
Computer Architecture
Lecture 19a: Execution-Based 

Prefetching

Prof. Onur Mutlu
ETH Zürich
Fall 2020

27 November 2020



Recall: Outline of Prefetching Lecture(s)
n Why prefetch? Why could/does it work?
n The four questions

q What (to prefetch), when, where, how
n Software prefetching
n Hardware prefetching algorithms
n Execution-based prefetching
n Prefetching performance

q Coverage, accuracy, timeliness
q Bandwidth consumption, cache pollution

n Prefetcher throttling 
n Issues in multi-core (if we get to it)
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More on Content Directed Prefetching
n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the 
Best Paper Award by the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
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Recall: Hybrid Hardware Prefetchers
n Many different access patterns

q Streaming, striding
q Linked data structures
q Localized random

n Idea: Use multiple prefetchers to cover all patterns

+ Better prefetch coverage
-- More complexity
-- More bandwidth-intensive
-- Prefetchers start getting in each other’s way (contention, 

pollution)
- Need to manage accesses from each prefetcher
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Execution-based Prefetchers (I)
n Idea: Pre-execute a piece of the (pruned) program solely 

for prefetching data 
q Only need to distill pieces that lead to cache misses

n Speculative thread: Pre-executed program piece can 
be considered a “thread”

n Speculative thread can be executed 
n On a separate processor/core
n On a separate hardware thread context (think fine-grained 

multithreading)
n On the same thread context in idle cycles (during cache misses)
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Execution-based Prefetchers (II)
n How to construct the speculative thread:

q Software based pruning and “spawn” instructions
q Hardware based pruning and “spawn” instructions
q Use the original program (no construction), but 

n Execute it faster without stalling and correctness constraints

n Speculative thread
q Needs to discover misses before the main program

n Avoid waiting/stalling and/or compute less
q To get ahead of the main thread

n Performs only address generation computation, branch prediction, 
value prediction (to predict “unknown” values) 

q Purely speculative so there is no need for recovery of main 
program if the speculative thread is incorrect
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Thread-Based Pre-Execution
n Dubois and Song, “Assisted 

Execution,” USC Tech 
Report 1998.

n Chappell et al., 
“Simultaneous Subordinate 
Microthreading (SSMT),”
ISCA 1999.

n Zilles and Sohi, “Execution-
based Prediction Using 
Speculative Slices”, ISCA 
2001.
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Thread-Based Pre-Execution Issues
n Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context 

n When the main thread is stalled
n When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
n How far ahead? 

q Too early: prefetch might not be needed
q Too late: prefetch might not be timely

2. When the main thread is stalled
n When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback (recall throttling)
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Thread-Based Pre-Execution Issues
n What, when, where, how

q Luk, “Tolerating Memory Latency through Software-Controlled 
Pre-Execution in Simultaneous Multithreading Processors,”
ISCA 2001.

q Many issues in software-based pre-execution discussed
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An Example
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Example ISA Extensions
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Results on a Multithreaded Processor
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Luk, “Tolerating Memory Latency through Software-Controlled Pre-Execution in 
Simultaneous Multithreading Processors,” ISCA 2001.



Problem Instructions
n Zilles and Sohi, “Execution-based Prediction Using Speculative Slices”, ISCA 

2001.
n Zilles and Sohi, ”Understanding the backward slices of performance degrading 

instructions,” ISCA 2000.

13



Fork Point for Prefetching Thread

14



Pre-execution Thread Construction
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Runahead Execution



Review: Runahead Execution
n A simple pre-execution method for prefetching purposes

n When the oldest instruction is a long-latency cache miss:
q Checkpoint architectural state and enter runahead mode

n In runahead mode:
q Speculatively pre-execute instructions
q The purpose of pre-execution is to generate prefetches
q L2-miss dependent instructions are marked INV and dropped

n Runahead mode ends when the original miss returns
q Checkpoint is restored and normal execution resumes

n Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003.
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Review: Runahead Execution (Mutlu et al., HPCA 2003)
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Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

n Pre-executed loads and stores independent of L2-miss 
instructions generate very accurate data prefetches:
q For both regular and irregular access patterns

n Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

n Hardware prefetcher and branch predictor tables are trained
using future access information. 



