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Short Background on
NAND Flash Memory Operation




NAND Flash Memory Background
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Threshold Voltage (V)
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Flash Read
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Read from Flash Cell Array

V....=5.0
P Pass (5V) Page 1

Read (2.5V) Page 2

Pass (5V) Page 3

Pass (5V) Page 4

Vread = 2.5

Va5 = 5.0

Va5 = 5.0

Correct values 0

cAFaRjOr Page 2:




Aside: NAND vs. NOR Flash Memory

Bitline
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By wikipedia user Cyferz, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4571194
S A FA R By wikipedia user Cyferz, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4571172



Threshold Voltage (V)
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Threshold Voltage (V,,) Distribution
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Read Reference Voltage (V)
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Threshold Voltage Reduces Over Time

After some retention loss:
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Fixed Read Reference Voltage Becomes Suboptimal
After some retention loss:
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Optimal Read Reference Voltage (OPT)

After some retention loss:
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How Current Flash Cells are Programmed
Programming 2-bit MLC NAND flash memory in two steps
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MIL.C Architecture

et s e | Rabei'l e} N LSB-Even Page Sets
1231 [ H221] —V, o (10V) LSB-Odd Page Sets
i Y iSB-Even Page Sets
V. (10V) MSB-0Odd Page Sets
MSB v s (10V)
oV

19



Planar vs. 3D NAND Flash Memory
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Flash Memory Flash Memory

Reduce flash cell size,

Scaling Reduce distance b/w cells

Increase # of layers

Reliability  Scaling hurts reliability [Not well Studied!]

SAFARI 20



Layer M

Layer 1

Layer 0
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Charge Trap Based 3D Flash Cell

= Cross-section of a charge trap transistor

;

Charge Trap

\ (Insulator)

<+— Control Gate

O]

() 0] )
Substrate
@

)

#—— Gate Oxide

Drain

Tunnel Oxide

SAFARI 22



3D NAND Flash Memory Organization

Metal Wire
Substrate

Charge Trap-
Control Gate~

|
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Fig. 43. Organization of flash cells in an M-layer 3D charge trap NAND flash memory chip, where each block consists of

M wordlines and N bitlines.
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More Background and State-of-the-Art

§HH+ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https:/ /arxiv.org/pdf/1706.08642
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https://arxiv.org/pdf/1706.08642

More Up-to-date Version

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives:
Analysis, Mitigation, and Recovery

YU CAI, SAUGATA GHOSE

Carnegie Mellon University

ERICH F. HARATSCH
Seagate Technology

YIXIN LUO
Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf

Flash Memory
Reliability and Security




Error Analysis and Management

of NAND Flash Memory




Limits ot Charge Memory

Difficult charge placement and control
o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces
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Executive Summary

= Problem: MLC NAND flash memory reliability/endurance is a key
challenge for satisfying future storage systems’ requirements

= Our Goals: (1) Build reliable error models for NAND flash
memory via experimental characterization, (2) Develop efficient
techniques to improve reliability and endurance

= This lecture provides a “flash” summary of our recent results
published in the past 8 years:

Experimental error and threshold voltage characterization [DATE’12&13]

Retention-aware error management [ICCD’'12]

Program interference analysis and read reference V prediction [ICCD'13]

Neighbor-assisted error correction [SIGMETRICS'14]

Read disturb error handling [DSN’15]

Data retention error handling [HPCA’15]

o 0O 0O 0O 0O O
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Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

3D NAND Flash Memory Reliability

Summary

o o o o o o o O
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Evolution of NAND Flash Memory

~ 1,000,000
E QO 64 » 0.7um — 2Xnm (Cell size : ~1/2000)
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v 100,000 O ciom— SLEC
&
3 10,000
v CMOS scaling
B More bits per Cell
v 1,000 7
t .
m '.. ... Yo,
100 - :
10 |\ 250\ 160 \ 130\ 90\ 70 \ 5x \ax \3x\ 2x\ 2v \1x \1v \1znm...... 22
‘98 ‘02 ‘06 ‘10 ‘14 ‘18

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

= Flash memory is widening its range of applications
o Portable consumer devices, laptop PCs and enterprise servers
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Flash Challenges: Reliability and Endurance

