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The (Memory) Latency Problem
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]
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Long memory latency → performance 
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New DRAM Types Increase Latency!

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling 
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]
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https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator


Modern DRAM Types: Comparison to DDR3

▪Bank groups

▪ 3D-stacked DRAM
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DDR4 16 ✓

GDDR5 16 ✓

HBM
High-

Bandwidth 

Memory

16 ✓

HMC
Hybrid Memory 

Cube

256 ✓

Wide I/O 4 ✓ ✓

Wide I/O 2 8 ✓ ✓

LPDDR3 8 ✓

LPDDR4 16 ✓
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LPDDR3 8 ✓
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Bank Bank Bank Bank

memory channel

increased latency

increased area/power

narrower rows, 
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4. Need for Lower Access Latency: Performance

▪New DRAM types often increase access latency in order to 

provide more banks, higher throughput

▪Many applications can’t make up for the increased latency

• Especially true of  common OS routines (e.g., file I/O, process forking)

• A variety of  desktop/scientific, server/cloud, GPGPU applications
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Several applications don’t benefit from more parallelism



Key Takeaways

1. DRAM latency remains a critical bottleneck for

many applications

2. Bank parallelism is not fully utilized by a wide variety

of  our applications

3. Spatial locality continues to provide significant 

performance benefits if  it is exploited by the memory 

subsystem

4. For some classes of  applications, low-power memory

can provide energy savings without sacrificing

significant performance
Page 9 of 25



New DRAM Types Increase Latency!

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling 
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[MemBen Benchmark Suite]
[Source Code for GPGPUSim-Ramulator]

10

https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf
https://github.com/CMU-SAFARI/MemBen
https://github.com/CMU-SAFARI/GPGPUSim-Ramulator


Latency Reduction, 

Latency Tolerance, and 

Latency Hiding Techniques



Latency Reduction, Tolerance and Hiding

◼ Fundamentally reduce latency as much as possible

❑ Data-centric approach

❑ See Lecture 10: Low-Latency Memory

❑ https://www.youtube.com/watch?v=vQd1YgOH1Mw

◼ Hide latency seen by the processor

❑ Processor-centric approach

❑ Caching, Prefetching

◼ Tolerate (or, amortize) latency seen by the processor

❑ Processor-centric approach

❑ Multithreading, Out-of-order Execution, Runahead Execution

12

https://www.youtube.com/watch?v=vQd1YgOH1Mw
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Conventional Latency Tolerance Techniques

◼ Caching [initially by Wilkes, 1965]
❑ Widely used, simple, effective, but inefficient, passive
❑ Not all applications/phases exhibit temporal or spatial locality

◼ Prefetching [initially in IBM 360/91, 1967]
❑ Works well for regular memory access patterns
❑ Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

◼ Multithreading [initially in CDC 6600, 1964]
❑ Works well if there are multiple threads
❑ Improving single thread performance using multithreading hardware is an 

ongoing research effort

◼ Out-of-order execution [initially by Tomasulo, 1967]
❑ Tolerates cache misses that cannot be prefetched
❑ Requires extensive hardware resources for tolerating long latencies



Prefetching



Outline of Prefetching Lecture(s)

◼ Why prefetch? Why could/does it work?

◼ The four questions

❑ What (to prefetch), when, where, how

◼ Software prefetching

◼ Hardware prefetching algorithms

◼ Execution-based prefetching

◼ Prefetching performance

❑ Coverage, accuracy, timeliness

❑ Bandwidth consumption, cache pollution

◼ Prefetcher throttling 

◼ Issues in multi-core (if we get to it)

15



Readings in Prefetching

◼ Required:

❑ Jouppi, “Improving Direct-Mapped Cache Performance by the 
Addition of a Small Fully-Associative Cache and Prefetch Buffers,”
ISCA 1990.

❑ Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 
1997.

◼ Recommended:

❑ Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

❑ Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

❑ Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.