Runahead Execution Mechanism
n Entry into runahead mode

q Checkpoint architectural register state

n Instruction processing in runahead mode

n Exit from runahead mode
q Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

Runahead mode processing is the same as                
normal instruction processing, EXCEPT:

n It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode.

n L2-miss dependent instructions are identified and treated 
specially.
q They are quickly removed from the instruction window.
q Their results are not trusted.



L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead
Miss 1

n Two types of results produced: INV and VALID

n INV = Dependent on an L2 miss

n INV results are marked using INV bits in the register file and 
store buffer.

n INV values are not used for prefetching/branch resolution.



Removal of Instructions from Window

Compute

Load 1 Miss

Runahead
Miss 1

n Oldest instruction is examined for pseudo-retirement
q An INV instruction is removed from window immediately.
q A VALID instruction is removed when it completes execution.

n Pseudo-retired instructions free their allocated resources.
q This allows the processing of later instructions.

n Pseudo-retired stores communicate their data to       
dependent loads.



Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n A pseudo-retired store writes its data and INV status to a  
dedicated memory, called runahead cache. 

n Purpose: Data communication through memory in runahead mode.

n A dependent load reads its data from the runahead cache.

n Does not need to be always correct à Size of runahead cache is 
very small.



Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead
Miss 1

n INV branches cannot be resolved.
q A mispredicted INV branch causes the processor to stay on the wrong 
program path until the end of runahead execution.

n VALID branches are resolved and initiate recovery if mispredicted.



A Runahead Processor Diagram
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Mutlu+, “Runahead Execution,”
HPCA 2003.



Runahead Execution Pros and Cons 
n Advantages:

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in
+ Versus other pre-execution based prefetching mechanisms (as we will see):

+ Uses the same thread context as main thread, no waste of context
+ No need to construct a pre-execution thread

n Disadvantages/Limitations:
-- Extra executed instructions
-- Limited by branch prediction accuracy
-- Cannot prefetch dependent cache misses 
-- Effectiveness limited by available “memory-level parallelism” (MLP)
-- Prefetch distance (how far ahead to prefetch) limited by memory latency

n Implemented in IBM POWER6, Sun “Rock”
27
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Runahead on In-order vs. Out-of-order
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More on Runahead Execution (Short)
n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


More on Runahead in Sun ROCK

31Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005.



More on Runahead in SUN ROCK

32Chaudhry+, “Simultaneous Speculative Threading,” ISCA 2009.



Runahead Execution in IBM POWER6
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Cain+, “Runahead Execution vs. Conventional Data Prefetching 
in the IBM POWER6 Microprocessor,” ISPASS 2010



Runahead Execution in IBM POWER6
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Runahead Enhancements



Readings
n Required

q Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

n Recommended

q Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006.

q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005.

q Armstrong et al., “Wrong Path Events,” MICRO 2004.
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Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



The Efficiency Problem
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Causes of Inefficiency
n Short runahead periods

n Overlapping runahead periods

n Useless runahead periods

n Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006.



Short Runahead Periods
n Processor can initiate runahead mode due to an already in-flight L2 

miss generated by
q the prefetcher, wrong-path, or a previous runahead period

n Short periods  
q are less likely to generate useful L2 misses
q have high overhead due to the flush penalty at runahead exit

Compute
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Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit



Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

n Two runahead periods that execute the same instructions

n Second period is inefficient



Useless Runahead Periods
n Periods that do not result in prefetches for normal mode 

n They exist due to the lack of memory-level parallelism
n Mechanism to eliminate useless periods:

q Predict if a period will generate useful L2 misses
q Estimate a period to be useful if it generated an L2 miss that 

cannot be captured by the instruction window
n Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead
Miss 1

Load 1 Hit
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Overall Impact on IPC
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More on Efficient Runahead Execution
n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Techniques for Efficient Processing in Runahead Execution 
Engines"
Proceedings of the 32nd International Symposium on Computer 
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides 
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as 
Top Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf


More on Efficient Runahead Execution

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency 
Tolerance"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20, 
January/February 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10


Limitations of the Baseline Runahead Mechanism

n Energy Inefficiency
q A large number of instructions are speculatively executed
q Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

n Ineffectiveness for pointer-intensive applications
q Runahead cannot parallelize dependent L2 cache misses
q Address-Value Delta (AVD) Prediction [MICRO’05]

n Irresolvable branch mispredictions in runahead mode
q Cannot recover from a mispredicted L2-miss dependent branch
q Wrong Path Events [MICRO’04]



n Runahead execution cannot parallelize dependent misses
q wasted opportunity to improve performance
q wasted energy (useless pre-execution)

n Runahead performance would improve by 25% if this 
limitation were ideally overcome

The Problem: Dependent Cache Misses
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Parallelizing Dependent Cache Misses
n Idea: Enable the parallelization of dependent L2 cache 

misses in runahead mode with a low-cost mechanism

n How: Predict the values of L2-miss address (pointer) 
loads

n Address load: loads an address into its destination register, 
which is later used to calculate the address of another load

n as opposed to data load

n Read:
q Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 

2005.



Parallelizing Dependent Cache Misses
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More on AVD Prediction

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of 
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO), 
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)
One of the five papers nominated for the Best Paper Award by the 
Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf


More on AVD Prediction (II)

n Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique 
for Efficiently Parallelizing Dependent Cache Misses"
IEEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508, 
December 2006.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_tc06.pdf
http://www.computer.org/tc/


Even More on Runahead Execution

n Lecture video from Fall 2017
q https://www.youtube.com/watch?v=Kj3relihGF4

n Onur Mutlu,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July 
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by 
the University of Texas at Austin.
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https://www.youtube.com/watch?v=Kj3relihGF4
https://people.inf.ethz.ch/omutlu/pub/mutlu_dissertation.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_phd_defense_talk.ppt


Runahead as an 
Execution-Based Prefetcher



Runahead as an Execution-based Prefetcher
n Idea of an Execution-Based Prefetcher: Pre-execute a piece 

of the (pruned) program solely for prefetching data 

n Idea of Runahead: Pre-execute the main program solely for 
prefetching data 

n Advantages and disadvantages of runahead vs. other 
execution-based prefetchers?

n Can you make runahead even better by pruning the 
program portion executed in runahead mode?
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Taking Advantage of Pure Speculation
n Runahead mode is purely speculative

n The goal is to find and generate cache misses that would 
otherwise stall execution later on

n How do we achieve this goal most efficiently and with the 
highest benefit?

n Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window)

n How?
56



Execution-based Prefetchers: Pros and Cons
+ Can prefetch pretty much any access pattern
+ Can be very low cost (e.g., runahead execution)

+ Especially if it uses the same hardware context
+ Why? The processsor is equipped to execute the program anyway

+ Can be bandwidth-efficient (e.g., runahead execution)

-- Depend on branch prediction and possibly value prediction 
accuracy
- Mispredicted branches dependent on missing data throw the thread   
off the correct execution path 

-- Can be wasteful
-- speculatively execute many instructions
-- can occupy a separate thread context

-- Complexity in deciding when and what to pre-execute
57



Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to 

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness
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Some Examples

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource 

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints) 

[HPCA’09]
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More on Feedback Directed Prefetching

n Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Feedback Directed Prefetching: Improving the Performance and 
Bandwidth-Efficiency of Hardware Prefetchers"
Proceedings of the 13th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 63-74, Phoenix, AZ, February 
2007. Slides (ppt)
One of the five papers nominated for the Best Paper Award by 
the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07.pdf
http://www.ece.arizona.edu/~hpca/
https://people.inf.ethz.ch/omutlu/pub/srinath_hpca07_talk.ppt


On Bandwidth-Efficient Prefetching
n Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Techniques for Bandwidth-Efficient Prefetching of Linked Data 
Structures in Hybrid Prefetching Systems"
Proceedings of the 15th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 7-17, Raleigh, NC, February 
2009. Slides (ppt)
Best paper session. One of the three papers nominated for the 
Best Paper Award by the Program Committee.
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https://people.inf.ethz.ch/omutlu/pub/bandwidth_lds_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_hpca09_talk.ppt


