
Computer Architecture
Lecture 20: Memory Ordering

(Memory Consistency)

Prof. Onur Mutlu
ETH Zürich
Fall 2020

3 December 2020

Recall: Difficulty in Parallel Programming
n Little difficulty if parallelism is natural

q “Embarrassingly parallel” applications
q Multimedia, physical simulation, graphics
q Large web servers, databases?

n Difficulty is in
q Getting parallel programs to work correctly
q Optimizing performance in the presence of bottlenecks

n Much of parallel computer architecture is about
q Designing machines that overcome the sequential and parallel

bottlenecks to achieve higher performance and efficiency
q Making programmer’s job easier in writing correct and high-

performance parallel programs
2

Performance vs. Correctness
n Two metrics that are fundamentally at odds with each other

n You can always improve performance at the expense of
correctness
q Forget some critical lock in your program…
q Design your architecture to ignore ordering of operations…

n We will see examples of this in fundamental support for
multiprocessor operation (MIMD machines)
q Memory ordering (consistency)
q Cache coherence

n There is sometimes a real tradeoff between perf & correctness
q When the application/user can tolerate the resulting “errors”
q Recall EDEN (MICRO’19), Heterogeneous Reliability Memory (DSN’14)

3

EDEN: Exploiting Perf-Correctness Tradeoff
n Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha

Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu,
"EDEN: Enabling Energy-Efficient, High-Performance Deep
Neural Network Inference Using Approximate DRAM"
Proceedings of the 52nd International Symposium on
Microarchitecture (MICRO), Columbus, OH, USA, October 2019.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

4

https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19.pdf
http://www.microarch.org/micro52/
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EDEN-efficient-DNN-inference-with-approximate-memory_micro19-lightning-talk.pdf
https://www.youtube.com/watch?v=oS-bKY75gXQ

More on Heterogeneous-Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

5

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

More on Performance vs. Correctness

n Very similar to the latency-reliability tradeoff
q Reliability is at the hardware component level
q Correctness is at the program semantic level or hardware

function level

n We have seen many examples of the latency-reliability
tradeoff before
q See Lecture 10: Low-Latency Memory
q https://www.youtube.com/watch?v=vQd1YgOH1Mw

6

https://www.youtube.com/watch?v=vQd1YgOH1Mw

Memory Ordering in
Multiprocessors

7

Readings: Memory Consistency
n Required

q Lamport, “How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

n Recommended
q Gharachorloo et al., “Memory Consistency and Event Ordering

in Scalable Shared-Memory Multiprocessors,” ISCA 1990.
q Gharachorloo et al., “Two Techniques to Enhance the

Performance of Memory Consistency Models,” ICPP 1991.
q Ceze et al., “BulkSC: bulk enforcement of sequential

consistency,” ISCA 2007.

8

Memory Consistency vs. Cache Coherence

n Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)
q Global ordering of accesses to all memory locations

n Coherence is about ordering of operations from different
processors to the same memory location
q Local ordering of accesses to each cache block

9

Difficulties of Multiprocessing
n Much of parallel computer architecture is about

q Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

q Making programmer’s job easier in writing correct and high-
performance parallel programs

10

Ordering of Operations
n Operations: A, B, C, D

q In what order should the hardware execute (and report the
results of) these operations?

n A contract between programmer and microarchitect
q Specified by the ISA

n Preserving an “expected” (more accurately, “agreed upon”)
order simplifies programmer’s life
q Ease of debugging; ease of state recovery, exception handling

n Preserving an “expected” order usually makes the hardware
designer’s life difficult
q Especially if the goal is to design a high performance processor: Recall load-

store queues in out of order execution and their complexity
11

Memory Ordering in a Single Processor
n Specified by the von Neumann model
n Sequential order

q Hardware executes the load and store operations in the order
specified by the sequential program

n Out-of-order execution does not change the semantics
q Hardware retires (reports to software the results of) the load

and store operations in the order specified by the sequential
program

n Advantages: 1) Architectural state is precise within an execution.
2) Architectural state is consistent across different runs of the program
à Easier to debug programs

n Disadvantage: Preserving order adds overhead, reduces
performance, increases complexity, reduces scalability

12https://www.youtube.com/watch?v=9yo3yhUijQs

https://www.youtube.com/watch?v=9yo3yhUijQs

Memory Ordering in a Dataflow Processor
n A memory operation executes when its operands are ready

n Ordering specified only by data dependencies

n Two operations can be executed and retired in any order if
they have no dependency

n Advantage: Lots of parallelism à high performance
n Disadvantage: No precise state (or ordering) semantics

q Precise state is very hard to maintain (No specified order)
à Very hard to debug

q Order can change across runs of the same program
à Very hard to debug

13https://www.youtube.com/watch?v=3FmWv3qjQF8

https://www.youtube.com/watch?v=3FmWv3qjQF8

Memory Ordering in a MIMD Processor
n Each processor’s memory operations are in sequential order

with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

n Multiple processors execute memory operations
concurrently

n How does the memory see the order of operations from all
processors?
q In other words, what is the ordering of operations across

different processors?

14

Why Does This Even Matter?
n Ease of debugging

q It is useful to have the same execution done at different times
to have the same order of execution à Repeatability

n Correctness
q Can we have incorrect execution if the order of memory

operations is different from the point of view of different
processors?

n Performance and overhead
q Enforcing a strict “sequential ordering” can make life harder

for the hardware designer in implementing performance
enhancement techniques (e.g., OoO execution, caches)

15

When Could Order Affect Correctness?
n When protecting shared data

16

Protecting Shared Data
n Threads are not allowed to update shared data concurrently

q For correctness purposes

n Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

n Only one thread can execute a critical section at
a given time
q Mutual exclusion principle

n A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to
protect shared data

17

Supporting Mutual Exclusion
n Programmer needs to make sure mutual exclusion

(synchronization) is correctly implemented
q We will assume this, i.e., threads are properly synchronized
q But, correct parallel programming is an important topic
q Reading: Dijkstra, “Cooperating Sequential Processes,” 1965.

n http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

n See Dekker’s algorithm for mutual exclusion

n Programmer relies on hardware primitives to support correct
synchronization

n If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

n If hardware primitives are correct but not easy to reason about
or use, programmer’s life is still tough

18

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

19

Protecting Shared Data
Assume P1 is in critical section.
Intuitively, it must have executed A,
which means F1 must be 1 (as A happens before B),
which means P2 should not enter the critical section.

A Question
n Can the two processors be in the critical section at the

same time given that they both obey the von Neumann
model?

n Answer: yes

20

Incorrect Result: Both Processors in Critical Section

21

What Happened?
Let’s Examine Each Processor’s View

22

23

For P1:
A appeared to
happen before X

For P2:
X appeared to
happen before A

The Problem
n The two processors did NOT see the same order of

operations to memory

n The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

n As a result, each processor thought the other was not in
the critical section

24

How Can We Solve The Problem?
n Idea: Sequential consistency

n All processors see the same order of operations to memory
n i.e., all memory operations happen in an order (called the

global total order) that is consistent across all processors

n Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.

25

Sequential Consistency
n Lamport, “How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

n A multiprocessor system is sequentially consistent if:
q the result of any execution is the same as if the operations of all

the processors were executed in some sequential order
AND
q the operations of each individual processor appear in this

sequence in the order specified by its program

n This is a memory ordering model, or memory model
q Specified by the ISA

26

Programmer’s Abstraction
n Memory is a switch that services one load or store at a time

from any processor
n All processors see the currently serviced load or store at the

same time
n Each processor’s operations are serviced in program order

27

MEMORY

P1 P3P2 Pn

Sequentially Consistent Operation Orders
n Potential correct global orders (all are correct):

n A B X Y
n A X B Y
n A X Y B
n X A B Y
n X A Y B
n X Y A B

n Which order (interleaving) is observed depends on
implementation and dynamic latencies

28

Consequences of Sequential Consistency
n Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory
à No correctness issue
à Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)
à Debugging is still difficult (as order changes across runs)

29

Lamport Paper from 1979
n Lamport, “How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

30

Issues with Sequential Consistency?
n Nice abstraction for programming, but two issues:

q Too conservative ordering requirements
q Limits the aggressiveness of performance enhancement

techniques

n Is the total global order requirement too strong?
q Do we need a global order across all operations and all

processors?
q How about a global order only across all stores?

n Total store order memory model; unique store order model
q How about enforcing a global order only at the boundaries of

synchronization?
n Relaxed memory models
n Acquire-release consistency model

31

Issues with Sequential Consistency?
n Performance enhancement techniques that could make SC

implementation difficult

n Out-of-order execution
q Loads happen out-of-order with respect to each other and

with respect to independent stores à makes it difficult for all
processors to see the same global order of all memory
operations

n Caching
q A memory location is now present in multiple places
q Prevents the effect of a store to be seen by other processors

à makes it difficult for all processors to see the same global
order of all memory operations

32

Weaker Memory Consistency
n The ordering of operations is important when the order

affects operations on shared data à i.e., when processors
need to synchronize to execute a “program region”

n Weak consistency
q Idea: Programmer specifies regions in which memory

operations do not need to be ordered
q “Memory fence” instructions delineate those regions

n All memory operations before a fence must complete before
fence is executed

n All memory operations after the fence must wait for the fence to
complete

n Fences complete in program order
q All synchronization operations act like a fence

33

Examples of Weak Consistency Models
n Gharachorloo et al., “Two Techniques to Enhance the

Performance of Memory Consistency Models,” ICPP 1991.

34

Examples of Weak Consistency Models
n Gharachorloo et al., “Two Techniques to Enhance the

Performance of Memory Consistency Models,” ICPP 1991.

35

Tradeoffs: Weaker Consistency
n Advantage

q No need to guarantee a very strict order of memory
operations
à Enables the hardware implementation of performance

enhancement techniques to be simpler
à Can be higher performance than stricter ordering

n Disadvantage
q More burden on the programmer or software (need to get the

“fences” correct)

n Another example of the programmer-microarchitect tradeoff

36

More on Weak Consistency Models
n Gharachorloo et al., “Two Techniques to Enhance the

Performance of Memory Consistency Models,” ICPP 1991.

37

Two Example Questions

38

Example Question I
n Question 4 in

q http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

39

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf

Example Question I (Continued)

40

Example Question II
n Question 8 in

q https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=final-fs19.pdf

41

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=final-fs19.pdf

Example Question II (Continued)

42

Computer Architecture
Lecture 20: Memory Ordering

(Memory Consistency)

Prof. Onur Mutlu
ETH Zürich
Fall 2020

3 December 2020

