
Computer Architecture

Lecture 18: Prefetching

Prof. Onur Mutlu

ETH Zürich

Fall 2020

26 November 2020

The (Memory) Latency Problem

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 I
m

p
ro

ve
m

e
n
t

(l
o
g)

Capacity Bandwidth Latency

Recall: Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;

Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance

bottleneck

New DRAM Types Increase Latency!

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

6

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

Modern DRAM Types: Comparison to DDR3

▪Bank groups

▪ 3D-stacked DRAM

Page 7 of 25

DRAM

Type

Banks

per

Rank

Bank

Groups

3D-

Stacked

Low-

Power

DDR3 8

DDR4 16 ✓

GDDR5 16 ✓

HBM
High-

Bandwidth

Memory

16 ✓

HMC
Hybrid Memory

Cube

256 ✓

Wide I/O 4 ✓ ✓

Wide I/O 2 8 ✓ ✓

LPDDR3 8 ✓

LPDDR4 16 ✓

Memory
Layers

high bandwidth with
Through-Silicon

Vias (TSVs)

dedicated Logic Layer

DRAM

Type

Banks

per

Rank

Bank

Groups

3D-

Stacked

Low-

Power

DDR3 8

DDR4 16 ✓

GDDR5 16 ✓

HBM
High-

Bandwidth

Memory

16 ✓

HMC
Hybrid Memory

Cube

256 ✓

Wide I/O 4 ✓ ✓

Wide I/O 2 8 ✓ ✓

LPDDR3 8 ✓

LPDDR4 16 ✓

Bank Group Bank Group

Bank Bank Bank Bank

memory channel

increased latency

increased area/power

narrower rows,
higher latency

4. Need for Lower Access Latency: Performance

▪New DRAM types often increase access latency in order to

provide more banks, higher throughput

▪Many applications can’t make up for the increased latency

• Especially true of common OS routines (e.g., file I/O, process forking)

• A variety of desktop/scientific, server/cloud, GPGPU applications

Page 8 of 25

0.8

0.9

1.0

1.1

1.2

sh
el

l (
0

.2
)

b
o

o
tu

p
 (

1
.1

)

fo
rk
b
en

ch
…

U
D

P
_R

R
 (

0
.1

)

TC
P

_R
R

 (
0

.1
)

U
D
P
_S
TR

EA
M
…

TC
P
_S
TR

EA
M
…

Te
st

 4
 (

3
.4

)

Te
st

 1
1

 (
4

.5
)

Te
st

 1
0

 (
4

.7
)

Te
st

 9
 (

4
.7

)

Te
st

 8
 (

4
.7

)

Te
st

 5
 (

1
0

.1
)

Te
st

 3
 (

1
3

.3
)

Te
st

 1
 (

1
3

.6
)

Te
st

 7
 (

1
3

.7
)

Te
st

 1
2

 (
1

5
.4

)

Te
st

 2
 (

1
5

.6
)

Te
st

 0
 (

1
5

.7
)

Te
st

 6
 (

1
6

.5
)

Sp
e

e
d

u
p

DDR4 GDDR5 HBM HMC

Netperf IOZone, 64MB File

Several applications don’t benefit from more parallelism

Key Takeaways

1. DRAM latency remains a critical bottleneck for

many applications

2. Bank parallelism is not fully utilized by a wide variety

of our applications

3. Spatial locality continues to provide significant

performance benefits if it is exploited by the memory

subsystem

4. For some classes of applications, low-power memory

can provide energy savings without sacrificing

significant performance
Page 9 of 25

New DRAM Types Increase Latency!

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

10

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator

Latency Reduction,

Latency Tolerance, and

Latency Hiding Techniques

Latency Reduction, Tolerance and Hiding

◼ Fundamentally reduce latency as much as possible

❑ Data-centric approach

❑ See Lecture 10: Low-Latency Memory

❑ https://www.youtube.com/watch?v=vQd1YgOH1Mw

◼ Hide latency seen by the processor

❑ Processor-centric approach

❑ Caching, Prefetching

◼ Tolerate (or, amortize) latency seen by the processor

❑ Processor-centric approach

❑ Multithreading, Out-of-order Execution, Runahead Execution

12

https://www.youtube.com/watch?v=vQd1YgOH1Mw

13

Conventional Latency Tolerance Techniques

◼ Caching [initially by Wilkes, 1965]
❑ Widely used, simple, effective, but inefficient, passive
❑ Not all applications/phases exhibit temporal or spatial locality

◼ Prefetching [initially in IBM 360/91, 1967]
❑ Works well for regular memory access patterns
❑ Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

◼ Multithreading [initially in CDC 6600, 1964]
❑ Works well if there are multiple threads
❑ Improving single thread performance using multithreading hardware is an

ongoing research effort

◼ Out-of-order execution [initially by Tomasulo, 1967]
❑ Tolerates cache misses that cannot be prefetched
❑ Requires extensive hardware resources for tolerating long latencies

Prefetching

Outline of Prefetching Lecture(s)

◼ Why prefetch? Why could/does it work?