More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt


More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx


More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_taco15.pdf
http://taco.acm.org/
https://www.hipeac.net/2015/amsterdam/
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Prefetching in GPUs 
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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More on
Multi-Core Issues in Prefetching 
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Prefetching in Multi-Core (I)
n Prefetching shared data

q Coherence misses

n Prefetch efficiency is a lot more important
q Bus bandwidth more precious
q Cache space more valuable

n One cores’ prefetches interfere with other cores’ requests
q Cache conflicts
q Bus contention
q DRAM bank and row buffer contention
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Prefetching in Multi-Core (II)
n Two key issues

q How to prioritize prefetches vs. demands (of different cores)
q How to control the aggressiveness of multiple prefetchers to 

achieve high overall performance

n Need to coordinate the actions of independent prefetchers
for best system performance

n Each prefetcher has different accuracy, coverage, timeliness
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Some Ideas

n Controlling prefetcher aggressiveness
q Feedback directed prefetching [HPCA’07]
q Coordinated control of multiple prefetchers [MICRO’09]

n How to prioritize prefetches vs. demands from cores
q Prefetch-aware memory controllers and shared resource 

management [MICRO’08, ISCA’11]

n Bandwidth efficient prefetching of linked data structures
q Through hardware/software cooperation (software hints) 

[HPCA’09]
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Motivation
n Aggressive prefetching improves 

memory latency tolerance of 
many applications when they run alone

n Prefetching for concurrently-executing 
applications on a CMP can lead to
o Significant system performance degradation and 

bandwidth waste

n Problem:
Prefetcher-caused inter-core interference
o Prefetches of one application contend with 

prefetches and demands of other applications
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Potential Performance
System performance improvement of ideally removing all 
prefetcher-caused inter-core interference in shared resources
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Exact workload combinations can be found in [Ebrahimi et al., MICRO 2009]



High Interference caused by  
Accurate Prefetchers
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Shortcoming of Local Prefetcher Throttling
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…

Set 2

…
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Shortcoming of Local-Only 
Prefetcher Control
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Prefetching in Multi-Core (II)
n Ideas for coordinating different prefetchers’ actions

q Utility-based prioritization 
n Prioritize prefetchers that provide the best marginal utility on 

system performance

q Cost-benefit analysis
n Compute cost-benefit of each prefetcher to drive prioritization

q Heuristic based methods
n Global controller overrides local controller’s throttling decision 

based on interference and accuracy of prefetchers
n Ebrahimi et al., “Coordinated Management of Multiple Prefetchers 

in Multi-Core Systems,” MICRO 2009.
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Hierarchical Prefetcher Throttling
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Hierarchical Prefetcher Throttling Example
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HPAC Control Policies
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HPAC Evaluation
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15%

9%

Normalized to system with no prefetching



More on Coordinated Prefetcher Control

n Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt,
"Coordinated Control of Multiple Prefetchers in Multi-Core 
Systems"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 316-326, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/coordinated-prefetching_micro09.pdf
http://www.microarch.org/micro42/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_micro09_talk.ppt


More on Prefetching in Multi-Core (I)

n Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt,
"Prefetch-Aware DRAM Controllers"
Proceedings of the 41st International Symposium on 
Microarchitecture (MICRO), pages 200-209, Lake Como, Italy, November 
2008. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/prefetch-dram_micro08.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro08_talk.ppt
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Problems of Prefetch Handling

n How to schedule prefetches vs demands?
n Demand-first: Always prioritizes demands over 

prefetch requests
n Demand-prefetch-equal: Always treats them the same

Neither take into account both:
1. Non-uniform access latency of DRAM systems
2. Usefulness of prefetches 

Neither of these perform best
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When Prefetches are Useful