16



Prefetching

◼ Idea: Fetch the data before it is needed (i.e. pre-fetch) by 
the program

◼ Why? 

❑ Memory latency is high. If we can prefetch accurately and 
early enough we can reduce/eliminate that latency.

❑ Can eliminate compulsory cache misses

❑ Can it eliminate all cache misses? Capacity, conflict?

◼ Involves predicting which address will be needed in the 
future

❑ Works if programs have predictable miss address patterns

17



Prefetching and Correctness

◼ Does a misprediction in prefetching affect correctness?

◼ No, prefetched data at a “mispredicted” address is simply 
not used

◼ There is no need for state recovery

❑ In contrast to branch misprediction or value misprediction

18



Basics

◼ In modern systems, prefetching is usually done in cache 
block granularity

◼ Prefetching is a technique that can reduce both

❑ Miss rate

❑ Miss latency

◼ Prefetching can be done by 

❑ hardware

❑ compiler

❑ programmer

19



How a HW Prefetcher Fits in the Memory System

20



Prefetching: The Four Questions

◼ What

❑ What addresses to prefetch

◼ When

❑ When to initiate a prefetch request

◼ Where

❑ Where to place the prefetched data

◼ How

❑ Software, hardware, execution-based, cooperative

21



Challenges in Prefetching: What

◼ What addresses to prefetch

❑ Prefetching useless data wastes resources

◼ Memory bandwidth

◼ Cache or prefetch buffer space

◼ Energy consumption

◼ These could all be utilized by demand requests or more accurate 
prefetch requests

❑ Accurate prediction of addresses to prefetch is important

◼ Prefetch accuracy = used prefetches / sent prefetches

◼ How do we know what to prefetch

❑ Predict based on past access patterns

❑ Use the compiler’s knowledge of data structures

◼ Prefetching algorithm determines what to prefetch
22



Challenges in Prefetching: When

◼ When to initiate a prefetch request

❑ Prefetching too early

◼ Prefetched data might not be used before it is evicted from 
storage

❑ Prefetching too late

◼ Might not hide the whole memory latency

◼ When a data item is prefetched affects the timeliness of the 
prefetcher

◼ Prefetcher can be made more timely by

❑ Making it more aggressive: try to stay far ahead of the 
processor’s access stream (hardware)

❑ Moving the prefetch instructions earlier in the code (software)

23



Challenges in Prefetching: Where (I)
◼ Where to place the prefetched data

❑ In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data → cache pollution

❑ In a separate prefetch buffer

+ Demand data protected from prefetches → no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

◼ Many modern systems place prefetched data into the cache

❑ Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
24



Challenges in Prefetching: Where (II)

◼ Which level of cache to prefetch into?

❑ Memory to L2, memory to L1. Advantages/disadvantages?

❑ L2 to L1? (a separate prefetcher between levels)

◼ Where to place the prefetched data in the cache?

❑ Do we treat prefetched blocks the same as demand-fetched 
blocks?

❑ Prefetched blocks are not known to be needed

◼ With LRU, a demand block is placed into the MRU position

◼ Do we skew the replacement policy such that it favors the 
demand-fetched blocks?

❑ E.g., place all prefetches into the LRU position in a way?

25



Challenges in Prefetching: Where (III)

◼ Where to place the hardware prefetcher in the memory 
hierarchy?

❑ In other words, what access patterns does the prefetcher see?

❑ L1 hits and misses

❑ L1 misses only 

❑ L2 misses only 

◼ Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth 
intensive, more ports into the prefetcher?)

