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Recall: Outline of Prefetching Lecture(s)
n Why prefetch? Why could/does it work?
n The four questions

q What (to prefetch), when, where, how
n Software prefetching
n Hardware prefetching algorithms
n Execution-based prefetching
n Prefetching performance

q Coverage, accuracy, timeliness
q Bandwidth consumption, cache pollution

n Prefetcher throttling 
n Issues in multi-core (if we get to it)
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More on Content Directed Prefetching
n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the 
Best Paper Award by the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
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Recall: Hybrid Hardware Prefetchers
n Many different access patterns

q Streaming, striding
q Linked data structures
q Localized random

n Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive
-- Prefetchers start getting in each other’s way (contention, 

pollution)
- Need to manage accesses from each prefetcher

4



Execution-based Prefetchers (I)
n Idea: Pre-execute a piece of the (pruned) program solely 

for prefetching data 
q Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can 
be considered a “thread”

n Speculative thread can be executed 
n On a separate processor/core
n On a separate hardware thread context (think fine-grained 

multithreading)
n On the same thread context in idle cycles (during cache misses)
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Execution-based Prefetchers (II)
n How to construct the speculative thread:

q Software based pruning and “spawn” instructions
q Hardware based pruning and “spawn” instructions
q Use the original program (no construction), but 

n Execute it faster without stalling and correctness constraints

n Speculative thread
q Needs to discover misses before the main program

n Avoid waiting/stalling and/or compute less
q To get ahead of the main thread

n Performs only address generation computation, branch prediction, 
value prediction (to predict “unknown” values) 

q Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect
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Thread-Based Pre-Execution
n Dubois and Song, “Assisted 

Execution,” USC Tech 
Report 1998.

n Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”
ISCA 1999.

n Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Thread-Based Pre-Execution Issues
n Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context 

n When the main thread is stalled
n When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
n How far ahead? 

q Too early: prefetch might not be needed
q Too late: prefetch might not be timely

2. When the main thread is stalled
n When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)
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Thread-Based Pre-Execution Issues
n What, when, where, how

q Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

q Many issues in software-based pre-execution discussed
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An Example
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Example ISA Extensions
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Results on a Multithreaded Processor
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Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in 
Simultaneous Multithreading Processors,” ISCA 2001.



Problem Instructions
n Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 

2001.
n Zilles and Sohi, ”Understanding the backward slices of performance degrading 

instructions,” ISCA 2000.
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Fork Point for Prefetching Thread
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Pre-execution Thread Construction
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Runahead Execution



Review: Runahead Execution
n A simple pre-execution method for prefetching purposes

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)
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Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss 
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

n Hardware prefetcher and branch predictor tables are trained
using future access information. 



Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as                
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated 
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.



L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and 
store buffer.

n INV values are not used for prefetching/branch resolution.



Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to       
dependent loads.



Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a  
dedicated memory, called runahead cache. 

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is 
very small.



Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong 
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.



A Runahead Processor Diagram
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Runahead Execution Pros and Cons 
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

n Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses 
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in IBM POWER6, Sun “Rock”
27
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More on Runahead Execution
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top 
Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


More on Runahead Execution (Short)
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.
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More on Runahead in Sun ROCK

33Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005.



More on Runahead in Sun ROCK

34Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009.



Runahead Execution in IBM POWER6
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Cain+, “Runahead Execution vs. Conventional Data Prefetching 
in the IBM POWER6 Microprocessor,” ISPASS 2010



Runahead Execution in IBM POWER6
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Runahead Enhancements



Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



The Efficiency Problem
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Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006.



Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2 

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods  
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute
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Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit



Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient



Useless Runahead Periods
n Periods that do not result in prefetches for normal mode 

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that 

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit
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Overall Impact on IPC
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More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution 
Engines"
Proceedings of the 32nd International Symposium on Computer 
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides 
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as 
Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf


More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10


Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this 
limitation were ideally overcome

The Problem: Dependent Cache Misses
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Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache 

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer) 
loads

n Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 

2005.