Row A

Pref Row A    : X

Dem Row B   : Y

Pref Row A    : Z

DRAM    Controller

Row Buffer

DRAM

DRAM

Processor

Ø Demand-first 

Row-conflict

Row B

Row-hit

Miss Y Miss X Miss Z

Stall Execution

Processor needs Y, X, and Z

2 row-conflicts, 1 row-hit



89

When Prefetches are Useful
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When Prefetches are Useless
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Demand-first vs. Demand-pref-equal policy
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More on Prefetching in Multi-Core (II)

n Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt,
"Improving Memory Bank-Level Parallelism in the Presence of 
Prefetching"
Proceedings of the 42nd International Symposium on 
Microarchitecture (MICRO), pages 327-336, New York, NY, December 
2009. Slides (ppt)
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https://people.inf.ethz.ch/omutlu/pub/dram-blp_micro09.pdf
http://www.microarch.org/micro41/
https://people.inf.ethz.ch/omutlu/pub/lee_micro09_talk.ppt


More on Prefetching in Multi-Core (III)

n Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Prefetch-Aware Shared Resource Management for Multi-Core 
Systems"
Proceedings of the 38th International Symposium on Computer 
Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/prefetchaware-shared-resources_isca11.pdf
http://isca2011.umaine.edu/
https://people.inf.ethz.ch/omutlu/pub/ebrahimi_isca11_talk.pptx


More on Prefetching in Multi-Core (IV)
n Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu, Phillip P. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry,
"Mitigating Prefetcher-Caused Pollution using Informed Caching Policies 
for Prefetched Blocks"
ACM Transactions on Architecture and Code Optimization (TACO), Vol. 11, No. 4, 
January 2015.
Presented at the 10th HiPEAC Conference, Amsterdam, Netherlands, January 
2015.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/informed-caching-for-prefetching_seshadri_hipeac15-talk.pdf
https://github.com/CMU-SAFARI/memsim


Informed Caching Policies for Prefetched Blocks

Caching Policies for Prefetched Blocks
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Problem: Existing caching policies for prefetched 
blocks result in significant cache pollution

Cache Set

MRU LRU

Cache Miss: 
Insertion Policy

Cache Hit: 
Promotion Policy

Are these insertion and promotion 

policies good for prefetched blocks?



Informed Caching Policies for Prefetched Blocks

Prefetch Usage Experiment
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CPU L
1 L2 L3

Prefetcher

Off-Chip 
Memory

Monitor L2 misses Prefetch into L3

Classify prefetched blocks into three categories
1.  Blocks that are unused
2.  Blocks that are used exactly once before evicted from cache
3.  Blocks that are used more than once before evicted from cache



Informed Caching Policies for Prefetched Blocks

Usage Distribution of Prefetched Blocks
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Many applications have a 

significant fraction of 

inaccurate prefetches.

95% of the useful 

prefetched blocks are 
used only once!

Typically, large data structures 

benefit repeatedly from 

prefetching. Blocks of such data 

structures are unlikely to be 

used more than once!



Informed Caching Policies for Prefetched Blocks

Shortcoming of Traditional Promotion Policy
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D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Promote to MRU

This is a bad policy. The block is 

unlikely to be reused in the cache.

This problem exists with state-of-the-art

replacement policies (e.g., DRRIP, DIP)



Informed Caching Policies for Prefetched Blocks

Demotion of Prefetched Block
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D D D P P D P D

Cache Set

MRU LRUP

Cache Hit!

Demote to LRU

Ensures that the block is evicted from 

the cache quickly after it is used!

Only requires the cache to distinguish between

prefetched blocks and demand-fetched blocks.



Informed Caching Policies for Prefetched Blocks

Cache Insertion Policy for Prefetched Blocks
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Cache Set

MRU LRU

Prefetch Miss: 
Insertion Policy?

Good (Accurate prefetch)
Bad (Inaccurate prefetch)

Good (Inaccurate prefetch)
Bad (accurate prefetch)



Informed Caching Policies for Prefetched Blocks

Predicting Usefulness of Prefetch
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MRU LRU

Prefetch Miss 
Predict Usefulness

of Prefetch
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Fraction of Useful Prefetches



Prefetching in GPUs 
n Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur 

Mutlu, Ravishankar Iyer, and Chita R. Das,
"Orchestrated Scheduling and Prefetching for GPGPUs"
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)
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