26



Challenges in Prefetching: How

◼ Software prefetching

❑ ISA provides prefetch instructions

❑ Programmer or compiler inserts prefetch instructions (effort)

❑ Usually works well only for “regular access patterns”

◼ Hardware prefetching

❑ Hardware monitors processor accesses

❑ Memorizes or finds patterns/strides

❑ Generates prefetch addresses automatically

◼ Execution-based prefetchers

❑ A “thread” is executed to prefetch data for the main program

❑ Can be generated by either software/programmer or hardware

27



Software Prefetching (I)

◼ Idea: Compiler/programmer places prefetch instructions into 
appropriate places in code

◼ Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

◼ Prefetch instructions prefetch data into caches

◼ Compiler or programmer can insert such instructions into the 
program

28



X86 PREFETCH Instruction

29
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dependent
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levels



Software Prefetching (II)

◼ Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

❑ How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency, 
cache size, time between loop iterations) → portability?

-- Going too far back in code reduces accuracy (branches in between)

❑ Need “special” prefetch instructions in ISA?

◼ Alpha load into register 31 treated as prefetch (r31==0)

◼ PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

30

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(p→next);

work(p→data);

p = p→next;

}

while (p) {

__prefetch(p→next→next→next);

work(p→data);

p = p→next;

}
Which one is better?



Software Prefetching (III)

◼ Where should a compiler insert prefetches?

❑ Prefetch for every load access? 

◼ Too bandwidth intensive (both memory and execution bandwidth)

❑ Profile the code and determine loads that are likely to miss

◼ What if profile input set is not representative?

❑ How far ahead before the miss should the prefetch be inserted?

◼ Profile and determine probability of use for various prefetch 
distances from the miss

❑ What if profile input set is not representative?

❑ Usually need to insert a prefetch far in advance to cover 100s of cycles 
of main memory latency → reduced accuracy

31



Hardware Prefetching (I)

◼ Idea: Specialized hardware observes load/store access 
patterns and prefetches data based on past access behavior

◼ Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

32



Next-Line Prefetchers

◼ Simplest form of hardware prefetching: always prefetch next 
N cache lines after a demand access (or a demand miss)

❑ Next-line prefetcher (or next sequential prefetcher)

❑ Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower 
addresses?

- Also prefetch “previous” N cache lines?

33



Stride Prefetchers

◼ Two kinds

❑ Instruction program counter (PC) based

❑ Cache block address based

◼ Instruction based:

❑ Baer and Chen, “An effective on-chip preloading scheme to 
reduce data access penalty,” SC 1991.

❑ Idea: 

◼ Record the distance between the memory addresses referenced by 
a load instruction (i.e. stride of the load) as well as the last address 
referenced by the load

◼ Next time the same load instruction is fetched,                     
prefetch last address + stride

34



Instruction Based Stride Prefetching

◼ What is the problem with this?

❑ How far can the prefetcher get ahead of the demand access stream? 

❑ Initiating the prefetch when the load is fetched the next time can be 
too late 

◼ Load will access the data cache soon after it is fetched!

❑ Solutions:

◼ Use lookahead PC to index the prefetcher table (decouple frontend of 
the processor from backend)

◼ Prefetch ahead (last address + N*stride)

◼ Generate multiple prefetches

35

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC



Cache-Block Address Based Stride Prefetching

◼ Can detect

❑ A, A+N, A+2N, A+3N, …

❑ Stream buffers are a special case of cache block address 
based stride prefetching where N = 1

36

Address tag Stride Control/Confidence

……. ……

Block 

address



Stream Buffers (Jouppi, ISCA 1990)

◼ Each stream buffer holds one stream of 
sequentially prefetched cache lines 

◼ On a load miss check the head of all 
stream buffers for an address match
❑ if hit, pop the entry from FIFO, update the cache 

with data 

❑ if not, allocate a new stream buffer to the new 
miss address (may have to replace a stream 
buffer following LRU policy)

◼ Stream buffer FIFOs are continuously 
topped-off with subsequent cache lines 
whenever there is room and the bus is not 
busy
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Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of 

a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.



