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Agenda for This Lecture

◼ SIMD Processing

❑ Vector and Array Processors

◼ Graphics Processing Units (GPUs)
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Exploiting Data Parallelism:

SIMD Processors and GPUs



SIMD Processing:

Exploiting Regular (Data) Parallelism



Flynn’s Taxonomy of Computers

◼ Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

◼ SISD: Single instruction operates on single data element

◼ SIMD: Single instruction operates on multiple data elements

❑ Array processor

❑ Vector processor

◼ MISD: Multiple instructions operate on single data element

❑ Closest form: systolic array processor, streaming processor

◼ MIMD: Multiple instructions operate on multiple data 

elements (multiple instruction streams)

❑ Multiprocessor

❑ Multithreaded processor
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Data Parallelism

◼ Concurrency arises from performing the same operation on 
different pieces of data

❑ Single instruction multiple data (SIMD)

❑ E.g., dot product of two vectors

◼ Contrast with data flow

❑ Concurrency arises from executing different operations in parallel (in 
a data driven manner)

◼ Contrast with thread (“control”) parallelism

❑ Concurrency arises from executing different threads of control in 
parallel

◼ SIMD exploits operation-level parallelism on different data

❑ Same operation concurrently applied to different pieces of data

❑ A form of ILP where instruction happens to be the same across data
6



SIMD Processing

◼ Single instruction operates on multiple data elements

❑ In time or in space

◼ Multiple processing elements 

◼ Time-space duality

❑ Array processor: Instruction operates on multiple data 

elements at the same time using different spaces

❑ Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



SIMD Array Processing vs. VLIW

◼ VLIW: Multiple independent operations packed together by the compiler
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SIMD Array Processing vs. VLIW

◼ Array processor: Single operation on multiple (different) data elements
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Vector Processors (I)

◼ A vector is a one-dimensional array of numbers

◼ Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

◼ A vector processor is one whose instructions operate on 

vectors rather than scalar (single data) values

◼ Basic requirements

❑ Need to load/store vectors → vector registers (contain vectors)

❑ Need to operate on vectors of different lengths → vector length 

register (VLEN)

❑ Elements of a vector might be stored apart from each other in 
memory → vector stride register (VSTR)

◼ Stride: distance in memory between two elements of a vector
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Vector Processors (II)

◼ A vector instruction performs an operation on each element 
in consecutive cycles

❑ Vector functional units are pipelined

❑ Each pipeline stage operates on a different data element

◼ Vector instructions allow deeper pipelines

❑ No intra-vector dependencies → no hardware interlocking 

needed within a vector

❑ No control flow within a vector

❑ Known stride allows easy address calculation for all vector 

elements

◼ Enables prefetching of vectors into registers/cache/memory
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Vector Processor Advantages

+ No dependencies within a vector 

❑ Pipelining & parallelization work really well

❑ Can have very deep pipelines, no dependencies! 

+ Each instruction generates a lot of work 

❑ Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern 

+ No need to explicitly code loops 

❑ Fewer branches in the instruction sequence
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Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

14Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck, 
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks
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Vector Processing in More Depth



Vector Registers

◼ Each vector data register holds N M-bit values

◼ Vector control registers: VLEN, VSTR, VMASK

◼ Maximum VLEN can be N

❑ Maximum number of elements stored in a vector register

◼ Vector Mask Register (VMASK)

❑ Indicates which elements of vector to operate on

❑ Set by vector test instructions

◼ e.g., VMASK[i] = (Vk[i] == 0)
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide



Vector Functional Units

◼ Use a deep pipeline to execute 
element operations

→ fast clock cycle

◼ Control of deep pipeline is 
simple because elements in 
vector are independent  

18

V
1

V
2

V
3

V1 * V2 → V3

Six stage multiply pipeline

Slide credit: Krste Asanovic



Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1 

computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector 
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers
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CRAY X-MP-28 @ ETH (CAB, E Floor)
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CRAY X-MP System Organization
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Cray Research Inc., “The 

CRAY X-MP Series of 
Computer Systems,” 1985



CRAY X-MP Design Detail
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Cray Research Inc., “The 

CRAY X-MP Series of 
Computer Systems,” 1985



CRAY X-MP CPU Functional Units
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Cray Research Inc., “The 

CRAY X-MP Series of 
Computer Systems,” 1985



CRAY X-MP System Configuration
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Cray Research Inc., “The 

CRAY X-MP Series of 
Computer Systems,” 1985



Seymour Cray, the Father of Supercomputers
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"If you were plowing a field, which would you 
rather use: Two strong oxen or 1024 chickens?"

