Computer Architecture
Lecture 24: SIMD Processors
and GPUs

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Fall 2020
29 December 2020

Agenda for This Lecture

SIMD Processing
o Vector and Array Processors

Graphics Processing Units (GPUs)

Exploiting Data Parallelism:

SIMD Processors and

G PUs

SIMD Processing:
Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

2 Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor

o Multithreaded processor

Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control”) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
o Same operation concurrently applied to different pieces of data
o A form of ILP where instruction happens to be the same across data

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces

o Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

Array vs. Vector Processors

Instruction Stream

LD VR < A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time
Do | LD1 [LD2 LD3]
N
ADO| AD1 |AD2 AD3 LD1| ADO
MUO| MU1 IMU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 LD3| AD2 [MUL STO|
i
Different ops @ same space AD3 MU2 ST1
MU3 ST2
Time Same op @ space ST3

€<—S5Space—> €—5Space—>

SIMD Array Processing vs. VLIW

= VLIW: Multiple independent operations packed together by the compiler

Program

add r1.r2.r3 load r4.,r5+4 mov ré.r2 mul r7.r8.r9
ounter

Instruction

Execution
PE PE PE PE

SIMD Atrray Processing vs. VLIW

= Array processor: Single operation on multiple (different) data elements

Program
ounter

[VLEN = 4]

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution . . .
PE PE PE PE

10

Vector Processors (1)

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i =0; i<=49; i++)
Cli] = (Alil + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements
o Need to load/store vectors - vector registers (contain vectors)

o Need to operate on vectors of different lengths - vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory - vector stride register (VSTR)

Stride: distance in memory between two elements of a vector

11

Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined
o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

o No intra-vector dependencies - no hardware interlocking
needed within a vector

o No control flow within a vector

o Known stride allows easy address calculation for all vector
elements

Enables prefetching of vectors into registers/cache/memory

12

Vector Processor Advantages

+ No dependencies within a vector
o Pipelining & parallelization work really well
o Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work
o Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern

+ No need to explicitly code loops
o Fewer branches in the instruction sequence

13

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irregular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built intc the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
low-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the

subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. !4

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if
1. compute/memory operation balance is not maintained
2. data is not mapped appropriately to memory banks

15

Vector Processing in More Depth

Vector Registers

Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK

Maximum VLEN can be N
o Maximum number of elements stored in a vector register
Vector Mask Register (VMASK)
o Indicates which elements of vector to operate on
o Set by vector test instructions
e.g., VMASKTi] = (V,[i] == 0)
M-bit wide M-bit wide

V0,0 V1,0
V0,1 V1,1

VO,N-1 V1,N-1

17

Vector Functional Units

Use a deep pipeline to execute

element operations
V V|V
- fast clock cycle VY)Y
Control of deep pipeline is | |
simple because elements in | T
vector are independent | T
[
Six sta ' inali — \ /
ge multiply pipeline w \ /¢
T

Slide credit: Krste Asanovic

V1*V2->V3

18

Vector Machine Organization (CRAY-1)

MEMOR Y

VECTOR REGISTERS
V7

1
¥E
{80+ 8k "" _
e U RV ——————] Lrgical
[T
W1 Bdd
(1] =
Wil
——— — VECTOR
—— : - Wi —s
| —0roo— — j—'ﬂ | |
| = B — -Ir.l' L E
== = — o
_,xJ"/’
= » |
o ——| S L]
Corjrof 1
I — == 51| FLOAT ING
Y if POINT
T — :
SCALAR REGISTERS -
e
o] e =7 ||| =y
'/_LEW—LTE f
A L a4
Lo
1 { £l
E;ﬁ:""?' SCALAR
b —
L a
ADDRESS REGISTERS f Cespred L
any B0 a1 []
E?F .
R R N l, ADDRESS
'-"l | L |EII
'I sz |:|F re
3 1 =
- !

FUNCT IONAL UNITS

B

INSTRUCTION BUFFERS

CRAY-1

Russell, “The CRAY-1
computer system,”
CACM 1978.

Scalar and vector modes

8 64-element vector
registers

64 bits per element

16 memory banks

8 64-bit scalar registers

8 24-bit address registers

19

CRAY X-MP-28 (@ ETH (CAB, E Floor)

CRAY X-MP System Organization

CRAY X-MP system organization

CPU 1

V registers
8registers
64 64-bit
elements per
register

Vector functional
units
Shift
on Logical(2)
Population
(84-bitarithmetic)
Vector mask
(84-bits)
Floating point
functional units
Vector length Add/subtre
(7 bits) p— Multiply.