◼ The four questions

❑ What (to prefetch), when, where, how

◼ Software prefetching

◼ Hardware prefetching algorithms

◼ Execution-based prefetching

◼ Prefetching performance

❑ Coverage, accuracy, timeliness

❑ Bandwidth consumption, cache pollution

◼ Prefetcher throttling

◼ Issues in multi-core (if we get to it)

15

Readings in Prefetching

◼ Required:

❑ Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

❑ Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA
1997.

◼ Recommended:

❑ Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

❑ Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

❑ Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

16

Prefetching

◼ Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

◼ Why?

❑ Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

❑ Can eliminate compulsory cache misses

❑ Can it eliminate all cache misses? Capacity, conflict?

◼ Involves predicting which address will be needed in the
future

❑ Works if programs have predictable miss address patterns

17

Prefetching and Correctness

◼ Does a misprediction in prefetching affect correctness?

◼ No, prefetched data at a “mispredicted” address is simply
not used

◼ There is no need for state recovery

❑ In contrast to branch misprediction or value misprediction

18

Basics

◼ In modern systems, prefetching is usually done in cache
block granularity

◼ Prefetching is a technique that can reduce both

❑ Miss rate

❑ Miss latency

◼ Prefetching can be done by

❑ hardware

❑ compiler

❑ programmer

19

How a HW Prefetcher Fits in the Memory System

20

Prefetching: The Four Questions

◼ What

❑ What addresses to prefetch

◼ When

❑ When to initiate a prefetch request

◼ Where

❑ Where to place the prefetched data

◼ How

❑ Software, hardware, execution-based, cooperative

21

Challenges in Prefetching: What

◼ What addresses to prefetch

❑ Prefetching useless data wastes resources

◼ Memory bandwidth

◼ Cache or prefetch buffer space

◼ Energy consumption

◼ These could all be utilized by demand requests or more accurate
prefetch requests

❑ Accurate prediction of addresses to prefetch is important

◼ Prefetch accuracy = used prefetches / sent prefetches

◼ How do we know what to prefetch

❑ Predict based on past access patterns

❑ Use the compiler’s knowledge of data structures

◼ Prefetching algorithm determines what to prefetch
22

Challenges in Prefetching: When

◼ When to initiate a prefetch request

❑ Prefetching too early

◼ Prefetched data might not be used before it is evicted from
storage

❑ Prefetching too late

◼ Might not hide the whole memory latency

◼ When a data item is prefetched affects the timeliness of the
prefetcher

◼ Prefetcher can be made more timely by

❑ Making it more aggressive: try to stay far ahead of the
processor’s access stream (hardware)

❑ Moving the prefetch instructions earlier in the code (software)

23

Challenges in Prefetching: Where (I)
◼ Where to place the prefetched data

❑ In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data → cache pollution

❑ In a separate prefetch buffer

+ Demand data protected from prefetches → no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

◼ Many modern systems place prefetched data into the cache

❑ Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
24

Challenges in Prefetching: Where (II)

◼ Which level of cache to prefetch into?

❑ Memory to L2, memory to L1. Advantages/disadvantages?

❑ L2 to L1? (a separate prefetcher between levels)

◼ Where to place the prefetched data in the cache?

❑ Do we treat prefetched blocks the same as demand-fetched
blocks?

❑ Prefetched blocks are not known to be needed

◼ With LRU, a demand block is placed into the MRU position

◼ Do we skew the replacement policy such that it favors the
demand-fetched blocks?

❑ E.g., place all prefetches into the LRU position in a way?

25

Challenges in Prefetching: Where (III)

◼ Where to place the hardware prefetcher in the memory
hierarchy?

❑ In other words, what access patterns does the prefetcher see?