© amityrebecca / Pinterest. https://www.pi nteres t.ch/pin/473018767088408061/

© Scott Sinklier / Corbis. http://america.aljazeera.com/articles /2015/2/20/the-short-br utal-life-of- mal e-chickens.html



Vector Machine Organization (CRAY-1)

◼ CRAY-1

◼ Russell, “The CRAY-1 

computer system,”
CACM 1978.

◼ Scalar and vector modes

◼ 8 64-element vector 
registers

◼ 64 bits per element

◼ 16 memory banks

◼ 8 64-bit scalar registers

◼ 8 24-bit address registers
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Loading/Storing Vectors from/to Memory

◼ Requires loading/storing multiple elements

◼ Elements separated from each other by a constant distance 

(stride)

❑ Assume stride = 1 for now

◼ Elements can be loaded in consecutive cycles if we can 
start the load of one element per cycle

❑ Can sustain a throughput of one element per cycle

◼ Question: How do we achieve this with a memory that 
takes more than 1 cycle to access?

◼ Answer: Bank the memory; interleave the elements across 
banks

27



Memory Banking
◼ Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)

◼ Can start and complete one bank access per cycle

◼ Can sustain N parallel accesses if all N go to different banks

28

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Picture credit: Derek Chiou



Vector Memory System

◼ Next address = Previous address + Stride

◼ If (stride == 1) && (consecutive elements interleaved 
across banks) && (number of banks >= bank latency), then

❑ we can sustain 1 element/cycle throughput

29

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address 
Generator

Picture credit: Krste Asanovic



Scalar Code Example: Element-Wise Avg.

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Scalar code (instruction and its latency)

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11  ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ R0, X 2   ;decrement and branch if NZ

30

304 dynamic instructions



Scalar Code Execution Time (In Order)
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◼ Scalar execution time on an in-order processor with 1 bank

❑ First two loads in the loop cannot be pipelined: 2*11 cycles

❑ 4 + 50*40 = 2004 cycles

◼ Scalar execution time on an in-order processor with 16 

banks (word-interleaved: consecutive words are stored in 
consecutive banks)

❑ First two loads in the loop can be pipelined

❑ 4 + 50*30 = 1504 cycles

◼ Why 16 banks?

❑ 11-cycle memory access latency

❑ Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency



Vectorizable Loops

◼ A loop is vectorizable if each iteration is independent of any 
other

◼ For I = 0 to 49

❑ C[i] = (A[i] + B[i]) / 2

◼ Vectorized loop (each instruction and its latency):

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLEN – 1

VLD V1 = B 11 + VLEN – 1

VADD V2 = V0 + V1 4 + VLEN – 1

VSHFR V3 = V2 >> 1 1 + VLEN – 1

VST C = V3 11 + VLEN – 1

32

7 dynamic instructions



Basic Vector Code Performance

◼ Assume no chaining (no vector data forwarding)

❑ i.e., output of a vector functional unit cannot be used as the 
direct input of another 

❑ The entire vector register needs to be ready before any 
element of it can be used as part of another operation

◼ One memory port (one address generator)

◼ 16 memory banks (word-interleaved)

◼ 285 cycles

33

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining

◼ Vector chaining: Data forwarding from one vector 
functional unit to another

34

Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV   v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic



Vector Code Performance - Chaining

◼ Vector chaining: Data forwarding from one vector 
functional unit to another

◼ 182 cycles

35

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be 

pipelined. WHY?

VLD and VST cannot be 

pipelined. WHY?

Strict assumption:

Each memory bank 

has a single port 

(memory bandwidth

bottleneck)



Vector Code Performance – Multiple Memory Ports

◼ Chaining and 2 load ports, 1 store port in each bank

◼ 79 cycles

◼ 19X perf. improvement!

36

1 1 11 49

4 49

1 49

11 49

11 491



Questions (I)

◼ What if # data elements > # elements in a vector register?

