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Caching in Multiprocessors

◼ Caching not only complicates ordering of all operations…

❑ A memory location can be present in multiple caches

❑ Prevents the effect of a store or load to be seen by other 
processors → makes it difficult for all processors to see the 
same global order of (all) memory operations

◼ … but it also complicates ordering of operations on a single 
memory location

❑ A single memory location can be present in multiple caches

❑ Makes it difficult for processors that have cached the same 

location to have the correct value of that location (in the 
presence of updates to that location)
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Memory Consistency vs. Cache Coherence

◼ Consistency is about ordering of all memory operations 
from different processors (i.e., to different memory 

locations)

❑ Global ordering of accesses to all memory locations

◼ Coherence is about ordering of operations from different 
processors to the same memory location

❑ Local ordering of accesses to each cache block
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Cache Coherence
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Readings: Cache Coherence

◼ Required

❑ Culler and Singh, Parallel Computer Architecture

◼ Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

❑ P&H, Computer Organization and Design

◼ Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

❑ Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with 
private cache memories,” ISCA 1984.

◼ Recommended

❑ Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

❑ Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

❑ Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

❑ Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

❑ Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA 
1988.
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Shared Memory Model

◼ Many parallel programs communicate through shared memory

◼ Proc 0 writes to an address, followed by Proc 1 reading

❑ This implies communication between the two

◼ Each read should receive the value last written by anyone

❑ This requires synchronization (what does last written mean?)

◼ What if Mem[A] is cached (at either end)?
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Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]



Cache Coherence 

◼ Basic question: If multiple processors cache the same 
block, how do they ensure they all see a consistent state?
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem
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The Cache Coherence Problem

11

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

10002000

ld r5, x

Should NOT 

load 1000



Cache Coherence: Whose Responsibility?

◼ Software

❑ Can programmer ensure coherence if caches invisible to software?

❑ Coarse-grained: Page-level coherence has overheads 

❑ Non-solution: Make shared locks/data non-cacheable

❑ A combination of non-cacheable and coarse-grained is doable

❑ Fine-grained: What if the ISA provided a cache flush instruction?

◼ FLUSH-LOCAL A: Flushes/invalidates the cache block containing address 
A from a processor’s local cache. 

◼ FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches. 

◼ FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

◼ Hardware

❑ Greatly simplifies software’s job

❑ One idea: Invalidate all other copies of block A when a core writes to A
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A Very Simple Coherence Scheme (VI)

◼ Caches “snoop” (observe) each other’s write/read 
operations. If a processor writes to a block, all others 

invalidate the block.

◼ A simple protocol:
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◼ Write-through, no-
write-allocate 
cache

◼ Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

◼ Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



(Non-)Solutions to Cache Coherence

◼ No hardware based coherence

❑ Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder 

◼ need to worry about hardware caches to maintain program 
correctness?

-- Overhead in ensuring coherence in software (e.g., page 
protection, page-based software coherence, non-cacheable)

◼ All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache 
access this way
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Maintaining Coherence

◼ Need to guarantee that all processors see a consistent 
value (i.e., consistent updates) for the same memory 

location

◼ Writes to location A by P0 should be seen by P1 
(eventually), and all writes to A should appear in some 

order

◼ Coherence needs to provide:

❑ Write propagation: guarantee that updates will propagate

❑ Write serialization: provide a consistent order seen by all 
processors for the same memory location

◼ Need a global point of serialization for this store ordering
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Hardware Cache Coherence

◼ Basic idea:

❑ A processor/cache broadcasts its write/update to a memory 
location to all other processors

❑ Another cache that has the location either updates or 
invalidates its local copy

16



Coherence: Update vs. Invalidate

◼ How can we safely update replicated data?

