Computer Architecture Lecture 23: On-Chip Networks

Prof. Onur Mutlu
ETH Zürich
Fall 2020
28 December 2020

Buffering and Flow Control in On-Chip Networks

On-Chip Networks

- Connect cores, caches, memory controllers, etc
 - Buses and crossbars are not scalable
- Packet switched
- 2D mesh: Most commonly used topology
- Primarily serve cache misses and memory requests

- Router
- PE Processing Element (Cores, L2 Banks, Memory Controllers, etc)

On-chip Networks

On-Chip vs. Off-Chip Interconnects

- On-chip advantages
 - Low latency between cores
 - No pin constraints
 - Rich wiring resources
 - → Very high bandwidth
 - → Simpler coordination
- On-chip constraints/disadvantages
 - 2D substrate limits implementable topologies
 - Energy/power consumption a key concern
 - Complex algorithms undesirable
 - Logic area constrains use of wiring resources

On-Chip vs. Off-Chip Interconnects (II)

Cost

- Off-chip: Channels, pins, connectors, cables
- On-chip: Cost is storage and switches (wires are plentiful)
- Leads to networks with many wide channels, few buffers

Channel characteristics

- □ On chip short distance → low latency
- □ On chip RC lines → need repeaters every 1-2mm
 - Can put logic in repeaters

Workloads

Multi-core cache traffic vs. supercomputer interconnect traffic

On-Chip vs. Off-Chip Tradeoffs

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srinivasan Seshan,
 "On-Chip Networks from a Networking Perspective:
 Congestion and Scalability in Many-core Interconnects"
 Proceedings of the 2012 ACM SIGCOMM
 Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective: Congestion and Scalability in Many-Core Interconnects

George Nychis†, Chris Fallin†, Thomas Moscibroda§, Onur Mutlu†, Srinivasan Seshan†

† Carnegie Mellon University § Microsoft Research Asia

{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

Buffers in NoC Routers

- Buffers are necessary for high network throughput
 - → buffers increase total available bandwidth in network

Buffers in NoC Routers

- Buffers are necessary for high network
 - → buffers increase total available

- Dynamic er
- Static
- Buff

mow control

uire significant chip area

z.g., in TRIPS prototype chip, input buffers occupy 75% of total on-chip network area [Gratz et al, ICCD' 06]

Going Bufferless...?

- How much throughput do we lose?
 - → How is latency affected?

- Up to what injection rates can we use bufferless routing?
 - → Are there realistic scenarios in which NoC is operated at injection rates below the threshold?
- Can we achieve energy reduction?
 - \rightarrow If so, how much...?
- Can we reduce area, complexity, etc...?

BLESS: Bufferless Routing

- Always forward *all* incoming flits to some output port
- If no productive direction is available, send to another direction
- → packet is deflected
 - → Hot-potato routing [Baran' 64, etc]

BLESS: Bufferless Routing

Flit-Ranking

I. Create a ranking over all incoming flits

Port-Prioritization

2. For a given flit in this ranking, find the best free output-port Apply to each flit in order of ranking

FLIT-BLESS: Flit-Level Routing

- Each flit is routed independently.
- Oldest-first arbitration (other policies evaluated in paper)

- Network Topology:
 - → Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, ...)
 - 1) #output ports , #input ports at every router
 - 2) every router is reachable from every other router
- Flow Control & Injection Policy:
 - → Completely local, inject whenever input port is free
- Absence of Deadlocks: every flit is always moving
- Absence of Livelocks: with oldest-first ranking

BLESS: Advantages & Disadvantages

Advantages

- No buffers
- Purely local flow control
- Simplicity
 - no credit-flows
 - no virtual channels
 - simplified router design
- No deadlocks, livelocks
- Adaptivity
 - packets are deflected around congested areas!
- Router latency reduction
- Area savings

Disadvantages

- Increased latency
- Reduced bandwidth
- Increased buffering at receiver
- Header information at each flit
- Oldest-first arbitration complex
- QoS becomes difficult

Evaluation – Synthetic Traces

- First, the bad news ©
- Uniform random injection
- BLESS has significantly lower saturation throughput compared to buffered baseline.

Evaluation – Homogenous Case Study

- milc benchmarks (moderately intensive)
- Perfect caches!
- Very little performance degradation with BLESS (less than 4% in dense network)
- With router latency I, BLESS can even outperform baseline (by ~10%)
- Significant energy improvements (almost 40%)

Evaluation – Homogenous Case Study

BLESS Conclusions

- For a very wide range of applications and network settings, buffers are not needed in NoC
 - Significant energy savings
 (32% even in dense networks and perfect caches)
 - Area-savings of 60%
 - Simplified router and network design (flow control, etc...)
 - Performance slowdown is minimal (can even increase!)
- A strong case for a rethinking of NoC design!