❑ Idea: Break loops so that each iteration operates on # 
elements in a vector register

◼ E.g., 527 data elements, 64-element VREGs

◼ 8 iterations where VLEN = 64

◼ 1 iteration where VLEN = 15 (need to change value of VLEN)

❑ Called vector stripmining

37



(Vector) Stripmining

38Source: https://en.wikipedia.org/wiki/Surface_mining

https://en.wikipedia.org/wiki/Surface_mining


Questions (II)

◼ What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector)

❑ Idea: Use indirection to combine/pack elements into vector 
registers

❑ Called scatter/gather operations
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Gather/Scatter Operations
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Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD       # Load indices in D vector

LVI vC, rC, vD  # Load indirect from rC base

LV vB, rB       # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA       # Store result



Gather/Scatter Operations

◼ Gather/scatter operations often implemented in hardware 
to handle sparse vectors (matrices)

◼ Vector loads and stores use an index vector which is added 

to the base register to generate the addresses

◼ Scatter example

41

Index Vector                 Data Vector (to Store)            Stored Vector (in Memory)

0 3.14 Base+0      3.14

2 6.5 Base+1      X

6 71.2 Base+2      6.5

7 2.71 Base+3      X

Base+4      X

Base+5      X

Base+6    71.2

Base+7      2.71 



Conditional Operations in a Loop

◼ What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

◼ Idea: Masked operations 

❑ VMASK register is a bit mask determining which data element 
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

❑ This is predicated execution. Execution is predicated on mask bit.
42



Another Example with Masking
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for (i = 0; i < 64; ++i)

if (a[i] >= b[i]) 

c[i] = a[i]

else 

c[i] = b[i]

A B VMASK    

1 2 0                 

2 2 1

3 2 1

4 10 0
-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get 

VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C



Masked Vector Instructions
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C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute 
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off 
result writeback according to mask

Slide credit: Krste Asanovic

Which one is better?

Tradeoffs?



Some Issues

◼ Stride and banking

❑ As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput

◼ Storage of a matrix

❑ Row major: Consecutive elements in a row are laid out 
consecutively in memory

❑ Column major: Consecutive elements in a column are laid out 
consecutively in memory

❑ You need to change the stride when accessing a row versus 

column

45



◼ A and B, both in row-major order

◼ A: Load A0 into vector register V1

❑ Each time, increment address by one to access the next column

❑ Accesses have a stride of 1

◼ B: Load B0 into vector register V2

❑ Each time, increment address by 10

❑ Accesses have a stride of 10

Matrix Multiplication

46

A4x6 B6x10 → C4x10

Dot products of rows and columns 

of A and B

Different strides can lead 

to bank conflicts

How do we minimize them?



Minimizing Bank Conflicts

◼ More banks

◼ Better data layout to match the access pattern

❑ Is this always possible?

◼ Better mapping of address to bank

❑ E.g., randomized mapping

❑ Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.
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Array vs. Vector Processors, Revisited

◼ Array vs. vector processor distinction is a “purist’s” 
distinction

◼ Most “modern” SIMD processors are a combination of both

❑ They exploit data parallelism in both time and space

❑ GPUs are a prime example we will cover in a bit more detail

48



Recall: Array vs. Vector Processors

49

ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Instruction Execution
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VADD A,B → C

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



Vector Unit Structure
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Lane

Functional Unit

Partitioned

Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
❑ Example machine has 32 elements per vector register and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 vector instruction/cycle

52

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Automatic Code Vectorization
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary

◼ Vector/SIMD machines are good at exploiting regular data-
level parallelism

❑ Same operation performed on many data elements

❑ Improve performance, simplify design (no intra-vector 
dependencies)

◼ Performance improvement limited by vectorizability of code

❑ Scalar operations limit vector machine performance

❑ Remember Amdahl’s Law

❑ CRAY-1 was the fastest SCALAR machine at its time!

◼ Many existing ISAs include (vector-like) SIMD operations

❑ Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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SIMD Operations in Modern ISAs



SIMD ISA Extensions

◼ Single Instruction Multiple Data (SIMD) extension 
instructions

❑ Single instruction acts on multiple pieces of data at once

❑ Common application: graphics

❑ Perform short arithmetic operations (also called packed 
arithmetic)

◼ For example: add four 8-bit numbers

◼ Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

56



Intel Pentium MMX Operations

◼ Idea: One instruction operates on multiple data elements 
simultaneously

❑ À la array processing (yet much more limited)

❑ Designed with multimedia (graphics) operations in mind

57

Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)

◼ Goal: Overlay the human in image 1 on top of the background in image 2

58Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.