Parallelizing Dependent Cache Misses
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More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of 
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO), 
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the 
Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf


More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique 
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508, 
December 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/


Even More on Runahead Execution

n Lecture video from Fall 2017
q https://www.youtube.com/watch?v=Kj3relihGF4

n Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July 
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by 
the University of Texas at Austin.
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https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt


Runahead as an 
Execution-Based Prefetcher



Runahead as an Execution-based Prefetcher
n Idea of an Execution-Based Prefetcher: Pre-execute a piece 

of the (pruned) program solely for prefetching data 

n Idea of Runahead: Pre-execute the main program solely for 
prefetching data 

n Advantages and disadvantages of runahead vs. other 
execution-based prefetchers?

n Can you make runahead even better by pruning the 
program portion executed in runahead mode?
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Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would 
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the 
highest benefit?

n Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

n How?
58



Execution-based Prefetchers: Pros and Cons
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context
+ Why? The processor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction 
accuracy
- Mispredicted branches dependent on missing data throw the thread   
off the correct execution path 

-- Can be wasteful
-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
59



Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to 

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness
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Some Examples

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource 

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints) 

[HPCA’09]
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More on Feedback Directed Prefetching

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by 
the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt


On Bandwidth-Efficient Prefetching
n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the 
Best Paper Award by the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt


More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt


More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx


More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim


Prefetching in GPUs 
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/jog_isca13_talk.pdf
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More on Runahead Execution
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Readings on Runahead Execution
n Required

q Mutlu et al., “Runahead Execution: An Alternative to Very 
Large Instruction Windows for Out-of-order Processors,” HPCA 
2003.

q Srinath et al., “Feedback directed prefetching”, HPCA 2007.

n Optional
q Mutlu et al., “Efficient Runahead Execution: Power-Efficient 

Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Remember: Latency Tolerance
n An out-of-order execution processor tolerates latency of 

multi-cycle operations by executing independent 
instructions concurrently
q It does so by buffering instructions in reservation stations and 

reorder buffer 
q Instruction window: Hardware resources needed to buffer all 

decoded but not yet retired/committed instructions

n What if an instruction takes 500 cycles?
q How large of an instruction window do we need to continue 

decoding?
q How many cycles of latency can OoO tolerate?
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Stalls due to Long-Latency Instructions
n When a long-latency instruction is not complete,               

it blocks instruction retirement. 
q Because we need to maintain precise exceptions 

n Incoming instructions fill the instruction window (reorder 
buffer, reservation stations).

n Once the window is full, processor cannot place new 
instructions into the window. 
q This is called a full-window stall.

n A full-window stall prevents the processor from making 
progress in the execution of the program.
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ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8

BEQ R1, R0, target
LOAD R1 ß mem[R5]

Full-window Stall Example

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order, 
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for 
most full-window stalls.

LOAD R3 ß mem[R2]
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Cache Misses Responsible for Many Stalls
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The Memory Latency Problem
n Problem: Memory latency is long

n And, it is not very easy to reduce it…
q We examined many methods for reducing DRAM latency

n Lee et al. “Tiered-Latency DRAM,” HPCA 2013.
n Lee et al., “Adaptive-Latency DRAM,” HPCA 2015.
n …
n See Lecture 10: Low-Latency Memory
n https://www.youtube.com/watch?v=vQd1YgOH1Mw

n And, even if we reduce memory latency, it is still long
q Remember the fundamental capacity-latency tradeoff
q Contention for memory increases latencies 
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https://www.youtube.com/watch?v=vQd1YgOH1Mw


How Do We Tolerate Stalls Due to Memory?

n Two major approaches
q Reduce/eliminate stalls
q Tolerate the effect of a stall when it happens

n Four fundamental techniques to achieve these
q Caching
q Prefetching
q Multithreading
q Out-of-order execution

n Many techniques have been developed to make these four 
fundamental techniques more effective in tolerating 
memory latency
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Memory Latency Tolerance Techniques

n Caching [initially by Bloom+, 1962 and later Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates irregular cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies
q Runahead execution alleviates this problem (as we will see today)



Runahead Execution
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ADD R2 ß R2, 64
STOR mem[R2] ß R4
ADD R4 ß R4, R5
MUL R4 ß R4, R3

LOAD R3 ß mem[R2]

ADD R2 ß R2, 8

BEQ R1, R0, target
LOAD R1 ß mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,
executed out of program order, 
but cannot be retired.

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

n Long-latency cache misses are responsible for most        
full-window stalls.

