
Computer Architecture

Lecture 24: SIMD Processors

and GPUs

Dr. Juan Gómez Luna

Prof. Onur Mutlu

ETH Zürich

Fall 2020

29 December 2020

Agenda for This Lecture

◼ SIMD Processing

❑ Vector and Array Processors

◼ Graphics Processing Units (GPUs)

2

Exploiting Data Parallelism:

SIMD Processors and GPUs

SIMD Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data

elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor

5

Data Parallelism

◼ Concurrency arises from performing the same operation on
different pieces of data

❑ Single instruction multiple data (SIMD)

❑ E.g., dot product of two vectors

◼ Contrast with data flow

❑ Concurrency arises from executing different operations in parallel (in
a data driven manner)

◼ Contrast with thread (“control”) parallelism

❑ Concurrency arises from executing different threads of control in
parallel

◼ SIMD exploits operation-level parallelism on different data

❑ Same operation concurrently applied to different pieces of data

❑ A form of ILP where instruction happens to be the same across data
6

SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data

elements at the same time using different spaces

❑ Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

7

Array vs. Vector Processors

8

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

◼ VLIW: Multiple independent operations packed together by the compiler

9

SIMD Array Processing vs. VLIW

◼ Array processor: Single operation on multiple (different) data elements

10

Vector Processors (I)

◼ A vector is a one-dimensional array of numbers

◼ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

◼ A vector processor is one whose instructions operate on

vectors rather than scalar (single data) values

◼ Basic requirements

❑ Need to load/store vectors → vector registers (contain vectors)

❑ Need to operate on vectors of different lengths → vector length

register (VLEN)

❑ Elements of a vector might be stored apart from each other in
memory → vector stride register (VSTR)

◼ Stride: distance in memory between two elements of a vector

11

Vector Processors (II)

◼ A vector instruction performs an operation on each element
in consecutive cycles

❑ Vector functional units are pipelined

❑ Each pipeline stage operates on a different data element

◼ Vector instructions allow deeper pipelines

❑ No intra-vector dependencies → no hardware interlocking

needed within a vector

❑ No control flow within a vector

❑ Known stride allows easy address calculation for all vector

elements

◼ Enables prefetching of vectors into registers/cache/memory

12

Vector Processor Advantages

+ No dependencies within a vector

❑ Pipelining & parallelization work really well

❑ Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

❑ Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern

+ No need to explicitly code loops

❑ Fewer branches in the instruction sequence

13

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

14Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks

15

Vector Processing in More Depth

Vector Registers

◼ Each vector data register holds N M-bit values

◼ Vector control registers: VLEN, VSTR, VMASK

◼ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register

◼ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on

❑ Set by vector test instructions

◼ e.g., VMASK[i] = (Vk[i] == 0)

17

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

◼ Use a deep pipeline to execute
element operations

→ fast clock cycle

◼ Control of deep pipeline is
simple because elements in
vector are independent

18

V
1

V
2

V
3

V1 * V2 → V3

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1

computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers

19

CRAY X-MP-28 @ ETH (CAB, E Floor)

20

CRAY X-MP System Organization

21

Cray Research Inc., “The

CRAY X-MP Series of
Computer Systems,” 1985

CRAY X-MP Design Detail

22

Cray Research Inc., “The

CRAY X-MP Series of
Computer Systems,” 1985

CRAY X-MP CPU Functional Units

23

Cray Research Inc., “The

CRAY X-MP Series of
Computer Systems,” 1985

CRAY X-MP System Configuration

24

Cray Research Inc., “The

CRAY X-MP Series of
Computer Systems,” 1985

Seymour Cray, the Father of Supercomputers

25

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pi nteres t.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles /2015/2/20/the-short-br utal-life-of- mal e-chickens.html

Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1

computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers

26

Loading/Storing Vectors from/to Memory

◼ Requires loading/storing multiple elements

◼ Elements separated from each other by a constant distance

(stride)

❑ Assume stride = 1 for now

◼ Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

❑ Can sustain a throughput of one element per cycle

◼ Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

◼ Answer: Bank the memory; interleave the elements across
banks

27

Memory Banking
◼ Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N parallel accesses if all N go to different banks

28

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou

Vector Memory System

◼ Next address = Previous address + Stride

◼ If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

❑ we can sustain 1 element/cycle throughput

29

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

Picture credit: Krste Asanovic

Scalar Code Example: Element-Wise Avg.