- Future research:
 - Support for quality of service, different traffic classes, energymanagement, etc...

Bufferless Routing in NoCs

- Moscibroda and Mutlu, "A Case for Bufferless Routing in On-Chip Networks," ISCA 2009.
 - https://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf

A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda

Microsoft Research
moscitho@microsoft.com

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu

Issues In Bufferless Deflection Routing

- Livelock
- Resulting Router Complexity
- Performance & Congestion at High Loads
- Quality of Service and Fairness
- Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu,
 "Bufferless and Minimally-Buffered Deflection Routing"
 Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 241-275, Springer, 2014.

Low-Complexity Bufferless Routing

 Chris Fallin, Chris Craik, and Onur Mutlu,
 "CHIPPER: A Low-Complexity Bufferless Deflection Router"

Proceedings of the <u>17th International Symposium on High-</u>
<u>Performance Computer Architecture</u> (**HPCA**), pages 144-155,
San Antonio, TX, February 2011. <u>Slides (pptx)</u>
<u>An extended version</u> as <u>SAFARI Technical Report</u>, TR-SAFARI2010-001, Carnegie Mellon University, December 2010.

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin Chris Craik Onur Mutlu cfallin@cmu.edu craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin, Chris Craik, and Onur Mutlu,

"CHIPPER: A Low-Complexity Bufferless Deflection Router"

Proceedings of the <u>17th International Symposium on High-Performance</u>

<u>Computer Architecture</u> (**HPCA**), pages 144-155, San Antonio, TX, February

2011. <u>Slides (pptx)</u>

SAFARI Carnegie Mellon

Motivation

- Recent work has proposed bufferless deflection routing (BLESS [Moscibroda, ISCA 2009])
 - □ Energy savings: ~40% in total NoC energy
 - □ Area reduction: ~40% in total NoC area
 - Minimal performance loss: ~4% on average
 - Unfortunately: unaddressed complexities in router
 - → long critical path, large reassembly buffers
- Goal: obtain these benefits while simplifying the router in order to make bufferless NoCs practical.

Problems that Bufferless Routers Must Solve

- 1. Must provide livelock freedom
 - → A packet should not be deflected forever

2. Must reassemble packets upon arrival

Flit: atomic routing unit

Packet: one or multiple flits

0 1 2 3

A Bufferless Router: A High-Level View

Complexity in Bufferless Deflection Routers

1. Must provide livelock freedom

Flits are sorted by age, then assigned in age order to output ports

→ 43% longer critical path than buffered router

2. Must reassemble packets upon arrival

Reassembly buffers must be sized for worst case

→ 4KB per node

(8x8, 64-byte cache block)

Problem 1: Livelock Freedom

Livelock Freedom in Previous Work

- What stops a flit from deflecting forever?
- All flits are timestamped
- Oldest flits are assigned their desired ports
- Total order among flits

But what is the cost of this?

Age-Based Priorities are Expensive: Sorting

- Router must sort flits by age: long-latency sort network
 - Three comparator stages for 4 flits

Age-Based Priorities Are Expensive: Allocation

- After sorting, flits assigned to output ports in priority order
- Port assignment of younger flits depends on that of older flits
 - sequential dependence in the port allocator

Age-Based Priorities Are Expensive

 Overall, deflection routing logic based on Oldest-First has a 43% longer critical path than a buffered router

Question: is there a cheaper way to route while guaranteeing livelock-freedom?

Solution: Golden Packet for Livelock Freedom

What is really necessary for livelock freedom?

Key Insight: No total order. it is enough to:

- 1. Pick one flit to prioritize until arrival
- 2. Ensure any flit is eventually picked

Flit age forms total order partial ordering is sufficient!

Which Packet is Golden?

- We select the Golden Packet so that:
 - 1. a given packet stays golden long enough to ensure arrival
 - → maximum no-contention latency
 - 2. the selection rotates through all possible packet IDs
 - → static rotation schedule for simplicity

What Does Golden Flit Routing Require?

