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Recall: Outline of Pretetching lecture(s)

s Why prefetch? Why could/does it work?
= The four questions
o What (to prefetch), when, where, how
m Software prefetching
s Hardware prefetching algorithms
= Execution-based prefetching

m Prefetching performance

o Coverage, accuracy, timeliness

o Bandwidth consumption, cache pollution
m Prefetcher throttling

= Issues in multi-core (if we get to it)




More on Content Directed Prefetching

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Patt}

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu



https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

Recall: Hybrid Hardware Prefetchers

Many different access patterns
o Streaming, striding

o Linked data structures

o Localized random

Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive

-- Prefetchers start getting in each other’s way (contention,

pollution)
- Need to manage accesses from each prefetcher



Execution-based Prefetchers (1)

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can
be considered a “thread”

Speculative thread can be executed
On a separate processor/core

On a separate hardware thread context (think fine-grained
multithreading)

On the same thread context in idle cycles (during cache misses)



FExecution-based Pretfetchers (1I)

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread

o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead of the main thread

Performs only address generation computation, branch prediction,
value prediction (to predict “"unknown” values)

o Purely speculative so there is no need for recovery of main
program if the speculative thread is incorrect



Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 19909.

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.




Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

How far ahead?
0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback (recall throttling)



Thread-Based Pre-Execution Issues

= What, when, where, how

o Luk, “Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

o Many issues in software-based pre-execution discussed

(a) Multiple Pointer Chains

=3 Main Execution

»  Pre-Execution

L > = Array Elements Accessed

(d) Multiple Control-Flow Paths




An Example

(a) Original Code

register int 1;
register arc_t *arcout;
for(; 1< trips; ){
/I loop over ‘trips” lists
if (arcout[1] ident != FIXED) {

first_of_sparse_list = arcout + 1;
i
arcin = (arc_t *)first_of_sparse_list

> tail—» mark;

/I traverse the list starting with
/I the first node just assigned
while (arcin) {

tail = arcin—»tail;

:;1.1:cin = (arc_t *)tail—» mark;
}

1++, arcout+=3:

(b) Code with Pre-Execution

register int i;
register arc_t *arcout;
for(; 1< tops: ){
/I loop over ‘trips” lists
if (arcout[1] 1dent != FIXED) {

first_of_sparse_list = arcout + 1;
H
/I invoke a pre-execution starting
// at END_FOR
PreExecute_Start(tEND_FOR);
arcin = (arc_t *)first_of_sparse_list

—» tail—» mark;

/I traverse the list starting with
/] the first node just assigned
while (arcin) {

tail = arcin—» tail;

arcin = (arc_t *)tail—» mark;
}
/I terminate this pre-execution after
/I prefetching the entire list
PreExecute_Stop();
END_FOR:
/I the target address of the pre-
/I execution
1++, arcout+=3;
1
/I terminate this pre-execution if we
/! have passed the end of the for-loop
PreExecute_Stop();

Figure 2. Abstract versions of an important loop nest in the
Spec2000 benchmarkmc £. Loads that incur many cache miss-

es are underlined.

The Spec2000 benchmark mcf spends roughly half of its ex-
ecution time in a nested loop which traverses a set of linked list-
s. An abstract version of this loop is shown in Figure 2(a), in
which the for-loop iterates over the lists and the while-loop vis-
its the elements of each list. As we observe from the figure, the
first node of each list is assigned by dereferencing the pointer
first of_sparse_list, whose value is in fact determined by
arcout, an induction variable of the for-loop. Therefore, even
when we are still working on the current list, the first and the re-
maining nodes on the next list can be loaded speculatively by pre-
executing the next iteration of the for-loop.

Figure 2(b) shows a version of the program with pre-execution
code inserted (shown in boldface). END_FOR is simply a label
to denote the place where arcout gets updated. The new in-
struction PreExecute_Start(END_FOR) initiates a pre-execution
thread, say 7', starting at the PC represented by END_FOR. Right
after the pre-execution begins, 7"’s registers that hold the values
of i and arcout will be updated. Then i’s value is compared
against trips to see if we have reached the end of the for-loop.
If so, thread 7' will exit the for-loop and encounters a PreExe-
cute_Stop(), which will terminate the pre-execution and free up
1" for future use. Otherwise, 1" will continue pre-executing the
body of the for-loop, and hence compute the first node of the next
list automatically. Finally, after traversing the entire list through
the while-loop, the pre-execution will be terminated by another
PreExecute_Stop(). Notice that any PreExecute_Start() instruc-
tions encountered during pre-execution are simply ignored as we
do not allow nested pre-execution in order to keep our design sim-
ple. Similarly, PreExecute_Stop() instructions cannot terminate
the main thread either.
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Example ISA Extensions

T'hread_I D = PreExecute_Start(Stari_PC, Max_Insts):
Request for an 1dle context to start pre-execution at
Start_PC and stop when Max_Insts instructions have
been executed: 1'hread_I D holds either the identity of
the pre-execution thread or -1 if there is no idle context.

This instruction has effect only if it 1s executed by the main
thread.

PreExecute_Stop(): The thread that executes this instruction
will be self terminated if it 1s a pre-execution thread: no
effect otherwise.

PreExecute_Cancel(/'hread_{D): Terminate the pre-
execution thread with I'hread_{ [D. This instruction has
effect only if it 1s executed by the main thread.

Figure 4. Proposed instruction set extensions to support pre-
execution. (C syntax is used to improve readability.)
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Results on a Multithreaded Processor
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Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in
Simultaneous Multithreading Processors,” ISCA 2001.
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Problem Instructions

= Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA
2001.

= Zilles and Sohi, “Understanding the backward slices of performance degrading
instructions,” ISCA 2000.

Figure 2. Example problem instructions from heap insertion
routine in vpr.

struct s_heap **heap; // from [l..heap size]
int heap_size; // # of slots in the heap
int heap_tail; // first unused slot in heap

void add_to_heap (struct s_heap *hptr) {
1. heap[heap tail] = hptr; branch
2. int ifrom = heap_tail; misprediction
3. int ito = ifrom/2; .
4. heap_tail++; cache miss
5. while ((ito >= 1) &&
6. (heap[ifrom]->cost < heap[ito]=->cost))
7. struct s_heap *temp_ ptr = heap[ito];
8. heap[ito] = heap[ifrom];
9. heap[ifrom] = temp_ptr;
10. ifrom = ito;
11. ito = ifrom/2;

}
}

13



Fork Point for Prefetching Thread

Figure 3. The node to heap function, which serves as
the fork point for the slice that covers add to heap.

void node to heap (..., float cost, ...) {
struct s_heap *hptr; -e-——— fork point

hptr = alloc_heap_data();
hptr->cost = cost;

add_to_heap (hptr);




Pre-execution Thread Construction

Figure 4. Alpha assembly for the add_to_heap function.
The instructions are annotated with the number of the line in
Figure 2 to which they correspond. The problem instructions
are in bold and the shaded instructions comprise the
un-optimized slice.