❑ Option 1 (Update protocol): push an update to all copies

❑ Option 2 (Invalidate protocol): ensure there is only one 
copy (local), update it

◼ On a Read:

❑ If local copy is Invalid, put out request

❑ (If another node has a copy, it returns it, otherwise 
memory does)
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Coherence: Update vs. Invalidate (II)

◼ On a Write:

❑ Read block into cache as before

Update Protocol:

❑ Write to block, and simultaneously broadcast written 

data and address to sharers

❑ (Other nodes update the data in their caches if block is 
present)

Invalidate Protocol:

❑ Write to block, and simultaneously broadcast invalidation 
of address to sharers

❑ (Other nodes invalidate block in their caches if block is 

present)
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Update vs. Invalidate Tradeoffs

◼ Which do we want?

❑ Write frequency and sharing behavior are critical

◼ Update

+ If sharer set is constant and updates are infrequent, avoids 

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores, 

updates would be useless

- Write-through cache policy ➔ bus becomes bottleneck

◼ Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid 

invalidation-reacquire traffic from different processors)
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Two Cache Coherence Methods 

❑ How do we ensure that the proper caches are updated?

❑ Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

◼ Bus-based, single point of serialization for all memory requests

◼ Processors observe other processors’ actions

❑ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A

❑ Directory [Censier and Feautrier, IEEE ToC 1978]

◼ Single point of serialization per block, distributed among nodes

◼ Processors make explicit requests for blocks

◼ Directory tracks which caches have each block

◼ Directory coordinates invalidation and updates

❑ E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1
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Directory Based 

Cache Coherence
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Directory Based Coherence

◼ Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 

directory to ensure coherence.

◼ An example mechanism:

❑ For each cache block in memory, store P+1 bits in directory

◼ One bit for each cache, indicating whether the block is in cache

◼ Exclusive bit: indicates that a cache has the only copy of the block 
and can update it without notifying others

❑ On a read: set the cache’s bit and arrange the supply of data 

❑ On a write: invalidate all caches that have the block and reset 
their bits

❑ Have an “exclusive bit” associated with each block in each cache 

(so that the cache can update the exclusive block silently)
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Directory Based Coherence Example (I)
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Directory Based Coherence Example (I)
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Directory Optimizations

◼ Directory is the coordinator for all actions to be performed 
on a given block by any processor

❑ Guarantees correctness, ordering

◼ Yet, there are many opportunities for optimization

❑ Enabled by bypassing the directory and directly 

communicating between caches

❑ We will see examples of these optimizations later
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Snoopy Cache Coherence
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Snoopy Cache Coherence

◼ Idea: 

❑ All caches “snoop” all other caches’ read/write requests and 
keep the cache block coherent

❑ Each cache block has “coherence metadata” associated with it 
in the tag store of each cache

◼ Easy to implement if all caches share a common bus

❑ Each cache broadcasts its read/write operations on the bus

❑ Good for small-scale multiprocessors

❑ What if you would like to have a 10,000-node multiprocessor?
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A Simple Snoopy Cache Coherence Protocol

◼ Caches “snoop” (observe) each others’ write/read 
operations

◼ A simple protocol (VI protocol):

29

◼ Write-through, 
no-write-allocate 
cache

◼ Actions of the local 
processor on the 
cache block: PrRd, 
PrWr, 

◼ Actions that are 
broadcast on the 
bus for the block: 
BusRd, BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--



Extending the Protocol

◼ What if you want write-back caches?

❑ We want a “modified” state
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A More Sophisticated Protocol: MSI

◼ Extend metadata per block to encode three states:

❑ M(odified): cache line is the only cached copy and is dirty

❑ S(hared): cache line is one of potentially several cached 
copies and it is clean (i.e., at least one clean cached copy)

❑ I(nvalid): cache line is not present in this cache

◼ Read miss makes a Read request on bus, transitions to S

◼ Write miss makes a ReadEx request, transitions to M state

◼ When a processor snoops ReadEx from another writer, it 

must invalidate its own copy (if any)

◼ S→M upgrade can be made without re-reading data from 

memory (via Invalidations)
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MSI State Machine
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M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action



The Problem with MSI

◼ A block is in no cache to begin with

◼ Problem: On a read, the block immediately goes to 
“Shared” state although it may be the only copy to be 

cached (i.e., no other processor will cache it)

◼ Why is this a problem?

❑ Suppose the cache that reads the block wants to write to it at 
some point

❑ It needs to broadcast “invalidate” even though it has the only 
cached copy!