Stream Buffer Design

38



Stream Buffer Design

39



Tradeoffs in Stride Prefetching

◼ Instruction based stride prefetching vs.

cache block address based stride prefetching

◼ The latter can exploit strides that occur due to the 
interaction of multiple instructions

◼ The latter can more easily get further ahead of the 
processor access stream

❑ No need for lookahead PC

◼ The latter is more hardware intensive

❑ Usually there are more data addresses to monitor than 
instructions

40



Locality Based Prefetchers

◼ In many applications access patterns are not perfectly 
strided

❑ Some patterns look random to closeby addresses

❑ How do you capture such accesses?

◼ Locality based prefetching

❑ Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware 
Prefetchers“, HPCA 2007.

41



Pentium 4 (Like) Prefetcher (Srinath et al., HPCA 2007)

◼ Multiple tracking entries for a range of addresses

◼ Invalid: The tracking entry is not allocated a stream to keep track of. Initially, 
all tracking entries are in this state. 

◼ Allocated: A demand (i.e. load/store) L2 miss allocates a tracking entry if the 
demand miss does not find any existing tracking entry for its cache-block address.

◼ Training: The prefetcher trains the direction (ascending or descending) of the 
stream based on the next two L2 misses that occur +/- 16 cache blocks from the 
first miss. If the next two accesses in the stream are to ascending (descending) 
addresses, the direction of the tracking entry is set to 1 (0) and the entry transitions 
to Monitor and Request state.

◼ Monitor and Request: The tracking entry monitors the accesses to a memory 
region from a start pointer (address A) to an end pointer (address P). The maximum 
distance between the start pointer and the end pointer is determined by Prefetch 
Distance, which indicates how far ahead of the demand access stream the 
prefetcher can send requests. If there is a demand L2 cache access to a cache block 
in the monitored memory region, the prefetcher requests cache blocks [P+1, ..., 
P+N] as prefetch requests (assuming the direction of the tracking entry is set to 1). 
N is called the Prefetch Degree. After sending the prefetch requests, the tracking 
entry starts monitoring the memory region between addresses A+N to P+N (i.e. 
effectively it moves the tracked memory region by N cache blocks).

42



Limitations of Locality-Based Prefetchers
◼ Bandwidth intensive

❑ Why?

❑ Can be fixed by

◼ Stride detection

◼ Feedback mechanisms

◼ Limited to prefetching closeby addresses

❑ What about large jumps in addresses accessed?

◼ However, they work very well in real life

❑ Single-core systems

❑ Boggs et al., “The Microarchitecture of the Intel Pentium 4 Processor on 
90nm Technology”, Intel Technology Journal, Feb 2004.

43



Prefetcher Performance (I)

◼ Accuracy (used prefetches / sent prefetches)

◼ Coverage (prefetched misses / all misses)

◼ Timeliness (on-time prefetches / used prefetches)

◼ Bandwidth consumption

❑ Memory bandwidth consumed with prefetcher / without 
prefetcher

❑ Good news: Can utilize idle bus bandwidth (if available)

◼ Cache pollution

❑ Extra demand misses due to prefetch placement in cache

❑ More difficult to quantify but affects performance

44



Prefetcher Performance (II)

◼ Prefetcher aggressiveness affects all performance metrics

◼ Aggressiveness dependent on prefetcher type

◼ For most hardware prefetchers:

❑ Prefetch distance: how far ahead of the demand stream 

❑ Prefetch degree: how many prefetches per demand access

45

Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3



Prefetcher Performance (III)

◼ How do these metrics interact?