❑ L1 hits and misses

❑ L1 misses only

❑ L2 misses only

◼ Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

26

Challenges in Prefetching: How

◼ Software prefetching

❑ ISA provides prefetch instructions

❑ Programmer or compiler inserts prefetch instructions (effort)

❑ Usually works well only for “regular access patterns”

◼ Hardware prefetching

❑ Hardware monitors processor accesses

❑ Memorizes or finds patterns/strides

❑ Generates prefetch addresses automatically

◼ Execution-based prefetchers

❑ A “thread” is executed to prefetch data for the main program

❑ Can be generated by either software/programmer or hardware

27

Software Prefetching (I)

◼ Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

◼ Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

◼ Prefetch instructions prefetch data into caches

◼ Compiler or programmer can insert such instructions into the
program

28

X86 PREFETCH Instruction

29

microarchitecture

dependent

specification

different instructions

for different cache

levels

Software Prefetching (II)

◼ Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

❑ How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) → portability?

-- Going too far back in code reduces accuracy (branches in between)

❑ Need “special” prefetch instructions in ISA?

◼ Alpha load into register 31 treated as prefetch (r31==0)

◼ PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

30

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(p→next);

work(p→data);

p = p→next;

}

while (p) {

__prefetch(p→next→next→next);

work(p→data);

p = p→next;

}
Which one is better?

Software Prefetching (III)

◼ Where should a compiler insert prefetches?

❑ Prefetch for every load access?

◼ Too bandwidth intensive (both memory and execution bandwidth)

❑ Profile the code and determine loads that are likely to miss

◼ What if profile input set is not representative?

❑ How far ahead before the miss should the prefetch be inserted?

◼ Profile and determine probability of use for various prefetch
distances from the miss

❑ What if profile input set is not representative?

❑ Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency → reduced accuracy

31

Hardware Prefetching (I)

◼ Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

◼ Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

32

Next-Line Prefetchers

◼ Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)

❑ Next-line prefetcher (or next sequential prefetcher)

❑ Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?

33

Stride Prefetchers

◼ Two kinds

❑ Instruction program counter (PC) based

❑ Cache block address based

◼ Instruction based:

❑ Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

❑ Idea:

◼ Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

◼ Next time the same load instruction is fetched,
prefetch last address + stride

34

Instruction Based Stride Prefetching

◼ What is the problem with this?

❑ How far can the prefetcher get ahead of the demand access stream?

❑ Initiating the prefetch when the load is fetched the next time can be
too late

◼ Load will access the data cache soon after it is fetched!

❑ Solutions:

◼ Use lookahead PC to index the prefetcher table (decouple frontend of
the processor from backend)

◼ Prefetch ahead (last address + N*stride)

◼ Generate multiple prefetches

35

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Cache-Block Address Based Stride Prefetching

◼ Can detect

❑ A, A+N, A+2N, A+3N, …

❑ Stream buffers are a special case of cache block address
based stride prefetching where N = 1

36

Address tag Stride Control/Confidence

……. ……

Block

address

Stream Buffers (Jouppi, ISCA 1990)

◼ Each stream buffer holds one stream of
sequentially prefetched cache lines

◼ On a load miss check the head of all
stream buffers for an address match
❑ if hit, pop the entry from FIFO, update the cache

with data

❑ if not, allocate a new stream buffer to the new
miss address (may have to replace a stream
buffer following LRU policy)

◼ Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

37

FIFO

FIFO

FIFO

FIFO

DCache

M
e
m

o
ry

 i
n
te

rf
a
c
e

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of

a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Stream Buffer Design

38

Stream Buffer Design

39

Tradeoffs in Stride Prefetching

◼ Instruction based stride prefetching vs.

cache block address based stride prefetching

◼ The latter can exploit strides that occur due to the
interaction of multiple instructions

◼ The latter can more easily get further ahead of the
processor access stream

❑ No need for lookahead PC

◼ The latter is more hardware intensive

❑ Usually there are more data addresses to monitor than
instructions

40

Locality Based Prefetchers

◼ In many applications access patterns are not perfectly
strided

❑ Some patterns look random to closeby addresses

❑ How do you capture such accesses?

◼ Locality based prefetching

❑ Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware
Prefetchers“, HPCA 2007.

41

Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

◼ Multiple tracking entries for a range of addresses

◼ Invalid: The tracking entry is not allocated a stream to keep track of. Initially,
all tracking entries are in this state.

◼ Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the
demand miss does not find any existing tracking entry for its cache-block address.

◼ Training: The prefetcher trains the direction (ascending or descending) of the
stream based on the next two L2 misses that occur +/- 16 cache blocks from the
first miss. If the next two accesses in the stream are to ascending (descending)
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions
to Monitor and Request state.