MMX Example: Image Overlaying (II)

59Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image



Fine-Grained Multithreading

60



Fine-Grained Multithreading (I)

◼ Idea: Hardware has multiple thread contexts (PC+registers). 
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline

61



Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependency latencies by 

overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple 
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Multithreaded Pipeline Example

63Slide credit: Joel Emer



Fine-grained Multithreading (III)

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
64



GPUs (Graphics Processing Units)



GPUs are SIMD Engines Underneath

◼ The instruction pipeline operates like a SIMD pipeline (e.g., 
an array processor)

◼ However, the programming is done using threads, NOT 

SIMD instructions

◼ To understand this, let’s go back to our parallelizable code 
example

◼ But, before that, let’s distinguish between 

❑ Programming Model (Software)

vs.

❑ Execution Model (Hardware)

66



Programming Model vs. Hardware Execution Model

◼ Programming Model refers to how the programmer expresses 
the code

❑ E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 
Multi-threaded (MIMD, SPMD), …

◼ Execution Model refers to how the hardware executes the 
code underneath

❑ E.g., Out-of-order execution, Vector processor, Array processor, 
Dataflow processor, Multiprocessor, Multithreaded processor, …

◼ Execution Model can be very different from the Programming 

Model

❑ E.g., von Neumann model implemented by an OoO processor

❑ E.g., SPMD model implemented by a SIMD processor (a GPU)
67



How Can You Exploit Parallelism Here?

68

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)

69

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code ◼ Can be executed on a:

◼ Pipelined processor

◼ Out-of-order execution processor

❑ Independent instructions executed 
when ready

❑ Different iterations are present in the 
instruction window and can execute in 

parallel in multiple functional units

❑ In other words, the loop is dynamically 
unrolled by the hardware

◼ Superscalar or VLIW processor

❑ Can fetch and execute multiple 

instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

70

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A → V1

VLD     B → V2

VADD     V1 + V2 → V3

VST     V3 → C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine

◼ Except it is not programmed using SIMD instructions

◼ It is programmed using threads (SPMD programming model)

❑ Each thread executes the same code but operates a different 
piece of data

❑ Each thread has its own context (i.e., can be 
treated/restarted/executed independently)

◼ A set of threads executing the same instruction are 

dynamically grouped into a warp (wavefront) by the 
hardware

❑ A warp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently (on any type of scalar pipeline) → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 

that are supposed to truly execute the same instruction →
dynamically obtain and maximize benefits of SIMD processing
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Fine-Grained Multithreading of 

Warps 
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

◼ Assume a warp consists of 32 threads

◼ If you have 32K iterations, and 1 iteration/thread → 1K warps

◼ Warps can be interleaved on the same pipeline → Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Warps and Warp-Level FGMT

◼ Warp: A set of threads that execute the same instruction 
(on different data elements) → SIMT (Nvidia-speak)

◼ All threads run the same code
◼ Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



High-Level View of a GPU

79Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT

◼ Warp: A set of threads that 
execute the same instruction 

(on different data elements)

◼ Fine-grained multithreading

❑ One instruction per thread in 
pipeline at a time (No 
interlocking)

❑ Interleave warp execution to 
hide latencies

◼ Register values of all threads stay 
in register file

◼ FGMT enables long latency 
tolerance

❑ Millions of pixels 

80

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp Execution (Recall the Slide)
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32-thread warp executing ADD A[tid],B[tid] → C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time



82

Lane

Functional Unit

Registers
for each 

Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
❑ Example machine has 32 threads per warp and 8 lanes

❑ Completes 24 operations/cycle while issuing 1 warp/cycle
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W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic



◼ Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp → 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

84



◼ CPU threads and GPU kernels

❑ Sequential or modestly parallel sections on CPU

❑ Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nThr >>>(args);

Warps not Exposed to GPU Programmers
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Slide credit: Hw u & Kirk



Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {

int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 86



Sample GPU Program (Less Simplified)

87Slide credit: Hyesoon Kim



From Blocks to Warps

◼ GPU cores: SIMD pipelines

❑ Streaming Multiprocessors (SM)

❑ Streaming Processors (SP)

◼ Blocks are divided into warps

❑ SIMD unit (32 threads)

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…

Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…

Block 2’s warps

88

NVIDIA Fermi architecture



Warp-based SIMD vs. Traditional SIMD
◼ Traditional SIMD contains a single thread 

❑ Sequential instruction execution; lock-step operations in a SIMD instruction

❑ Programming model is SIMD (no extra threads) → SW needs to know 

vector length

❑ ISA contains vector/SIMD instructions

◼ Warp-based SIMD consists of multiple scalar threads executing in a 

SIMD manner (i.e., same instruction executed by all threads)