LOAD R3 ß mem[R2]
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Impact of Long-Latency Cache Misses
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Impact of Long-Latency Cache Misses
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The Problem
n Out-of-order execution requires large instruction windows 

to tolerate today’s main memory latencies.

n As main memory latency increases, instruction window size 
should also increase to fully tolerate the memory latency.

n Building a large instruction window is a challenging task       
if we would like to achieve 
q Low power/energy consumption (tag matching logic, ld/st

buffers)
q Short cycle time (access, wakeup/select latencies)
q Low design and verification complexity



Efficient Scaling of Instruction Window Size

n One of the major research issues in out of order execution

n How to achieve the benefits of a large window with a small 
one (or in a simpler way)?

n How do we efficiently tolerate memory latency with the 
machinery of out-of-order execution (and a small 
instruction window)?
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Memory Level Parallelism (MLP)
n Idea: Find and service multiple cache misses in parallel so 

that the processor stalls only once for all misses

q Enables latency tolerance: overlaps latency of different misses

n How to generate multiple misses?
q Out-of-order execution, multithreading, prefetching, runahead
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Runahead Execution (I)
n A technique to obtain the memory-level parallelism benefits 

of a large instruction window

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example



Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss 
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

n Hardware prefetcher and branch predictor tables are trained
using future access information. 



Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as                
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated 
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.



L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and 
store buffer.

n INV values are not used for prefetching/branch resolution.



Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to       
dependent loads.



Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a  
dedicated memory, called runahead cache. 

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is 
very small.



Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong 
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.



A Runahead Processor Diagram
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Runahead Execution Pros and Cons 
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

n Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses 
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in IBM POWER6, Sun “Rock”
99
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Runahead Execution vs. Large Windows
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Runahead vs. A (Real) Large Window
n When is one beneficial, when is the other?
n Pros and cons of each

n Which can tolerate floating-point operation latencies better?
n Which leads to less wasted execution?
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Runahead on In-order vs. Out-of-order
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Effect of Runahead in Sun ROCK
n Shailender Chaudhry talk, Aug 2008.
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Generalizing the Idea
n Runahead on different long-latency operations?

105



More on Runahead Execution
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top 
Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


More on Runahead Execution (Short)
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


More on Runahead in Sun ROCK

108Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005.



More on Runahead in SUN ROCK

109Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009.



Runahead Execution in IBM POWER6

110

Cain+, “Runahead Execution vs. Conventional Data Prefetching 
in the IBM POWER6 Microprocessor,” ISPASS 2010



Runahead Execution in IBM POWER6
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Runahead Enhancements



Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



The Efficiency Problem
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Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006.



Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2 

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods  
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit



Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient



Useless Runahead Periods
n Periods that do not result in prefetches for normal mode 

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that 

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit
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Overall Impact on IPC
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More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution 
Engines"
Proceedings of the 32nd International Symposium on Computer 
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides 
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as 
Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf


More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10


Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would 
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the 
highest benefit?

n Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

n How?
124



Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this 
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV



Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache 

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer) 
loads

n Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 

2005.



Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative 
Instructions

Miss



AVD Prediction [MICRO’05]
n Address-value delta (AVD) of a load instruction defined as:

AVD = Effective Address of Load – Data Value of Load

n For some address loads, AVD is stable
n An AVD predictor keeps track of the AVDs of address loads
n When a load is an L2 miss in runahead mode, AVD 

predictor is consulted

n If the predictor returns a stable (confident) AVD for that 
load, the value of the load is predicted

Predicted Value = Effective Address – Predicted AVD



Why Do Stable AVDs Occur?
n Regularity in the way data structures are 

q allocated in memory AND
q traversed

n Two types of loads can have stable AVDs
q Traversal address loads

n Produce addresses consumed by address loads
q Leaf address loads

n Produce addresses consumed by data loads



Traversal Address Loads
Regularly-allocated linked list:

A

A+k

A+2k

A+3k...

A traversal address load loads the 
pointer to next node:

node = nodeànext

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k
A+2k A+3k -k

Stable AVDStriding 
data value

AVD = Effective Addr – Data Value



Leaf Address Loads
Sorted dictionary in parser:           
Nodes point to strings (words)        
String and node allocated consecutively            

A+k

A C+k

C

B+k

B
D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word. 

A leaf address load loads the pointer to 
the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k
F+k F k

lookup (node, input) {     // ...                               
ptr_str = nodeàstring;
m = check_match(ptr_str, input);             
// …                                                       

}

Stable AVDNo stride!