❑ If the cache knew it had the only cached copy in the system, 
it could have written to the block without notifying any other 
cache → saves unnecessary broadcasts of invalidations
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The Solution: MESI

◼ Idea: Add another state indicating that this is the only 
cached copy and it is clean.

❑ Exclusive state

◼ Block is placed into the exclusive state if, during BusRd, no 
other cache had it

❑ Wired-OR “shared” signal on bus can determine this: 
snooping caches assert the signal if they also have a copy

◼ Silent transition Exclusive→Modified is possible on write!

◼ MESI is also called the Illinois protocol 
◼ Papamarcos and Patel, “A low-overhead coherence solution for 

multiprocessors with private cache memories,” ISCA 1984.
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MESI State Machine



PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine
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MESI State Machine from Optional Lab 5
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A transition from a single-owner state (Exclusive or Modified) to Shared is called a 

downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an 

upgrade, because the transition grants the ability to the owner (the cache which contains 

the respective block) to write to the block.



MESI State Machine from Optional Lab 5

39



Intel Pentium Pro
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Snoopy Invalidation Tradeoffs

◼ Should a downgrade from M go to S or I?
❑ S: if data is likely to be reused (before it is written to by another 

processor)

❑ I: if data is likely to be not reused (before it is written to by another)

◼ Cache-to-cache transfer
❑ On a BusRd, should data come from another cache or memory?

❑ Another cache

◼ May be faster, if memory is slow or highly contended

❑ Memory

◼ Simpler: no need to wait to see if another cache has the data first

◼ Less contention at the other caches

◼ Requires writeback on M downgrade

◼ Writeback on Modified->Shared: necessary?
❑ One possibility: Owner (O) state (MOESI protocol)

◼ One cache owns the latest data (memory is not updated)

◼ Memory writeback happens when all caches evict copies
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The Problem with MESI

◼ Observation: Shared state requires the data to be clean 

❑ i.e., all caches that have the block have the up-to-date copy 
and so does the memory

◼ Problem: Need to write the block to memory when BusRd 

happens when the block is in Modified state

◼ Why is this a problem?

❑ Memory can be updated unnecessarily → some other 

processor may want to write to the block again
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Improving on MESI

◼ Idea 1: Do not transition from M→S on a BusRd. Invalidate 

the copy and supply the modified block to the requesting 

processor directly without updating memory

◼ Idea 2: Transition from M→S, but designate one cache as 

the owner (O), who will write the block back when it is 

evicted

❑ Now “Shared” means “Shared and potentially dirty”

❑ This is a version of the MOESI protocol
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Tradeoffs in Sophisticated Cache Coherence Protocols

◼ The protocol can be optimized with more states and 
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

◼ However, more states and optimizations 

-- Are more difficult to design and verify (lead to more cases to 

take care of, race conditions)

-- Provide diminishing returns
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Revisiting Two Cache Coherence Methods 

❑ How do we ensure that the proper caches are updated?

❑ Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

◼ Bus-based, single point of serialization for all memory requests

◼ Processors observe other processors’ actions

❑ E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this 
and invalidates its own copy of A

❑ Directory [Censier and Feautrier, IEEE ToC 1978]

◼ Single point of serialization per block, distributed among nodes

◼ Processors make explicit requests for blocks

◼ Directory tracks which caches have each block

◼ Directory coordinates invalidation and updates

❑ E.g.: P1 asks directory for exclusive copy, directory asks P0 to 
invalidate, waits for ACK, then responds to P1
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Snoopy Cache vs. Directory Coherence
◼ Snoopy Cache

+ Miss latency (critical path) is short: request → bus transaction to mem.

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: can adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order): 

→ single point of serialization (bus): not scalable

→ need a virtual bus (or a totally-ordered interconnect)

◼ Directory

- Adds indirection to miss latency (critical path): request → dir. → mem.