❑ Does not have to be lock step

❑ Each thread can be treated individually (i.e., placed in a different warp) 
→ programming model not SIMD

◼ SW does not need to know vector length

◼ Enables multithreading and flexible dynamic grouping of threads

❑ ISA is scalar → SIMD operations can be formed dynamically

❑ Essentially, it is SPMD programming model implemented on SIMD 
hardware
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SPMD
◼ Single procedure/program, multiple data 

❑ This is a programming model rather than computer organization

◼ Each processing element executes the same procedure, except on 
different data elements

❑ Procedures can synchronize at certain points in program, e.g., barriers

◼ Essentially, multiple instruction streams execute the same 

program

❑ Each program/procedure 1) works on different data, 2) can execute a 
different control-flow path, at run-time

❑ Many scientific applications are programmed this way and run on MIMD 
hardware (multiprocessors)

❑ Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model

◼ SIMD: A single sequential instruction stream of SIMD 
instructions → each instruction specifies multiple data inputs

❑ [VLD, VLD, VADD, VST], VLEN

◼ SIMT: Multiple instruction streams of scalar instructions →

threads grouped dynamically into warps

❑ [LD, LD, ADD, ST], NumThreads

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 

that are supposed to truly execute the same instruction →
dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

◼ Each thread can have conditional control flow instructions

◼ Threads can execute different control flow paths

92

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT

◼ A GPU uses a SIMD 
pipeline to save area 
on control logic

❑ Groups scalar threads 
into warps

◼ Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 

Recall the Vector Mask and Masked Vector Operations?



Remember: Each Thread Is Independent

◼ Two Major SIMT Advantages: 

❑ Can treat each thread separately → i.e., can execute each thread 
independently on any type of scalar pipeline → MIMD processing

❑ Can group threads into warps flexibly → i.e., can group threads 
that are supposed to truly execute the same instruction →
dynamically obtain and maximize benefits of SIMD processing

◼ If we have many threads

◼ We can find individual threads that are at the same PC

◼ And, group them together into a single warp dynamically

◼ This reduces “divergence” → improves SIMD utilization

❑ SIMD utilization: fraction of SIMD lanes executing a useful 
operation (i.e., executing an active thread)
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Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

◼ Form new warps from warps that are waiting

❑ Enough threads branching to each path enables the creation 
of full new warps

95

Warp X

Warp Y

Warp Z



Dynamic Warp Formation/Merging

◼ Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

◼ Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.
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Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt



Hardware Constraints Limit Flexibility of Warp Grouping
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Lane

Functional Unit

Registers
for each 

Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread 
flexibly to any lane?



Large Warps and Two-Level Warp Scheduling

◼ Two main reasons for GPU resources be underutilized

❑ Branch divergence

❑ Long latency operations
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time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.



Large Warp Microarchitecture Example

Decode Stage

1 0 0 1

0 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 1

0 1 0 0

0 0

0

0
1 1 1 1

0

0

0

0

1 1 1 1

0 0

0

1 1 1 11 1 0 1

Sub-warp 0 mask Sub-warp 0 maskSub-warp 1 mask Sub-warp 0 maskSub-warp 1 maskSub-warp 2 mask

1 1 1 1 1 1 1 1

◼ Reduce branch divergence by having large warps

◼ Dynamically break down a large warp into sub-warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011. 100



Two-Level Round Robin

◼ Scheduling in two levels to deal with long latency operations

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp 

Scheduling,” MICRO 2011.

time

Core

Memory
System

All Warps Compute

Req Warp 0

All Warps Compute

Req Warp 1

Req Warp 15

Round Robin Scheduling, 16 total warps

time

Core

Memory
System

Compute

Req Warp 0
Req Warp 1

Req Warp 7

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Group 0

Compute

Group 1

Req Warp 8
Req Warp 9

Req Warp 15

Compute

Group 0

Compute

Group 1

Saved Cycles
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Improving Warp Scheduling

◼ Veynu Narasiman, Chang Joo Lee, Michael Shebanow, Rustam 
Miftakhutdinov, Onur Mutlu, and Yale N. Patt,
"Improving GPU Performance via Large Warps and Two-Level 
Warp Scheduling"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 2011. 
Slides (ppt)
A previous version as HPS Technical Report, TR-HPS-2010-006, 
December 2010.
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https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps_micro11.pdf
http://www.microarch.org/micro44/
https://people.inf.ethz.ch/omutlu/pub/narasiman_micro11_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps-TR-HPS-2010-006.pdf
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