Figure 5. Slice constructed for example problem instructions.

node_to_ljeiap; . 40 instrucs iy Much smaller than the original code, the slice contains a loop
. SKips ~ insctrucctions = = = - =
. s1, 252(gp) # sheap tail that mimics the loop in the original code.
2 1d1 t2, 0(sl) # ifrom = heap_tail .
1 1dgq ts, -76(sl) # &heap[O0] slice:
3 cmplt t2, 0, t4 # see note 1 ldg $6, 328(gp) # &heap
4 addl  t2, 0xl, t6 # heap_tail +4 2 1dl $3, 252(gp) # ito = heap_tail
1 sBaddq t2, t5, t3 # &heap[heap_tail] slice loop:
4 stl t6, 0(sl) # store heap_tail 3,11 i $3, O0xl, $3 # ito /= 2
: R ¢’ s%addq$3, 5,'S16  # sheaplito]
3 sra t4, 0x1l, t4 # ito = ifrom/2 6 ldg $18, 0($16) # heap[ito]
5 ble t4, return  # (ito < 1) 6 lds $f1, 4(s18) ¢ heap[ito]->cost
loop: 6 cmptle $f1,$f17,5f31 £ (heap[ito]->cost
6 s8addg t2, t5, a0 # &heap[ifrom] # < cost) PRED
6 s8addg t4, t5, t7 # &heap[ito] .
11 cmplt t4, 0, t9 # see note br slice_loop
10 move CATED # ifrom = ito .
[ ldg a2z, 0(ao0) # heap[ifrom] ## Annotations
6 1ldg a4, 0(t7) # heap[ito] fork: on first instruction of node_ to_heap
11 addl t4, t9, to # see note live=1in: Sfl7<c03t>' gp
11 sra t9, O0x1, t4 # ito = ifrom/2 max loop iterations: 4
6 lds sfo, 4(a2) # heap[ifrom]->cost
6 1lds sf1, 41(aq) ¢ heap[ito]->cost
6 cmptlt $f0,$f1,$f0 # (heap[ifrom]->cost
6 fbeq $f0, return # < heap[ito]->cost)
8 stq a2z, 0(t7) # heap[ito]
9 stq a4, 0(ao0) # heap[ifrom]
5 bgt t4, loop # (ito >= 1)
return:
. /* register restore code & return */
note: the divide by 2 operation is implemented by a 3 instruc-
tion sequence described in the strength reduction optimization. 15




Runahead Execution




Review: Runahead Execution

A simple pre-execution method for prefetching purposes

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)

Small Window:
Load 1 Miss Load 2 Miss

Miss 1

Runahead: :
Load 1 Miss ~ Load 2 Miss Load 1Hit  Load 2 Hit

Saved Cycles

18



Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.



Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated
specially.
o They are quickly removed from the instruction window.
o Their results are not trusted.




[.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID
= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= INV values are not used for prefetching/branch resolution.




Removwval of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
2 An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

s Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

= Pseudo-retired stores communicate their data to
dependent loads.




Store/LLoad Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct - Size of runahead cache is
very small.




Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

o A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.




A Runahead Processor Diagram

Mutlu+, “Runahead Execution,”
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Runahead Execution Pros and Cons

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

Implemented in IBM POWER6, Sun “Rock”
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Performance of Runahead Execution
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Runahead on In-order vs. Out-of-order
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More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"”
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEFE Micro.

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson § Yale N. Patt §

§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

More on Runahead Execution (Short)

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS

31


https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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More on Runahead in Sun ROCK

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND
MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS
THAT ARE 10 TO 30x THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.
HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOOD SINGLE-THREAD
PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING
INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005. 33



More on Runahead in Sun ROCK

Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun’s ROCK Processor

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson,

Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Tremblay
Sun Microsystems, Inc.
4180 Network Circle, Mailstop SCA18-211
_ Santa Clara, CA 95054, USA _
{shailender.chaudhry, robert.cypher, magnus.ekman, martin.karlsson,

anders.landin, sherman.yip, haakan.zeffer, marc.tremblay}@sun.com

Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009. 34



Runahead Execution in IBM POWERG

Runahead Execution vs. Conventional Data Prefetching
in the IBM POWERG6 Microprocessor

Harold W. Cain Priya Nagpurkar

IBM T.J. Watson Research Center
Yorktown Heights, NY
{tcain, pnagpurkar}@us.ibm.com

Cain+, “"Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010
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Runahead Execution in IBM POWERG

Abstract

After many years of prefetching research, most commercially
available systems support only two types of prefetching:
software-directed prefetching and hardware-based prefetchers
using simple sequential or stride-based prefetching
algorithms. More sophisticated prefetching proposals, despite
promises of improved performance, have not been adopted
by industry. In this paper, we explore the efficacy of both
hardware and software prefetching in the context of an IBM
POWERG commercial server. Using a variety of applications
that have been compiled with an aggressively optimizing
compiler to use software prefetching when appropriate, we
perform the first study of a new runahead prefetching feature
adopted by the POWERG design, evaluating it in isolation
and in conjunction with a conventional hardware-based
sequential stream prefetcher and compiler-inserted software
prefetching.

We find that the POWERG implementation of runahead
prefetching is quite effective on many of the memory intensive
applications studied; in isolation it improves performance
as much as 36% and on average 10%. However, it outper-
forms the hardware-based stream prefetcher on only two of
the benchmarks studied, and in those by a small margin.
When used in conjunction with the conventional prefetching

mechanisms, the runahead feature adds an additional 6% on
average, and 39% in the best case (GemsFDTD).
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Runahead Enhancements




Readings

Required
o Mutlu et al., "Runahead Execution”, HPCA 2003, Top Picks 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., "Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
a Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]




The Efficiency Problem ~
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Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.



Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

commlrwaesl W W

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit




Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP | ]

Miss 1 Miss 2

Second period is inefficient



Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:

a Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation



Overall Impact on Executed Instructions
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Overall Impact on IPC

Increase in IPC
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More on Efficient Runahead Execution

=  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
47


https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
a Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]




The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome




Parallelizing Dependent Cache Misses

= Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

= How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

= Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.




Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1

Value Predicted> <Can Compute lts Address>

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1




More on AVD Prediction

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns”
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (11

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Even More on Runahead Execution

= Lecture video from Fall 2017
a https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.
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Runahead as an
Execution-Based Prefetcher




Runahead as an Execution-based Prefetcher

Idea of an Execution-Based Prefetcher: Pre-execute a piece
of the (pruned) program solely for prefetching data

Idea of Runahead: Pre-execute the main program solely for
prefetching data

Advantages and disadvantages of runahead vs. other
execution-based prefetchers?

Can you make runahead even better by pruning the
program portion executed in runahead mode?
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Taking Advantage of Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
58



Execution-based Prefetchers: Pros and Cons

+ Can prefetch pretty much any access pattern

+ Can be very low cost (e.g., runahead execution)
+ Especially if it uses the same hardware context
+ Why? The processor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction
accuracy

- Mispredicted branches dependent on missing data throw the thread
off the correct execution path

-- Can be wasteful

-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
59



Multi-Core Issues in Prefetching




Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts

o Bus contention

o DRAM bank and row buffer contention

SAFARI
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Prefetching 1n Multi-Core (1I)

Two key issues

o How to prioritize prefetches vs. demands (of different cores)

o How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

Need to coordinate the actions of independent prefetchers
for best system performance

Each prefetcher has different accuracy, coverage, timeliness

SAFARI 62



Some Examples

Controlling prefetcher aggressiveness
o Feedback directed prefetching [HPCA'07]
o Coordinated control of multiple prefetchers [MICRO'09]

How to prioritize prefetches vs. demands from cores

o Prefetch-aware memory controllers and shared resource
management [MICRO08, ISCA"11]

Bandwidth efficient prefetching of linked data structures

o Through hardware/software cooperation (software hints)
[HPCA'09]

SAFARI
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More on Feedback Directed Prefetching

= Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February
2007. Slides (ppt)

One of the five papers nominated for the Best Paper Award by
the Program Committee.

Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinath{f Onur Mutlu§ Hyesoon Kimi{ Yale N. Patt}

IDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{santhosh, hyesoon, patt} @ece.utexas.edu

TMicrosoft §Microsoft Research
ssri @microsoft.com onur @microsoft.com
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt

On Bandwidth-Eftficient Prefetching

= Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Techniques for Bandwidth-Efficient Prefetching of Linked Data
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the
Best Paper Award by the Program Committee.

Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems

Eiman Ebrahimif Onur Mutlu§ Yale N. Patt}

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{ebrahimi, patt} @ece.utexas.edu onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt

More on Coordinated Prefetcher Control

= Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"”
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems

Eiman Ebrahimit Onur Mutlu§ Chang Joo Leet Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Pretfetching in Multi-Core (I)

= Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers”

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leef Onur Mutlu§ Veynu Narasiman{ Yale N. Pattf

TDepartment of Electrical and Computer Engineering : : o
The University of Texas at Austin §Microsoft Research and Carnegie Mellon University

) ] onur @ { microsoft.com,cmu.edu
{cjlee, narasima, patt} @ece.utexas.edu { }

67


https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

More on Pretetching in Multi-Core (II)

= Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching

Chang Joo Leet Veynu Narasimant Onur Mutlu§ Yale N. Pattt

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{cjlee, narasima, patt}@ece.utexas.edu onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Pretetching in Multi-Core (111)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimiy Chang Joo Leett Onur Mutlu§ Yale N. Pattt

fHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi, patt}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Pretetching in Multi-Core (IV)

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.

[Slides (pptx) (pdf)]
[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGYI XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim

Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jog"*  Onur Kayiran®  Asit K. Mishra®  Mahmut T. Kandemirt
Onur Mutlu*  Ravishankar lyer!  Chita R. Dast
"The Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com
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More on Runahead Execution
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Readings on Runahead Execution

Required

o Mutlu et al., "Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,” HPCA

2003.
o Srinath et al., "Feedback directed prefetching”, HPCA 2007.

Optional

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., "Wrong Path Events,” MICRO 2004.
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Remember: Latency Tolerance

An out-of-order execution processor tolerates latency of

multi-cycle operations by executing independent
instructions concurrently

o It does so by buffering instructions in reservation stations and
reorder buffer

o Instruction window: Hardware resources needed to buffer all
decoded but not yet retired/committed instructions

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?
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Stalls due to Long-lLatency Instructions

When a long-latency instruction is not complete,
it blocks instruction retirement.

o Because we need to maintain precise exceptions

Incoming instructions fill the instruction window (reorder
buffer, reservation stations).

Once the window is full, processor cannot place new
instructions into the window.

o This is called a full-window stall.

A full-window stall prevents the processor from making
progress in the execution of the program.
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Full-window Stall Example

8-entry instruction window:

Oldest HOV\ RSN [REIIM L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 < R2, 8
LOAD R3 € mem[R2]

ADD R4 €< R4, R5 but cannot be retired.
STOR mem[R2] €< R4
ADD R2 € R2, 64

Younger instructions cannot be executed

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for
most full-window stalls.

Independent of the L2 miss,
MUL R4 € R4, R3 executed out of program order,

because there is no space in the instruction window.

Il



Cache Misses Responsible for Many Stalls
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512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher
Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model
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The Memory lLatency Problem

Problem: Memory latency is long

And, it is not very easy to reduce it...

o We examined many methods for reducing DRAM latency
Lee et al. “Tiered-Latency DRAM,"” HPCA 2013.
Lee et al., "Adaptive-Latency DRAM,” HPCA 2015.

See Lecture 10: Low-Latency Memory
https://www.youtube.com/watch?v=vQd1YgOH1Mw

And, even if we reduce memory latency, it is still long
o Remember the fundamental capacity-latency tradeoff
o Contention for memory increases latencies
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https://www.youtube.com/watch?v=vQd1YgOH1Mw

How Do We Tolerate Stalls Due to Memory?