NAND Flash Memory Endurance Properties
= PJ/E cycles

100000 ¢ .
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—g _____________
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% T | e sLe : (required)
i - | * MLC —
£ L Writing
g 1000 the full capacity
o - e~ of the drive
- : Lithography nm 10 tlmeS per day
130 90 64 51 40 32 20 18 16 14 for 5 years
100 T S TR TR S TR TR M N N SR M T T (STEC)
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E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”, (~~_ > 50k P/E CYC'?S 4
Flash Memory Summit2012 NSt emmmmmmm=———"
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Decreasing Endurance with Flash Scaling
100k 24-bit ECC
1,00,000 -
@ 90,000 -
g 70,000 -
E 60,000 - -
P 20,007 T Error Correction Capability
o 40000~ (per 1 kB of data)
5‘ 30,000 -
<
a1 . S 3k 1K
SLC 5x-nm MLC  3x-nm MLC 2x-nm MLC 3-bit-MLC

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

Endurance of flash memory decreasing with scaling and multi-level cells
Error correction capability required to guarantee storage-class reliability

(UBER < 101°) is increasing exponentially to reach /ess endurance

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

SAFARI

Carnegie Mellon
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NAND Flash Memory 1s Increasingly Noisy

i émé
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Future NAND Flash-based Storage Architecture

Memory
Signal
Processing

Our Goals:

Build reliable error models for NAND flash memory

Raw Bit
Error Rate
ﬁ

Lidigar

Error
Correction

Better

Uncorrectable
BER < 10-1°
—

Design efficient reliability mechanisms based on the model

SAFARI
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NAND Flash Error Model

Write  —> Nois@‘\l AND Read

Experimentally characterize and model dominant errors

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””’, DATE 2012
Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

Write_ | = Erase block * Neighbor page . Read
Proaram page prog/read (c-to-c " Retention
| -
gram pag interference)
Cai et al., “Threshold voltage Cai et al., “Program Interference in MLC Cai et gl., “Flash Correct-and-Refresh:
distribution in MLC NAND Flash NAND Flash Memory: Characterization, ~ Retention-aware error management for
Memory: Characterization, Analysis, Modeling, and Mitigation”, ICCD 2013 increased flash memory lifetime”, ICCD 2012
Correction in MLC NAND Flash Aware Error Management for NAND Flash

Cai et al., “Vulnerabilities in MLC Memories”, SIGMETRICS 2014 Memory”, ITJ 2013
NAND Flash Memory Programming: . L
Experimontal Analyels. Exploits, and  Cai et al., ‘Read Disturb Errors in MLC  Cai et al., “Data Retention in MLC NAND
Mitigation Techniques’; HPCA 5017 NAND Flash Memory: Characterization Flash Memory: Characterization,

' and Mitigation”, DSN 2015 Optimization and Recovery”, HPCA 2015
SAFARI 36
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Our Goals and Approach

Goals:

o Understand error mechanisms and develop reliable predictive
models for MLC NAND flash memory errors

o Develop efficient error management techniques to mitigate
errors and improve flash reliability and endurance

Approach:

a Solid experimental analyses of errors in real MLC NAND flash
memory > drive the understanding and models

o Understanding, models, and creativity - drive the new
techniques

SAFARI 57



Many Errors and Their Mitigation [PIEEE’17]

Table 3 List of Different Types of Errors Mitigated by NAND Flash
Error Mitigation Mechanisms

Error Type
P | 8
~
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Shadow Program Sequencing
[35,40] (Section V-A)
Neighbor-Cell Assisted Error
Correction [36] (Section V-B)
Refresh
[34,39,67,68] (Section V-C)
Read-Retry
[33,72,107] (Section V-D)
Voltage Optimization
[37,38,74] (Section V-E)
Hot Data Management
[41,63,70] (Section V-F)
Adaptive Error Mitigation
[43,65,77,78,82] (Section V-G)
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Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.
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Many Errors and Their Mitigation [PIEEE’17]

;HH'I‘ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https:/ /arxiv.org/pdf/1706.08642
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https://arxiv.org/pdf/1706.08642

More Up-to-date Version

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives:
Analysis, Mitigation, and Recovery

YU CAI, SAUGATA GHOSE

Carnegie Mellon University

ERICH F. HARATSCH
Seagate Technology

YIXIN LUO
Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007%2F978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf

Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

3D NAND Flash Memory Reliability

Summary
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Experimental Testing Platform

USB Jack
/
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[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, NAND Daughter Board

PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.