◼ Monitor and Request: The tracking entry monitors the accesses to a memory
region from a start pointer (address A) to an end pointer (address P). The maximum
distance between the start pointer and the end pointer is determined by Prefetch
Distance, which indicates how far ahead of the demand access stream the
prefetcher can send requests. If there is a demand L2 cache access to a cache block
in the monitored memory region, the prefetcher requests cache blocks [P+1, ...,
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1).
N is called the Prefetch Degree. After sending the prefetch requests, the tracking
entry starts monitoring the memory region between addresses A+N to P+N (i.e.
effectively it moves the tracked memory region by N cache blocks).

42

Limitations of Locality-Based Prefetchers
◼ Bandwidth intensive

❑ Why?

❑ Can be fixed by

◼ Stride detection

◼ Feedback mechanisms

◼ Limited to prefetching closeby addresses

❑ What about large jumps in addresses accessed?

◼ However, they work very well in real life

❑ Single-core systems

❑ Boggs et al., “The Microarchitecture of the Intel Pentium 4 Processor on
90nm Technology”, Intel Technology Journal, Feb 2004.

43

Prefetcher Performance (I)

◼ Accuracy (used prefetches / sent prefetches)

◼ Coverage (prefetched misses / all misses)

◼ Timeliness (on-time prefetches / used prefetches)

◼ Bandwidth consumption

❑ Memory bandwidth consumed with prefetcher / without
prefetcher

❑ Good news: Can utilize idle bus bandwidth (if available)

◼ Cache pollution

❑ Extra demand misses due to prefetch placement in cache

❑ More difficult to quantify but affects performance

44

Prefetcher Performance (II)

◼ Prefetcher aggressiveness affects all performance metrics

◼ Aggressiveness dependent on prefetcher type

◼ For most hardware prefetchers:

❑ Prefetch distance: how far ahead of the demand stream

❑ Prefetch degree: how many prefetches per demand access

45

Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)

◼ How do these metrics interact?

◼ Very Aggressive Prefetcher (large prefetch distance & degree)

❑ Well ahead of the load access stream

❑ Hides memory access latency better

❑ More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

◼ Very Conservative Prefetcher (small prefetch distance & degree)

❑ Closer to the load access stream

❑ Might not hide memory access latency completely

❑ Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

46

Prefetcher Performance (IV)

47

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 I
P

C
 c

h
a
n
g

e
 o

v
e
r

N
o

 P
re

fe
tc

h
in

g

Prefetcher Accuracy

Prefetcher Performance (V)

◼ Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

48

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip
2

ga
p

m
cf

pa
rs
er

vo
rte

x
vp

r

am
m

p

ap
pl
u ar

t

eq
ua

ke

fa
ce

re
c

ga
lg
el

m
es

a

m
gr

id

six
tra

ck
sw

im

w
up

w
ise

gm
ea

n

In
s
tr

u
c
ti
o

n
s
 p

e
r

C
y
c
le

No Prefetching

Very Conservative

Middle-of-the-Road

Very Aggressive

48%
 29%

Feedback-Directed Prefetcher Throttling (I)

◼ Idea:

❑ Dynamically monitor prefetcher performance metrics

❑ Throttle the prefetcher aggressiveness up/down based on past
performance

❑ Change the location prefetches are inserted in cache based on
past performance

49

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

◼ Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

◼ Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

50

11%13%

Feedback-Directed Prefetcher Throttling (III)

◼ BPKI - Memory Bus Accesses per 1000 retired Instructions

❑ Includes effects of L2 demand misses as well as pollution
induced misses and prefetches

◼ A measure of bus bandwidth usage

51

No. Pref. Very Cons Mid Very Aggr FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPKI 8.56 9.34 10.60 13.38 10.88

More on Feedback Directed Prefetching

◼ Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by
the Program Committee.

52

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

How to Prefetch More Irregular Access Patterns?

◼ Regular patterns: Stride, stream prefetchers do well

◼ More irregular access patterns

❑ Indirect array accesses

❑ Linked data structures

❑ Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

❑ Random patterns?

❑ Generalized prefetcher for all patterns?