Two major approaches
o Reduce/eliminate stalls
o Tolerate the effect of a stall when it happens

Four fundamental techniques to achieve these
o Caching

o Prefetching

o Multithreading

o Out-of-order execution

Many techniques have been developed to make these four

fundamental techniques more effective in tolerating
memory latency
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Memory Latency Tolerance Techniques

Caching [initially by Bloom+, 1962 and later Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]

o Tolerates irregular cache misses that cannot be prefetched

o Requires extensive hardware resources for tolerating long latencies
o Runahead execution alleviates this problem (as we will see today)
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Runahead Execution




Small Windows: Full-window Stalls

8-entry instruction window:

Oldest HOV\ RSN [REIIM L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 < R2, 8
LOAD R3 € mem[R2]

Independent of the L2 miss,
MUL R4 € R4, R3 executed out of program order,

ADD R4 €< R4, R5 but cannot be retired.
STOR mem[R2] €< R4
ADD R2 € R2, 64

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for most
full-window stalls.
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Impact of Long-Latency Cache Misses
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Impact ot Long-Latency Cache Misses
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The Problem

Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

Building a large instruction window is a challenging task
if we would like to achieve

o Low power/energy consumption (tag matching logic, Id/st
buffers)

a Short cycle time (access, wakeup/select latencies)
a Low design and verification complexity
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Etticient Scaling of Instruction Window Size

= One of the major research issues in out of order execution

= How to achieve the benefits of a large window with a small
one (or in a simpler way)?

= How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?
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Memory Level Parallelism (MLP)

Idea: Find and service multiple cache misses in parallel so
that the processor stalls only once for all misses

isolated miss y parallel miss

B "4

A < /
C v

, time

o Enables latency tolerance: overlaps latency of different misses

How to generate multiple misses?
o Out-of-order execution, multithreading, prefetching, runahead
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Runahead Execution (I)

A technique to obtain the memory-level parallelism benefits

of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Porfect Caches: Runahead Example
Load 1 Hit  Load 2 Hit

e

Small Window:
Load 1 Miss Load 2 Miss

Runahead: s
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

Miss 1




Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.



Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated
specially.
o They are quickly removed from the instruction window.
o Their results are not trusted.




[.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID
= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= INV values are not used for prefetching/branch resolution.




Removwval of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
2 An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

s Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

= Pseudo-retired stores communicate their data to
dependent loads.




Store/LLoad Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct - Size of runahead cache is
very small.




Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

o A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.




A Runahead Processor Diagram

Mutlu+, “Runahead Execution,”
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Runahead Execution Pros and Cons

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

Disadvantages/Limitations:

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

Implemented in IBM POWER6, Sun “Rock”
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Performance of Runahead Execution

Micro-operations Per Cycle
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Runahead Execution vs. Large Windows

Micro-operations Per Cycle
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Runahead vs. A (Real) Large Window

When is one beneficial, when is the other?
Pros and cons of each

Which can tolerate floating-point operation latencies better?
Which leads to less wasted execution?
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Runahead on In-order vs. Out-of-order
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Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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Generalizing the Idea

= Runahead on different long-latency operations?
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More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"”
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEFE Micro.

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson § Yale N. Patt §

§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

More on Runahead Execution (Short)

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

More on Runahead in Sun ROCK

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND
MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS
THAT ARE 10 TO 30x THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.
HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOOD SINGLE-THREAD
PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING
INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005. 108



More on Runahead in SUN ROCK

Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun’s ROCK Processor

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson,

Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Tremblay
Sun Microsystems, Inc.
4180 Network Circle, Mailstop SCA18-211
_ Santa Clara, CA 95054, USA _
{shailender.chaudhry, robert.cypher, magnus.ekman, martin.karlsson,

anders.landin, sherman.yip, haakan.zeffer, marc.tremblay}@sun.com

Chaudhry+, “Simultaneous Speculative Threading,” ISCA 20009. 109



Runahead Execution in IBM POWERG

Runahead Execution vs. Conventional Data Prefetching
in the IBM POWERG6 Microprocessor

Harold W. Cain Priya Nagpurkar

IBM T.J. Watson Research Center
Yorktown Heights, NY
{tcain, pnagpurkar}@us.ibm.com

Cain+, “"Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010
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Runahead Execution in IBM POWERG

Abstract

After many years of prefetching research, most commercially
available systems support only two types of prefetching:
software-directed prefetching and hardware-based prefetchers
using simple sequential or stride-based prefetching
algorithms. More sophisticated prefetching proposals, despite
promises of improved performance, have not been adopted
by industry. In this paper, we explore the efficacy of both
hardware and software prefetching in the context of an IBM
POWERG commercial server. Using a variety of applications
that have been compiled with an aggressively optimizing
compiler to use software prefetching when appropriate, we
perform the first study of a new runahead prefetching feature
adopted by the POWERG design, evaluating it in isolation
and in conjunction with a conventional hardware-based
sequential stream prefetcher and compiler-inserted software
prefetching.

We find that the POWERG implementation of runahead
prefetching is quite effective on many of the memory intensive
applications studied; in isolation it improves performance
as much as 36% and on average 10%. However, it outper-
forms the hardware-based stream prefetcher on only two of
the benchmarks studied, and in those by a small margin.
When used in conjunction with the conventional prefetching

mechanisms, the runahead feature adds an additional 6% on
average, and 39% in the best case (GemsFDTD).
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Runahead Enhancements




Readings

Required
o Mutlu et al., "Runahead Execution”, HPCA 2003, Top Picks 2003.

Recommended

o Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

o Armstrong et al., "Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
a Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]




The Efficiency Problem ~
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Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.



Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

commlrwaesl W W

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit




Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP | ]

Miss 1 Miss 2

Second period is inefficient



Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:

a Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation



Overall Impact on Executed Instructions
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Overall Impact on IPC

Increase in IPC
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More on Efficient Runahead Execution

=  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

Taking Advantage of Pure Speculation

Runahead mode is purely speculative

The goal is to find and generate cache misses that would
otherwise stall execution later on

How do we achieve this goal most efficiently and with the
highest benefit?

Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

How?
124



Limitations of the Baseline Runahead Mechanism

= Energy Inefficiency
o A large number of instructions are speculatively executed
a Efficient Runahead Execution [ISCA’ 05, IEEE Micro Top Picks’ 06]

= Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
a Address-Value Delta (AVD) Prediction [MICRO’ 05]

= Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
a Wrong Path Events [MICRO’ 04]




The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome




Parallelizing Dependent Cache Misses

= Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

= How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

= Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.




Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1

Value Predicted> <Can Compute lts Address>

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1




AVD Prediction [MICRO’ 05]

Address-value delta (AVD) of a load instruction defined as:
AVD = Effective Address of Load — Data Value of Load

For some address loads, AVD is stable

An AVD predictor keeps track of the AVDs of address loads

When a load is an L2 miss in runahead mode, AVD
predictor is consulted

If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

Predicted Value = Effective Address — Predicted AVD



Why Do Stable AVDs Occur?