Vector
section

Scalar
section

Address
section

Instruction
section

=Ry

Cray Researchlinc., “The
CRAY X-MP Series of
Computer Systems,” 1985

21

CRAY X-MP Design Detail

CRAY X-MP design detail

Mainframe

CRAY X-MP single- and
multiprocessor systems are
designed to offer users outstanding
performance on large-scale,
compute-intensive and I/0-bound
jobs.

CRAY X-MP mainframes consist of
six (X-MP/1), eight (X-MP/2) or
twelve (X-MP/4) vertical columns
arranged in an arc. Power supplies
and cooling are clustered around the
base and extend outward.

Hardware features:

O 9.5 nsec clock

1 One, two or four CPUs, each
with its own computation and
control sections

O Large multiport central memory

0 Memory bank cycle time of 38
nsec on X-MP/4 systems, 76
nsec on X-MP/1 and X-MP/2
models

O Memory bandwidth of 25-100
gigabits, depending on model

O 1/0 section

0 Proven cooling and packaging
technologies

Memory size

(millions of Number
Model Number of CPUs 64-bit words) of banks
CRAY X-MP/416 4 16 64
CRAY X-MP/48 4 8 32
CRAY X-MP/216 2 16 32
CRAY X-MP/28 2 8 32
CRAY X-MP/24 2 4 16
CRAY X-MP/18 1 8 32
CRAY X-MP/14 1 4 16
CRAY X-MP/12 1 2 16
CRAY X-MP/11 1 1 16

A description of the major system
components and their functions
follows.

CPU computation section

Within the computation section of
each CPU are operating registers,
functional units and an instruction
control network — hardware
elements that cooperate in executing
sequences of instructions. The
instruction control network makes all
decisions related to instruction issue
as well as coordinating the three
types of processing within each
CPU: vector, scalar and address.
Each of the processing modes has
its associated registers and
functional units.

The block diagram of a CRAY
X-MP/4 (opposite page) illustrates
the relationship of the registers to the
functional units, instruction buffers,
1/0 channel control registers,
interprocessor communications
section and memory. For
multiple-processor CRAY X-MP
models, the interprocessor

communications section coordinates
processing between CPUs, and
central memory is shared.

Registers
The basic set of programmable
registers is composed of:

Eight 24-bit address (A) registers
Sixty-four 24-bit intermediate address
(B) registers
Eight 64-bit scalar (S) registers
Sixty-four 64-bit scalar-save
(T) registers
Eight 64-element (4096-bit) vector (V)
registers with 64 bits per element

The 24-bit A registers are generally
used for addressing and counting
operations. Associated with them are
64 B registers, also 24 bits wide.
Since the transfer between an A and
a B register takes only one clock
period, the B registers assume the
role of data cache, storing
information for fast access without
tying up the A registers for relatively
long periods.

Cray ResearchlInc., “The
CRAY X-MP Series of
Computer Systems,” 1985

22

CRAY X-MP CPU Functional Units

CRAY X-MP CPU functional units

Register Time in
usage clock periods
Address functional units
Addition A 2
Multiplication A 4
Scalar functional units
Addition S 3
Shift-single S 2
Shift-double S 3
Logical) 1
Population, parity and leading zero S 3or4
Vector functional units
Addition Vv 3
Shift Vv 3or4
Full vertor Inaical v 2

Cray ResearchlInc., “The
CRAY X-MP Series of
Computer Systems,” 1985

23

CRAY X-MP System Configuration

System configuration options

X-MP/1 X-MP/2 X-MP/4

Mainframe

CPUs 1 2 4
Bipolar memory (64-bit words) N/A N/A 8 or 16M
MOS memory (64-bit words) 1,2,4 or 8M 4,8 0r 16M N/A
6-Mbyte channels 20r4 4 4
100-Mbyte channels 1or2 2 4
1000-Mbyte channels 1 1 2
1/0 Subsystem

I/O processors 2,3o0r4 2,30r4 4
Disk storage units 2-32 2-32 2-32
Magnetic tape channels 1-8 1-8 1-8
Front-end interfaces 1-7 1-7 1-7
Buffer memory (Mbytes) 8,32 0r64 8,32 0r64 64

Solid-state Storage Device
Memory size (Mbytes)

N/A signifies option is not available on the madel

256, 512 or 1024

256, 512 0r 1024

256, 512 0r 1024

Cray ResearchlInc., “The
CRAY X-MP Series of
Computer Systems,” 1985

24

Seymour Cray, the Father of Supercomputers

"If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?"

e e

/ Pinterest. https:/Awwv.pi nterest.c n/47301876$088468061/

J ar -

© Scott Sinkier / Corbis. http://america.anazeera.comlarticles/2015/220/th&short—bratal-life-of- mal e-chic kens.html

25

Vector Machine Organization (CRAY-1)

MEMOR Y

VECTOR REGISTERS
V7

= CRAY-1
] = Russell, “The CRAY-1

= =~ computer system,”

%7] . CACM 1978.