- Only need to properly route the Golden Flit
- First Insight: no need for full sort
- Second Insight: no need for sequential allocation

Golden Flit Routing With Two Inputs

Let's route the Golden Flit in a two-input router first

- Step 1: pick a "winning" flit: Golden Flit, else random
- Step 2: steer the winning flit to its desired output and deflect other flit
 - → Golden Flit is always routed toward its destination

Golden Flit Routing with Four Inputs

- Each block makes decisions independently!
 - Deflection is a distributed decision

Permutation Network Operation

Permutation Network-based Pipeline

Problem 2: Packet Reassembly

Reassembly Buffers are Large

- Worst case: every node sends a packet to one receiver
- Why can't we make reassembly buffers smaller?

Small Reassembly Buffers Cause Deadlock

What happens when reassembly buffer is too small?

Reserve Space to Avoid Deadlock?

- What if every sender asks permission from the receiver before it sends?
 - → adds additional delay to every request

Escaping Deadlock with Retransmissions

- Sender is optimistic instead: assume buffer is free
 - If not, receiver drops and NACKs; sender retransmits
 - → no additional delay in best case Drop, NACK Other nacked
 - Other packet completes → transmit buffering overhead for all packets cket
 - → potentially many retransmits 5. ACK
 - Sender frees data

1. Send (2 flits)

Solution: Retransmitting Only Once

- Key Idea: Retransmit only when space becomes available.
 - → Receiver drops packet if full; notes which packet it drops
 - → When space frees up, receiver reserves space so retransmit is successful
 - → Receiver notifies sender to retransmit

Use MSHRs as Reassembly Buffers

Miss Status Handling Register (MSHR) Outstanding Block 0x3C Pending Cache Misses **Data Buffer** Status Address Reassembly buffering for "free" → A truly bufferless NoC!

Using MSHRs as Reassembly Buffers

CHIPPER: Cheap Interconnect Partially-Permuting Router

CHIPPER: Cheap Interconnect Partially-Permuting Router

EVALUATION

Methodology

- Multiprogrammed workloads: CPU2006, server, desktop
 - □ 8x8 (64 cores), 39 homogeneous and 10 mixed sets
- Multithreaded workloads: SPLASH-2, 16 threads
 - □ 4x4 (16 cores), 5 applications

System configuration

- Buffered baseline: 2-cycle router, 4 VCs/channel, 8 flits/VC
- Bufferless baseline: 2-cycle latency, FLIT-BLESS
- Instruction-trace driven, closed-loop, 128-entry OoO window
- 64KB L1, perfect L2 (stresses interconnect), XOR mapping

Methodology

Hardware modeling

- Verilog models for CHIPPER, BLESS, buffered logic
 - Synthesized with commercial 65nm library
- ORION for crossbar, buffers and links

Power

- Static and dynamic power from hardware models
- Based on event counts in cycle-accurate simulations

Results: Performance Degradation

Minimal loss for low-to-medium-intensity workloads

7.0 /0

49.8%[∢]

Results: Power Reduction

- Removing buffers -> majority of power savings
- Slight savings from BLESS to CHIPPER

Results: Area and Critical Path Reduction

CHIPPER maintains area savings of BLESS

Critical path becomes competitive to buffered

Conclusions

- Two key issues in bufferless deflection routing
 - livelock freedom and packet reassembly
- Bufferless deflection routers were high-complexity and impractical
 - □ Oldest-first prioritization → long critical path in router
 - No end-to-end flow control for reassembly → prone to deadlock with reasonably-sized reassembly buffers
- CHIPPER is a new, practical bufferless deflection router
 - □ Golden packet prioritization → short critical path in router
 - □ Retransmit-once protocol → deadlock-free packet reassembly
 - □ Cache miss buffers as reassembly buffers → truly bufferless network
- CHIPPER frequency comparable to buffered routers at much lower area and power cost, and minimal performance loss

More on CHIPPER

Chris Fallin, Chris Craik, and Onur Mutlu,
 "CHIPPER: A Low-Complexity Bufferless Deflection Router"

Proceedings of the <u>17th International Symposium on High-</u>
Performance Computer Architecture (HPCA), pages 144-155,
San Antonio, TX, February 2011. <u>Slides (pptx)</u>
An extended version as <u>SAFARI Technical Report</u>, TR-SAFARI2010-001, Carnegie Mellon University, December 2010.