Regularity in the way data structures are
o allocated in memory AND
o traversed

Two types of loads can have stable AVDs
o Traversal address loads
Produce addresses consumed by address loads

o Leaf address loads
Produce addresses consumed by data loads



Traversal Address L.oads

Regularly-allocated linked list: A traversal address load loads the

pointer to next node:

A node = node->next
,/A+k AVD = Effective Addr — Data Value
/" \ /" \
Effective Addr | Data Value; AVD
A+Zk A A+k [k
+ + -
A+3K A+k A+2k k
A+2k A+3k -k
U U

Striding Stable AVD
data value




Leaf Address Loads

Sorted dictionary in parser: Dictionary looked up for an input word.
NoFles point to strings (words) : A leaf address load loads the pointer to
String and node allocated consecutively . _

the string of each node:

lookup (node, input) { // ...
lA+k ptr_str = node->string;

/...
e B e

m = check match(ptr_str, input);

C+k !
B 75[\ AVD = Effective Addr — Data Value
D4k ek FAk \G+k Effective Addr | Ddta Vaiue /AvD |
A+k A\l
ClDD CSE ClDF <i>G C+k c k
F+k F/\ k)
No stride! Stable AVD



Identitying Address L.oads in Hardware

Insight:

o If the AVD is too large, the value that is loaded is likely not an
address

Only keep track of loads that satisfy:
-MaxAVD = AVD = +MaxAVD

This identification mechanism eliminates many loads from
consideration for prediction

o No need to value- predict the loads that will not generate
addresses

o Enables the predictor to be small

AVD Prediction 133



An Implementable AVD Predictor

Set-associative prediction table
Prediction table entry consists of

o Tag (Program Counter of the load)
o Last AVD seen for the load

o Confidence counter for the recorded AVD

Updated when an address load is retired in normal mode
Accessed when a load misses in L2 cache in runahead mode

Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

o Runahead mode is purely speculative
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AVD Update Logic

Effective Address Data Yalue

Y Y
—
computed &Y D = Effective Addt — Data Value
D= <= l
~Maz&VD? | | MaxdVD? o] Upete /Rt
Logic

'

valid AYD?

b

'

J!

Tag

Conf

AYD

1

PC of Retired Load
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AVD Prediction Logic

Predicted?
(not INV?)

$ Predicted Value

= Effective Addr— AVYD

LA

Tag

Conf

AVD

-

Program Counter of
L2—miss Load

Effective Address of
L2—miss Load

AVD Prediction
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More on AVD Prediction

=  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the
Effectiveness of Runahead Execution by Exploiting Reqular
Memory Allocation Patterns"”
Proceedings of the 38th International Symposium on
Microarchitecture (MICRO), pages 233-244, Barcelona, Spain, November
2005. Slides (ppt)Slides (pdf)

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (11

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/

Wrong Path Events




An Observation and A Question

 In an out-of-order processor, some
Instructions are executed on the
mispredicted path (wrong-path instructions).

* |s the behavior of wrong-path instructions
different from the behavior of correct-path
iInstructions?

— If so, we can use the difference in behavior for
early misprediction detection and recovery.



What is a Wrong Path Event?

An instance of illegal or unusual behavior
that is more likely to occur on the wrong
path than on the correct path.

Wrong Path Event = WPE
Probability (wrong path | WPE) ~ 1



Why Does a WPE Occur?

* A wrong-path instruction may be executed
before the mispredicted branch is
executed.

— Because the mispredicted branch may be
dependent on a long-latency instruction.

* The wrong-path instruction may consume
a data value that is not properly initialized.



A N L W N =

WPE Example from eon:
NULL pointer dereference

: for (inti=0; i< length(); i++) {

structure *ptr = array|[i];
if (ptr->x) {
// --.



Beginning of the loop

Array boundary
i=0
\ 4
Array of pointers
to structs x8ABCDO XEFF8BO0 x0 x0
............ } }
1 : for (inti=0; i< length(); i++) {
2 : structure *ptr = arrayl[i];
3: if (ptr->x) {
4 : // ...
5: }
6

HE




First iteration

Array boundary
=0
ptr = x8ABCDO
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0
............ } }

: for (int i=0; i< length(); i++) {
structure *ptr = arrayl[i];
if (ptr->x) {
//-..
b

U b W N =

Y




First iteration

Array boundary
i=0
ptr = x8ABCDO
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0
*ptr
............ }

: for (int i=0; i< length(); i++) {
structure *ptr = arrayl[i];
if (ptr->x) {
//-..
b

U b W N =

Y




Loop branch correctly predicted

Array boundary
i =1
v
Array of pointers
to structs x8ABCDO | xEFF8BO x0 x0
............ }

1 : for (inti=0; i< length(); i++) {
arrayl[i];




Second iteration

Array boundary

=1
ptr = xEFF8BO

Array of pointers

to structs x0

e

1 : for (inti=0; i< length(); i++) {
2 structure *ptr = array[i];

3 if (ptr->x) {

4 : Y7

5: >

6 : }




Second iteration

Array boundary

| =1
ptr = xEFF8B0 l

Array of pointers
to structs

L L--.}

: for (int i=0; i< length(); i++) {
structure *ptr = array[i];
if (ptr->x) {
// ..
¥

U b W N =

: Y




Loop exit branch mispredicted

Array boundary

l | =2
Array of pointers
to structs x0 x0

») »)
r (inti ;i< length(); i++) {
structure *p array[i];
if (ptr->x) {
// ..
¥




Third iteration on wrong path

Array boundary

| =2
ptr=20
Array of pointers
to structs x0

» »
r (inti ; i< length(); i++) {
structure *p array[i];
if (ptr->x) {
// ..
¥




Wrong Path Event

Array boundary

Array of pointers
to structs

: for (int i=0; i< length(); i++) {
siucture iy = array il NULL pointer dereference!
// ...

¥

U b W N =

P}




Types of WPEs

* Due to memory instructions
— NULL pointer dereference
— Write to read-only page
— Unaligned access (illegal in the Alpha ISA)
— Access to an address out of segment range
— Data access to code segment
— Multiple concurrent TLB misses



Types of WPEs (continued)

 Due to control-flow instructions

— Misprediction under misprediction

* If three branches are executed and resolved as mispredicts
while there are older unresolved branches in the processor, it
is almost certain that one of the older unresolved branches is
mispredicted.

— Return address stack underflow
— Unaligned instruction fetch address (illegal in Alpha)

 Due to arithmetic instructions

— Some arithmetic exceptions
 e.g. Divide by zero



Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?