LT Y

Corjrol . | ,-: :: Fl:;-l:::_m
—— e R = Scalar and vector modes

%Em@ =3l = 8 64-element vector

e — e h registers

[(An} + | fiomh

B

ADDRESS REGISTERS Iﬁhc:'.*::: | H] u 64 b|ts Der element
ﬂ 2] a1 | W | 2
Aﬁ "= (=16 memory banks

FIA S T = 8 64-bit scalar registers
= " w8 24-bit address registers

FUNCT IONAL UNITS

INSTRUCTION BUFFERS 26

Loading/Storing Vectors from/to Memory

Requires loading/storing multiple elements

Elements separated from each other by a constant distance
(stride)
o Assume stride = 1 for now

Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

o Can sustain a throughput of one element per cycle

Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

Answer: Bank the memory; interleave the elements across

banks
27

Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N parallel accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR || MDR| | MAR

EEEEEEEEEEEEEEEEEEEEEEETR Bank

15

MDR| [MAR

Data bus

Picture credit: Derek Chiou

A

Address bus

CPU

28

Vector Memory System

Next address = Previous address + Stride

If (stride == 1) && (consecutive elements interleaved
across banks) && (number of banks >= bank latency), then

o we can sustain 1 element/cycle throughput

. B e .
Vector Registers ase Stride

\ F ¢

Address : ;
Generator +

Meaemorny Banksl

29

Picture credit: Krste Asanovic

Scalar Code Example: Element-Wise Avg.

ForI = 0 to 49
o C[i] = (A[i] + B[i]) / 2

Scalar code (instruction and its latency)

MOVI RO = 50
MOVA R1 = A
MOVA R2 = B
MOVA R3 = C

X: LD R4 = MEM[R1++]
LD R5 = MEM[R2++]
ADD R6 = R4 + R5
SHFR R7 = R6 >> 1
ST MEM[R3++] = R7
DECBNZ RO, X

1

1 304 dynamic instructions

1

1

11 ;autoincrement addressing
11

4

1

11

2 :decrement and branch if NZ

30

Scalar Code Execution Time (In Order)

Scalar execution time on an in-order processor with 1 bank

o First two loads in the loop cannot be pipelined: 2*11 cycles
0 4 + 50%40 = 2004 cycles

Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

o First two loads in the loop can be pipelined
o 4 + 50*30 = 1504 cycles

Why 16 banks?

o 11-cycle memory access latency

o Having 16 (>11) banks ensures there are enough banks to

overlap enough memory operations to cover memory latency
31

Vectorizable L.oops

A loop is vectorizable if each iteration is independent of any
other

For I = 0 to 49

o C[i] = (A[i] + B[i])/ 2

Vectorized loop (each instruction and its latency):
MOVI VLEN = 50

7 dynamic instructions

MOVI VSTR =1 1

VLD VO = A 11 + VLEN -1
VLD V1 =B 11 + VLEN -1
VADD V2 = V0 + V1 4 + VLEN -1
VSHFR V3 =V2 >> 1 1+ VLEN -1

VST C =V3 11 + VLEN -1

32

Basic Vector Code Performance

Assume no chaining (no vector data forwarding)

o i.e., output of a vector functional unit cannot be used as the
direct input of another

o The entire vector register needs to be ready before any
element of it can be used as part of another operation

One memory port (one address generator)
16 memory banks (word-interleaved)

VO=A0.49] | V1=B[0.49] | ADD

1 1 11 49 11 49 4 49 1 49 11 49
|
|
|

285 cycles

33

Vector Chaining

Vector chaining: Data forwarding from one vector
functional unit to another

<

V V ||V V
LV vl\ 1 2 3 4
MULV v3,vl,v2
ADDV v5,\‘v3, v4
Chain Chain
Load Y “\1 \ 4

Unit I I

Memory

Slide credit: Krste Asanovic

34

Vector Code Performance - Chaining

= Vector chaining: Data forwarding from one vector
functional unit to another

1 1 11 49 11 49

Strict assumption:

Each memory bank
has a single port
(memory bandwidth

bottleneck)

These two VLDs cannot be
pipelined. WHY?

V11 49

s 182 Cycles VLD and VST cannot be % ‘

pipelined. WHY?