◼ Correlation based prefetchers

◼ Content-directed prefetchers

◼ Precomputation or execution-based prefetchers

53

Address Correlation Based Prefetching (I)

◼ Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

◼ After referencing a particular address (say A or E),
some addresses are more likely to be referenced next

54

A B C

D E F
1.0

.33 .5

.2

1.0.6
.2

.67

.6

.5

.2

Markov

Model

Address Correlation Based Prefetching (II)

◼ Idea: Record the likely-next addresses (B, C, D) after seeing an address A

❑ Next time A is accessed, prefetch B, C, D

❑ A is said to be correlated with B, C, D

◼ Prefetch up to N next addresses to increase coverage

◼ Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) → (C)

(A,B) correlated with C

◼ Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

❑ Also called “Markov prefetchers”

55

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr

Address Correlation Based Prefetching (III)

◼ Advantages:

❑ Can cover arbitrary access patterns

◼ Linked data structures

◼ Streaming patterns (though not so efficiently!)

◼ Disadvantages:

❑ Correlation table needs to be very large for high coverage

◼ Recording every miss address and its subsequent miss addresses
is infeasible

❑ Can have low timeliness: Lookahead is limited since a prefetch
for the next access/miss is initiated right after previous

❑ Can consume a lot of memory bandwidth

◼ Especially when Markov model probabilities (correlations) are low

❑ Cannot reduce compulsory misses
56

Content Directed Prefetching (I)

◼ A specialized prefetcher for pointer values

◼ Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

❑ Cooksey et al., “A stateless, content-directed data prefetching
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

◼ How to identify pointer addresses:

❑ Compare address sized values within cache block with cache
block’s address → if most-significant few bits match, pointer

57

Content Directed Prefetching (II)

58

x40373551

L2 DRAM
… …

= = = = = = = =

[
3

1
:2

0] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220X800

11100x800

Making Content Directed Prefetching Efficient

◼ Hardware does not have enough information on pointers

◼ Software does (and can profile to get more information)

◼ Idea:

❑ Compiler profiles/analyzes the code and provides hints as to
which pointer addresses are likely-useful to prefetch.

❑ Hardware uses hints to prefetch only likely-useful pointers.

◼ Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

59

60

Shortcomings of CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node -> Key != Key;

Struct node{

int Key;

int * D1_ptr;

int * D2_ptr;

node * Next;

}

node = node -> Next;

if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

61

Shortcomings of CDP – An Example

= = = = = = = =

[3
1

:2
0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

62

Shortcomings of CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node = node -> Next;

if (node)

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key

63

Shortcomings of CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next

Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[3
1

:2
0]

More on Content Directed Prefetching

◼ Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

64

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Hybrid Hardware Prefetchers

◼ Many different access patterns

❑ Streaming, striding

❑ Linked data structures

❑ Localized random

◼ Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage

-- More complexity

-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention,
pollution)

- Need to manage accesses from each prefetcher

65

Execution-based Prefetchers (I)

◼ Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

❑ Only need to distill pieces that lead to cache misses

◼ Speculative thread: Pre-executed program piece can
be considered a “thread”

◼ Speculative thread can be executed
◼ On a separate processor/core

◼ On a separate hardware thread context (think fine-grained
multithreading)

◼ On the same thread context in idle cycles (during cache misses)

66

Execution-based Prefetchers (II)

◼ How to construct the speculative thread:

❑ Software based pruning and “spawn” instructions

❑ Hardware based pruning and “spawn” instructions

❑ Use the original program (no construction), but

◼ Execute it faster without stalling and correctness constraints

◼ Speculative thread

❑ Needs to discover misses before the main program

◼ Avoid waiting/stalling and/or compute less

❑ To get ahead, uses

◼ Perform only address generation computation, branch prediction,
value prediction (to predict “unknown” values)

❑ Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect

67

Thread-Based Pre-Execution

◼ Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

◼ Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

◼ Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

68

Thread-Based Pre-Execution Issues

◼ Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

◼ When the main thread is stalled

◼ When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

◼ How far ahead?

❑ Too early: prefetch might not be needed

❑ Too late: prefetch might not be timely

2. When the main thread is stalled

◼ When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback (recall throttling)

69

Thread-Based Pre-Execution Issues

◼ What, when, where, how

❑ Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

❑ Many issues in software-based pre-execution discussed

70

An Example

71

Example ISA Extensions

72

Results on a Multithreaded Processor

73

Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.

Problem Instructions

◼ Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

◼ Zilles and Sohi, ”Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

74

Fork Point for Prefetching Thread

75

Pre-execution Thread Construction

76

Review: Runahead Execution

◼ A simple pre-execution method for prefetching purposes

◼ When the oldest instruction is a long-latency cache miss:

❑ Checkpoint architectural state and enter runahead mode

◼ In runahead mode:

❑ Speculatively pre-execute instructions

❑ The purpose of pre-execution is to generate prefetches

❑ L2-miss dependent instructions are marked INV and dropped

◼ Runahead mode ends when the original miss returns

❑ Checkpoint is restored and normal execution resumes

◼ Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

77

Review: Runahead Execution (Mutlu et al., HPCA 2003)

78

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead as an Execution-based Prefetcher

◼ Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

◼ Idea of Runahead: Pre-execute the main program solely for
prefetching data

◼ Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

◼ Can you make runahead even better by pruning the
program portion executed in runahead mode?

