

Latency optimized NoC

B
a
n
d
w
i
d
t
h
o
p
t
i
m
i

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

114

n Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks
2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

n Higher performance and energy-efficiency than symmetric/free-for-all

Latency sensitive

B
a
n
d
w
i
d
t
h
s
e
n
s
i
t

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

115

n Have multiple different memory scheduling policies apply them to
different sets of threads based on thread behavior [Kim+ MICRO
2010, Top Picks 2011] [Ausavarungnirun+ ISCA 2012]
n Higher performance and fairness than a homogeneous policy

Memory intensiveCompute intensive

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

116

n Build main memory with different technologies with different
characteristics (e.g., latency, bandwidth, cost, energy, reliability)
[Meza+ IEEE CAL’12, Yoon+ ICCD’12, Luo+ DSN’14]
n Higher performance and energy-efficiency than homogeneous memory

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

DRAM Phase Change Memory

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

117

n Build main memory with different technologies with different
characteristics (e.g., latency, bandwidth, cost, energy, reliability)
[Meza+ IEEE CAL’12, Yoon+ ICCD’12, Luo+ DSN’14]
n Lower-cost than homogeneous-reliability memory at same availability

Reliable DRAM Less Reliable DRAM

Exploiting Asymmetry: Simple Examples

!"#$%&'()%)'*$%+,*+',

-,.//$*%+'&0&1)%*+*+"2)34$
+2*$%'"22$'*

-,.//$*%+'&0&'"25+67%)34$

-,.//$*%+'&0&1)%*+*+"2)34$
/$/"%.&(+$%)%'(+$,

-,.//$*%+'&/)+2&/$/"%+$,

'"%$,&)28&)''$4$%)*"%,9+6(!1"#$%
9+6(&1$%5:

!"#$%01$%5"%/)2'$
"1*+/+;$8&5"%
$)'(&)''$,,&1)**$%2

<+55$%$2*&*$'(2"4"6+$,

118

n Design each memory chip to be heterogeneous to achieve low
latency and low energy at reasonably low cost [Lee+ HPCA’13,
Liu+ ISCA’12]
n Higher performance and energy-efficiency than single-level memory

Heterogeneous-Latency DRAM
Heterogeneous-Refresh-Rate DRAM