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Scalar code (instruction and its latency)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2 ;decrement and branch if NZ

30

304 dynamic instructions

Scalar Code Execution Time (In Order)

31

◼ Scalar execution time on an in-order processor with 1 bank

❑ First two loads in the loop cannot be pipelined: 2*11 cycles

❑ 4 + 50*40 = 2004 cycles

◼ Scalar execution time on an in-order processor with 16

banks (word-interleaved: consecutive words are stored in
consecutive banks)

❑ First two loads in the loop can be pipelined

❑ 4 + 50*30 = 1504 cycles

◼ Why 16 banks?

❑ 11-cycle memory access latency

❑ Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

◼ A loop is vectorizable if each iteration is independent of any
other

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

32

7 dynamic instructions

Basic Vector Code Performance

◼ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the
direct input of another

❑ The entire vector register needs to be ready before any
element of it can be used as part of another operation

◼ One memory port (one address generator)

◼ 16 memory banks (word-interleaved)

◼ 285 cycles

33

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining

◼ Vector chaining: Data forwarding from one vector
functional unit to another

34

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

◼ Vector chaining: Data forwarding from one vector
functional unit to another

◼ 182 cycles

35

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

Vector Code Performance – Multiple Memory Ports

◼ Chaining and 2 load ports, 1 store port in each bank

◼ 79 cycles

◼ 19X perf. improvement!

36

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)

◼ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on #
elements in a vector register

◼ E.g., 527 data elements, 64-element VREGs

◼ 8 iterations where VLEN = 64

◼ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining

37

(Vector) Stripmining

38Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining

Questions (II)

◼ What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

❑ Idea: Use indirection to combine/pack elements into vector
registers

❑ Called scatter/gather operations

39

Gather/Scatter Operations

40

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

◼ Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices)

◼ Vector loads and stores use an index vector which is added

to the base register to generate the addresses

◼ Scatter example

41

Index Vector Data Vector (to Store) Stored Vector (in Memory)

0 3.14 Base+0 3.14

2 6.5 Base+1 X

6 71.2 Base+2 6.5

7 2.71 Base+3 X

Base+4 X

Base+5 X

Base+6 71.2

Base+7 2.71

Conditional Operations in a Loop

◼ What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

◼ Idea: Masked operations

❑ VMASK register is a bit mask determining which data element
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
42

Another Example with Masking

43

for (i = 0; i < 64; ++i)

if (a[i] >= b[i])

c[i] = a[i]

else

c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0
-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

44

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?

Some Issues

◼ Stride and banking

❑ As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

◼ Storage of a matrix

❑ Row major: Consecutive elements in a row are laid out
consecutively in memory

❑ Column major: Consecutive elements in a column are laid out
consecutively in memory

❑ You need to change the stride when accessing a row versus

column

45

◼ A and B, both in row-major order

◼ A: Load A0 into vector register V1

❑ Each time, increment address by one to access the next column

❑ Accesses have a stride of 1

◼ B: Load B0 into vector register V2

❑ Each time, increment address by 10

❑ Accesses have a stride of 10

Matrix Multiplication

46

A4x6 B6x10 → C4x10

Dot products of rows and columns

of A and B

Different strides can lead

to bank conflicts

How do we minimize them?

Minimizing Bank Conflicts

◼ More banks

◼ Better data layout to match the access pattern

❑ Is this always possible?

◼ Better mapping of address to bank

❑ E.g., randomized mapping

❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

47

Array vs. Vector Processors, Revisited

◼ Array vs. vector processor distinction is a “purist’s”
distinction

◼ Most “modern” SIMD processors are a combination of both

❑ They exploit data parallelism in both time and space

❑ GPUs are a prime example we will cover in a bit more detail

48

Recall: Array vs. Vector Processors

49

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

50

VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

Vector Unit Structure

51

Lane

Functional Unit

Partitioned

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

52

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

53

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

54

SIMD Operations in Modern ISAs

SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

56

Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

57

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image 1 on top of the background in image 2

58Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

MMX Example: Image Overlaying (II)

59Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

Fine-Grained Multithreading

60

Fine-Grained Multithreading (I)

◼ Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

61

Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependency latencies by

overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

62

Multithreaded Pipeline Example

63Slide credit: Joel Emer

Fine-grained Multithreading (III)

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
64

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

◼ However, the programming is done using threads, NOT

SIMD instructions

◼ To understand this, let’s go back to our parallelizable code
example

◼ But, before that, let’s distinguish between

❑ Programming Model (Software)

vs.

❑ Execution Model (Hardware)

66

Programming Model vs. Hardware Execution Model

◼ Programming Model refers to how the programmer expresses
the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), …

◼ Execution Model refers to how the hardware executes the
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Execution Model can be very different from the Programming

Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)
67

How Can You Exploit Parallelism Here?