- Requires extra storage space to track sharer sets

◼ Can be approximate (false positives are OK for correctness)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
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Revisiting Directory-Based 

Cache Coherence
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Remember: Directory Based Coherence

◼ Idea: A logically-central directory keeps track of where the 
copies of each cache block reside. Caches consult this 

directory to ensure coherence.

◼ An example mechanism:

❑ For each cache block in memory, store P+1 bits in directory

◼ One bit for each cache, indicating whether the block is in cache

◼ Exclusive bit: indicates that the cache that has the only copy of 
the block and can update it without notifying others

❑ On a read: set the cache’s bit and arrange the supply of data 

❑ On a write: invalidate all caches that have the block and reset 
their bits

❑ Have an “exclusive bit” associated with each block in each 

cache
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Remember: Directory Based Coherence 

Example
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Directory-Based Protocols

◼ Required when scaling past the capacity of a single bus

◼ Distributed:

❑ Coherence still requires single point of serialization (for write 
serialization)

❑ Serialization location can be different for every block (striped 
across nodes/memory-controllers)

◼ We can reason about the protocol for a single block: one 

server (directory node), many clients (private caches)

◼ Directory receives Read and ReadEx requests, and sends 
Invl requests: invalidation is explicit (as opposed to snoopy 
buses)
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Directory: Data Structures

◼ Required to support invalidation and cache block requests

◼ Key operation to support is set inclusion test

❑ False positives are OK: want to know which caches may contain 
a copy of a block, and spurious invalidations are ignored

❑ False positive rate determines performance

◼ Most accurate (and expensive): full bit-vector

◼ Compressed representation, linked list, Bloom filters are all 
possible
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0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}
---
Exclusive: P2
---
---



Directory: Basic Operations

◼ Follow semantics of snoop-based system

❑ but with explicit request, reply messages

◼ Directory:

❑ Receives Read, ReadEx, Upgrade requests from nodes

❑ Sends Inval/Downgrade messages to sharers if needed

❑ Forwards request to memory if needed

❑ Replies to requestor and updates sharing state

◼ Protocol design is flexible

❑ Exact forwarding paths depend on implementation

❑ For example, do cache-to-cache transfer?
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MESI Directory Transaction: Read
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P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1



RdEx with Former Owner
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P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev



Contention Resolution (for Write)
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P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

☺ 

3. RdEx4. Invl

5a. Rev

5b. DatEx

☺



Issues with Contention Resolution

◼ Need to escape race conditions by:

❑ NACKing requests to busy (pending invalidate) entries

◼ Original requestor retries

❑ OR, queuing requests and granting in sequence

❑ (Or some combination thereof)

◼ Fairness

❑ Which requestor should be preferred in a conflict?

❑ Interconnect delivery order, and distance, both matter

◼ Ping-ponging can be reduced w/ protocol optimizations OR 
better higher-level synchronization

❑ With solutions like combining trees (for locks/barriers) and 
better shared-data-structure design
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Scaling the Directory: Some Questions

◼ How large is the directory?

◼ How can we reduce the access latency to the directory?

◼ How can we scale the system to thousands of nodes?

◼ Can we get the best of snooping and directory protocols?

❑ Heterogeneity 

❑ E.g., token coherence [Martin+, ISCA 2003]
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An Example Question (I)
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An Example Answer
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◼ Blocks per node

❑ (32GB address space / 128 bytes per block) / 32 nodes

❑ 2^(35-7-5) = 2^23

◼ Directory storage per node

❑ 200 MB = 25 * 2^23 bytes = 25 * 2^26 bits

◼ Directory storage per block

❑ 25 * 2^26 bits / 2^23 blocks = 200 bits per block

◼ Each directory entry has P+1 bits

❑ P+1 = 200 => P = 199



Cache Coherence:

A Recent Example
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Automatic Data Coherence Support for PIM

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Automatic Data Coherence Support for PIM

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


CoNDA:

Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose,  Minesh Patel, Hasan Hassan, 

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, 

Onur Mutlu



ASIC

Specialized Accelerators
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FPGAGPU

NDAASIC

ASIC

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology 

enabled Near-Data Accelerators (NDA)