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin Chris Craik Onur Mutlu cfallin@cmu.edu craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

Minimally-Buffered Deflection Routing

- Bufferless deflection routing offers reduced power & area
- But, high deflection rate hurts performance at high load
- MinBD (Minimally-Buffered Deflection Router) introduces:
 - Side buffer to hold only flits that would have been deflected
 - Dual-width ejection to address ejection bottleneck
 - Two-level prioritization to avoid unnecessary deflections
- MinBD yields reduced power (31%) & reduced area (36%) relative to buffered routers
- MinBD yields improved performance (8.1% at high load) relative to **bufferless** routers → closes half of perf. gap
- MinBD has the best energy efficiency of all evaluated designs with competitive performance

Minimally-Buffered Deflection Routing

 Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect"

Proceedings of the 6th ACM/IEEE International Symposium on Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu[†], Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

Carnegie Mellon University {cfallin,gnazario,kevincha,rachata,onur}@cmu.edu

[†]Tsinghua University & Carnegie Mellon University yxythu@gmail.com

MinBD:

Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and <u>Onur Mutlu</u>,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect"

Proceedings of the <u>6th ACM/IEEE International Symposium on Networks on Chip</u> (**NOCS**), Lyngby, Denmark, May 2012. <u>Slides (pptx) (pdf)</u>

SAFARI Carnegie Mellon University

Bufferless Deflection Routing

- Key idea: Packets are never buffered in the network. When two packets contend for the same link, one is deflected.
- Removing **buffers** yields significant benefits
 - Reduces power (CHIPPER: reduces NoC power by 55%)
 - Reduces die area (CHIPPER: reduces NoC area by 36%)
- But, at high network utilization (load), bufferless deflection routing causes unnecessary link & router traversals
 - Reduces network throughput and application performance
 - Increases dynamic power
- Goal: Improve high-load performance of low-cost deflection networks by reducing the deflection rate.

Outline: This Talk

Motivation

- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Issues in Bufferless Deflection Routing

- Correctness: Deliver all packets without livelock
 - CHIPPER¹: Golden Packet
 - Globally prioritize one packet until delivered
- Correctness: Reassemble packets without deadlock
 - □ CHIPPER¹: Retransmit-Once
- Performance: Avoid performance degradation at high load
 - MinBD

Key Performance Issues

- **1. Link contention**: no buffers to hold traffic → any link contention causes a deflection
 - → use side buffers
- 2. Ejection bottleneck: only one flit can eject per router per cycle → simultaneous arrival causes deflection
 → eject up to 2 flits/cycle
- **3. Deflection arbitration**: practical (fast) deflection arbiters deflect unnecessarily
 - → new priority scheme (silver flit)

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Addressing Link Contention

- Problem 1: Any link contention causes a deflection
- Buffering a flit can avoid deflection on contention
- But, input buffers are expensive:
 - □ All flits are buffered on every hop → high dynamic energy
 - □ Large buffers necessary → high static energy and large area

Key Idea 1: add a small buffer to a bufferless deflection router to buffer only flits that would have been deflected

How to Buffer Deflected Flits

¹ Fallin et al CHIPPER: A Low-complexity Bufferless Deflection Router", HPCA 2011

How to Buffer Deflected Flits

Why Could A Side Buffer Work Well?

- Buffer some flits and deflect other flits at per-flit level
 - Relative to **bufferless routers**, deflection rate reduces (need not deflect all contending flits)
 - → 4-flit buffer reduces deflection rate by 39%

- Relative to **buffered routers**, buffer is more efficiently used (need not buffer all flits)
 - → similar performance with 25% of buffer space

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Addressing the Ejection Bottleneck

- Problem 2: Flits deflect unnecessarily because only one flit can eject per router per cycle
- In 20% of all ejections, ≥ 2 flits could have ejected
 - → all but one flit must **deflect** and try again
 - → these deflected flits cause additional contention
- Ejection width of 2 flits/cycle reduces deflection rate 21%

Key idea 2: Reduce deflections due to a single-flit ejection port by allowing two flits to eject per cycle

Addressing the Ejection Bottleneck

Addressing the Ejection Bottleneck

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Improving Deflection Arbitration

- Problem 3: Deflections occur unnecessarily because fast arbiters must use simple priority schemes
- Age-based priorities (several past works): full priority order gives fewer deflections, but requires slow arbiters
- State-of-the-art deflection arbitration (Golden Packet & two-stage permutation network)
 - Prioritize one packet globally (ensure forward progress)
 - Arbitrate other flits randomly (fast critical path)
- Random common case leads to uncoordinated arbitration

Fast Deflection Routing Implementation

Let's route in a two-input router first:

- Step 1: pick a "winning" flit (Golden Packet, else random)
- Step 2: steer the winning flit to its desired output and deflect other flit
 - → Highest-priority flit always routes to destination