79

Taking Advantage of Pure Speculation

◼ Runahead mode is purely speculative

◼ The goal is to find and generate cache misses that would
otherwise stall execution later on

◼ How do we achieve this goal most efficiently and with the
highest benefit?

◼ Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

◼ How?

80

More on Runahead Execution
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEE Micro.

81

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

More on Runahead Execution (Short)
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

82

https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

Effect of Runahead in Sun ROCK

◼ Shailender Chaudhry talk, Aug 2008.

83

Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context

+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions

-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
84

Multi-Core Issues in Prefetching

85

Prefetching in Multi-Core (I)

◼ Prefetching shared data

❑ Coherence misses

◼ Prefetch efficiency is a lot more important

❑ Bus bandwidth more precious

❑ Cache space more valuable

◼ One cores’ prefetches interfere with other cores’ requests

❑ Cache conflicts

❑ Bus contention

❑ DRAM bank and row buffer contention

86

Prefetching in Multi-Core (II)

◼ Two key issues

❑ How to prioritize prefetches vs. demands (of different cores)

❑ How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

◼ Need to coordinate the actions of independent prefetchers
for best system performance

◼ Each prefetcher has different accuracy, coverage, timeliness

87

Some Examples

◼ Controlling prefetcher aggressiveness

❑ Feedback directed prefetching [HPCA’07]

❑ Coordinated control of multiple prefetchers [MICRO’09]

◼ How to prioritize prefetches vs. demands from cores

❑ Prefetch-aware memory controllers and shared resource
management [MICRO’08, ISCA’11]

◼ Bandwidth efficient prefetching of linked data structures

❑ Through hardware/software cooperation (software hints)
[HPCA’09]

88

More on Feedback Directed Prefetching

◼ Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by
the Program Committee.

89

https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

On Bandwidth-Efficient Prefetching

◼ Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

90

https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

More on Coordinated Prefetcher Control

◼ Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

91

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Prefetching in Multi-Core (I)

◼ Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

92

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

More on Prefetching in Multi-Core (II)

◼ Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

93

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Prefetching in Multi-Core (III)

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

94

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Prefetching in Multi-Core (IV)
◼ Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

95

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Prefetching in GPUs

◼ Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides
(pdf)

96

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

Computer Architecture

Lecture 18: Prefetching

Prof. Onur Mutlu

ETH Zürich

Fall 2020

26 November 2020

Multi-Core Issues in Prefetching

98

Prefetching in Multi-Core (I)

◼ Prefetching shared data

❑ Coherence misses

◼ Prefetch efficiency is a lot more important

❑ Bus bandwidth more precious

❑ Cache space more valuable

◼ One cores’ prefetches interfere with other cores’ requests

❑ Cache conflicts

❑ Bus contention

❑ DRAM bank and row buffer contention

99

Prefetching in Multi-Core (II)

◼ Two key issues

❑ How to prioritize prefetches vs. demands (of different cores)

❑ How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

◼ Need to coordinate the actions of independent prefetchers
for best system performance

◼ Each prefetcher has different accuracy, coverage, timeliness

100

Some Ideas

◼ Controlling prefetcher aggressiveness

❑ Feedback directed prefetching [HPCA’07]

❑ Coordinated control of multiple prefetchers [MICRO’09]

◼ How to prioritize prefetches vs. demands from cores

❑ Prefetch-aware memory controllers and shared resource
management [MICRO’08, ISCA’11]

◼ Bandwidth efficient prefetching of linked data structures

❑ Through hardware/software cooperation (software hints)
[HPCA’09]

101

102

Motivation

◼ Aggressive prefetching improves
memory latency tolerance of
many applications when they run alone

◼ Prefetching for concurrently-executing
applications on a CMP can lead to
 Significant system performance degradation and

bandwidth waste

◼ Problem:
Prefetcher-caused inter-core interference
 Prefetches of one application contend with

prefetches and demands of other applications

103

Potential Performance

System performance improvement of ideally removing all
prefetcher-caused inter-core interference in shared resources