68

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

69

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code ◼ Can be executed on a:

◼ Pipelined processor

◼ Out-of-order execution processor

❑ Independent instructions executed
when ready

❑ Different iterations are present in the
instruction window and can execute in

parallel in multiple functional units

❑ In other words, the loop is dynamically
unrolled by the hardware

◼ Superscalar or VLIW processor

❑ Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

70

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A → V1

VLD B → V2

VADD V1 + V2 → V3

VST V3 → C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

71

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

72

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different
piece of data

❑ Each thread has its own context (i.e., can be
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are

dynamically grouped into a warp (wavefront) by the
hardware

❑ A warp is essentially a SIMD operation formed by hardware!

73

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

74

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads

that are supposed to truly execute the same instruction →
dynamically obtain and maximize benefits of SIMD processing

76

Fine-Grained Multithreading of

Warps

77

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

◼ Assume a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT

◼ Warp: A set of threads that execute the same instruction
(on different data elements) → SIMT (Nvidia-speak)

◼ All threads run the same code
◼ Warp: The threads that run lengthwise in a woven fabric …

78

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View of a GPU

79Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that
execute the same instruction

(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in
pipeline at a time (No
interlocking)

❑ Interleave warp execution to
hide latencies

◼ Register values of all threads stay
in register file

◼ FGMT enables long latency
tolerance

❑ Millions of pixels

80

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

81

32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

82

Lane

Functional Unit

Registers
for each

Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle

83

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

◼ Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

84

◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nThr >>>(args);

Warps not Exposed to GPU Programmers

85

Slide credit: Hw u & Kirk

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 86

Sample GPU Program (Less Simplified)

87Slide credit: Hyesoon Kim

From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

88

NVIDIA Fermi architecture

Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know

vector length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a

SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp)
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD
hardware

89

SPMD
◼ Single procedure/program, multiple data

❑ This is a programming model rather than computer organization

◼ Each processing element executes the same procedure, except on
different data elements

❑ Procedures can synchronize at certain points in program, e.g., barriers

◼ Essentially, multiple instruction streams execute the same

program

❑ Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware

90

SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads

that are supposed to truly execute the same instruction →
dynamically obtain and maximize benefits of SIMD processing

91

Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

92

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD
pipeline to save area
on control logic

❑ Groups scalar threads
into warps

◼ Branch divergence
occurs when threads
inside warps branch to
different execution
paths

93

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.

Recall the Vector Mask and Masked Vector Operations?

Remember: Each Thread Is Independent

◼ Two Major SIMT Advantages:

❑ Can treat each thread separately → i.e., can execute each thread
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads
that are supposed to truly execute the same instruction →
dynamically obtain and maximize benefits of SIMD processing

◼ If we have many threads

◼ We can find individual threads that are at the same PC

◼ And, group them together into a single warp dynamically

◼ This reduces “divergence” → improves SIMD utilization

❑ SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

94

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation
of full new warps

95

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

96

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

97

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

98

Lane

Functional Unit

Registers
for each

Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread
flexibly to any lane?

Large Warps and Two-Level Warp Scheduling

◼ Two main reasons for GPU resources be underutilized

❑ Branch divergence

❑ Long latency operations

99

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

Large Warp Microarchitecture Example

Decode Stage

1 0 0 1

0 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

0 1 0 0

0 0

0

0
1 1 1 1

0

0

0

0

1 1 1 1

0 0

0

1 1 1 11 1 0 1

Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

◼ Reduce branch divergence by having large warps

◼ Dynamically break down a large warp into sub-warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011. 100

Two-Level Round Robin

◼ Scheduling in two levels to deal with long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles

101

Improving Warp Scheduling

◼ Veynu Narasiman, Chang Joo Lee, Michael Shebanow, Rustam
Miftakhutdinov, Onur Mutlu, and Yale N. Patt,
"Improving GPU Performance via Large Warps and Two-Level
Warp Scheduling"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December 2011.
Slides (ppt)
A previous version as HPS Technical Report, TR-HPS-2010-006,
December 2010.

102

https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps_micro11.pdf
http://www.microarch.org/micro44/
https://people.inf.ethz.ch/omutlu/pub/narasiman_micro11_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps-TR-HPS-2010-006.pdf

Computer Architecture

Lecture 24: SIMD Processors

and GPUs

Dr. Juan Gómez Luna

Prof. Onur Mutlu

ETH Zürich

Fall 2020

29 December 2020