◼ Very Aggressive Prefetcher (large prefetch distance & degree)

❑ Well ahead of the load access stream 

❑ Hides memory access latency better 

❑ More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

◼ Very Conservative Prefetcher (small prefetch distance & degree)

❑ Closer to the load access stream

❑ Might not hide memory access latency completely

❑ Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

46



Prefetcher Performance (IV)
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Prefetcher Performance (V)

◼ Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

◼ Idea: 

❑ Dynamically monitor prefetcher performance metrics

❑ Throttle the prefetcher aggressiveness up/down based on past 
performance

❑ Change the location prefetches are inserted in cache based on 
past performance
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Feedback-Directed Prefetcher Throttling (II)

◼ Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

◼ Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

50

11%13%



Feedback-Directed Prefetcher Throttling (III)

◼ BPKI - Memory Bus Accesses per 1000 retired Instructions

❑ Includes effects of L2 demand misses as well as pollution 
induced misses and prefetches

◼ A measure of bus bandwidth usage

51

No. Pref. Very Cons Mid Very Aggr FDP

IPC 0.85 1.21 1.47 1.57 1.67

BPKI 8.56 9.34 10.60 13.38 10.88



More on Feedback Directed Prefetching

◼ Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by 
the Program Committee.
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How to Prefetch More Irregular Access Patterns?

◼ Regular patterns: Stride, stream prefetchers do well

◼ More irregular access patterns

❑ Indirect array accesses

❑ Linked data structures

❑ Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

❑ Random patterns?

❑ Generalized prefetcher for all patterns?

◼ Correlation based prefetchers

◼ Content-directed prefetchers

◼ Precomputation or execution-based prefetchers
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Address Correlation Based Prefetching (I)

◼ Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

◼ After referencing a particular address (say A or E),       
some addresses are more likely to be referenced next
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Address Correlation Based Prefetching (II)

◼ Idea: Record the likely-next addresses (B, C, D) after seeing an address A

❑ Next time A is accessed, prefetch B, C, D

❑ A is said to be correlated with B, C, D

◼ Prefetch up to N next addresses to increase coverage 

◼ Prefetch accuracy can be improved by using multiple addresses as key for 
the next address: (A, B) → (C)

(A,B) correlated with C

◼ Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

❑ Also called “Markov prefetchers”
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Address Correlation Based Prefetching (III)

◼ Advantages:

❑ Can cover arbitrary access patterns

◼ Linked data structures

◼ Streaming patterns (though not so efficiently!)

◼ Disadvantages:

❑ Correlation table needs to be very large for high coverage

◼ Recording every miss address and its subsequent miss addresses 
is infeasible

❑ Can have low timeliness: Lookahead is limited since a prefetch 
for the next access/miss is initiated right after previous

❑ Can consume a lot of memory bandwidth

◼ Especially when Markov model probabilities (correlations) are low

❑ Cannot reduce compulsory misses
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Content Directed Prefetching (I) 

◼ A specialized prefetcher for pointer values 

◼ Idea: Identify pointers among all values in a fetched cache 
block and issue prefetch requests for them.

❑ Cooksey et al., “A stateless, content-directed data prefetching 
mechanism,” ASPLOS 2002.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

◼ How to identify pointer addresses:

❑ Compare address sized values within cache block with cache 
block’s address → if most-significant few bits match, pointer
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Content Directed Prefetching (II)
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Making Content Directed Prefetching Efficient

◼ Hardware does not have enough information on pointers

◼ Software does (and can profile to get more information)

◼ Idea:

❑ Compiler profiles/analyzes the code and provides hints as to 
which pointer addresses are likely-useful to prefetch.

❑ Hardware uses hints to prefetch only likely-useful pointers.

◼ Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of 
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.
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Shortcomings of CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node -> Key != Key;

Struct node{

int Key;

int * D1_ptr;

int * D2_ptr;

node * Next;

}

node = node -> Next;

if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

)  ;

Key

Example from mst
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Shortcomings of CDP – An Example

= = = = = = = =
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Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key
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Shortcomings of CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node = node -> Next;

if (node) 

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key
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Shortcomings of CDP – An Example

…

= = = = = = = =
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More on Content Directed Prefetching

◼ Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the 
Best Paper Award by the Program Committee.
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Hybrid Hardware Prefetchers

◼ Many different access patterns

❑ Streaming, striding

❑ Linked data structures

❑ Localized random

◼ Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage

-- More complexity

-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention, 
pollution)

- Need to manage accesses from each prefetcher
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Execution-based Prefetchers (I)