35

Vector Code Pertformance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49

E 1 11 49

79 cycles
19X perf. improvement! o |

36

Questions (1)

What if # data elements > # elements in a vector register?

o Idea: Break loops so that each iteration operates on #
elements in a vector register
E.g., 527 data elements, 64-element VREGs
8 iterations where VLEN = 64
1 iteration where VLEN = 15 (need to change value of VLEN)

o Called vector stripmining

37

(Vector) Stripmining

Surface mining, including strip mining, L

e o
4
X g

» i
™

open-pit mining and mountaintop removal st
mining, is a broad category of mining in A A Tl Lol A==
which soil and rock overlying the mineral
deposit (the overburden) are removed, in
contrast to underground mining, in which
the overlying rock is left in place, and the

mineral removed through shafts or tunnels.

Surface mining began in the mid-sixteenth
century!'! and is practiced throughout the

world, although the majority of surface coal :
mining occurs in North America.l?! It gained ~ Coal strip mine in Wyoming =

Source: https://en.wikipedia.org/wiki/Surface__mining 38

https://en.wikipedia.org/wiki/Surface_mining

Questions (11)

What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

o Idea: Use indirection to combine/pack elements into vector
registers

o Called scatter/gather operations

39

Gather/Scatter Operations

Want to vectorize loops with indirect accesses:
for (i=0; i<N; i++)
A[i] = B[1i] + C[D[1]]

Indexed load instruction (Gather)

LV vD, D # Load indices in D vector
[LVI vC, rC, vD # Load indirect from rC base]
LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add
SV vA, rA # Store result

40

Gather/Scatter Operations

Gather/scatter operations often implemented in hardware
to handle sparse vectors (matrices)

Vector loads and stores use an index vector which is added
to the base register to generate the addresses

Scatter example

Index Vector Data Vector (to Store) Stored Vector (in Memory)
0 3.14 Base+t0 3.14
2 6.5 Base+l X
6 71.2 Base+2 6.5
7 2.71 Base+3 X
Baset4 X
Basetd X
Baset+6 71.2

Base+7 2.71
41

Conditional Operations in a L.oop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] !'= 0) then b[i]=ali]*b[i]

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = VO * V1
VST B = V1

o This is predicated execution. Execution is predicated on mask bit.
42

Another Example with Masking

for(i=0; i< 64; ++i)

if (ali] >= bl[i]) Steps to execute the loop in SIMD code
cli] = a[i]
1. Compare A, B to get
else " VMASK ’
cli] = bli]
2. Masked store of Ainto C
A B VMASK 3. Complement VMASK
1 2 0
2 2 1 4. Masked store of B into C
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
1

1
\l

1
00)

43

Masked Vector Instructions

Simple Implementation Density-Time Implementation
— execute all N operations, turn off — scan mask vector and only execute
result writeback according to mask elements with non-zero masks
M[7]=1 A[7] B[7] M[7]=1
M[6]=0 A[6] B[6] MI61=0 A7) 5[7]
M[5]=1 A[5] B[5] M[5]=1 l

M[4]=1 A[4] B[4] M[4]=1
M[3]=0 A[3] B[3] M[3]= o\ C[5]
v M[2]=0 C[4] /

) ‘
_ | < M[1]=1 /
M[21=0 | Cl2] | M[O]=O\ J

<

M[1]=1 | C[1] /¢ C[1]

<

] Write data port

M[0]=0 C[O .]
0] I 1ol Which one Is better?
Write Enable Write data port
Tradeoffs?

Slide credit: Krste Asanovic 44

Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

o You need to change the stride when accessing a row versus
column

45

Matrix Multiplication

= A and B, both in row-major order

N
>

m
C O o o

>

6 7 8 9 | 10 | 11

A4x6 BGXlO — C4x10

Dot products of rows and columns
of Aand B

: Load A, into vector register V4
Each time, increment address by one to access the next column

Accesses have a stride of 1

: Load B, into vector register V,

Each time, increment address by 10
Accesses have a stride of 10

14

15

16

17

18

19

Different strides can lead
to bank conflicts

~

How do we minimize them?

J
)

J

46

Minimizing Bank Contlicts

s More banks

= Better data layout to match the access pattern
o Is this always possible?

= Better mapping of address to bank
o E.g., randomized mapping
o Rau, "Pseudo-randomly interleaved memory,” ISCA 1991.