AVD = Effective Addr – Data Valuestring

node
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Identifying Address Loads in Hardware
n Insight: 

q If the AVD is too large, the value that is loaded is likely not an 
address

n Only keep track of loads that satisfy:
-MaxAVD ≤ AVD ≤ +MaxAVD

n This identification mechanism eliminates many loads from 
consideration for prediction
q No need to value- predict the loads that will not generate 

addresses
q Enables the predictor to be small
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An Implementable AVD Predictor

n Set-associative prediction table
n Prediction table entry consists of

q Tag (Program Counter of the load)
q Last AVD seen for the load
q Confidence counter for the recorded AVD

n Updated when an address load is retired in normal mode
n Accessed when a load misses in L2 cache in runahead mode
n Recovery-free: No need to recover the state of the processor 

or the predictor on misprediction
q Runahead mode is purely speculative
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AVD Update Logic
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AVD Prediction Logic
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More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the 
Effectiveness of Runahead Execution by Exploiting Regular 
Memory Allocation Patterns"
Proceedings of the 38th International Symposium on 
Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November 
2005. Slides (ppt)Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf


More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique 
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508, 
December 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/


Wrong Path Events



An Observation and A Question
• In an out-of-order processor, some 

instructions are executed on the 
mispredicted path (wrong-path instructions).

• Is the behavior of wrong-path instructions 
different from the behavior of correct-path 
instructions? 
– If so, we can use the difference in behavior for 

early misprediction detection and recovery.



What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong 
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1



Why Does a WPE Occur?

• A wrong-path instruction may be executed 
before the mispredicted branch is 
executed.
– Because the mispredicted branch may be 

dependent on a long-latency instruction.

• The wrong-path instruction may consume 
a data value that is not properly initialized.



WPE Example from eon: 
NULL pointer dereference

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Beginning of the loop

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



First iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 0
ptr = x8ABCD0

*ptr

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {

4  :               // . . .

5  :         } 

6  :   } 



Loop branch correctly predicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Second iteration

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 1
ptr = xEFF8B0

*ptr

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Loop exit branch mispredicted

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2 

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Third iteration on wrong path

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

i = 2
ptr = 0

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Wrong Path Event

xEFF8B0x8ABCD0 x0 x0

Array boundary

Array of pointers
to structs

NULL pointer dereference!

i = 2
ptr = 0

*ptr

1  :   for (int i=0 ; i< length(); i++) { 

2  :         structure *ptr = array[i];         

3  :         if (ptr->x) {        

4  :               // . . .

5  :         } 

6  :   } 



Types of WPEs

• Due to memory instructions
– NULL pointer dereference
– Write to read-only page
– Unaligned access (illegal in the Alpha ISA)
– Access to an address out of segment range
– Data access to code segment
– Multiple concurrent TLB misses



Types of WPEs (continued)
• Due to control-flow instructions

– Misprediction under misprediction 
• If three branches are executed and resolved as mispredicts 

while there are older unresolved branches in the processor, it 
is almost certain that one of the older unresolved branches is 
mispredicted.

– Return address stack underflow
– Unaligned instruction fetch address (illegal in Alpha)

• Due to arithmetic instructions
– Some arithmetic exceptions

• e.g. Divide by zero



Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?



More on Wrong Path Events

n David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program 
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 37th International Symposium on 
Microarchitecture (MICRO), pages 119-128, Portland, OR, December 
2004. Slides (pdf)Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/armstrong_micro04.pdf
http://www.microarch.org/micro37/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt


Why Is This Important?
n A modern processor spends significant amount of time 

fetching/executing instructions on the wrong path
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A Lot of Time Spent on The Wrong Path
n A runahead processor, much more so…
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Is Wrong-Path Execution Useless/Useful/Harmful?

160



Wrong Path Is Often Useful for Performance

161



More So In Runahead Execution

162



Why is Wrong Path Useful? (I)

163

n Control-independence: e.g., wrong-path execution of future 
loop iterations



Why is Wrong Path Useful? (II)

164



Why is Wrong Path Useful? (III)

165

n Same data used in different control flow paths



More on Wrong Path Execution (I)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on 
Processor Performance"
Proceedings of the 3rd Workshop on Memory Performance 
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides 
(pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf


More on Wrong Path Execution (II)

n Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory 
References on Out-of-Order and Runahead Execution Processors"
IEEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571, 
December 2005.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc05.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2005.190


What If …
n The system learned from wrong-path execution and used 

that learning for better execution of the program/system?

n An open research problem…
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More on Runahead Enhancements