◼ Idea: Pre-execute a piece of the (pruned) program solely 
for prefetching data 

❑ Only need to distill pieces that lead to cache misses

◼ Speculative thread: Pre-executed program piece can 
be considered a “thread”

◼ Speculative thread can be executed 
◼ On a separate processor/core

◼ On a separate hardware thread context (think fine-grained 
multithreading)

◼ On the same thread context in idle cycles (during cache misses)
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Execution-based Prefetchers (II)

◼ How to construct the speculative thread:

❑ Software based pruning and “spawn” instructions

❑ Hardware based pruning and “spawn” instructions

❑ Use the original program (no construction), but 

◼ Execute it faster without stalling and correctness constraints

◼ Speculative thread

❑ Needs to discover misses before the main program

◼ Avoid waiting/stalling and/or compute less

❑ To get ahead, uses

◼ Perform only address generation computation, branch prediction, 
value prediction (to predict “unknown” values) 

❑ Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect
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Thread-Based Pre-Execution

◼ Dubois and Song, “Assisted 
Execution,” USC Tech 
Report 1998.

◼ Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”
ISCA 1999.

◼ Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Thread-Based Pre-Execution Issues

◼ Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context 

◼ When the main thread is stalled

◼ When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

◼ How far ahead? 

❑ Too early: prefetch might not be needed

❑ Too late: prefetch might not be timely

2. When the main thread is stalled

◼ When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback (recall throttling)
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Thread-Based Pre-Execution Issues

◼ What, when, where, how

❑ Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

❑ Many issues in software-based pre-execution discussed
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An Example
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Example ISA Extensions
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Results on a Multithreaded Processor
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Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in 
Simultaneous Multithreading Processors,” ISCA 2001.



Problem Instructions

◼ Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 
2001.

◼ Zilles and Sohi, ”Understanding the backward slices of performance degrading 
instructions,” ISCA 2000.

74



Fork Point for Prefetching Thread
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Pre-execution Thread Construction

76



Review: Runahead Execution

◼ A simple pre-execution method for prefetching purposes

◼ When the oldest instruction is a long-latency cache miss:

❑ Checkpoint architectural state and enter runahead mode

◼ In runahead mode:

❑ Speculatively pre-execute instructions

❑ The purpose of pre-execution is to generate prefetches

❑ L2-miss dependent instructions are marked INV and dropped

◼ Runahead mode ends when the original miss returns

❑ Checkpoint is restored and normal execution resumes

◼ Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)
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Runahead as an Execution-based Prefetcher

◼ Idea of an Execution-Based Prefetcher: Pre-execute a piece 
of the (pruned) program solely for prefetching data 

◼ Idea of Runahead: Pre-execute the main program solely for 
prefetching data 

◼ Advantages and disadvantages of runahead vs. other 
execution-based prefetchers?

◼ Can you make runahead even better by pruning the 
program portion executed in runahead mode?
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Taking Advantage of Pure Speculation

◼ Runahead mode is purely speculative

◼ The goal is to find and generate cache misses that would 
otherwise stall execution later on

◼ How do we achieve this goal most efficiently and with the 
highest benefit?

◼ Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

◼ How?
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More on Runahead Execution
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top 
Picks by IEEE Micro.
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More on Runahead Execution (Short)
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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Effect of Runahead in Sun ROCK

◼ Shailender Chaudhry talk, Aug 2008.
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Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context

+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction 
accuracy

- Mispredicted branches dependent on missing data throw the thread   
off the correct execution path 

-- Can be wasteful

-- speculatively execute many instructions

-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
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Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)

◼ Prefetching shared data

❑ Coherence misses

◼ Prefetch efficiency is a lot more important

❑ Bus bandwidth more precious

❑ Cache space more valuable

◼ One cores’ prefetches interfere with other cores’ requests

❑ Cache conflicts

❑ Bus contention

❑ DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)