47

Array vs. Vector Processors, Revisited

Array vs. vector processor distinction is a “purist’s”
distinction

Most "modern” SIMD processors are a combination of both
o They exploit data parallelism in both time and space
o GPUs are a prime example we will cover in a bit more detail

48

Recall: Array vs. Vector Processors

Instruction Stream

LD VR < A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR VECTOR PROCESSOR

Same op @ same time

Different ops @ time
po| b1 [LD2 D3 LDO
N
ADO| AD1 |AD2 AD3 LD1| ADO
MUO| MU1 (MU2 MU3 LD2 | AD1 |MUO
STO| ST1 |ST2 ST3 LD3| AD2 [MUL STO|
i
Different ops @ same space AD3 MU2 ST1
MU3 ST2
Time Same op @ space ST3

€<—S5Space—> €—5Space—>

49

Vector Instruction Execution

VADD A,B > C

Execution using
one pipelined
functional unit

Execution using
four pipelined
functional units

A[6] B[6] A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]

A[5] B[5] A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]

A[4] B[4] A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]

A[3] B[3] A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]

| i/ | i/ | i/ | i/ | i/

T Cr2] f T Cr8] f T C[9] f | C[1O]f | C[11]f

¥ C[1] /¢ ¥ C[4] /¢ C[5] /¢ C[6] /¢ C[7] /¢
Time I / Time i / i 7 i / i :
C[o] C[o] C[1] C[2] C[3]

<€ Space >

Slide credit: Krste Asanovic

50

Vector Unit Structure

Partitiongdd_ |

Functional Unit
/

(a I
[
/ \

Vector v
Registers

Elements O,

N~ 48, .

\ \ 4 \ 4 /

[<J—

\\ /L

[<—

T |)

Lane

Elements 1,
59, ..

Elements 2,
6, 10, ...

Elements 3,
7,11, ..

A 4

Memory Subsystem

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
o Example machine has 32 elements per vector register and 8 lanes
o Completes 24 operations/cycle while issuing 1 vector instruction/cycle

Load Unit Multiply Unit Add Unit
load Yo57577s
o000 etV AlA A A A A
time ©o o000 oo olairiaalidd aaenEEEE
0000000 A A AAAAAAINEEEEEEDE
OOOOOT‘“I A A AAAAAAINEEEEEEDE
OOOQO@:—@ AAAAAMANEEEEEENE N
OOOQOOOOAAAAALad_d H EEEENENEN
OQIOIO|O|O|O|IO|O|lA A A AAAAANEEEEEENE
A A AAAAAAINEEEEEEDE
, H EEEENENEN
Instruction

issue

Slide credit: Krste Asanovic 52

Automatic Code Vectorization

for (i=0; i < N; i++)
C[i] = A[i] + BI[i];
Scalar Sequential Code Vectorized Code

1 2 Vector Instruction

: Vectorization is a compile-time reordering of
: operation sequencing
: = requires extensive loop dependence analysis

Slide credit: Krste Asanovic 53

Vector/SIMD Processing Summary

Vector/SIMD machines are good at exploiting regular data-
level parallelism

o Same operation performed on many data elements

o Improve performance, simplify design (no intra-vector
dependencies)

Performance improvement limited by vectorizability of code
a Scalar operations limit vector machine performance

o Remember Amdahl’s Law

o CRAY-1 was the fastest SCALAR machine at its time!

Many existing ISAs include (vector-like) SIMD operations
a Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

54

SIMD Operations in Modern ISAs

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension
instructions

o Single instruction acts on multiple pieces of data at once
o Common application: graphics

o Perform short arithmetic operations (also called packed
arithmetic)

For example: add four 8-bit numbers
Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32 24 23 16 15 8 7 0 Bit position

. a, $s0

b, $s1

a,+b, | a,+b, | a,+b, | a,+b, | $s2

56

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A /aarray processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(a)

63 16 15

(b)

63 . -32 31

(©)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

57

MMX Example: Image Overlaying (I)

= Goal: Overlay the human in image 1 on top of the background in image 2

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

MM1

MM3

MM1

de oparation

if (xli] == Blue) new _imaaocli] =ylil:

for (i=0; i<image sixe; 431

clse new imageii] = x[1);

Blue B!ue. Blue Blue Blue Biue Blue Blue
X7!=blue | X6l=blue | X5=blue | Xd=blue | X3!=blue |X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF [OxFFFF | Ox0000 | 0x0000 | OxFFFF OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 58

MMX Example: Image Overlaying (1)

PAND MM4, MM1 Y = Blossom image PANDN MM1, MM3 X =Woman's image

Maal Y, | Y | Yo [Ya| Yo | Yo [Yy [Y, | MM1[0x0000]0x0000]0xFFFF|0xFFFF [0x0000]0x0000]0xFFFFJ0xFFFF]

MM1 [0x0000] 00000 [0xFFFF [OxFFFF [00000]0x0000[OxFFEF[OFFFF] MM3[_ X, | Xo | X5 | X4 [X3 | X | X 1 % |
[X3 | X,]ox0000[0x0000]