More on Wrong Path Events

= David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 3/th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

Wrong Path Events: Exploiting Unusual and Illegal Program Behavior for Early
Misprediction Detection and Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{dna,hyesoon,onur,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/armstrong_micro04.pdf
http://www.microarch.org/micro37/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt

Why Is This Important?

A modern processor spends significant amount of time
fetching/executing instructions on the wrong path

100
95 == % (cycles on wrong path / total cycles)

90 % (fetched wrong path insts / all fetched insts)
85 == % (exec wrong path non-mem insts / all exec insts)

32 ra % (exec wrong path mem insts / all exec insts)

70
65
60
551
50
45
40
35+
30
254

: J tl [I
2 »
3: | ] 4. | | | |

Percentage (%)

SaadREREER

| |
gzip vpr gcc  mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Fig. 1. Percentage of fetch cycles spent on the wrong path, percentage
of instructions fetched on the wrong path, and percentage of instructions
(memory and nonmemory) executed on the wrong path in the baseline
processor for SPEC 2000 integer benchmarks. 158



A Lot of Time Spent on The Wrong Path

= A runahead processor, much more so...

100
95 == % (cycles on wrong path / all execution cycles)

90 ' % (fetched wrong path insts / all fetched insts)
85 == % (exec wrong path non-mem insts / all exec insts)
) ra % (exec wrong path mem insts / all exec insts)
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Fig. 20. Percentage of total cycles spent on the wrong path, percentage
of instructions fetched on the wrong path, and percentage of instructions
~ (memory and nonmemory) executed on the wrong path in the runahead

processor. 159



Is Wrong-Path Execution Useless/Useful/Harmful?

4 WRONG PATH: TOo MODEL OR NOT TO MODEL

In this section, we measure the error in IPC if wrong-path
memory references are not simulated. We also evaluate the
overall effect of wrong-path memory references on the IPC
(retired Instructions Per Cycle) performance of a processor.

1.

How important is it to correctly model wrong-path
memory references? What is the error in the
predicted performance if wrong-path references are
not modeled?

Do wrong-path memory references affect perfor-
mance positively or negatively? What is the relative
significance on performance of prefetching, band-
width consumption, and pollution caused by wrong-
path references?

What kind of code structures lead to the positive
effects of wrong-path memory references?

How do wrong-path memory references affect the
performance of a runahead execution processor [7],
[18] which implements an aggressive form of
speculative execution?

160



Wrong Path Is Often Usetul for Performance

4

- N W
|

=
|

== 250-cycle memory latency
== 500-cycle memory latency
= |000-cycle memory latency

Percent IPC Error (%)

' ' ' | ' | ' ' '
O 0 N N W B W N -

[
=

gzip  vpr gcc  mcf crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Fig. 7. Error in the IPC of the baseline processor with a stream
prefetcher for three different memory latencies if wrong-path memory
references are not simulated.
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More So In Runahead Execution

== wrong-path references correctly modeled
== wrong-path references not modeled

IPC Improvement due to Runahead Execution (%)
(o
o

0- T e
gzip vpr gece  mef crafty parser eon perlbmk gap vortex bzip2 twolf hmean

Fig. 19. IPC improvement of adding runahead execution to the baseline
processor if wrong-path memory references are or are not modeled.
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Why 1s Wrong Path Usetul? (I)

= Control-independence: e.g., wrong-path execution of future
loop iterations

1 : arc_t *arc; // array of arc_t structures

2 : /] initialize arc (arc = ...)

A

4. for (;arc < stop_arcs; arc += size) {

= § if (arc—>ident > 0) { // frequently mispredicted br.
B // function calls and

h % // operations on the structure pointed to by arc
8: IF s

9. }

1 3

Fig. 16. An example from mcf showing wrong-path prefetching for later
loop iterations.
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Why 1s Wrong Path Usetul? (I1I)

0NN L B W=~

O

10:
11:
12:
13:
14:
15:
16:
W&
18:

| = min; r = max;
cut = perm|[ (long)( (I+r) / 2 ) ]—>abs_cost;

do {
while( perm[l]—>abs_cost > cut )
1++;
while( cut > perm|[r]—>abs_cost )
r——;

if(l<r){
xchange = perm([l];
perm[l] = perm[r];
perm|[r| = xchange;
}
if(l<=r) {
l++; r——;
}

} while(1<=r1);

Fig. 17. An example from mcf showing wrong-path prefetching between

different loops.
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Why 1s Wrong Path Usetul? (I11)

= Same data used in different control flow paths

0O\ N B W -

O

.
.

10:
11:
12:
13:
14:
15:
16:
LT

node_t *node;
// initialize node
I o

while (node) {

if (node—>orientation == UP) { // mispredicted branch
node—>potential = node—>basic_arc—>cost
+ node—>pred—>potential;
} else { /* == DOWN */
node—>potential = node—>pred—>potential
— node—>basic_arc—>cost;
...
}
// control-flow independent point (re—convergent point)
node = node—>child;

}

Fig. 18. An example from mcf showing wrong-path prefetching in
control-flow hammocks.
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More on Wrong Path Execution (I)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance”
Proceedings of the 3rd Workshop on Memory Performance
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides

(pdf)

Understanding The Effects of Wrong-Path Memory
References on Processor Performance

Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{onur,hyesoon,dna,patt}@ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf

More on Wrong Path Execution (1)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"

[EEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-
Order and Runahead Execution Processors

Onur Mutlu, Student Member, IEEE, Hyesoon Kim, Student Member, IEEE,
David N. Armstrong, and Yale N. Patt, Fellow, IEEE

167


https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc05.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2005.190

What If ...

The system learned from wrong-path execution and used
that learning for better execution of the program/system?