◼ Two key issues

❑ How to prioritize prefetches vs. demands (of different cores)

❑ How to control the aggressiveness of multiple prefetchers to 
achieve high overall performance

◼ Need to coordinate the actions of independent prefetchers
for best system performance

◼ Each prefetcher has different accuracy, coverage, timeliness
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Some Examples

◼ Controlling prefetcher aggressiveness

❑ Feedback directed prefetching [HPCA’07]

❑ Coordinated control of multiple prefetchers [MICRO’09]

◼ How to prioritize prefetches vs. demands from cores

❑ Prefetch-aware memory controllers and shared resource 
management [MICRO’08, ISCA’11]

◼ Bandwidth efficient prefetching of linked data structures

❑ Through hardware/software cooperation (software hints) 
[HPCA’09]
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More on Feedback Directed Prefetching

◼ Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by 
the Program Committee.
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On Bandwidth-Efficient Prefetching

◼ Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the 
Best Paper Award by the Program Committee.
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More on Coordinated Prefetcher Control

◼ Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)

91

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

◼ Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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More on Prefetching in Multi-Core (II)

◼ Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)

93

https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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More on Prefetching in Multi-Core (IV)
◼ Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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Prefetching in GPUs 

◼ Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)

◼ Prefetching shared data

❑ Coherence misses

◼ Prefetch efficiency is a lot more important

❑ Bus bandwidth more precious

❑ Cache space more valuable

◼ One cores’ prefetches interfere with other cores’ requests

❑ Cache conflicts

❑ Bus contention

❑ DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)

◼ Two key issues

❑ How to prioritize prefetches vs. demands (of different cores)

❑ How to control the aggressiveness of multiple prefetchers to 
achieve high overall performance

◼ Need to coordinate the actions of independent prefetchers
for best system performance

◼ Each prefetcher has different accuracy, coverage, timeliness
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Some Ideas

◼ Controlling prefetcher aggressiveness

❑ Feedback directed prefetching [HPCA’07]

❑ Coordinated control of multiple prefetchers [MICRO’09]

◼ How to prioritize prefetches vs. demands from cores

❑ Prefetch-aware memory controllers and shared resource 
management [MICRO’08, ISCA’11]

◼ Bandwidth efficient prefetching of linked data structures

❑ Through hardware/software cooperation (software hints) 
[HPCA’09]
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Motivation

◼ Aggressive prefetching improves 
memory latency tolerance of 
many applications when they run alone

◼ Prefetching for concurrently-executing 
applications on a CMP can lead to
 Significant system performance degradation and 

bandwidth waste

◼ Problem:
Prefetcher-caused inter-core interference
 Prefetches of one application contend with 

prefetches and demands of other applications
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Potential Performance

System performance improvement of ideally removing all 
prefetcher-caused inter-core interference in shared resources
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High Interference caused by  
Accurate Prefetchers
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Shortcoming of Local Prefetcher Throttling
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…
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Shortcoming of Local-Only 
Prefetcher Control
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Prefetching in Multi-Core (II)

◼ Ideas for coordinating different prefetchers’ actions

❑ Utility-based prioritization 

◼ Prioritize prefetchers that provide the best marginal utility on 
system performance

❑ Cost-benefit analysis

◼ Compute cost-benefit of each prefetcher to drive prioritization

❑ Heuristic based methods

◼ Global controller overrides local controller’s throttling decision 
based on interference and accuracy of prefetchers

◼ Ebrahimi et al., “Coordinated Management of Multiple Prefetchers 
in Multi-Core Systems,” MICRO 2009.
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Hierarchical Prefetcher Throttling
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Memory Controller

Pol (i)

Acc (i)

BW (i)

BWNO (i)

Global

Control

Core i

Local

Control

Pref. i

Shared Cache

Local

Throttling Decision

Final

Throttling Decision

High Acc (i)

Local

Throttle Up High Pol (i)

High BW (i)

High BWNO (i)