M4 [0x0000[0x0000] Y5 [Y. [0x0000[0>0000] Yy | Yo [MM1] X, [X [0<0000J0x0000

MMa[X, | Xe | Ys [Ya| Xa] Xo | Yi| Yol

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.
Movg- B -mma3, memi /" Load _éighl pixels from
. womansimage -
‘Movg mmd, mem2 /" Load eight pixels from the
- S ‘blossom image
~Pcmpegb. mm1, mm3 ' -

Pand mm4, mmi
Pandn mmi, mm3

Por - mmd4, mmit

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 59

Fine-Grained Multithreading

Fine-Grained Multithreading (1)

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

¥
Stream 3 Instruction
' ' Instruction Fetch
+ No logic needed for handling control and | fustrustion Feten_
data dependences within a thread spperand Feleh
. E icn Ph
-- Single thread performance suffers e
. - E tion Phase
-- Extra logic for keeping thread contexts R
-- Does not overlap latency if not enough
.] Stream 4 Instruction
threads to cover the whole pipeline Resut Store

61

Fine-Grained Multithreading (1)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

62

Multithreaded Pipeline Example

select

Slide credit: Joel Emer

'-‘x >
15 —(IR—i| gpR1 =
N 1oL
Y
N
[[1
N 2 W

063

Fine-grained Multithreading (111)

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, ...), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
64

GPUs (Graphics Processing Units)

GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.qg.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let's go back to our parallelizable code
example

= But, before that, let’s distinguish between
o Programming Model (Software)
VS.
o Execution Model (Hardware)

066

Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

67

How Can You Exploit Parallelism Here?

for (i=0; i < N; i++)
Scalar Sequential Code €[l = Ali] + Blil;

Let's examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

068

Prog. Model 1: Sequential (SISD) ™ ¢13) =ats) + ti1;

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

69

Prog. Model 2: Data Parallel (SIMDJ™ ¢z, 'ats) + i1

Vectorized Code

Scalar Sequential Code

VLD A->V1

Iter.

VLD B ->V2

VADD V1+V2->V3

VST V3->C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
70

for (i=0; i < N; i++)

Prog. Model 3: Multithreaded Cli] = A[i] + BIi];

Sca/ar Sequential Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

71

i < N; i++)

Proo. Model 3: Multithreaded ™ eras = ata1 + aiis;
g

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

73

i < N; i++)

SPMD on SIMT Machine T olal = Atd) + Bla1s

Vs

~N

N (7

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions =
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing
o Can group threads into warps flexibly - I.e., can group threads

that are supposed to fruly execute the same instruction >
dynamically obtain and maximize benefits of SIMD processing

76

Fine-Grained Multithreading of for (i=0; i < N; i+4)
C[i] = A[i] + B[i];
Warps

L

m Asslee a warp consists of 32 threads
= If you have 32K iterations, and 1 iteration/thread - 1K warps

= Warps can be interleaved on the same pipeline - Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter. Iter.
23*32 + 1 20*32 + 2

77

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) - SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

_.=7| |_Thread Warp 3
- y|_Thread Warp 8
Thread Warp Common PC 7 :
Scalar Scalar Scalar Scalar ," Thread Warp 7
ThreadThreagThreade ¢ « |Thread / ¢
W X Y Z / .
/ SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2608.

High-ILevel View of a GPU

’ -Cache |
Shader | |Shader | |Shader| ,,, | Shader +
Core Core Core Core
Decode
¢ 33 PSRRI et Jals Sk S
. \ w| w

Interconnection Network o S| |9 :
$ $ I & &
|
Memory | | Memory Memory -;,-q _;,_l:! l
Controller| |Controller Controller % % ;
3 ' ¢ 2l]
: I

GDDR3 |

GDDR3

GDDR3

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

A 4

Thread Warp 3

Thread Warp 8

| Thread|Warp 7 |

Warps available
for scheduling

' SIMD Pipeline
v
| I-Fetch |
v
| Decode |
vV Vv v
A | A A
v Vv v Warps accessing
= 2 memory hierarchy
= = = Miss?
vV _V L 2
| D-Cache M

Thread Warp 1
Al Hit?i 4 Data | Thread Warp 2

Writeback

| Thread Warp 6 |

80

Warp Execution (Recall the Slide)

32-thread warp executing ADD A[tid],B[tid] = C[tid]

A[6]

A[5]
A[4]
A[3]

v

Execution using
one pipelined
functional unit

B[6]
B[5]
B[4]
B[3]

v
/

-

C[2] /

-

C[1] /

-

Time

I

v

C[0]

