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Recall: Ditticulty in Parallel Programming

Little difficulty if parallelism is natura
o “Embarrassingly parallel” applications

o Multimedia, physical simulation, graphics
o Large web servers, databases?

Difficulty is in
o Getting parallel programs to work correctly
o Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-
performance parallel programs



Performance vs. Correctness

Yet another fundamental tradeoff space

You can always improve performance at the expense of
correctness

o Forget some critical lock in your program...
o Design your architecture to ignore ordering of operations...

We will see examples of this in fundamental support for
multiprocessor operation (MIMD machines)

o Memory ordering (consistency)
o Cache coherence

In reality, there is no such tradeoff
o Unless the applications/users can tolerate the resulting “errors”
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Memory Ordering in
Multiprocessors




Readings: Memory Consistency

Required

a Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions
on Computers, 1979

Recommended

o Gharachorloo et al., *"Memory Consistency and Event Ordering
in Scalable Shared-Memory Multiprocessors,” ISCA 1990.

o Gharachorloo et al., "Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

o Ceze et al., "BulkSC: bulk enforcement of sequential
consistency,” ISCA 2007.



Memory Consistency vs. Cache Coherence

Consistency is about ordering of all memory operations
from different processors (i.e., to different memory
locations)

o Global ordering of accesses to a// memory /ocations

Coherence is about ordering of operations from different
processors to the same memory location

o Local ordering of accesses to each cache block



Ditficulties of Multiprocessing

Much of parallel computer architecture is about

o Designing machines that overcome the sequential and parallel
bottlenecks to achieve higher performance and efficiency

o Making programmer’s job easier in writing correct and high-
performance parallel programs



Ordering of Operations

Operations: A, B, C, D

o In what order should the hardware execute (and report the
results of) these operations?

A contract between programmer and microarchitect
o Specified by the ISA

Preserving an “expected” (more accurately, “agreed upon”)

order simplifies programmer’s life
o Ease of debugging; ease of state recovery, exception handling

Preserving an “expected” order usually makes the hardware

designer’s life difficult

o Especially if the goal is to design a high performance processor: Recall load-
store queues in out of order execution and their complexity



Memory Ordering in a Single Processor

Specified by the von Neumann model
Sequential order

o Hardware executes the load and store operations in the order
specified by the sequential program

Out-of-order execution does not change the semantics

o Hardware retires (reports to software the results of) the load
and store operations in the order specified by the sequential
program

Advantages: 1) Architectural state is precise within an execution.

2) Architectural state is consistent across different runs of the program
—> Easier to debug programs

Disadvantage: Preserving order adds overhead, reduces
performance, increases complexity, reduces scalability



Memory Ordering 1n a Datatlow Processor

A memory operation executes when its operands are ready
Ordering specified only by data dependencies

Two operations can be executed and retired in any order if
they have no dependency

Advantage: Lots of parallelism - high performance
Disadvantages:

o Precise state is very hard to maintain (No specified order)
- Very hard to debug

o Order can change across runs of the same program
- Very hard to debug
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Memory Ordering in a MIMD Processor

Each processor’'s memory operations are in sequential order
with respect to the “thread” running on that processor
(assume each processor obeys the von Neumann model)

Multiple processors execute memory operations
concurrently

How does the memory see the order of operations from all
processors?

o In other words, what is the ordering of operations across
different processors?
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Why Does This Even Matter?

Ease of debugging

o It is nice to have the same execution done at different times
to have the same order of execution > Repeatability

Correctness |

o Can we have incorrect execution if the order of memory
operations is different from the point of view of different
processors?

Performance and overhead

o Enforcing a strict “sequential ordering” can make life harder
for the hardware designer in implementing performance
enhancement techniques (e.g., 000 execution, caches)
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When Could Order Affect Correctness?

= When protecting shared data
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Protecting Shared Data

Threads are not allowed to update shared data concurrently
o For correctness purposes

Accesses to shared data are encapsulated inside
critical sections or protected via synchronization constructs
(locks, semaphores, condition variables)

Only one thread can execute a critical section at
a given time
o Mutual exclusion principle

A multiprocessor should provide the correct execution of
synchronization primitives to enable the programmer to

protect shared data
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Supporting Mutual Exclusion

Programmer needs to make sure mutual exclusion
(synchronization) is correctly implemented

o We will assume this, i.e., threads are properly synchronized
o But, correct parallel programming is an important topic

o Reading: Dijkstra, “"Cooperating Sequential Processes,” 1965.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD
123.html

See Dekker’s algorithm for mutual exclusion

Programmer relies on hardware primitives to support correct
synchronization

If hardware primitives are not correct (or unpredictable),
programmer’s life is tough

If hardware primitives are correct but not easy to reason about

or use, programmer’s life is still tough
15


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD123.html

Protecting Shared Data

Assume P1 is in critical section.
Intuitively, it must have executed A,

which means F1 must be 1 (as A happens before B),
which means P2 should not enter the critical section.

A | F121 X Fz,?1 :
2 IF[(F=28) § DALy b=
Crthicel Seckin( ) CrdutSchm()
]:1:¢ FZ;"ﬁ
[
- ELSE §
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A Question

Can the two processors be in the critical section at the
same time given that they both obey the von Neumann

model?

Answer: yes
7] 7
\
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Incorrect Result: Both Processors in Critical Section
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What Happened?

Let’s Examine Fach Processor’s View




Py and Po A= Bb=NA XY= A
Saw onincassiat~ B2 X ><——S)A
ordw Of prrinG / A

__ gorr —”

For P1:
A appeared to
happen before X

For P2:
X appeared to
happen before A
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The Problem

The two processors did NOT see the same order of
operations to memory

The “happened before” relationship between multiple
updates to memory was inconsistent between the two
processors’ points of view

As a result, each processor thought the other was not in
the critical section
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How Can We Solve The Problem?

Idea: Sequential consistency

All processors see the same order of operations to memory

i.e., all memory operations happen in an order (called the
global total order) that is consistent across all processors

Assumption: within this global order, each processor’s
operations appear in sequential order with respect to its
own operations.
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Sequential Consistency

Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

A multiprocessor system is sequentially consistent if:

o the result of any execution is the same as if the operations of all
the processors were executed in some sequential order

AND

o the operations of each individual processor appear in this
sequence in the order specified by its program

This is @ memory ordering model, or memory model
o Specified by the ISA
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Programmer’s Abstraction

Memory is a switch that services one load or store at a time

from any processor

All processors see the currently serviced load or store at the

same time
Each processor’s operations are serviced in program order

MEMORY
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Sequentially Consistent Operation Orders

Potential correct global orders (all are correct):

ABXY
AXBY
AXYB
XABY
XAYB
XYAB

Which order (interleaving) is observed depends on
implementation and dynamic latencies
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Consequences of Sequential Consistency

Corollaries

1. Within the same execution, all processors see the same
global order of operations to memory

- No correctness issue
- Satisfies the “happened before” intuition

2. Across different executions, different global orders can be
observed (each of which is sequentially consistent)

- Debugging is still difficult (as order changes across runs)
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Lamport Paper from 1979

Lamport, “"How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on
Computers, 1979

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution
is achieved if the results produced are the same as would be produced
by executing the program steps in order. For a multiprocessor
computer, such a correct execution by each processor does not
guarantee the correct execution of the entire program. Additional
conditions are given which do guarantee that a computer correctly
executes multiprocess programs.

Index Terms—Computer design, concurrent computing, hardware
correctness, multiprocessing, parallel processing.

A high-speed processdr may execute operations in a different
order than is specified by the program. The correctness of the 27



Issues with Sequential Consistency?

Nice abstraction for programming, but two issues:
o Too conservative ordering requirements

o Limits the aggressiveness of performance enhancement
techniques

Is the total global order requirement too strong?

o Do we need a global order across all operations and all
processors?

o How about a global order only across all stores?
Total store order memory model; unique store order model

o How about enforcing a global order only at the boundaries of
synchronization?
Relaxed memory models
Acquire-release consistency model
28



Issues with Sequential Consistency?

Performance enhancement techniques that could make SC
implementation difficult

Out-of-order execution

o Loads happen out-of-order with respect to each other and
with respect to independent stores = makes it difficult for all
processors to see the same global order of all memory
operations

Caching
2 A memory location is now present in multiple places

o Prevents the effect of a store to be seen by other processors
- makes it difficult for all processors to see the same global
order of all memory operations
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Weaker Memory Consistency

The ordering of operations is important when the order
affects operations on shared data - i.e., when processors
need to synchronize to execute a “program region”

Weak consistency

o Idea: Programmer specifies regions in which memory
operations do not need to be ordered

o "Memory fence” instructions delineate those regions

All memory operations before a fence must complete before
fence is executed

All memory operations after the fence must wait for the fence to
complete

Fences complete in program order
o All synchronization operations act like a fence
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Examples of Weak Consistency Models

Gharachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

A more relaxed consistency model can be derived by relating
memory request ordering to synchronization points in the pro-
gram. The weak consistency model (WC) proposed by Dubois

et al. [4, 5] is based on the above idea and guarantees a con-
sistent view of memory only at synchronization points. As an
example, consider a process updating a data structure within a
critical section. Under SC, every access within the critical sec-
tion is delayed until the previous access completes. But such
delays are unnecessary if the programmer has already made sure
that no other process can rely on the data structure to be con-
sistent until the critical section is exited. Weak consistency
exploits this by allowing accesses within the critical section to
be pipelined. Correctness is achieved by guaranteeing that all
previous accesses are performed before entering or exiting each
critical section.
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Examples of Weak Consistency Models

Gharachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.
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Tradeotts: Weaker Consistency

Advantage

o No need to guarantee a very strict order of memory
operations

- Enables the hardware implementation of performance
enhancement techniques to be simpler

- Can be higher performance than stricter ordering

Disadvantage

o More burden on the programmer or software (need to get the
“fences” correct)

Another example of the programmer-microarchitect tradeoff
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More on Weak Consistency Models

Gharachorloo et al., “Two Techniques to Enhance the
Performance of Memory Consistency Models,” ICPP 1991.

Abstract

The memory consistency model supported by a multiprocessor
directly affects its performance. Thus, several attempts have
been made to relax the consistency models to allow for more
buffering and pipelining of memory accesses. Unfortunately,
the potential increase in performance afforded by relaxing the
consistency model is accompanied by a more complex program-
ming model. This paper introduces two general implementation
techniques that provide higher performance for all the models.
The first technique involves prefetching values for accesses that
are delayed due to consistency model constraints. The second
technique employs speculative execution to allow the proces-
sor to proceed even though the consistency model requires the
memory accesses to be delayed. When combined, the above
techniques alleviate the limitations imposed by a consistency
model on buffering and pipelining of memory accesses, thus
significantly reducing the impact of the memory consistency
model on performance.



An Example Question




Example Question I

= Question 4 in
o http://www.ece.cmu.edu/~eced447//s13/lib/exe/fetch.php?media=final.pdf

4. Sequential Consistency [30 points]

Two threads (A and B) are concurrently running on a dual-core processor that implements a sequen-
tially consistent memory model. Assume that the value at address 0x1000 is initialized to 0.

Thread A

X1: st 0x1, (0x1000)
X2: 1d $r1, (0x1000)
X3: st 0x2, (0x1000)
X4: 1d $r2, (0x1000)

Thread B

Y1: st 0x3, (0x1000)
Y2: 1d $r3, (0x1000)
Y3: st 0x4, (0x1000)
Y4: 1d $r4, (0x1000)

(a) List all possible values that can be stored in $r3 after both threads have finished executing.
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Example Question I (Continued)

(b) After both threads have finished executing, you find that ($rl, $r2, $r3, $rd) = (1, 2, 3, 4).
How many different instruction interleavings of the two threads produce this result?

(c) What is the total number of all possible instruction interleavings? You need not expand factorials.

(d) On a non-sequentially consistent processor, is the total number of all possible instruction inter-
leavings less than, equal to, or greater than your answer to question (c)?
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Example Question 11

= Question 8 in
o https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=final-fs19.pdf

8 Memory Consistency [35 points]

A programmer writes the following two C code segments. She wants to run them concurrently on a
multicore processor, called SC, using two different threads, each of which will run on a different core.
The processor implements sequential consistency, as we discussed in the lecture.

Thread TO Thread T1
Instr. TO.0 X[0] = 2; Instr. T1.0 X[0] = 1;
Instr. TO.1 flag[0] = 1; Instr. T1.1 X[0] += 2;
Instr. T0.2 a = X[0]x2; Instr. T1.2 while(flag[0] == 1);
Instr. TO.3 b = Y[0]-1; Instr. T1.3 a = flag[0];
Instr. T0.4 ¢ = X[0]; Instr. T1.4 X[0] = 2;
Instr. T1.5 Y[0] = 10;

X and flag have been allocated in main memory. Thread 0 and Thread 1 have their private processor
registers to store the values of a , b, and c. A read or write to any of these variables generates a single
memory request. The initial values of all memory locations and variables are 1. Assume each line of the
C code segment of a thread is a single instruction.

(a) [5 points| Do you find something that could be wrong in the C code segments? Explain your answer.



https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=final-fs19.pdf

Example Question 1I (Continued)

(b) [10 points] What could be possible final values of X [0] in the SC processor, after executing both C
code segments? Explain your answer. Provide all possible values.

(c) [5 points| What could be possible final values of a in the SC processor, after executing both C code
segments? Explain your answer. Provide all possible values.

(d) [5 points] What could be possible final values of b in the SC processor, after both threads finish
execution? Explain your answer. Provide all possible values.

(e) [10 points] With the aim of achieving higher performance, the programmer tests her code on a new
multicore processor, called NC, that does not implement memory consistency. Thus, there is no

guarantee on the ordering of instructions as seen by different cores.

What is the final value of X[0] in the NC processor, after executing both threads? Explain your

alswer.
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A Question

Can the two processors be in the critical section at the
same time given that they both obey the von Neumann

model?

Answer: yes D
P! F’L
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Both Processors in Critical Section
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