CPU
DRAM

NDA



ASIC

Coherence For NDAs
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Challenge: Coherence between NDAs and CPUs

DRAM
L2L1

CPU
CPU
CPU

CPU

NDA

Compute 

Unit 

(1) Large cost of 

off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate 

a large amount of off-chip data movement



ASIC

Existing Coherence Mechanisms

66

We extensively study existing NDA coherence 

mechanisms and make three key observations: 

These mechanisms eliminate

a significant portion of NDA’s benefits1

The majority of off-chip coherence traffic 

generated by these mechanisms is unnecessary2

Much of the off-chip traffic can be eliminated

if the coherence mechanism has insight

into the memory accesses

3



ASIC

An Optimistic Approach

67

1 Gain insights before any coherence checks happen

We find that an optimistic approach to coherence can 

address the challenges related to NDA coherence

2 Perform only the necessary coherence requests

We propose CoNDA, a coherence mechanism that lets an 

NDA optimistically execute an NDA kernel

Optimistic execution enables CoNDA to identify and avoid

unnecessary coherence requests 

CoNDA comes within 10.4% and 4.4% of performance 

and energy of an ideal NDA coherence mechanism



Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion
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Background

• Near-Data Processing (NDP) 

– A potential solution to reduce data movement

– Idea:move computation close to data

• Enabled by recent advances in 3D-stacked 

memory
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Reduces data movement

Exploits large in-memory bandwidth

Exploits shorter access latency to memory



Outline

• Introduction

• Background

• Motivation

• CoNDA

• Architecture Support

• Evaluation

• Conclusion

70



Application Analysis



ASIC

Sharing Data between NDAs and CPUs

72

1st key observation:  CPU threads often concurrently 

access the same region of data that NDA kernels

access which leads to significant data sharing

Graph ProcessingHybrid Databases

(HTAP)

We find not all portions of applications benefit from NDA

1 Memory-intensive portions benefit from NDA  

2 Compute-intensive or cache friendly portions should remain 

on the CPU



ASIC

Shared Data Access Patterns

73

2nd key observation:  CPU threads and NDA kernels 

typically do not concurrently access the same cache lines

CPU threads rarely update the same data

that an NDA is actively working on  

For Connected Components application, only 5.1% of the CPU 

accesses collide with NDA accesses



Analysis of 

NDA Coherence Mechanisms



ASIC

Analysis of Existing Coherence Mechanism

75

1 Non-cacheable (NC)

• Mark the NDA data as non-cacheable

2 Coarse-Grained Coherence (CG)

• Get coherence permission for the entire NDA region

We analyze three existing coherence mechanisms:

3 Fine-Grained Coherence (FG)

• Traditional coherence protocols



ASIC

Non-Cacheable (NC) Approach

76

Hybrid 

Database 

(HTAP)

Transactions Analytics

CPUCPU

Transactions

NDA

Analytics

Data Sharing

(1) Generates a large number

of off-chip accesses

(2) Significantly hurts CPU 

threads performance

NC fails to provide any energy saving and perform 

6.0% worse than CPU-only 

Mark the NDA data as non-cacheable



ASIC

Coarse-Grained (CG) Coherence

77

CPU
CPU NDA

Flush dirty data

Get coherence permission for the entire NDA region

Unnecessarily flushes

a large amount of dirty data,

especially in pointer-chasing 

applications 

Use coarse-grained locks to provide exclusive access
CPU NDA

Time

STALLBlocks CPU threads when they

access NDA data regions

CG fails to provide any performance benefit of NDA 

and performs 0.4% worse than CPU-only 



Fine-Grained (FG) Coherence

78

Using fine-grained coherence has two benefits:

1 Simplifies NDA programming model

2 Allows us to get permissions for only the pieces of data 

that are actually accessed

CPU
CPU NDA

High amount of 

off-chip coherence Traffic

(1) Memory-intensive

(2) Poor locality

FG eliminates 71.8% of the energy benefits of 

an ideal NDA mechanism



Analysis of Existing Coherence Mechanisms
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NC suffers from a large number of off-chip accesses 

from CPU threads
CG unnecessarily flushes a large amount of dirty dataFG suffers from high amount of unnecessary 

off-chip coherence traffic

Poor handling of coherence eliminates much 

of an NDA’s performance and energy benefits

Performs 0.4% worse

than CPU-only

Increases energy over CPU-only by 64.4%

and performs 6.0% worse than CPU-only

Loses a significant portion of the 

performance and energy benefits
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1

2

3

Poor handling of coherence eliminates much 

of an NDA’s benefits1

The majority of off-chip coherence traffic 

is unnecessary2

Our goal is to design a coherence mechanism that:

1 Retains benefits of Ideal NDA

2 Enforces coherence with only the necessary 

data movement
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Optimistic NDA Execution

82

We propose to use optimistic execution for NDAs

We leverage two key observations:

1 Having insight enables us to eliminate much of 

unnecessary coherence traffic

2 Low rate of collision for CPU threads and NDA kernels

2 Gains insights into memory accesses

Performs only the necessary coherence requests

NDA executes the kernel:

1 Assumes it has coherence permissions

When execution is done:



High-Level Overview of Optimistic Execution Model
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Time

Optimistic 

Execution

CPU NDA

CPU Thread 

Execution

Concurrent 

CPU + NDA 

Execution
No Coherence Request

Coherence Resolution

Commit or Re-execute



High-Level Overview of CoNDA
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Time

Optimistic 

Execution

CPU NDA

Concurrent 

CPU + NDA 

Execution SignatureSignature

Coherence Resolution

CPU Thread 

Execution

We propose CoNDA,a mechanism that uses optimistic 

NDA execution to avoid unnecessary coherence traffic

No 

Coherence Request



How do we identify

coherence violations?
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Necessary Coherence Requests

• Coherence requests are only necessary if:

– Both NDA and CPU access a cache line

– At least one of them updates it

86

We discuss three possible interleaving of accesses 

to the same cache line:

1 NDA Read and CPU Write (coherence violation)

2 NDA Write and CPU Read (no violation)

3 NDA Write and CPU Write (no violation) 



Identifying Coherence Violations
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Time
CPU NDA

C1.  Wr Z

C2.   Rd A 

C3.   Wr B

N1.  Rd X

N2.  WrY

N3.  Rd Z

Any Coherence Violation?

C4.   WrY

C5.   Rd  Y

N4.  Rd X

N5.  WrY

N6.  Rd Z

Any Coherence Violation?

C6.   Wr X

Yes. Flush Z to DRAM

No. Commit NDA operations

Coherence checks happen

at the end of NDA kernel

No coherence checks 

during NDA execution 

NDA reads old value of Z

“C4” and “C5”

are ordered before

“N5”

1) NDA Read and CPU Write: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation
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CoNDA: Architecture Support
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CPU
DRAM

CPU

CPUWriteSet

Shared LLC

Coherence 

Resolution 

L1

NDA 

Core

L1

NDAReadSet

NDAWriteSet

NDAReadSet

NDAWriteSetCPUWriteSet
Coherence 

Resolution 
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Optimistic Mode Execution
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CPU

CPUWriteSet

Shared LLC

Coherence 

Resolution 

L1
NDA 

Core
NDAReadSet

NDAWriteSet

L1
NDA 

Core

L1

Per-word dirty bit mask to mark

all uncommitted data updates  

NDAReadSet

NDAWriteSet

CPUWriteSet

The NDAReadSet and NDAWriteSet are used 

to track memory accesses from NDA

The CPU records all writes 

to the NDA data region in the CPUWriteSet
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Signatures
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CPU

CPUWriteSet

Shared LLC

Coherence 

Resolution 

L1
NDA 

Core
NDAReadSet

NDAWriteSet

L1

NDAReadSet

NDAWriteSet

CPUWriteSet

Address

…1 1 00 0 1 11 0 0 01

hk-1h1h0 …

Bloom filter based signature has two major benefits:

• Allows us to easily perform coherence resolution

• Allows for a large number of addresses to be stored 

within a fixed-length register 
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Coherence Resolution