Slide credit: Krste Asanovic

Time

Execution using
four pipelined
functional units

A[24] B[24] A[25] B[25] A[26] B[26] A[27] B[27]
A[20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A[16] B[16] A[17] B[17] A[18] B[18] A[19] B[19]
A[12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
l i/ l i/ l i/ l i/
T Cr8] f T C[9] f | C[1O]f | C[11]f
cr41 | clsi/ ctel| an

I I I I

C[0] C[1] C[2] C[3]
<€ Space >

81

SIMD Execution Unit Structure

Functional Unit
/

(
== = = =
Y Y Y Y
L | L | L | L |
Registers| “— \ I / \ I / \ ! : \ !
for each
Thread Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,9, .. 2,6, 10, ... 3,7, 11, ...
\ \ 4 \ 4 <]/7 \ \ 4 \ 4 <]/7 \ \ 4 \ 4 <]/7 \ \ 4 \ 4 <]/7
L L L L
R R R R
T T T T
Lane /

Memory Subsystem

82

Slide credit: Krste Asanovic

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
TN poooor—

00 o0 o0 ot~ /alAAlAA
time OO YWY YYAEY NOO000nc
xxxrxxxymy¥tyeweyeersnnits e
OO0 Tz YAAAAAAA AN EEEEEEE
0]0|0|0]0|dm=m/|a|A|A|A A4 2 NmE EEEEE®
ololojolololo[D]alalalalaliWS fm/m/m/m E/m/m =
olololololololo]la/alalala AlaAlmEEEEEER
AAAAAAA AN EEEEEEE
EEEEEEEE

| Warp issue >

Slide credit: Krste Asanovic

83

SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp > 4 warps

OESERSPERERREEREY Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 34

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

AN

N/

A\

A

V'Y
\VA

N/
AQAA 7
VAN 4

\\/

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

A
\Y
\Y
A
V'Y
AA
Y/

‘4% % % >
Serial Code (host) g
‘4% % % >

Slide credit: Hw u & Kirk

85

Sample GPU SIMT Code (Simplitied)

CPU code

for (i = 0; i < 100000; ++ii) {
[C[ii] = A[ii] + B[ii]; J

)
CUDA code i

(// there are 100000 threads
__global__ void KernelFunction(...){

~

int tid = blockDim.x * blockIdx.x + threadIdx.x;

int varA = aal[tid];
int varB = bb[tid];

C[tid] = varA + varB;

J

J

Slide credit: Hyesoon Kim

86

Sample GPU Program (Less Simplified)

CPU Program GPU Program

__global __ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int] = blockldx.y * blockDim.y + threadldx.y;
Int index =1+ j*N;
if(1<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 87

From Blocks to Warps

= GPU cores: SIMD pipelines
o Streaming Multiprocessors (SM)
o Streaming Processors (SP)

= Blocks are divided into warps

o SIMD unit (32 threads)

Block 0’s warps
]

Block 1’s warps

t0tlt2.. 131
Y

‘((

2200

P e)(y 4
> >

Block 2’s warps

t0tlt2..t31
SIS

(<

)

t0tlt2 .. 131
NN

L«
2

4

Warp Scheduler || Warp Scheduler
Dispatch Unit || Dispatch Unit

........ :
@
=
@
=

[

NVIDIA Fermi architecture

o0

8

Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISAis scalar & SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
89

SPMD

Single procedure/program, multiple data
o This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g., barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

90

SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

5 [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions -
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline - MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing

Threads Can Take Different Paths in Warp-based SI

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread
3

Thread
4

92

Control Flow Problem in GPUs/SIMT

Slide cr

A GPU uses a SIMD
pipeline to save area
on control logic

o Groups scalar threads
into warps

Branch divergence
occurs when threads
inside warps branch to
different execution
paths

Branch

SRRRRRY
SRR RRRY

Path A

Patﬂ

PR
Pl

SRRRRRY

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

edit: Tor Aamodt

93

Remember: Each Thread Is Independent

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads

that are supposed to truly execute the same instruction -2
dynamically obtain and maximize benefits of SIMD processing

If we have many threads
We can find individual threads that are at the same PC
And, group them together into a single warp dynamically