Fast Deflection Routing with Four Inputs

- Each block makes decisions independently
 - Deflection is a distributed decision

Unnecessary Deflections in Fast Arbiters

- How does lack of coordination cause unnecessary deflections?
 - 1. No flit is golden (pseudorandom arbitration)
 - 2. Red flit wins at first stage
 - 3. Green flit loses at first stage (must be deflected now)
 - 4. Red flit loses at second stage; Red and Green are deflected

Improving Deflection Arbitration

Key idea 3: Add a priority level and prioritize one flit to ensure at least one flit is not deflected in each cycle

- Highest priority: one Golden Packet in network
 - Chosen in static round-robin schedule
 - Ensures correctness
- Next-highest priority: one silver flit per router per cycle
 - Chosen pseudo-randomly & local to one router
 - Enhances performance

Adding A Silver Flit

- Randomly picking a silver flit ensures one flit is not deflected
 - 1. No flit is golden but Red flit is silver
 - 2. Red flit wins at first stage (silver)
 - 3. Green flit is deflected at first stage

4. Red flit wins at second stage (silver); not deflected

Minimally-Buffered Deflection Router

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration

Outline: This Talk

- Motivation
- Background: Bufferless Deflection Routing
- MinBD: Reducing Deflections
 - Addressing Link Contention
 - Addressing the Ejection Bottleneck
 - Improving Deflection Arbitration
- Results
- Conclusions

Methodology: Simulated System

Chip Multiprocessor Simulation

- 64-core and 16-core models
- Closed-loop core/cache/NoC cycle-level model
- Directory cache coherence protocol (SGI Origin-based)
- 64KB L1, perfect L2 (stresses interconnect), XOR-mapping
- Performance metric: Weighted Speedup (similar conclusions from network-level latency)
- Workloads: multiprogrammed SPEC CPU2006
 - 75 randomly-chosen workloads
 - Binned into network-load categories by average injection rate

Methodology: Routers and Network

- Input-buffered virtual-channel router
 - 8 VCs, 8 flits/VC [Buffered(8,8)]: large buffered router
 - □ 4 VCs, 4 flits/VC [Buffered(4,4)]: typical buffered router
 - □ 4 VCs, 1 flit/VC [Buffered(4,1)]: smallest deadlock-free router
 - □ All power-of-2 buffer sizes up to (8, 8) for perf/power sweep
- Bufferless deflection router: CHIPPER¹
- Bufferless-buffered hybrid router: AFC²
 - Has input buffers and deflection routing logic
 - Performs coarse-grained (multi-cycle) mode switching

Common parameters

- 2-cycle router latency, 1-cycle link latency
- 2D-mesh topology (16-node: 4x4; 64-node: 8x8)
- Dual ejection assumed for baseline routers (for perf. only)

Methodology: Power, Die Area, Crit. Path

Hardware modeling

- Verilog models for CHIPPER, MinBD, buffered control logic
 - Synthesized with commercial 65nm library
- ORION 2.0 for datapath: crossbar, muxes, buffers and links

Power

- Static and dynamic power from hardware models
- Based on event counts in cycle-accurate simulations
- Broken down into buffer, link, other

Reduced Deflections & Improved Perf.

Overall Performance Results

- Similar perf. to Buffered (4,1) @ 25% of buffering space
- Within 2.7% of Buffered (4,4) (8.3% at high load)

Overall Power Results

Performance-Power Spectrum

 Most energy-efficient (perf/watt) of any evaluated network router design

Die Area and Critical Path

- Only 3% area increase over CHIPPER (4-flit buffer)
- Increases by 7% over CHIPPER, 8% over Buffered (4,4)

Conclusions

- Bufferless deflection routing offers reduced power & area
- But, high deflection rate hurts performance at high load
- MinBD (Minimally-Buffered Deflection Router) introduces:
 - Side buffer to hold only flits that would have been deflected
 - Dual-width ejection to address ejection bottleneck
 - Two-level prioritization to avoid unnecessary deflections
- MinBD yields reduced power (31%) & reduced area (36%) relative to buffered routers
- MinBD yields improved performance (8.1% at high load) relative to **bufferless** routers → closes half of perf. gap
- MinBD has the best energy efficiency of all evaluated designs with competitive performance

Minimally-Buffered Deflection Routing

 Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect"

Proceedings of the 6th ACM/IEEE International Symposium on Networks on Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)

MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu[†], Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