NAND Flash Error Types
Four types of errors [Cai+, DATE 2012]

Caused by common flash operations
o Read errors

o Erase errors
o Program (interference) errors

Caused by flash cell losing charge over time

o Retention errors

Whether an error happens depends on required retention time

Especially problematic in MLC flash because threshold voltage
window to determine stored value is smaller

SAFARI

43



NAND Flash Usage and Error Model

Erase Errors
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Methodology: Error and ECC Analysis

= Characterized errors and error rates of 3x and 2y-nm MLC
NAND flash using an experimental FPGA-based platform

o [Cai+, DATE’12, ICCD’12, DATE’13, IT)'13, ICCD’13, SIGMETRICS'14]

= Quantified Raw Bit Error Rate (RBER) at a given P/E cycle

o Raw Bit Error Rate: Fraction of erroneous bits without any correction

= Quantified error correction capability (and area and power
consumption) of various BCH-code implementations

o Identified how much RBER each code can tolerate
- how many P/E cycles (flash lifetime) each code can sustain
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Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

3D NAND Flash Memory Reliability

Summary
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Error Types and Testing Methodology

Erase errors
o Count the number of cells that fail to be erased to “11” state

Program interference errors

o Compare the data immediately after page programming and the data
after the whole block being programmed

Read errors

o Continuously read a given block and compare the data between
consecutive read sequences

Retention errors
o Compare the data read after an amount of time to data written

Characterize short term retention errors under room temperature

Characterize long term retention errors by baking in the oven
under 125°C



0

Observations: Flash Error Analysis

- | == 3-year Retention Errors retention errors
10" _ =3¢ 1-year Retention Errors 7\
= | =4=3-month Retention Errors

_22 3-week Retention Errors I
10 3-day Retention Errors

: Program Interference Errors
1-day Retention Errors \
Read Errors

-e- Erase Errors N/

)
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Raw Bit Error Rate

10‘8F

10° | T 11111(133 P/ECyCIeS 11184 | | ll 111105
= Raw bit error rate increases exponentially with P/E cycles

= Retention errors are dominant (>99% for 1-year ret. time)
= Retention errors increase with retention time requirement

SAFARI cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012. *°



Retention Error Mechanism

LSB/MSB
_ Stress Induced Leakage Current (SILC)
Floating
Gate O O © 0 0 00000

REF1; REF2: REF3,
I I I
I I I

11 | 10 \ 1 [ 01 I [ 00
| | | v
| | | "
Erased Fully programmed

Electron loss from the floating gate causes retention errors

o Cells with more programmed electrons suffer more from
retention errors

o Threshold voltage is more likely to shift by one window than by
multiple
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Retention Error Value Dependency

Error Count
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= Cells with more programmed electrons tend to suffer more
from retention noise (i.e. 00 and 01)
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More on Flash Error Analysis

= Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe

Conference (DATE), Dresden, Germany, March 2012. Slides
(ppt)

Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis

Yu Cai'. Erich F. Haratsch?, Onur Mutlu' and Ken Mai'
'Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
*LSI Corporation, 1110 American Parkway NE. Allentown, PA
!{yucai, onur, kenmai}@andrew.cmu.edu, “erich.haratsch@Isi.com
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http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt

Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

3D NAND Flash Memory Reliability

Summary
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Solution to Retention Errors

Refresh periodically

Change the period based on P/E cycle wearout
o Refresh more often at higher P/E cycles

Use a combination of in-place and remapping-based refresh

Cai et al. “Flash Correct-and-Refresh: Retention-Aware
Error Management for Increased Flash Memory Lifetime”,
ICCD 2012.

SAFARI >3



Flash Correct-and-Refresh (FCR)

Key Observations:

o Retention errors are the dominant source of errors in flash
MEMOry [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011]

- limit flash lifetime as they increase over time

o Retention errors can be corrected by “refreshing” each flash
page periodically

Key Idea:

o Periodically read each flash page,

a Correct its errors using “weak” ECC, and

o Either remap it to a new physical page or reprogram it in-place,
a Before the page accumulates more errors than ECC-correctable
o Optimization: Adapt refresh rate to endured P/E cycles

Cai et al., Flash Correct and Refresh, ICCD 2012. 54



FCR: Two Key Questions

How to refresh?

o Remap a page to another one

o Reprogram a page (in-place)

a| Hybrid of remap and reprogram‘

When to refresh?
o Fixed period

o | Adapt the period to retention error severity
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In-Place Reprogramming of Flash Cells

Floating Gate © O ©@ © © 00000

REF1 REF2 REF3
Floating Gate | | |
Voltage Distribution 10 | | 00
for each Stored Value : : VT
Retention errors are REF1, REF2 REF3
caused by cell voltage |
shifting to the left 11 : 10 : 01 :00
VT
I I I