Eliminating Short Periods
n Mechanism to eliminate short periods:

q Record the number of cycles C an L2-miss has been in flight
q If C is greater than a threshold T for an L2 miss, disable entry 

into runahead mode due to that miss
q T can be determined statically (at design time) or dynamically

n T=400 for a minimum main memory latency of 500 cycles 
works well
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Eliminating Overlapping Periods
n Overlapping periods are not necessarily useless

q The availability of a new data value can result in the 
generation of useful L2 misses

n But, this does not happen often enough

n Mechanism to eliminate overlapping periods:
q Keep track of the number of pseudo-retired instructions R 

during a runahead period
q Keep track of the number of fetched instructions N since the 

exit from last runahead period
q If N < R, do not enter runahead mode 
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AVD Prediction 172

n Stable AVDs can be captured with a stride value predictor
n Stable AVDs disappear with the re-organization of the data 

structure (e.g., sorting)

n Stability of AVDs is dependent on the behavior of the 
memory allocator
q Allocation of contiguous, fixed-size chunks is useful

Properties of Traversal-based AVDs

A

A+k

A+2k

A+3k

A+3k

A+k

A

A+2k

Sorting

Distance between
nodes NOT constant!û
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Properties of Leaf-based AVDs

n Stable AVDs cannot be captured with a stride value predictor
n Stable AVDs do not disappear with the re-organization of  

the data structure (e.g., sorting)

n Stability of AVDs is dependent on the behavior of the  
memory allocator

A+k

A
B+k

B C

C+k
Sorting

Distance between
node and string
still constant!

C+k

C
A+k

A B

B+k
ü



More on
Multi-Core Issues in Prefetching 

174



Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to 

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness

176



Some Ideas

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource 

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints) 

[HPCA’09]
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Motivation
n Aggressive prefetching improves 

memory latency tolerance of 
many applications when they run alone

n Prefetching for concurrently-executing 
applications on a CMP can lead to
o Significant system performance degradation and 

bandwidth waste

n Problem:
Prefetcher-caused inter-core interference
o Prefetches of one application contend with 

prefetches and demands of other applications
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Potential Performance
System performance improvement of ideally removing all 
prefetcher-caused inter-core interference in shared resources
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High Interference caused by  
Accurate Prefetchers

180

DRAM

Memory Controller

Core2 Core3Core0

Dem 2
Addr:A

Dem 2
Addr:B

Pref 0
Addr:Z

Dem 0
Addr:X

Miss

Shared Cache

Pref 1
Addr:C

Pref 3
Addr:D

Dem 2
Addr:Y

Bank 0 Bank 1

Pref 3
Addr:D+64

Pref 1
Addr:C+64

Row
Buffers

Row:
C to C+8K

Row:
D to D+8K

Requests
Being

Serviced

Row Buffer
Hit
…

Dem 2
Addr:A

Core1Dem 1
Addr:C

Dem X
Addr: Y

Demand Request 
From Core X

For AddrY

Legend:



Shortcoming of Local Prefetcher Throttling
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…

Set 2

…

Core 0 Core 1 Core 2 Core 3

Dem 2 Dem 2 Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3

Dem 3 Dem 3 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Dem 2 Dem 2 Dem 2 Dem 2 Dem 3 Dem 3 Dem 3 Dem 3

Pref 0Used_P Pref 0 Pref 1 Pref 1

Prefetcher 
Degree:

Prefetcher 
Degree:

Used_P Used_P Used_P

Pref 0Pref 0 Pref 1 Pref 1Used_P Used_P Used_P Used_P

FDP Throttle Up
24 24

Pref 0 Pref 0 Pref 0 Pref 0 Pref 1 Pref 1 Pref 1 Pref 1

Dem 2 Dem 3Dem 2 Dem 3

Local-only prefetcher control techniques
have no mechanism to detect inter-core interference

Shared Cache

Set 0

Set 1

FDP Throttle Up
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Shortcoming of Local-Only 
Prefetcher Control
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Prefetching in Multi-Core (II)
n Ideas for coordinating different prefetchers’ actions

q Utility-based prioritization 
n Prioritize prefetchers that provide the best marginal utility on 

system performance

q Cost-benefit analysis
n Compute cost-benefit of each prefetcher to drive prioritization

q Heuristic based methods
n Global controller overrides local controller’s throttling decision 

based on interference and accuracy of prefetchers
n Ebrahimi et al., “Coordinated Management of Multiple Prefetchers 

in Multi-Core Systems,” MICRO 2009.
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Hierarchical Prefetcher Throttling

184

Memory Controller

Cache Pollution 
Feedback

Accuracy

Bandwidth Feedback

Local control’s goal: 
Maximize the 
prefetching performance of 
core i independently

Global control’s goal: Keep 
track of and control 
prefetcher-caused 
inter-core interference in 
shared memory system

Global
Control

Global Control: accepts or 
overrides decisions made by 
local control to improve 
overall system performance