92

CPU

CPUWriteSet

Shared LLC

Coherence 

Resolution 

L1
NDA 

Core
NDAReadSet

NDAWriteSet

L1

NDAReadSet

CPUWriteSet
Coherence 

Resolution 

NDAReadSetCPUWriteSet

Conflict

If conflicts happens:

• The CPU flushes the dirty cache lines that match 

addresses in the NDAReadSet

• NDA invalidates all uncommitted cache lines

• Signatures are erased and NDA restarts execution

If no conflicts:

• Any clean cache lines in the CPU that match an 

address in the NDAWriteSet are invalidated

• NDA commits data updates
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Evaluation Methodology

• Simulator

– Gem5 full system simulator

• System Configuration:

– CPU

• 16 cores, 8-wide, 2GHz frequency

• L1 I/D cache: 64 kB private, 4-way associative, 64 B block

• L2 cache: 2 MB shared, 8-way associative, 64 B blocks

• Cache Coherence Protocol: MESI

– NDA

• 16 cores, 1-wide, 2GHz frequency

• L1 I/D cache: 64 kB private, 4-way associative, 64 B Block

• Cache coherence protocol: MESI

– 3D-stacked Memory

• One 4GB Cube, 16 Vaults per cube
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Applications
• Ligra

– Lightweight multithreaded graph processing

– We used three Ligra graph applications

• PageRank (PR)

• Radii 

• Connected Components (CC)

– Real-world Input graphs:

• Enron

• arXiV

• Gnutella25

• Hybrid Database (HTAP)

– In-house prototype of an in-memory database 

– Capable of running both transactional and analytical queries on 

the same database (HTAP workload)

– 32K transactions, 128/256 analytical queries
95
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FG loses a significant portion of 

Ideal-NDA’s improvement

NDA-only eliminates 82.2% of

Ideal-NDA’s improvement
CG and NC eliminate the entire performance

benefit of Ideal-NDA execution

CoNDA consistently retains most of Ideal-NDA’s benefits, 

coming within 10.4% of the Ideal-NDA performance

66.0%
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FG loses a significant portion of benefits because 

of a large number of off-chip coherence messagesCoNDA significantly reduces energy consumption 

and comes within 4.4% of Ideal-NDA
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Other Results in the Paper
• Results for larger data sets

– 8.4x over CPU-only

– 7.7x over NDA-only

– 38.3% over the best prior coherence mechanism

• Sensitivity analysis

– Multiple memory stacks

– Effect of optimistic execution duration

– Effect of signature size

– Effect of data sharing characteristics

• Hardware overhead analysis

– 512 B NDA signature, 2 kB CPU signature, 1 bit per page 

table, 1 bit per TLB entry, 1.6% increase in NDA L1 cache
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Conclusion
• Coherence is a major system challenge for NDA

– Efficient handling of coherence is critical to retain NDA 
benefits

• We extensively analyze NDA applications and existing 
coherence mechanisms. Major Observations:
– There is a significant amount of data sharing between CPU 

threads and NDAs

– A majority of off-chip coherence traffic is unnecessary

– A significant portion of off-chip traffic can be eliminated if the 
mechanism has insight into NDA memory accesses

• We propose CoNDA, a mechanism that uses 
optimistic NDA execution to avoid unnecessary 
coherence traffic

• CoNDA comes within 10.4% and 4.4% of performance 
and energy of an ideal NDA coherence mechanism
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More on CoNDA…

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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Breakdown of Performance Overhead

• CoNDA’s execution time consist of three major parts:

– (1) NDA kernel execution

– (2) Coherence resolution overhead (3.3% of execution time)

– (3) Re-execution overhead (8.4% of execution time)

• Coherence resolution overhead is low

– CPU-threads do not stall during resolution

– NDAWriteSet contains only a small number of addresses (6)

– Resolution mainly involves sending signatures and checking 

necessary coherence

• Overhead of re-execution is low

– The collision rate is low for our applications → 13.4% 

– Re-execution is significantly faster than original execution
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GMEAN