ISPP moves cell :> | | |

voltage to the right; I I I

fixes retention errors 11 : 10 : 01 : 00
I I |

"l
>

= Pro: No remapping needed - no additional erase operations
= Con: Increases the occurrence of program errors
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Normalized Flash Memory Lifetime

M Base (No-Refresh)

B Remapping-Based FCR
£ ® Hybrid FCR

B Adaptive FCR

512b-BCH  1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

Adaptive-rate FCR provides the highest lifetime

| Lifetime of FCR much higher than lifetime of stronger ECC | _




Energy Overhead

10%
8%
6%
4%
2%
0%

Energy Overhead

B Remapping-based Refresh m Hybrid Refresh

1.8%

1 Year

3 Months 3 Weeks 3 Days 1 Day
Refresh Interval

Adaptive-rate refresh: <1.8% energy increase until daily
refresh is triggered
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Flash Correct-and-Refresh [ICCD12]

= Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal,
Osman Unsal, and Ken Mai,
"Flash Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer

Design (ICCD), Montreal, Quebec, Canada, September 2012. Slides
(ppt)(pdf)

Flash Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime

Yu Cai’, Gulay Yalcin?, Onur Mutlu', Erich F. Haratsch®, Adrian Cristal®, Osman S. Unsal® and Ken Mai'
'DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
*Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain
3LSI Corporation, 1110 American Parkway NE, Allentown, PA
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https://people.inf.ethz.ch/omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://www.iccd-conf.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_iccd12_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_iccd12_talk.pdf

More Detail on Flash Error Analysis

= Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian
Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error
Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory
Resiliency, Vol. 17, No. 1, May 2013.

Intel® Technology Journal | Volume 17, Issue 1, 2013

ERROR ANALY SIS AND RETENTION-AWARE ERROR MANAGEMENT
FOR NAND FLASH MEMORY
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http://users.ece.cmu.edu/~omutlu/pub/flash-error-analysis-and-management_itj13.pdf
http://noggin.intel.com/technology-journal/2013/171/memory-resiliency

Many Errors and Their Mitigation [PIEEE’17]

Table 3 List of Different Types of Errors Mitigated by NAND Flash
Error Mitigation Mechanisms

Error Type
P | 8
~
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Shadow Program Sequencing
[35,40] (Section V-A)
Neighbor-Cell Assisted Error
Correction [36] (Section V-B)
Refresh
[34,39,67,68] (Section V-C)
Read-Retry
[33,72,107] (Section V-D)
Voltage Optimization
[37,38,74] (Section V-E)
Hot Data Management
[41,63,70] (Section V-F)
Adaptive Error Mitigation
[43,65,77,78,82] (Section V-G)
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Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.
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Many Errors and Their Mitigation [PIEEE’17]

;HH'I‘ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https:/ /arxiv.org/pdf/1706.08642

62


https://arxiv.org/pdf/1706.08642

More Up-to-date Version

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives:
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Key Questions

How does threshold voltage (Vth) distribution of different
programmed states change over flash lifetime?

Can we model it accurately and predict the Vth changes?

Can we build mechanisms that can correct for Vth changes?
(thereby reducing read error rates)
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Threshold Voltage Distribution Model

Characterized on 2Y-nm chips using the read-retry feature
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Cai et al., Threshold Voltage Distribution in MLC NAND Flash Memory, DATE 2013. 06



Threshold Voltage Distribution Model

Vth distribution can be modeled with ~95% accuracy as a
Gaussian distribution with additive white noise

Distortion in Vth over P/E cycles can be modeled and
predicted as an exponential function of P/E cycles

o With more than 95% accuracy
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More Detail on Threshold Voltage Model
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Non-Gaussian Vth Distributions (1X-nm)
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Fig. 4: Gaussian-based model (solid/dashed lines) vs. data
measured from real NAND flash chips (markers) under dif-
ferent P/E cycle counts.
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Better Modeling of Vth Distributions (I)
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Better Modeling of Vth Distributions (II)

P/E Cycles 0 25K 5K 7.5K 10K 12K 14K 16K 18K 20K AVG
Gaussian 99% 1.8% 1.6% 1.8% 1.9% 2.4% 3.1% 8.7% 2.1% 2.3% 2.6%
Normal-Laplace .34% .46% .55% .61% .63% .67% .68% .710% .67% .67% .61%
Student’s t 37% S51% .61% .68% .10% .716% .76% .718% .176% .78% .68%

TABLE 1: Modeling error of the evaluated threshold voltage
distribution models, at various P/E cycle counts.