Core i

Local
Control

Pref. i

Shared Cache

Throttling Decision

Local
Throttling Decision

Final
Throttling Decision



Hierarchical Prefetcher Throttling Example
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Memory Controller

Pol (i)

Acc (i)

BW (i)
BWNO (i)

Global
Control

Core i

Local
Control

Pref. i

Shared Cache

Local
Throttling Decision

Final
Throttling Decision

High Acc (i)

Local
Throttle Up High Pol (i)

High BW (i)
High BWNO (i)

Pol. Filter i

- High accuracy
- High pollution
- High bandwidth consumed
while other cores need bandwidth

Enforce
Throttle Down
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HPAC Control Policies

Causing Low
Pollution

Inaccurate

Highly 
Accurate

Others’ low
BW need

throttle 
down

Causing High
Pollution

ActionInterference ClassBWNO (i)

High BW
Consumption

Low BW
Consumption Others’ high

BW need

Others’ low
BW need

Inaccurate
throttle 
down

Highly 
Accurate

High BW
Consumption

Low BW
Consumption

Others’ low
BW need

Others’ high
BW need

Others’ low
BW need

Others’ high
BW need

throttle 
downSevere interference

Severe interference

Severe interference

Pol (i) Acc (i) BW (i)



HPAC Evaluation
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15%

9%

Normalized to system with no prefetching



More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt
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Problems of Prefetch Handling

n How to schedule prefetches vs demands?
n Demand-first: Always prioritizes demands over 

prefetch requests
n Demand-prefetch-equal: Always treats them the same

Neither take into account both:
1. Non-uniform access latency of DRAM systems
2. Usefulness of prefetches 

Neither of these perform best
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When Prefetches are Useful

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

Ø Demand-first 

Row-conflict

Row B

Row-hit

Miss Y Miss X Miss Z

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit
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When Prefetches are Useful

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

Ø Demand-first

Ø Demand-pref-equal

Row-hitRow-conflict

Saved Cycles

Row B

Miss Y Miss X Miss Z

Miss Y Hit X Hit Z

Demand-pref-equal outperforms demand-first

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit

2 row-hits, 1 row-conflict
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When Prefetches are Useless

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

DRAM

Processor

Ø Demand-first

Ø Demand-pref-equal

Saved Cycles
Miss Y

Miss Y

Demand-first outperforms demand-pref-equal

Y X Z

X Z Y

Processor needs ONLY Y



194

Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled
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Off-chip bandwidth
Queue resources 
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More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx


More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim


Informed Caching Policies for Prefetched Blocks

Caching Policies for Prefetched Blocks

198

Problem: Existing caching policies for prefetched 
blocks result in significant cache pollution

Cache Set

MRU LRU

Cache Miss: 
Insertion Policy

Cache Hit: 
Promotion Policy

Are these insertion and promotion 

policies good for prefetched blocks?



Informed Caching Policies for Prefetched Blocks

Prefetch Usage Experiment

199

CPU L
1 L2 L3

Prefetcher

Off-Chip 
Memory

Monitor L2 misses Prefetch into L3

Classify prefetched blocks into three categories
1.  Blocks that are unused
2.  Blocks that are used exactly once before evicted from cache
3.  Blocks that are used more than once before evicted from cache



Informed Caching Policies for Prefetched Blocks

Usage Distribution of Prefetched Blocks
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Used > Once Used Once Unused

Many applications have a 

significant fraction of 

inaccurate prefetches.

95% of the useful 

prefetched blocks are 
used only once!

Typically, large data structures 

benefit repeatedly from 

prefetching. Blocks of such data 

structures are unlikely to be 

used more than once!
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Shortcoming of Traditional Promotion Policy
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D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Promote to MRU

This is a bad policy. The block is 

unlikely to be reused in the cache.

This problem exists with state-of-the-art

replacement policies (e.g., DRRIP, DIP)
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Demotion of Prefetched Block
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D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Demote to LRU

Ensures that the block is evicted from 

the cache quickly after it is used!

Only requires the cache to distinguish between

prefetched blocks and demand-fetched blocks.
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Cache Insertion Policy for Prefetched Blocks
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Cache Set

MRU LRU

Prefetch Miss: 
Insertion Policy?

Good (Accurate prefetch)
Bad (Inaccurate prefetch)

Good (Inaccurate prefetch)
Bad (accurate prefetch)
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Predicting Usefulness of Prefetch
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Cache Set

MRU LRU

Prefetch Miss 
Predict Usefulness

of Prefetch
Accurate Inaccurate

Fraction of Useful Prefetches
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