Carnegie Mellon University {cfallin,gnazario,kevincha,rachata,onur}@cmu.edu

[†]Tsinghua University & Carnegie Mellon University yxythu@gmail.com

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,

"HAT: Heterogeneous Adaptive Throttling for On-Chip Networks"

Proceedings of the <u>24th International Symposium on Computer Architecture and</u> High Performance Computing (SBAC-PAD), New York, NY, October 2012. Slides

(pptx) (pdf)

Executive Summary

 <u>Problem</u>: Packets contend in on-chip networks (NoCs), causing congestion, thus reducing performance

Observations:

- 1) Some applications are more sensitive to network latency than others
- 2) Applications must be throttled differently to achieve peak performance
- Key Idea: Heterogeneous Adaptive Throttling (HAT)
 - 1) Application-aware source throttling
 - 2) Network-load-aware throttling rate adjustment
- **Result:** Improves performance and energy efficiency over state-of-the-art source throttling policies

Source Throttling in Bufferless NoCs

 Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu, <u>"HAT: Heterogeneous Adaptive Throttling for On-Chip</u> Networks"

Proceedings of the <u>24th International Symposium on Computer</u>
<u>Architecture and High Performance Computing</u> (**SBAC-PAD**), New York, NY, October 2012. <u>Slides (pptx) (pdf)</u>

HAT: Heterogeneous Adaptive Throttling for On-Chip Networks

Kevin Kai-Wei Chang, Rachata Ausavarungnirun, Chris Fallin, Onur Mutlu
Carnegie Mellon University
{kevincha, rachata, cfallin, onur}@cmu.edu

"Bufferless" Hierarchical Rings

- Ausavarungnirun et al., "Design and Evaluation of Hierarchical Rings with Deflection Routing," SBAC-PAD 2014.
 - http://users.ece.cmu.edu/~omutlu/pub/hierarchical-rings-withdeflection_sbacpad14.pdf
- Discusses the design and implementation of a mostlybufferless hierarchical ring

Design and Evaluation of Hierarchical Rings with Deflection Routing

```
Rachata Ausavarungnirun Chris Fallin Xiangyao Yu† Kevin Kai-Wei Chang Greg Nazario Reetuparna Das§ Gabriel H. Loh‡ Onur Mutlu
```

Carnegie Mellon University §University of Michigan †MIT ‡Advanced Micro Devices, Inc.

"Bufferless" Hierarchical Rings (II)

- Rachata Ausavarungnirun, Chris Fallin, Xiangyao Yu, Kevin Chang, Greg Nazario, Reetuparna Das, Gabriel Loh, and Onur Mutlu,
 "A Case for Hierarchical Rings with Deflection Routing: An Energy-Efficient On-Chip Communication Substrate"
 Parallel Computing (PARCO), to appear in 2016.
 - <u>arXiv.org version</u>, February 2016.

Achieving both High Energy Efficiency and High Performance in On-Chip Communication using Hierarchical Rings with Deflection Routing

Rachata Ausavarungnirun Chris Fallin Xiangyao Yu† Kevin Kai-Wei Chang Greg Nazario Reetuparna Das§ Gabriel H. Loh‡ Onur Mutlu Carnegie Mellon University §University of Michigan †MIT ‡AMD

Summary of Six Years of Research

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, and Onur Mutlu,
 "Bufferless and Minimally-Buffered Deflection Routing"
 Invited Book Chapter in Routing Algorithms in Networks-on-Chip, pp. 241-275, Springer, 2014.

Chapter 1 Bufferless and Minimally-Buffered Deflection Routing

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun, Onur Mutlu

More Readings

- Studies of congestion and congestion control in on-chip vs. internet-like networks
- George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srinivasan Seshan,
 "On-Chip Networks from a Networking Perspective:
 Congestion and Scalability in Many-core Interconnects"
 Proceedings of the 2012 ACM SIGCOMM Conference (SIGCOMM),
 Helsinki, Finland, August 2012. Slides (pptx)
- George Nychis, Chris Fallin, Thomas Moscibroda, and <u>Onur Mutlu</u>,
 <u>"Next Generation On-Chip Networks: What Kind of Congestion Control Do We Need?"</u>

Proceedings of the <u>9th ACM Workshop on Hot Topics in Networks</u> (**HOTNETS**), Monterey, CA, October 2010. <u>Slides (ppt) (key)</u>