An open research problem...
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More on Runahead Enhancements




Eliminating Short Periods

Mechanism to eliminate short periods:
o Record the number of cycles C an L2-miss has been in flight

o If Cis greater than a threshold T for an L2 miss, disable entry
into runahead mode due to that miss

o T can be determined statically (at design time) or dynamically

T=400 for a minimum main memory latency of 500 cycles
works well
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Eliminating Overlapping Periods

Overlapping periods are not necessarily useless

o The availability of a new data value can result in the
generation of useful L2 misses

But, this does not happen often enough

Mechanism to eliminate overlapping periods:

o Keep track of the number of pseudo-retired instructions R
during a runahead period

o Keep track of the number of fetched instructions /N since the
exit from last runahead period

a If N < R, do not enter runahead mode
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Properties of Traversal-based AVDs

Stable AVDs can be captured with a stride value predictor

Stable AVDs disappear with the re-organization of the data
structure (e.g., sorting)

A S
£ A+k Sorting £ A+k

>
A+2k A Distance between

!
A+3k A+2k nodes NOT constant! 3

Stability of AVDs is dependent on the behavior of the
memory allocator

o Allocation of contiguous, fixed-size chunks is useful
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Properties of Leat-based AVDs

Stab
Stab

e AVDs cannot be captured with a stride value predictor
e AVDs do not disappear with the re-organization of

the

ata structure (e.g., sorting)

|A+K |Gk Distance between

node and string
éA Sorting CSC still constant! \/
B+k C+k » A+k B+k

e Sl

Stabi
mem

lity of AVDs is dependent on the behavior of the
ory allocator
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More on
Multi-Core Issues in Prefetching
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Prefetching in Multi-Core (I)

Prefetching shared data
o Coherence misses

Prefetch efficiency is a lot more important
o Bus bandwidth more precious
o Cache space more valuable

One cores’ prefetches interfere with other cores’ requests
o Cache conflicts

o Bus contention

o DRAM bank and row buffer contention
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Prefetching 1n Multi-Core (1I)

Two key issues

o How to prioritize prefetches vs. demands (of different cores)

o How to control the aggressiveness of multiple prefetchers to
achieve high overall performance

Need to coordinate the actions of independent prefetchers
for best system performance

Each prefetcher has different accuracy, coverage, timeliness
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Some Ideas

Controlling prefetcher aggressiveness

o Feedback directed prefetching [HPCA'07

o | Coordinated control of multiple prefetchers [MICRO'09]
How to prioritize prefetches vs. demands from cores

o Prefetch-aware memory controllers and shared resource
management [MICRO08, ISCA"11]

Bandwidth efficient prefetching of linked data structures

o Through hardware/software cooperation (software hints)
[HPCA'09]

SAFARI b



Motivation

B Aggressive prefetching improves
memory latency tolerance of
many applications when they run alone

B Prefetching for concurrently-executing
applications on a CMP can lead to

[0 Significant system performance degradation and
bandwidth waste

B Problem: | |
Prefetcher-caused inter-core interference

[0 Prefetches of one application contend with
prefetches and demands of other applications
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Potential Performance

System performance improvement of ideally removing all

prefetcher-caused inter-core interference in shared resources

o))
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Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]
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High Interference caused by
Accurate Prefetchers

Legend:

| qarY ’
Disfand Reduat 0

Shared Cache

Hit

Requests

DRAM Being !
Serviced !

Row ] :

Bank O Bank |
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Shortcoming of Local Pretetcher Throttling

Core 0 Core 1 Core 2 Core 3
Degree: 2 Degree: 2
Share
Set 0 Bsafi 1B | Beafi 1B Dem 3 |Dem 3
Set 1 |Peefidp |Besfi(P Dem 3 [Dem 3
Set 2 PmhB |PehB | PeshB | Pesh B
Local-only prefetcher control techniques
have no mechanism to detect inter-core interference
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Shortcoming of Local-Only
Prefetcher Control

4-core workload example: Ibm_06 + swim_00 + crafty_00 + bzip2_00

B No Prefetching
O Pref. + No Throttling
B Feedback-Directed Prefetching

1I:I HPAC

o
o

=)
o
D

o
N
|

o
N
l

Hspeedup

peedup over Alone Run

n I

Our Abproacw: Use both global and per-core feedback
to determine each prefetcher’ s aggressiveness
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Prefetching 1n Multi-Core (1I)

Ideas for coordinating different prefetchers’ actions

o Utility-based prioritization

Prioritize prefetchers that provide the best marginal utility on
system performance

o Cost-benefit analysis
Compute cost-benefit of each prefetcher to drive prioritization

o Heuristic based methods

Global controller overrides local controller’s throttling decision
based on interference and accuracy of prefetchers

Ebrahimi et al., "Coordinated Management of Multiple Prefetchers
in Multi-Core Systems,” MICRO 2009.
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Hierarchical Pretetcher Throttling

bohbacQaintld: goaiepis or Global go
Maxinolze deeisi de b rack of and-coptr
W@éﬁ%ﬂ%lﬁéﬂg’;‘gﬂaﬁzeeof g prefg/l(emor dCO”GO'Pr
GOE 41 RPER 5 rmance

Pref. i

+ ] Throttling Decision

Local
Control

-

Global control’'s goal: Keep

chercause

inter-core interference in
shared memory system

T

Final
Throttling Decision

-
Accuracy

A

Local

Core i

Throttling Decision

Global
Control

Cache Pollution
Feedback

Shared Cache
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Hierarchical Pretetcher Throttling Example

- High accuracy
- High pollution

- High bandwidth consumed
while other cores need bandwidth

Memory Controller

Emidrce

v

Pref./ |~

High Acc (i)

Throtttiegidegision

High BW (i)

High BWNO (i)

v

__________ .| Global
Control

Local x
Control Local §
Core i |ThrotlladJpecision . High Pol (i)

Pol. Filter j

1

Shared Cache
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HPAC Control Policies

Pol (i) Acc (i) BW (i) BWNO (i) Interference Class| Action
4 , N\
. Oér\l;\e/rs I%W N
Low BW <\ need )
Consumption|™_ ( i )
4 Inaccurate bl Others’ high} , Severe interference throttle
High BW \<\ BW need | down
Causing Low Consumption|_( Others’ low
. Y ow
[ PO”Utlon BW need —>
g /
Highly W >
Accurate J "
) S tort throttle
Inaccurate J » Severe interference down
4 N\
. . Others’ low
Causing High BW need [
Pollution Low BW }<\ J
i 4
Consumption Others’ high\,_>
Highly L BW need
Accurate
Others’ Iow L
High BW BW need
Consumption
P Others’ hlgh R _ throttle
BW need Severe interference down
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HPAC Evaluation

® No Throttling |
®m Feedback-Directed Prefetching (FDP)|

® Hierarchical Prefetcher Aggressiveness Control (HPAC)]
1.1 =2

1.05

"115%

0.9 -

Normalized System Unfairness

Normalized System Performance

0.85 -

Normalized to system with no prefetching
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More on Coordinated Prefetcher Control

= Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core
Systems"”
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 316-326, New York, NY, December
2009. Slides (ppt)

Coordinated Control of Multiple Prefetchers
in Multi-Core Systems

Eiman Ebrahimit Onur Mutlu§ Chang Joo Leet Yale N. Patty

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University
{ebrahimi, cjlee, patt}Qece.utexas.edu onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt

More on Pretfetching in Multi-Core (I)

= Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers”

Proceedings of the 41st International Symposium on

Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November
2008. Slides (ppt)

Prefetch-Aware DRAM Controllers

Chang Joo Leef Onur Mutlu§ Veynu Narasiman{ Yale N. Pattf

TDepartment of Electrical and Computer Engineering : : o
The University of Texas at Austin §Microsoft Research and Carnegie Mellon University

) ] onur @ { microsoft.com,cmu.edu
{cjlee, narasima, patt} @ece.utexas.edu { }
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt

Problems of Prefetch Handling

= How to schedule prefetches vs demands?