This reduces “divergence” - improves SIMD utilization

o SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)
94

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warps from warps that are waiting

o Enough threads branching to each path enables the creation
of full new warps

WarpX ¢ ¢ ¢ 4 Vi LY wapz
Warp Y | ! g

<t
= =
4 =
L
4= L=
4 G
««
4 =
4 =
= =

95

Dynamic Warp Formation/Merging

= Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

I I
F OO A A AN A

I]
[Branch] 100

s s } I R A
[\ LI R (e } }
Path B

= Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

96

Dynamic Warp Formation Example

4

/1111
Ay

g ¥/1110
y/0011
4 A

¢ ¥/1000] [y x/0110] [- x/0001
yi0o10| |~ yrooo1| |© y/1100

\M/

E x/1110
y/0011

Legend
rs- rA—
| | Execution of Warp x _’l Execution of Warp y
—»| at BasicBlock A —»| at Basic Block A
> >,

D

A new warp created from scalar
threads of both Warp x and y
executing at Basic Block D

x/1111
Gy/1111
A A B B E_
EdEalEd]
Baseline ¢ -°° 2122 1>
gt i [B e g
[[>Time
Dynamic A A B B|lclD|E G G A A
T " [(> T T T
Warp ceol> > |> 1> > > > ...
: | ||—>| —»>||> |—>||—>||—>||—>|
Formation inahingl e 1y 12 o 2
[>Time
97

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

Registers
for each
Thread

Functional Unit
/

(a I
[
/ \

_ !/

[
|

[

[
|

N
[
|

[

A 4

A 4

A 4

A 4

Registers for
thread IDs
0, 4,8, ..

Registers for
thread IDs
1,5,9, ..

Registers for
thread IDs
2,6, 10, ..

Registers for
thread IDs
3,7,11, ..

A A
A 4
|

A A
A 4 A 4

\ |

I <=

A

A 4 A 4

\ |

I <=

\V V/

7

Lane/K— -

=g

Cany

ou move any thread
flexibly to any lane?

|

A 4

A 4

A 4

Memory Subsystem

Slide credit: Krste Asanovic

98

Large Warps and Two-Level Warp Scheduling

Two main reasons for GPU resources be underutilized
o Branch divergence

o Long latency operations

Core AII Warps Compute} ... [AII Warps Compute]
Req Warp 0 < >
Memory Req Warp 1 «— >
System e
Reg Warp 15« >

»time
Round Robin Scheduling, 16 total warps

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 99

Large Warp Microarchitecture Example

Reduce branch divergence by having large warps
Dynamically break down a large warp into sub-warps

Decode Stage

Sub-warp @ mask | Sub-warp 0 mask | Sub-warp 0 mask
11111 111(1(1 11111

OO0 |0|10|=2
BIO0OIB|I0O|I0(0|I2 |0
OI0IOIB|IO2|0 |0
OB|I0O|I0|IO0O|2 |10 |2

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 100

Two-Level Round Robin

Scheduling in two levels to deal with long latency operations

Core All Warps Compute} ... [A” Warps Compute}
Req Warp 0 « > :
Memory Req Warp 1 «—¢ >
System Y :
Reg Warp 15« > =Eime
Round Robin Scheduling, 16 total warps :
Group O Group 1 Group 0 Group 1 :
Core Compute Compute] .. [Compute Compute}—»:
- Saved Cycles
Req Warp 0 « >
Req Warp 1 « o >
Req Warp 7 : >
Memory
System Req Warp 8 « >
Req Warp 9 « ° >
Reg Warp 15: > =time

Two Level Round Robin Scheduling, 2 fetch groups, 8 warps each

Narasiman et al., “Improving GPU Performance via Large Warps and Two-Level Warp
Scheduling,” MICRO 2011. 101

Improving Warp Scheduling

= Veynu Narasiman, Chang Joo Lee, Michael Shebanow, Rustam
Miftakhutdinov, Onur Mutlu, and Yale N. Patt,
"Improving GPU Performance via Large Warps and Two-Level
Warp Scheduling”
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December 2011.
Slides (ppt)
A previous version as HPS Technical Report, TR-HPS-2010-006,
December 2010.

Improving GPU Performance via Large Warps
and Two-Level Warp Scheduling

Veynu Narasiman: Michael Shebanow: Chang Joo Leeg
Rustam Miftakhutdinovi Onur Mutlu§ Yale N. Patt;

TThe University of Texas at Austin iNvidia Corporation €Intel Corporation §Carnegie Mellon University
{narasima, rustam, patt} @hps.utexas.edu mshebanow@nvidia.com chang.joo.lee@intel.com onur@cmu.edu

102

https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps_micro11.pdf
http://www.microarch.org/micro44/
https://people.inf.ethz.ch/omutlu/pub/narasiman_micro11_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/large-gpu-warps-TR-HPS-2010-006.pdf

Computer Architecture
Lecture 24: SIMD Processors
and GPUs

Dr. Juan Gomez Luna
Prof. Onur Mutlu
ETH Zurich
Fall 2020
29 December 2020