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

W
L

1

W
L

2

W
L

3

W
L

4

W
L

5

W
L

6

W
L

7

W
L

8

W
L

9

W
L

1
0

W
L

1
1

W
L

1
2

W
L

1
3

W
L

1
4

G
m

e
a
n

-3
2

P
e
rf

.
N

o
rm

a
li
z
e
d

 t
o

 N
o

 T
h

ro
tt

li
n

g

56%

Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]

High Interference caused by
Accurate Prefetchers

104

DRAM

Memory Controller

Core2 Core3Core0

Dem 2
Addr:A

Dem 2
Addr:B

Pref 0
Addr:Z

Dem 0
Addr:X

Miss

Shared Cache

Pref 1
Addr:C

Pref 3
Addr:D

Dem 2
Addr:Y

Bank 0 Bank 1

Pref 3
Addr:D+64

Pref 1
Addr:C+64

Row
Buffers

Row:
C to C+8K

Row:
D to D+8K

Requests
Being

Serviced

Row Buffer
Hit
…

Dem 2
Addr:A

Core1Dem 1
Addr:C

Dem X
Addr: Y

Demand Request
From Core X
For Addr Y

Legend:

Shortcoming of Local Prefetcher Throttling

105

…

Set 2

…

Core 0 Core 1 Core 2 Core 3

Dem 2 Dem 2 Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3

Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Pref 0Used_P Pref 0 Pref 1 Pref 1

Prefetcher

Degree:

Prefetcher

Degree:

Used_P Used_P Used_P

Pref 0Pref 0 Pref 1 Pref 1Used_P Used_P Used_P Used_P

FDP Throttle Up

24 24

Pref 0 Pref 0 Pref 0 Pref 0 Pref 1 Pref 1 Pref 1 Pref 1

Dem 2 Dem 3Dem 2 Dem 3

Local-only prefetcher control techniques

have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up

106

Shortcoming of Local-Only
Prefetcher Control

0

0.2

0.4

0.6

0.8

1

lb
m

_
0
6

s
w

im
_
0
0

c
ra

ft
y
_
0
0

b
z
ip

2
_
0
0

S
p

e
e
d

u
p

 o
v
e
r

A
lo

n
e
 R

u
n

No Prefetching
Pref. + No Throttling
Feedback-Directed Prefetching
HPAC

0

0.1

0.2

0.3

0.4

0.5

Hspeedup

Our Approach: Use both global and per-core feedback
to determine each prefetcher’s aggressiveness

4-core workload example: lbm_06 + swim_00 + crafty_00 + bzip2_00

Prefetching in Multi-Core (II)

◼ Ideas for coordinating different prefetchers’ actions

❑ Utility-based prioritization

◼ Prioritize prefetchers that provide the best marginal utility on
system performance

❑ Cost-benefit analysis

◼ Compute cost-benefit of each prefetcher to drive prioritization

❑ Heuristic based methods

◼ Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

◼ Ebrahimi et al., “Coordinated Management of Multiple Prefetchers
in Multi-Core Systems,” MICRO 2009.

107

Hierarchical Prefetcher Throttling

108

Memory Controller

Cache Pollution

Feedback

Accuracy

Bandwidth Feedback

Local control’s goal:
Maximize the
prefetching performance of
core i independently

Global control’s goal: Keep
track of and control
prefetcher-caused
inter-core interference in
shared memory system

Global

Control

Global Control: accepts or

overrides decisions made by

local control to improve

overall system performance

Core i

Local

Control

Pref. i

Shared Cache

Throttling Decision

Local

Throttling Decision

Final

Throttling Decision

Hierarchical Prefetcher Throttling Example

109

Memory Controller

Pol (i)

Acc (i)

BW (i)

BWNO (i)

Global

Control

Core i

Local

Control

Pref. i

Shared Cache

Local

Throttling Decision

Final

Throttling Decision

High Acc (i)

Local

Throttle Up High Pol (i)

High BW (i)

High BWNO (i)

Pol. Filter i

- High accuracy

- High pollution

- High bandwidth consumed

while other cores need bandwidth

Enforce

Throttle Down

110

HPAC Control Policies

Causing Low

Pollution

Inaccurate

Highly

Accurate

Others’ low

BW need

throttle

down

Causing High

Pollution

ActionInterference ClassBWNO (i)