• NC suffers greatly from the large number of accesses to DRAM

• Interconnect and DRAM energy increase by 3.1x and 4.5x

CG and FG loses a significant portion of benefits because of 

large number of writebacks and off-chip coherence messages

CoNDA significantly reduces energy consumption 

and comes within 4.4% of Ideal-NDA
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CG and NC eliminate the entire 

benefit of Ideal-NDA execution

FG loses a significant portion of 

Ideal-NDA’s improvement
CoNDA consistently retains most of Ideal-NDA’s benefits, 

coming within 10.4% of the Ideal-NDA performanceNDA-only eliminates 82.2% of
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Effect of Multiple Memory Stacks
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Effect of Optimistic Execution Duration
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Effect of Signature Size
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Identifying Coherence Violations
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Time
CPU NDA

C1.  Wr Z

C2.   Rd A 

C3.   Wr B

N1.  Rd X

N2.  WrY

N3.  Rd Z

Any Coherence Violation?

C4.   WrY

C5.   Rd  Y

N4.  Rd X

N5.  WrY

N6.  Rd Z

Any Coherence Violation?

C6.   Wr X

Effective Ordering

C1.  Wr Z

C2.   Rd A 

C3.   Wr B

C4.   WrY

C5.   Rd  Y

N4.  Rd X

N5.  WrY

N6.  Rd Z

C6.  Wr X

Yes. Flush Z to DRAM

No. commit NDA operations

1) NDA Read and CPU Write: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation
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Optimistic NDA Execution
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We propose to use optimistic execution for NDAs

When executing in optimistic mode:

• An NDA gains insight into its memory accesses without issuing 

any coherence requests

When optimistic mode is done:

• The NDA uses the tracking information to perform necessary

coherence requests 

We leverage two key observations

1 Majority of coherence 

2 Enforce coherence with only the necessary data movement
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Example: Hybrid Database (HTAP)
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Hybrid Database 

(HTAP)

Transactions Analytics

Transactions

CPU
CPU NDA

Analytics

Data Sharing
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Application Analysis Wrap up
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There is a significant amount of data sharing

between CPU threads and NDAs
1

CPU threads and NDAs often do not access

the same cache lines concurrently2

CPU threads rarely update the same data 

that NDAs are actively working on3



Background

• Near-Data Processing (NDP) 

– A potential solution to reduce data movement

– Idea:move computation close to data

• Enabled by recent advances in 3D-stacked 

memory
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Specialized Accelerators
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Accelerators

FPGAGPU

NDAASIC

ASIC Near-Data Accelerator

Specialized accelerators are now everywhere!

On-chip Accelerators Off-chip Accelerators



Applications

• Ligra
– Lightweight multithreaded graph processing for shared 

memory system

– We used three Ligra graph applications

• PageRank (PR)

• Radii 

• Connected Components (CC)

– Input graphs constructed from real-world network datasets:

• Enron email communication network (36K nodes, 183K edges)

• arXiV General Relativity (5K nodes, 14K edges)

• peer-to- peer Gnutella25 (22K nodes, 54K edges). 

• IMDB
– In-house prototype of an in-memory database (IMDB)

– Capable of running both transactional queries and analytical queries on 
the same database tables (HTAP workload)

– 32K transactions, 128/256 analytical queries
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Optimistic NDA Execution
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We propose to use optimistic execution for NDAs

We leverage two key observations:

1 Eliminate much of unnecessary coherence traffic by 

having insight into memory accesses

2 CPU threads and NDA kernels typically do not 

concurrently access the same cache lines

2 Gains insights into memory accesses

Performs only the necessary coherence requests

NDA executes the kernel:

1 Assumes it has coherence permission 

When execution is done:
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Poor handling of coherence eliminates much 

of an NDA’s performance and energy benefits
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Suffers from a large number of 

off-chip accesses
Unnecessarily flushes

a large amount of dirty data

Blocks CPU threads when they

access NDA data regions

FG suffers from high amount of unnecessary 

off-chip coherence Traffic