= Demand-first: Always prioritizes demands over
prefetch requests

= Demand-prefetch-equal: Always treats them the same

Neither of these perform best

Neither take into account both:

1. Non-uniform access latency of DRAM systems
2. Usefulness of prefetches
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When Prefetches are Useful

Row Buffer

DRAM | Controller

Pref Row A

Pref Row A

- X

DemRowB|:Y

Processor needs Y, X, and Z

>

DRAM

Processor

] :
@ Execution

— Stall

Demand-first

2 row-conflicts, 1 row-hit

| 17

Miss Y Miss X Miss Z
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When Prefetches are Useful

] :
@ Execution

— Stall

DRAM > Demand-first

Row B Row Buffer 2 row-conflicts, 1 row-hit
f oRAM | S

Processor

Dem RowB | : Y > Demand-pref-equal :

Pref Row A | :Z 2 row-hits, 1 row-conflict
oRav (D '

1
1
1
I
Processor | || PN

Processor needs Y, X, and Z | Saved Cycles

Miss Y Hit X Hit Z
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When Prefetches are Useless

DRAM > Demand-first
Row A Row Buffer
f orav (S SR
_____________________ X Z
Processor =< >
DRAM | Controller :
Saved:Cycles

JOl Demand-first oufperforms demand-pref-equal

Dem RowB | :Y > Demand-pref-equal

Pref RowA | :Z
orRM (D
X Z

Processor,

Processor needs ONLY Y

Miss Y
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Demand-first vs. Demand-pref-equal policy

Stream prefetcher enabled

e venama oy

{11 Demand-pref-e0

,' -‘\\' Useless prefetches:
[ Y ofecnip bandwiar
Queue resources

Cache Pollution

Q
Q
S
o
c
=
gl
@
N
®©
£
o
c
O
Q

Goal 1: Adaptive Goal 2: Eliminate useless prefetches 'tch usefulness




More on Pretetching in Multi-Core (II)

= Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,

"Improving Memory Bank-Level Parallelism in the Presence of
Prefetching"

Proceedings of the 42nd International Symposium on

Microarchitecture (MICRO), pages 327-336, New York, NY, December
2009. Slides (ppt)

Improving Memory Bank-Level Parallelism
in the Presence of Prefetching

Chang Joo Leet Veynu Narasimant Onur Mutlu§ Yale N. Pattt

TDepartment of Electrical and Computer Engineering §Computer Architecture Laboratory (CALCM)
The University of Texas at Austin Carnegie Mellon University

{cjlee, narasima, patt}@ece.utexas.edu onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt

More on Pretetching in Multi-Core (111)

= Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core
Systems"”
Proceedings of the 38th International Symposium on Computer
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimiy Chang Joo Leett Onur Mutlu§ Yale N. Pattt

fHPS Research Group tIntel Corporation §Carnegie Mellon University

The University of Texas at Austin . '
{ebrahimi, patt}@hps.utexas.edu chang.joo.lee@intel.com onur@cmu.edu

196


https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx

More on Pretetching in Multi-Core (IV)

= Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4,
January 2015.
Presented at the 10th HIPEAC Conference, Amsterdam, Netherlands, January
2015.

[Slides (pptx) (pdf)]
[Source Code]

Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks

VIVEK SESHADRI, SAMIHAN YEDKAR, HONGYI XIN, and ONUR MUTLU,
Carnegie Mellon University

PHILLIP B. GIBBONS and MICHAEL A. KOZUCH, Intel Pittsburgh

TODD C. MOWRY, Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
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https://github.com/CMU-SAFARI/memsim

Caching Policies for Prefetched Blocks

Problem: Existing caching policies for prefetched
blocks result in significant cache pollution

Cache Mi

ion and promotion

Are these inserti
policies good for prefetched b|ocks?

MRU LRU

Cache Set
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Prefetch Usage Experiment

Monitor L2 misses Prefetch into L3

Off-Chip

L Memory

CPU >
1 Prefetcher

Classify prefetched blocks into three categories

1. Blocks that are unused
2. Blocks that are used exactly once before evicted from cache

3. Blocks that are used more than once before evicted from cache
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Usage Distribution of Prefetched Blocks

100%
90%
80% Typically, large data structures
70%7 benefit repeatedly from
60; prefetching. Blocks of such data

prEfetChEd blocks are structures are unlikely to be

used more than once!

507

Fraction of Prefetched Blocks

409 used only once!
309 ——aw N B RN EBRBRRE O O - aw m N
or JEERLELERNNT 1
J B E R ] . I I
10% Many applications have a 1
e Significant fraction of P & S E S
@ P & & Y&

| inaccurate prefetches. ) <57 @
Once B Used Once H Unused
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Shortcoming of Traditional Promotion Policy

Promote to MRU

" ﬁThis is a bad policy. The block is

]

l [ ' ache.
J kunllkely to be reused in the >

’ L
! I
' 1

state-of-the-art

i< nroblem exists with
ety g., DRRIP, DIP)J

replacement policies (e.
—CdCre Set
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Demotion of Prefetched Block

Demote to LRU

?nsures that the block is evicted fromj

the cache quickly after it is used!
Only requires the cache to distinguish between \
prefetched blocks and demand-fetched blocks. J
_
Cache Set

Informed Caching Policies for Prefetched Blocks
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Cache Insertion Policy for Prefetched Blocks

Good (Accurate prefetch) Good (Inaccurate prefetch)
Bad (Inaccurate prefetch) Bad (accurate prefetch)

Prefetch Miss:
.-~ Insertion Policy? -

Cache Set
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Predicting Usefulness of Prefetch

Fraction of Useful Prefetches

Cache Set

Informed Caching Policies for Prefetched Blocks 204



Prefetching in GPUs

= Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur
Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jog"*  Onur Kayiran®  Asit K. Mishra®  Mahmut T. Kandemirt
Onur Mutlu*  Ravishankar lyer!  Chita R. Dast
"The Pennsylvania State University * Carnegie Mellon University SIntel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124
{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com
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