High BW

Consumption

Low BW

Consumption Others’ high

BW need

Others’ low

BW need

Inaccurate
throttle

down

Highly

Accurate

High BW

Consumption

Low BW

Consumption

Others’ low

BW need

Others’ high

BW need

Others’ low

BW need

Others’ high

BW need

throttle

down
Severe interference

Severe interference

Severe interference

Pol (i) Acc (i) BW (i)

HPAC Evaluation

111

15%

9%

Normalized to system with no prefetching

More on Coordinated Prefetcher Control

◼ Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

112

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Prefetching in Multi-Core (I)

◼ Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

113

https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

114

Problems of Prefetch Handling

◼ How to schedule prefetches vs demands?
◼ Demand-first: Always prioritizes demands over

prefetch requests

◼ Demand-prefetch-equal: Always treats them the same

Neither take into account both:

1. Non-uniform access latency of DRAM systems

2. Usefulness of prefetches

Neither of these perform best

115

When Prefetches are Useful

Row A

Pref Row A : X

Dem Row B : Y

Pref Row A : Z

DRAM Controller

Row Buffer

DRAM

DRAM

Processor

➢ Demand-first

Row-conflict

Row B

Row-hit

Miss Y Miss X Miss Z

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

116

When Prefetches are Useful

Row A

Pref Row A : X

Dem Row B : Y

Pref Row A : Z

DRAM Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

➢ Demand-first

➢ Demand-pref-equal

Row-hitRow-conflict

Saved Cycles

Row B

Miss Y Miss X Miss Z

Miss Y Hit X Hit Z

Demand-pref-equal outperforms demand-first

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

2 row-hits, 1 row-conflict

117

When Prefetches are Useless

Row A

Pref Row A : X

Dem Row B : Y

Pref Row A : Z

DRAM Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

➢ Demand-first

➢ Demand-pref-equal

Saved Cycles
Miss Y

Miss Y

Demand-first outperforms demand-pref-equal

Y X Z

X Z Y

Processor needs ONLY Y

118

Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled

0

0.5

1

1.5

2

2.5

3

galgel

am
m

p

art
m

ilc
sw

im
libquantum

bwaves

leslie3d

IP
C

 n
o

rm
a

li
z
e

d
 t
o

 n
o

 p
re

fe
tc

h
in

g

Demand-first

Demand-pref-equal

Demand-first is betterDemand-pref-equal is betterGoal 1: Adaptively schedule prefetches based on prefetch usefulnessGoal 2: Eliminate useless prefetches

Useless prefetches:

Off-chip bandwidth

Queue resources

Cache Pollution

More on Prefetching in Multi-Core (II)

◼ Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

119

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Prefetching in Multi-Core (III)

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

120

https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Prefetching in Multi-Core (IV)
◼ Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January
2015.
[Slides (pptx) (pdf)]
[Source Code]

121

https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Informed Caching Policies for Prefetched Blocks

Caching Policies for Prefetched Blocks

122

Problem: Existing caching policies for prefetched
blocks result in significant cache pollution

Cache Set

MRU LRU

Cache Miss:
Insertion Policy

Cache Hit:
Promotion Policy

Informed Caching Policies for Prefetched Blocks

Prefetch Usage Experiment

123

CPU
L
1

L2 L3
Prefetcher

Off-Chip
Memory

Monitor L2 misses Prefetch into L3

Classify prefetched blocks into three categories

1. Blocks that are unused

2. Blocks that are used exactly once before evicted from cache

3. Blocks that are used more than once before evicted from cache

Informed Caching Policies for Prefetched Blocks

Usage Distribution of Prefetched Blocks

124

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fr
ac

ti
o

n
 o

f
P

re
fe

tc
h

e
d

 B
lo

ck
s

Used > Once Used Once Unused

Informed Caching Policies for Prefetched Blocks

Shortcoming of Traditional Promotion Policy

125

D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Promote to MRU

Informed Caching Policies for Prefetched Blocks

Demotion of Prefetched Block

126

D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Demote to LRU

Informed Caching Policies for Prefetched Blocks

Cache Insertion Policy for Prefetched Blocks

127

Cache Set

MRU LRU

Prefetch Miss:
Insertion Policy?

Good (Accurate prefetch)
Bad (Inaccurate prefetch)

Good (Inaccurate prefetch)
Bad (accurate prefetch)

Informed Caching Policies for Prefetched Blocks

Predicting Usefulness of Prefetch

128

Cache Set

MRU LRU

Prefetch Miss
Predict Usefulness

of Prefetch
Accurate Inaccurate

Fraction of Useful Prefetches

Prefetching in GPUs

◼ Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides
(pdf)

129

https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