On-Chip vs. Off-Chip Tradeoffs

George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and Srinivasan Seshan,
 "On-Chip Networks from a Networking Perspective:
 Congestion and Scalability in Many-core Interconnects"
 Proceedings of the 2012 ACM SIGCOMM
 Conference (SIGCOMM), Helsinki, Finland, August 2012. Slides (pptx)

On-Chip Networks from a Networking Perspective: Congestion and Scalability in Many-Core Interconnects

George Nychis†, Chris Fallin†, Thomas Moscibroda§, Onur Mutlu†, Srinivasan Seshan†

† Carnegie Mellon University § Microsoft Research Asia

{gnychis,cfallin,onur,srini}@cmu.edu moscitho@microsoft.com

Packet Scheduling

Packet Scheduling

- Which packet to choose for a given output port?
 - Router needs to prioritize between competing flits
 - Which input port?
 - Which virtual channel?
 - Which application's packet?
- Common strategies
 - Round robin across virtual channels
 - Oldest packet first (or an approximation)
 - Prioritize some virtual channels over others
- Better policies in a multi-core environment
 - Use application characteristics

Application-Aware Packet Scheduling

Das et al., "Application-Aware Prioritization Mechanisms for On-Chip Networks," MICRO 2009.

The Problem: Packet Scheduling

Network-on-Chip is a critical resource shared by multiple applications

The Problem: Packet Scheduling

The Problem: Packet Scheduling

- Existing scheduling policies
 - Round Robin
 - Age
- Problem 1: Local to a router
 - Lead to contradictory decision making between routers: packets from one application may be prioritized at one router, to be delayed at next.
- Problem 2: Application oblivious
 - Treat all applications packets equally
 - But applications are heterogeneous
- Solution : Application-aware global scheduling policies.

Packet Injection Order at Processor

STALL CYCLES				Avg
RR	8	6	11	8.3
Age				
STC				

STALL CYCLES			Avg	
RR	8	6	11	8.3
Age	4	6	11	7.0
STC				

STALL CYCLES			Avg	
RR	8	6	11	8.3
Age	4	6	11	7.0
STC	1	3	11	5.0

Application-Aware Prioritization in NoCs

- Das et al., "Application-Aware Prioritization Mechanisms for On-Chip Networks," MICRO 2009.
 - https://users.ece.cmu.edu/~omutlu/pub/app-awarenoc_micro09.pdf

Application-Aware Prioritization Mechanisms for On-Chip Networks

Reetuparna Das[§] Onur Mutlu[†] Thomas Moscibroda[‡] Chita R. Das[§] §Pennsylvania State University †Carnegie Mellon University ‡Microsoft Research {rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

Slack-Based Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das, "Aergia: Exploiting Packet Latency Slack in On-Chip Networks" Proceedings of the <u>37th International Symposium on Computer</u> Architecture (ISCA), pages 106-116, Saint-Malo, France, June 2010. <u>Slides (pptx)</u>

Aérgia: Exploiting Packet Latency Slack in On-Chip Networks

Reetuparna Das[§] Onur Mutlu[†] Thomas Moscibroda[‡] Chita R. Das[§] §Pennsylvania State University †Carnegie Mellon University ‡Microsoft Research {rdas,das}@cse.psu.edu onur@cmu.edu moscitho@microsoft.com

Low-Cost QoS in On-Chip Networks (I)

Boris Grot, Stephen W. Keckler, and Onur Mutlu, "Preemptive Virtual Clock: A Flexible, Efficient, and Costeffective QOS Scheme for Networks-on-Chip" Proceedings of the <u>42nd International Symposium on</u> <u>Microarchitecture</u> (MICRO), pages 268-279, New York, NY, December 2009. Slides (pdf)

Preemptive Virtual Clock: A Flexible, Efficient, and Cost-effective QOS Scheme for Networks-on-Chip

Boris Grot

Stephen W. Keckler

Onur Mutlu[†]

Department of Computer Sciences
The University of Texas at Austin
{bgrot, skeckler@cs.utexas.edu}

[†]Computer Architecture Laboratory (CALCM) Carnegie Mellon University onur@cmu.edu

Low-Cost QoS in On-Chip Networks (II)

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
 "Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees"

Proceedings of the 38th International Symposium on Computer

Proceedings of the <u>38th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), San Jose, CA, June 2011. <u>Slides (pptx)</u>

Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees

Boris Grot¹ bgrot@cs.utexas.edu Joel Hestness¹ hestness@cs.utexas.edu

Stephen W. Keckler^{1,2} skeckler@nvidia.com

Onur Mutlu³ onur@cmu.edu

¹The University of Texas at Austin Austin, TX ²NVIDIA Santa Clara, CA ³Carnegie Mellon University Pittsburgh, PA