Pol. Filter i

- High accuracy

- High pollution

- High bandwidth consumed

while other cores need bandwidth

Enforce

Throttle Down
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HPAC Control Policies

Causing Low
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throttle 

down
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BW need
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BW need
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throttle 

down
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Accurate

High BW

Consumption

Low BW
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Others’ low

BW need

Others’ high

BW need

Others’ low

BW need

Others’ high

BW need

throttle 

down
Severe interference

Severe interference

Severe interference

Pol (i) Acc (i) BW (i)
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15%

9%

Normalized to system with no prefetching



More on Coordinated Prefetcher Control

◼ Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)

112

https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

◼ Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt
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Problems of Prefetch Handling

◼ How to schedule prefetches vs demands?
◼ Demand-first: Always prioritizes demands over 

prefetch requests

◼ Demand-prefetch-equal: Always treats them the same

Neither take into account both:

1. Non-uniform access latency of DRAM systems

2. Usefulness of prefetches 

Neither of these perform best
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When Prefetches are Useful

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

➢ Demand-first 

Row-conflict

Row B

Row-hit

Miss Y Miss X Miss Z

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit



116

When Prefetches are Useful

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

➢ Demand-first

➢ Demand-pref-equal

Row-hitRow-conflict

Saved Cycles

Row B

Miss Y Miss X Miss Z

Miss Y Hit X Hit Z

Demand-pref-equal outperforms demand-first

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

2 row-hits, 1 row-conflict
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When Prefetches are Useless

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

➢ Demand-first

➢ Demand-pref-equal

Saved Cycles
Miss Y

Miss Y

Demand-first outperforms demand-pref-equal

Y X Z

X Z Y

Processor needs ONLY Y
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Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled
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Demand-first is betterDemand-pref-equal is betterGoal 1: Adaptively schedule prefetches based on prefetch usefulnessGoal 2: Eliminate useless prefetches

Useless prefetches: 

Off-chip bandwidth

Queue resources 

Cache Pollution



More on Prefetching in Multi-Core (II)

◼ Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

◼ Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx


More on Prefetching in Multi-Core (IV)
◼ Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim


Informed Caching Policies for Prefetched Blocks

Caching Policies for Prefetched Blocks
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Problem: Existing caching policies for prefetched 
blocks result in significant cache pollution

Cache Set

MRU LRU

Cache Miss: 
Insertion Policy

Cache Hit: 
Promotion Policy



Informed Caching Policies for Prefetched Blocks

Prefetch Usage Experiment
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CPU
L
1

L2 L3
Prefetcher

Off-Chip 
Memory

Monitor L2 misses Prefetch into L3

Classify prefetched blocks into three categories

1.  Blocks that are unused

2.  Blocks that are used exactly once before evicted from cache

3.  Blocks that are used more than once before evicted from cache



Informed Caching Policies for Prefetched Blocks

Usage Distribution of Prefetched Blocks
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Informed Caching Policies for Prefetched Blocks

Shortcoming of Traditional Promotion Policy
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D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Promote to MRU



Informed Caching Policies for Prefetched Blocks

Demotion of Prefetched Block
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Cache Set
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Demote to LRU



Informed Caching Policies for Prefetched Blocks

Cache Insertion Policy for Prefetched Blocks
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Cache Set

MRU LRU

Prefetch Miss: 
Insertion Policy?

Good (Accurate prefetch)
Bad (Inaccurate prefetch)

Good (Inaccurate prefetch)
Bad (accurate prefetch)



Informed Caching Policies for Prefetched Blocks

Predicting Usefulness of Prefetch
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Cache Set

MRU LRU

Prefetch Miss 
Predict Usefulness

of Prefetch
Accurate Inaccurate

Fraction of Useful Prefetches



Prefetching in GPUs 

◼ Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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https://people.inf.ethz.ch/omutlu/pub/orchestrated-gpgpu-scheduling-prefetching_isca13.pdf
http://isca2013.eew.technion.ac.il/
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf

