
Computer Architecture

Lecture 21: Cache Coherence

Prof. Onur Mutlu

ETH Zürich

Fall 2020

4 December 2020

Caching in Multiprocessors

◼ Caching not only complicates ordering of all operations…

❑ A memory location can be present in multiple caches

❑ Prevents the effect of a store or load to be seen by other
processors → makes it difficult for all processors to see the
same global order of (all) memory operations

◼ … but it also complicates ordering of operations on a single
memory location

❑ A single memory location can be present in multiple caches

❑ Makes it difficult for processors that have cached the same

location to have the correct value of that location (in the
presence of updates to that location)

2

Memory Consistency vs. Cache Coherence

◼ Consistency is about ordering of all memory operations
from different processors (i.e., to different memory

locations)

❑ Global ordering of accesses to all memory locations

◼ Coherence is about ordering of operations from different
processors to the same memory location

❑ Local ordering of accesses to each cache block

3

Cache Coherence

4

Readings: Cache Coherence

◼ Required

❑ Culler and Singh, Parallel Computer Architecture

◼ Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

❑ P&H, Computer Organization and Design

◼ Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

❑ Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

◼ Recommended

❑ Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

❑ Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

❑ Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

❑ Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

❑ Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

5

Shared Memory Model

◼ Many parallel programs communicate through shared memory

◼ Proc 0 writes to an address, followed by Proc 1 reading

❑ This implies communication between the two

◼ Each read should receive the value last written by anyone

❑ This requires synchronization (what does last written mean?)

◼ What if Mem[A] is cached (at either end)?

6

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence

◼ Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

7

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

8

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

9

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

10

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

The Cache Coherence Problem

11

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT

load 1000

Cache Coherence: Whose Responsibility?

◼ Software

❑ Can programmer ensure coherence if caches invisible to software?

❑ Coarse-grained: Page-level coherence has overheads

❑ Non-solution: Make shared locks/data non-cacheable

❑ A combination of non-cacheable and coarse-grained is doable

❑ Fine-grained: What if the ISA provided a cache flush instruction?

◼ FLUSH-LOCAL A: Flushes/invalidates the cache block containing address
A from a processor’s local cache.

◼ FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

◼ FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

◼ Hardware

❑ Greatly simplifies software’s job

❑ One idea: Invalidate all other copies of block A when a core writes to A
12

A Very Simple Coherence Scheme (VI)

◼ Caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others

invalidate the block.

◼ A simple protocol:

13

◼ Write-through, no-
write-allocate
cache

◼ Actions of the local
processor on the
cache block: PrRd,
PrWr,

◼ Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache Coherence

◼ No hardware based coherence

❑ Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

◼ need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software (e.g., page
protection, page-based software coherence, non-cacheable)

◼ All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way

14

Maintaining Coherence

◼ Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory

location

◼ Writes to location A by P0 should be seen by P1
(eventually), and all writes to A should appear in some

order

◼ Coherence needs to provide:

❑ Write propagation: guarantee that updates will propagate

❑ Write serialization: provide a consistent order seen by all
processors for the same memory location

◼ Need a global point of serialization for this store ordering
15

Hardware Cache Coherence

◼ Basic idea:

❑ A processor/cache broadcasts its write/update to a memory
location to all other processors

❑ Another cache that has the location either updates or
invalidates its local copy

16

Coherence: Update vs. Invalidate

◼ How can we safely update replicated data?

❑ Option 1 (Update protocol): push an update to all copies

❑ Option 2 (Invalidate protocol): ensure there is only one
copy (local), update it

◼ On a Read:

❑ If local copy is Invalid, put out request

❑ (If another node has a copy, it returns it, otherwise
memory does)

17

Coherence: Update vs. Invalidate (II)

◼ On a Write:

❑ Read block into cache as before

Update Protocol:

❑ Write to block, and simultaneously broadcast written

data and address to sharers

❑ (Other nodes update the data in their caches if block is
present)

Invalidate Protocol:

❑ Write to block, and simultaneously broadcast invalidation
of address to sharers

❑ (Other nodes invalidate block in their caches if block is

present)

18

Update vs. Invalidate Tradeoffs

◼ Which do we want?

❑ Write frequency and sharing behavior are critical

◼ Update

+ If sharer set is constant and updates are infrequent, avoids

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,

updates would be useless

- Write-through cache policy ➔ bus becomes bottleneck

◼ Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid

invalidation-reacquire traffic from different processors)

19

Two Cache Coherence Methods

❑ How do we ensure that the proper caches are updated?

❑ Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

◼ Bus-based, single point of serialization for all memory requests

◼ Processors observe other processors’ actions

❑ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

❑ Directory [Censier and Feautrier, IEEE ToC 1978]

◼ Single point of serialization per block, distributed among nodes

◼ Processors make explicit requests for blocks

◼ Directory tracks which caches have each block

◼ Directory coordinates invalidation and updates

❑ E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

20

Directory Based

Cache Coherence

21

Directory Based Coherence

◼ Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this

directory to ensure coherence.

◼ An example mechanism:

❑ For each cache block in memory, store P+1 bits in directory

◼ One bit for each cache, indicating whether the block is in cache

◼ Exclusive bit: indicates that a cache has the only copy of the block
and can update it without notifying others

❑ On a read: set the cache’s bit and arrange the supply of data

❑ On a write: invalidate all caches that have the block and reset
their bits

❑ Have an “exclusive bit” associated with each block in each cache

(so that the cache can update the exclusive block silently)

22

Directory Based Coherence Example (I)

23

Directory Based Coherence Example (I)

24

Directory Optimizations

◼ Directory is the coordinator for all actions to be performed
on a given block by any processor

❑ Guarantees correctness, ordering

◼ Yet, there are many opportunities for optimization

❑ Enabled by bypassing the directory and directly

communicating between caches

❑ We will see examples of these optimizations later

25

Snoopy Cache Coherence

26

Snoopy Cache Coherence

◼ Idea:

❑ All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

❑ Each cache block has “coherence metadata” associated with it
in the tag store of each cache

◼ Easy to implement if all caches share a common bus

❑ Each cache broadcasts its read/write operations on the bus

❑ Good for small-scale multiprocessors

❑ What if you would like to have a 10,000-node multiprocessor?

27

28

A Simple Snoopy Cache Coherence Protocol

◼ Caches “snoop” (observe) each others’ write/read
operations

◼ A simple protocol (VI protocol):

29

◼ Write-through,
no-write-allocate
cache

◼ Actions of the local
processor on the
cache block: PrRd,
PrWr,

◼ Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

Extending the Protocol

◼ What if you want write-back caches?

❑ We want a “modified” state

30

A More Sophisticated Protocol: MSI

◼ Extend metadata per block to encode three states:

❑ M(odified): cache line is the only cached copy and is dirty

❑ S(hared): cache line is one of potentially several cached
copies and it is clean (i.e., at least one clean cached copy)

❑ I(nvalid): cache line is not present in this cache

◼ Read miss makes a Read request on bus, transitions to S

◼ Write miss makes a ReadEx request, transitions to M state

◼ When a processor snoops ReadEx from another writer, it

must invalidate its own copy (if any)

◼ S→M upgrade can be made without re-reading data from

memory (via Invalidations)

31

MSI State Machine

32

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI

◼ A block is in no cache to begin with

◼ Problem: On a read, the block immediately goes to
“Shared” state although it may be the only copy to be

cached (i.e., no other processor will cache it)

◼ Why is this a problem?

❑ Suppose the cache that reads the block wants to write to it at
some point

❑ It needs to broadcast “invalidate” even though it has the only
cached copy!

❑ If the cache knew it had the only cached copy in the system,
it could have written to the block without notifying any other
cache → saves unnecessary broadcasts of invalidations

33

The Solution: MESI

◼ Idea: Add another state indicating that this is the only
cached copy and it is clean.

❑ Exclusive state

◼ Block is placed into the exclusive state if, during BusRd, no
other cache had it

❑ Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

◼ Silent transition Exclusive→Modified is possible on write!

◼ MESI is also called the Illinois protocol
◼ Papamarcos and Patel, “A low-overhead coherence solution for

multiprocessors with private cache memories,” ISCA 1984.

34

35

36

MESI State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

37

M

E

S

I

[Culler/Singh96]

MESI State Machine from Optional Lab 5

38

A transition from a single-owner state (Exclusive or Modified) to Shared is called a

downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an

upgrade, because the transition grants the ability to the owner (the cache which contains

the respective block) to write to the block.

MESI State Machine from Optional Lab 5

39

Intel Pentium Pro

40Slide credit: Yale Patt

Snoopy Invalidation Tradeoffs

◼ Should a downgrade from M go to S or I?
❑ S: if data is likely to be reused (before it is written to by another

processor)

❑ I: if data is likely to be not reused (before it is written to by another)

◼ Cache-to-cache transfer
❑ On a BusRd, should data come from another cache or memory?

❑ Another cache

◼ May be faster, if memory is slow or highly contended

❑ Memory

◼ Simpler: no need to wait to see if another cache has the data first

◼ Less contention at the other caches

◼ Requires writeback on M downgrade

◼ Writeback on Modified->Shared: necessary?
❑ One possibility: Owner (O) state (MOESI protocol)

◼ One cache owns the latest data (memory is not updated)

◼ Memory writeback happens when all caches evict copies

41

The Problem with MESI

◼ Observation: Shared state requires the data to be clean

❑ i.e., all caches that have the block have the up-to-date copy
and so does the memory

◼ Problem: Need to write the block to memory when BusRd

happens when the block is in Modified state

◼ Why is this a problem?

❑ Memory can be updated unnecessarily → some other

processor may want to write to the block again

42

Improving on MESI

◼ Idea 1: Do not transition from M→S on a BusRd. Invalidate

the copy and supply the modified block to the requesting

processor directly without updating memory

◼ Idea 2: Transition from M→S, but designate one cache as

the owner (O), who will write the block back when it is

evicted

❑ Now “Shared” means “Shared and potentially dirty”

❑ This is a version of the MOESI protocol

43

Tradeoffs in Sophisticated Cache Coherence Protocols

◼ The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

◼ However, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to

take care of, race conditions)

-- Provide diminishing returns

44

Revisiting Two Cache Coherence Methods

❑ How do we ensure that the proper caches are updated?

❑ Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

◼ Bus-based, single point of serialization for all memory requests

◼ Processors observe other processors’ actions

❑ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

❑ Directory [Censier and Feautrier, IEEE ToC 1978]

◼ Single point of serialization per block, distributed among nodes

◼ Processors make explicit requests for blocks

◼ Directory tracks which caches have each block

◼ Directory coordinates invalidation and updates

❑ E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

45

Snoopy Cache vs. Directory Coherence
◼ Snoopy Cache

+ Miss latency (critical path) is short: request → bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

→ single point of serialization (bus): not scalable

→ need a virtual bus (or a totally-ordered interconnect)

◼ Directory

- Adds indirection to miss latency (critical path): request → dir. → mem.

- Requires extra storage space to track sharer sets

◼ Can be approximate (false positives are OK for correctness)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
46

Revisiting Directory-Based

Cache Coherence

47

Remember: Directory Based Coherence

◼ Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this

directory to ensure coherence.

◼ An example mechanism:

❑ For each cache block in memory, store P+1 bits in directory

◼ One bit for each cache, indicating whether the block is in cache

◼ Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

❑ On a read: set the cache’s bit and arrange the supply of data

❑ On a write: invalidate all caches that have the block and reset
their bits

❑ Have an “exclusive bit” associated with each block in each

cache

48

Remember: Directory Based Coherence

Example

49

Directory-Based Protocols

◼ Required when scaling past the capacity of a single bus

◼ Distributed:

❑ Coherence still requires single point of serialization (for write
serialization)

❑ Serialization location can be different for every block (striped
across nodes/memory-controllers)

◼ We can reason about the protocol for a single block: one

server (directory node), many clients (private caches)

◼ Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

50

Directory: Data Structures

◼ Required to support invalidation and cache block requests

◼ Key operation to support is set inclusion test

❑ False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

❑ False positive rate determines performance

◼ Most accurate (and expensive): full bit-vector

◼ Compressed representation, linked list, Bloom filters are all
possible

51

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Directory: Basic Operations

◼ Follow semantics of snoop-based system

❑ but with explicit request, reply messages

◼ Directory:

❑ Receives Read, ReadEx, Upgrade requests from nodes

❑ Sends Inval/Downgrade messages to sharers if needed

❑ Forwards request to memory if needed

❑ Replies to requestor and updates sharing state

◼ Protocol design is flexible

❑ Exact forwarding paths depend on implementation

❑ For example, do cache-to-cache transfer?

52

MESI Directory Transaction: Read

53

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

54

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

55

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

☺ 

3. RdEx4. Invl

5a. Rev

5b. DatEx

☺

Issues with Contention Resolution

◼ Need to escape race conditions by:

❑ NACKing requests to busy (pending invalidate) entries

◼ Original requestor retries

❑ OR, queuing requests and granting in sequence

❑ (Or some combination thereof)

◼ Fairness

❑ Which requestor should be preferred in a conflict?

❑ Interconnect delivery order, and distance, both matter

◼ Ping-ponging can be reduced w/ protocol optimizations OR
better higher-level synchronization

❑ With solutions like combining trees (for locks/barriers) and
better shared-data-structure design

56

Scaling the Directory: Some Questions

◼ How large is the directory?

◼ How can we reduce the access latency to the directory?

◼ How can we scale the system to thousands of nodes?

◼ Can we get the best of snooping and directory protocols?

❑ Heterogeneity

❑ E.g., token coherence [Martin+, ISCA 2003]

57

An Example Question (I)

58

An Example Answer

59

◼ Blocks per node

❑ (32GB address space / 128 bytes per block) / 32 nodes

❑ 2^(35-7-5) = 2^23

◼ Directory storage per node

❑ 200 MB = 25 * 2^23 bytes = 25 * 2^26 bits

◼ Directory storage per block

❑ 25 * 2^26 bits / 2^23 blocks = 200 bits per block

◼ Each directory entry has P+1 bits

❑ P+1 = 200 => P = 199

Cache Coherence:

A Recent Example

60

Automatic Data Coherence Support for PIM

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.

61

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Automatic Data Coherence Support for PIM

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

62

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

CoNDA:

Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

ASIC

Specialized Accelerators

64

FPGAGPU

NDAASIC

ASIC

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology

enabled Near-Data Accelerators (NDA)

CPU
DRAM

NDA

ASIC

Coherence For NDAs

65

Challenge: Coherence between NDAs and CPUs

DRAM
L2L1

CPU
CPU
CPU

CPU

NDA

Compute

Unit

(1) Large cost of

off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate

a large amount of off-chip data movement

ASIC

Existing Coherence Mechanisms

66

We extensively study existing NDA coherence

mechanisms and make three key observations:

These mechanisms eliminate

a significant portion of NDA’s benefits1

The majority of off-chip coherence traffic

generated by these mechanisms is unnecessary2

Much of the off-chip traffic can be eliminated

if the coherence mechanism has insight

into the memory accesses

3

ASIC

An Optimistic Approach

67

1 Gain insights before any coherence checks happen

We find that an optimistic approach to coherence can

address the challenges related to NDA coherence

2 Perform only the necessary coherence requests

We propose CoNDA, a coherence mechanism that lets an

NDA optimistically execute an NDA kernel

Optimistic execution enables CoNDA to identify and avoid

unnecessary coherence requests

CoNDA comes within 10.4% and 4.4% of performance

and energy of an ideal NDA coherence mechanism

Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

68

Background

• Near-Data Processing (NDP)

– A potential solution to reduce data movement

– Idea:move computation close to data

• Enabled by recent advances in 3D-stacked

memory

69

Reduces data movement

Exploits large in-memory bandwidth

Exploits shorter access latency to memory

Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

70

Application Analysis

ASIC

Sharing Data between NDAs and CPUs

72

1st key observation: CPU threads often concurrently

access the same region of data that NDA kernels

access which leads to significant data sharing

Graph ProcessingHybrid Databases

(HTAP)

We find not all portions of applications benefit from NDA

1 Memory-intensive portions benefit from NDA

2 Compute-intensive or cache friendly portions should remain

on the CPU

ASIC

Shared Data Access Patterns

73

2nd key observation: CPU threads and NDA kernels

typically do not concurrently access the same cache lines

CPU threads rarely update the same data

that an NDA is actively working on

For Connected Components application, only 5.1% of the CPU

accesses collide with NDA accesses

Analysis of

NDA Coherence Mechanisms

ASIC

Analysis of Existing Coherence Mechanism

75

1 Non-cacheable (NC)

• Mark the NDA data as non-cacheable

2 Coarse-Grained Coherence (CG)

• Get coherence permission for the entire NDA region

We analyze three existing coherence mechanisms:

3 Fine-Grained Coherence (FG)

• Traditional coherence protocols

ASIC

Non-Cacheable (NC) Approach

76

Hybrid

Database

(HTAP)

Transactions Analytics

CPUCPU

Transactions

NDA

Analytics

Data Sharing

(1) Generates a large number

of off-chip accesses

(2) Significantly hurts CPU

threads performance

NC fails to provide any energy saving and perform

6.0% worse than CPU-only

Mark the NDA data as non-cacheable

ASIC

Coarse-Grained (CG) Coherence

77

CPU
CPU NDA

Flush dirty data

Get coherence permission for the entire NDA region

Unnecessarily flushes

a large amount of dirty data,

especially in pointer-chasing

applications

Use coarse-grained locks to provide exclusive access
CPU NDA

Time

STALLBlocks CPU threads when they

access NDA data regions

CG fails to provide any performance benefit of NDA

and performs 0.4% worse than CPU-only

Fine-Grained (FG) Coherence

78

Using fine-grained coherence has two benefits:

1 Simplifies NDA programming model

2 Allows us to get permissions for only the pieces of data

that are actually accessed

CPU
CPU NDA

High amount of

off-chip coherence Traffic

(1) Memory-intensive

(2) Poor locality

FG eliminates 71.8% of the energy benefits of

an ideal NDA mechanism

Analysis of Existing Coherence Mechanisms

79

0.0

0.5

1.0

1.5

2.0

CC Radii PR CC Radii PR

arXiV Gnutella

S
p

e
e
d

u
p

CPU-only NC CG FG Ideal-NDA

GMEAN

0.0

0.5

1.0

1.5

2.0

GMEAN

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

NC suffers from a large number of off-chip accesses

from CPU threads
CG unnecessarily flushes a large amount of dirty dataFG suffers from high amount of unnecessary

off-chip coherence traffic

Poor handling of coherence eliminates much

of an NDA’s performance and energy benefits

Performs 0.4% worse

than CPU-only

Increases energy over CPU-only by 64.4%

and performs 6.0% worse than CPU-only

Loses a significant portion of the

performance and energy benefits

Motivation and Goal

80

1

2

3

Poor handling of coherence eliminates much

of an NDA’s benefits1

The majority of off-chip coherence traffic

is unnecessary2

Our goal is to design a coherence mechanism that:

1 Retains benefits of Ideal NDA

2 Enforces coherence with only the necessary

data movement

Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

81

ASIC

Optimistic NDA Execution

82

We propose to use optimistic execution for NDAs

We leverage two key observations:

1 Having insight enables us to eliminate much of

unnecessary coherence traffic

2 Low rate of collision for CPU threads and NDA kernels

2 Gains insights into memory accesses

Performs only the necessary coherence requests

NDA executes the kernel:

1 Assumes it has coherence permissions

When execution is done:

High-Level Overview of Optimistic Execution Model

83

Time

Optimistic

Execution

CPU NDA

CPU Thread

Execution

Concurrent

CPU + NDA

Execution
No Coherence Request

Coherence Resolution

Commit or Re-execute

High-Level Overview of CoNDA

84

Time

Optimistic

Execution

CPU NDA

Concurrent

CPU + NDA

Execution SignatureSignature

Coherence Resolution

CPU Thread

Execution

We propose CoNDA,a mechanism that uses optimistic

NDA execution to avoid unnecessary coherence traffic

No

Coherence Request

How do we identify

coherence violations?

ASIC

Necessary Coherence Requests

• Coherence requests are only necessary if:

– Both NDA and CPU access a cache line

– At least one of them updates it

86

We discuss three possible interleaving of accesses

to the same cache line:

1 NDA Read and CPU Write (coherence violation)

2 NDA Write and CPU Read (no violation)

3 NDA Write and CPU Write (no violation)

Identifying Coherence Violations

87

Time
CPU NDA

C1. Wr Z

C2. Rd A

C3. Wr B

N1. Rd X

N2. WrY

N3. Rd Z

Any Coherence Violation?

C4. WrY

C5. Rd Y

N4. Rd X

N5. WrY

N6. Rd Z

Any Coherence Violation?

C6. Wr X

Yes. Flush Z to DRAM

No. Commit NDA operations

Coherence checks happen

at the end of NDA kernel

No coherence checks

during NDA execution

NDA reads old value of Z

“C4” and “C5”

are ordered before

“N5”

1) NDA Read and CPU Write: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation

Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

88

ASIC

CoNDA: Architecture Support

89

CPU
DRAM

CPU

CPUWriteSet

Shared LLC

Coherence

Resolution

L1

NDA

Core

L1

NDAReadSet

NDAWriteSet

NDAReadSet

NDAWriteSetCPUWriteSet
Coherence

Resolution

ASIC

Optimistic Mode Execution

90

CPU

CPUWriteSet

Shared LLC

Coherence

Resolution

L1
NDA

Core
NDAReadSet

NDAWriteSet

L1
NDA

Core

L1

Per-word dirty bit mask to mark

all uncommitted data updates

NDAReadSet

NDAWriteSet

CPUWriteSet

The NDAReadSet and NDAWriteSet are used

to track memory accesses from NDA

The CPU records all writes

to the NDA data region in the CPUWriteSet

ASIC

Signatures

91

CPU

CPUWriteSet

Shared LLC

Coherence

Resolution

L1
NDA

Core
NDAReadSet

NDAWriteSet

L1

NDAReadSet

NDAWriteSet

CPUWriteSet

Address

…1 1 00 0 1 11 0 0 01

hk-1h1h0 …

Bloom filter based signature has two major benefits:

• Allows us to easily perform coherence resolution

• Allows for a large number of addresses to be stored

within a fixed-length register

ASIC

Coherence Resolution

92

CPU

CPUWriteSet

Shared LLC

Coherence

Resolution

L1
NDA

Core
NDAReadSet

NDAWriteSet

L1

NDAReadSet

CPUWriteSet
Coherence

Resolution

NDAReadSetCPUWriteSet

Conflict

If conflicts happens:

• The CPU flushes the dirty cache lines that match

addresses in the NDAReadSet

• NDA invalidates all uncommitted cache lines

• Signatures are erased and NDA restarts execution

If no conflicts:

• Any clean cache lines in the CPU that match an

address in the NDAWriteSet are invalidated

• NDA commits data updates

Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

93

Evaluation Methodology

• Simulator

– Gem5 full system simulator

• System Configuration:

– CPU

• 16 cores, 8-wide, 2GHz frequency

• L1 I/D cache: 64 kB private, 4-way associative, 64 B block

• L2 cache: 2 MB shared, 8-way associative, 64 B blocks

• Cache Coherence Protocol: MESI

– NDA

• 16 cores, 1-wide, 2GHz frequency

• L1 I/D cache: 64 kB private, 4-way associative, 64 B Block

• Cache coherence protocol: MESI

– 3D-stacked Memory

• One 4GB Cube, 16 Vaults per cube

94

Applications
• Ligra

– Lightweight multithreaded graph processing

– We used three Ligra graph applications

• PageRank (PR)

• Radii

• Connected Components (CC)

– Real-world Input graphs:

• Enron

• arXiV

• Gnutella25

• Hybrid Database (HTAP)

– In-house prototype of an in-memory database

– Capable of running both transactional and analytical queries on

the same database (HTAP workload)

– 32K transactions, 128/256 analytical queries
95

Speedup

96

0.0

0.5

1.0

1.5

2.0

2.5

CC Radii PR CC Radii PR CC Radii PR 128 256

arXiV Gnutella Enron HTAP

S
p

e
e
d

u
p

CPU-only NDA-only FG CoNDA Ideal-NDA

GMEAN

FG loses a significant portion of

Ideal-NDA’s improvement

NDA-only eliminates 82.2% of

Ideal-NDA’s improvement
CG and NC eliminate the entire performance

benefit of Ideal-NDA execution

CoNDA consistently retains most of Ideal-NDA’s benefits,

coming within 10.4% of the Ideal-NDA performance

66.0%

Memory System Energy

97

0.00

0.25

0.50

0.75

1.00

1.25

CC Radii PR CC Radii PR CC Radii PR 128 256

arXiV Gnutella Enron HTAP

N
o

rm
al

iz
e

d
 E

n
e

rg
y

CPU-only FG CoNDA Ideal-NDA

GMEAN

FG loses a significant portion of benefits because

of a large number of off-chip coherence messagesCoNDA significantly reduces energy consumption

and comes within 4.4% of Ideal-NDA

98

Other Results in the Paper
• Results for larger data sets

– 8.4x over CPU-only

– 7.7x over NDA-only

– 38.3% over the best prior coherence mechanism

• Sensitivity analysis

– Multiple memory stacks

– Effect of optimistic execution duration

– Effect of signature size

– Effect of data sharing characteristics

• Hardware overhead analysis

– 512 B NDA signature, 2 kB CPU signature, 1 bit per page

table, 1 bit per TLB entry, 1.6% increase in NDA L1 cache

Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

99

Conclusion
• Coherence is a major system challenge for NDA

– Efficient handling of coherence is critical to retain NDA
benefits

• We extensively analyze NDA applications and existing
coherence mechanisms. Major Observations:
– There is a significant amount of data sharing between CPU

threads and NDAs

– A majority of off-chip coherence traffic is unnecessary

– A significant portion of off-chip traffic can be eliminated if the
mechanism has insight into NDA memory accesses

• We propose CoNDA, a mechanism that uses
optimistic NDA execution to avoid unnecessary
coherence traffic

• CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism

100

CoNDA:

Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

More on CoNDA…

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

102

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Computer Architecture

Lecture 21: Cache Coherence

Prof. Onur Mutlu

ETH Zürich

Fall 2020

4 December 2020

Backup Slides

104

105

Breakdown of Performance Overhead

• CoNDA’s execution time consist of three major parts:

– (1) NDA kernel execution

– (2) Coherence resolution overhead (3.3% of execution time)

– (3) Re-execution overhead (8.4% of execution time)

• Coherence resolution overhead is low

– CPU-threads do not stall during resolution

– NDAWriteSet contains only a small number of addresses (6)

– Resolution mainly involves sending signatures and checking

necessary coherence

• Overhead of re-execution is low

– The collision rate is low for our applications → 13.4%

– Re-execution is significantly faster than original execution

Memory System Energy

106

0.00

0.25

0.50

0.75

1.00

1.25

CC Radii PR CC Radii PR CC Radii PR 128 256

arXiV Gnutella Enron HTAP

N
o

rm
al

iz
e

d
 E

n
e

rg
y

CPU-only NC CG FG CoNDA Ideal-NDA

3.8x 3.1x 4.0x 3.3x 2.4x 3.1x 2.8x 2.2x 2.7x 2.3x

GMEAN

• NC suffers greatly from the large number of accesses to DRAM

• Interconnect and DRAM energy increase by 3.1x and 4.5x

CG and FG loses a significant portion of benefits because of

large number of writebacks and off-chip coherence messages

CoNDA significantly reduces energy consumption

and comes within 4.4% of Ideal-NDA

Speedup

107

0.0

0.5

1.0

1.5

2.0

2.5

CC Radii PR CC Radii PR CC Radii PR 128 256

arXiV Gnutella Enron HTAP

S
p

e
e
d

u
p

CPU-only NDA-only NC CG FG CoNDA Ideal-NDA

GMEAN

CG and NC eliminate the entire

benefit of Ideal-NDA execution

FG loses a significant portion of

Ideal-NDA’s improvement
CoNDA consistently retains most of Ideal-NDA’s benefits,

coming within 10.4% of the Ideal-NDA performanceNDA-only eliminates 82.2% of

Ideal-NDA’s improvement

ASIC

Effect of Multiple Memory Stacks

108

ASIC

Effect of Optimistic Execution Duration

109

ASIC

Effect of Signature Size

110

Identifying Coherence Violations

111

Time
CPU NDA

C1. Wr Z

C2. Rd A

C3. Wr B

N1. Rd X

N2. WrY

N3. Rd Z

Any Coherence Violation?

C4. WrY

C5. Rd Y

N4. Rd X

N5. WrY

N6. Rd Z

Any Coherence Violation?

C6. Wr X

Effective Ordering

C1. Wr Z

C2. Rd A

C3. Wr B

C4. WrY

C5. Rd Y

N4. Rd X

N5. WrY

N6. Rd Z

C6. Wr X

Yes. Flush Z to DRAM

No. commit NDA operations

1) NDA Read and CPU Write: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation

ASIC

Optimistic NDA Execution

112

We propose to use optimistic execution for NDAs

When executing in optimistic mode:

• An NDA gains insight into its memory accesses without issuing

any coherence requests

When optimistic mode is done:

• The NDA uses the tracking information to perform necessary

coherence requests

We leverage two key observations

1 Majority of coherence

2 Enforce coherence with only the necessary data movement

ASIC

Example: Hybrid Database (HTAP)

113

Hybrid Database

(HTAP)

Transactions Analytics

Transactions

CPU
CPU NDA

Analytics

Data Sharing

ASIC

Application Analysis Wrap up

114

There is a significant amount of data sharing

between CPU threads and NDAs
1

CPU threads and NDAs often do not access

the same cache lines concurrently2

CPU threads rarely update the same data

that NDAs are actively working on3

Background

• Near-Data Processing (NDP)

– A potential solution to reduce data movement

– Idea:move computation close to data

• Enabled by recent advances in 3D-stacked

memory

115

Specialized Accelerators

116

Accelerators

FPGAGPU

NDAASIC

ASIC Near-Data Accelerator

Specialized accelerators are now everywhere!

On-chip Accelerators Off-chip Accelerators

Applications

• Ligra
– Lightweight multithreaded graph processing for shared

memory system

– We used three Ligra graph applications

• PageRank (PR)

• Radii

• Connected Components (CC)

– Input graphs constructed from real-world network datasets:

• Enron email communication network (36K nodes, 183K edges)

• arXiV General Relativity (5K nodes, 14K edges)

• peer-to- peer Gnutella25 (22K nodes, 54K edges).

• IMDB
– In-house prototype of an in-memory database (IMDB)

– Capable of running both transactional queries and analytical queries on
the same database tables (HTAP workload)

– 32K transactions, 128/256 analytical queries

117

ASIC

Optimistic NDA Execution

118

We propose to use optimistic execution for NDAs

We leverage two key observations:

1 Eliminate much of unnecessary coherence traffic by

having insight into memory accesses

2 CPU threads and NDA kernels typically do not

concurrently access the same cache lines

2 Gains insights into memory accesses

Performs only the necessary coherence requests

NDA executes the kernel:

1 Assumes it has coherence permission

When execution is done:

Analysis of Existing Coherence Mechanisms

119

Poor handling of coherence eliminates much

of an NDA’s performance and energy benefits

0.0

0.5

1.0

1.5

2.0

C
C

R
ad

ii

P
ag

e
R

an
k

C
C

R
ad

ii

P
ag

e
R

an
k

arXiV Gnutella

S
p

e
e

d
u

p

CPU-only NC CG FG Ideal-NDA

GMEAN

0.0

0.5

1.0

1.5

2.0

GMEAN

N
o

rm
a
li
z
e
d

E

n
e
rg

y

Suffers from a large number of

off-chip accesses
Unnecessarily flushes

a large amount of dirty data

Blocks CPU threads when they

access NDA data regions

FG suffers from high amount of unnecessary

off-chip coherence Traffic