Kilo-NoC: Topology-Aware QoS

Boris Grot, Joel Hestness, Stephen W. Keckler, and <u>Onur Mutlu</u>, "Kilo-NOC: A <u>Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees"</u>

Proceedings of the <u>38th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), San Jose, CA, June 2011. <u>Slides (pptx)</u>

Motivation

- Extreme-scale chip-level integration
 - Cores
 - Cache banks
 - Accelerators
 - □ I/O logic
 - Network-on-chip (NOC)
- 10-100 cores today
- 1000+ assets in the near future

Kilo-NOC requirements

- High efficiency
 - Area
 - Energy
- Good performance
- Strong service guarantees (QoS)

- Problem: QoS support in each router is expensive (in terms of buffering, arbitration, bookkeeping)
 - E.g., Grot et al., "Preemptive Virtual Clock: A Flexible, Efficient, and Cost-effective QOS Scheme for Networks-on-Chip," MICRO 2009.
- Goal: Provide QoS guarantees at low area and power cost

Idea:

- Isolate shared resources in a region of the network, support QoS within that area
- Design the topology so that applications can access the region without interference

Baseline QOS-enabled CMP

Conventional NOC QOS

Contention scenarios:

- Shared resources
 - memory access
- Intra-VM traffic
 - shared cache access
- Inter-VM traffic
 - VM page sharing

Conventional NOC QOS

Contention scenarios:

- Shared resources
 - memory access
- Intra-VM traffic
 - shared cache access
- Inter-VM traffic
 - VM page sharing

Q

Network-wide guarantees without network-wide QOS support

Kilo-NOC QOS

- Insight: leverage rich network connectivity
 - Naturally reduce interference among flows
 - > Limit the extent of hardware QOS support
- Requires a low-diameter topology
 - □ This work: Multidrop Express Channels (MECS)

Grot et al., HPCA 2009

- Dedicated, QOS-enabled regions
 - Rest of die: QOS-free
- Richly-connected topology
 - Traffic isolation
- Special routing rules
 - Manage interference

- Dedicated, QOS-enabled regions
 - Rest of die: QOS-free
- Richly-connected topology
 - Traffic isolation
- Special routing rules
 - Manage interference

- Dedicated, QOS-enabled regions
 - Rest of die: QOS-free
- Richly-connected topology
 - Traffic isolation
- Special routing rules
 - Manage interference

- Dedicated, QOS-enabled regions
 - Rest of die: QOS-free
- Richly-connected topology
 - Traffic isolation
- Special routing rules
 - Manage interference

Kilo-NOC view

- Topology-aware QOS support
 - Limit QOS complexity to a fraction of the die
- Optimized flow control
 - Reduce buffer requirements in QOSfree regions

Evaluation Methodology

Parameter	Value
Technology	15 nm
Vdd	0.7 V
System	1024 tiles:
	256 concentrated nodes (64 shared resources)
Networks:	
MECS+PVC	VC flow control, QOS support (PVC) at each node
MECS+TAQ	VC flow control, QOS support only in shared regions
MECS+TAQ+EB	EB flow control outside of SRs,
	Separate Request and Reply networks
K-MECS	Proposed organization: TAQ + hybrid flow control

Area comparison

Energy comparison

Summary

Kilo-NOC: a heterogeneous NOC architecture for kilo-node substrates

- Topology-aware QOS
 - Limits QOS support to a fraction of the die
 - Leverages low-diameter topologies
 - Improves NOC area- and energy-efficiency
 - Provides strong guarantees

Low-Cost QoS in On-Chip Networks (II)

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
 "Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees"

Proceedings of the 29th International Symposium on Computer

Proceedings of the <u>38th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), San Jose, CA, June 2011. <u>Slides (pptx)</u>

Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and Service Guarantees

Boris Grot¹ bgrot@cs.utexas.edu Joel Hestness¹ hestness@cs.utexas.edu

Stephen W. Keckler^{1,2} skeckler@nvidia.com

Onur Mutlu³ onur@cmu.edu

¹The University of Texas at Austin Austin, TX ²NVIDIA Santa Clara, CA ³Carnegie Mellon University Pittsburgh, PA

Computer Architecture Lecture 23: On-Chip Networks

Prof. Onur Mutlu
ETH Zürich
Fall 2020
28 December 2020