SAFARI
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Prediction vs. Reality with Better Modeling
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Fig. 13: Threshold voltage distribution as predicted by our
dynamic model for 20K P/E cycles, using characterization
data from 2.5K, 5K, 7.5K, and 10K P/E cycles, shown as
solid/dashed lines. Markers represent data measured from real
NAND flash chips at 20K P/E cycles.
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More Accurate and Online Channel Modeling
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Program Interterence Errors

When a cell is being programmed, voltage level of a

neighboring cell changes (unintentionally) due to parasitic
capacitance coupling

- can change the data value stored
Also called program interference error

Causes neighboring cell voltage to increase (shift right)

Once retention errors are minimized, these errors can
become dominant
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How Current Flash Cells are Programmed
Programming 2-bit MLC NAND flash memory in two steps
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Basics of Program Interference
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Tradmonal Model for Vth Change

(n+1 J- 1) (n+1,)) (n+1 J"‘1

MSB:6
“-. 1 o
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WL<0> A MSB:2
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(n-1,j-1) (n-1,j) (n-1,j+1)

Traditional model for victim cell threshold voltage change

AV i = (RQC AV, +C AV, +2C AV, )/ C

vz ctim total

Not accurate and requires knowledge of coupling caps!
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Our Goal and Idea

Develop a new, more accurate and easier to implement
model for program interference

Idea:

o Empirically characterize and model the effect of neighbor cell
Vth changes on the Vth of the victim cell

o Fit neighbor Vth change to a linear regression model and find
the coefficients of the model via empirical measurement

J+K  n=M ]
AVwcnm(nﬂj) = Z Za(xﬂyiAVneighbor(xﬂy*-l_ Vv[;:}t;??:e(nﬂj) 1
y=j—-K x=n+1

Can be measured
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Developing a New Model via Empirical Measurement

Feature extraction for Vy, changes based on characterization
o Threshold voltage changes on aggressor cell
o Original state of victim cell

Enhanced linear regression model

J+K  n=M
AI/viclim (l’l, ]) = Z Za(‘xa y)AV;qeighbor(‘xﬂ y) T aOVV?:]t:;};e(na ])
y=j-K x=n+1
Y = Xoa+ g < (vector expression)

Maximum likelihood estimation of the model coefficients

arg min(HX X o — YHz + /1”05”1)

80



Ettect of Neighbor Voltages on the Victim
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Immediately-above cell interference is dominant
Immediately-diagonal neighbor is the second dominant
Far neighbor cell interference exists

Victim cell’s Vth has negative effect on interference
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New Model for Program Interference
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Model Accuracy

Vth after
interf

Predicted Vth
before interf
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Mitigation: Applying the Model
So, what can we do with the model?

Goal: Mitigate the effects of program interference caused
voltage shifts
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Optimum Read Reference for Flash Memory

Read reference voltage affects the raw bit error rate

f(x) 'i g(x) f(X)ix g(x)
State-A | State-B State- State-B
¥
i
Vi f |§ Vi
—— R I R
Vo Vs V1 Vo V' refVi

BER1 = j v f(x)dx + jvr@f g(x)dx BER2 = roo f(x)dx + jv'ref g(x)dx
Vyof —00 V%o —0

There exists an optimal read reference voltage

o Predictable if the statistics (i.e. mean, variance) of threshold
voltage distributions are characterized and modeled
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Optimum Read Reference Voltage Prediction

er(X p2( r

/\@/va(\

>

Vol

After program : , |
interference : I32| | |

ref3 t

Vth shift learning (done every ~1k P/E cycles)
o Program sample cells with known data pattern and test Vth

o Program aggressor neighbor cells and test victim Vth after interference
o Characterize the mean shift in Vth (i.e., program interference noise)

Optimum read reference voltage prediction

o Default read reference voltage + Predicted mean Vth shift by model



FEttect of Read Reference Voltage Prediction
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More on Read Reference Voltage Prediction

= Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,
"Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation”
Proceedings of the 31st IEEE International Conference on
Computer Design (ICCD), Asheville, NC, October 2013.
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More Accurate and Online Channel Modeling
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More Background and State-of-the-Art

§HH+ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.
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Using the Vth Distribution Models

So, what can we do with the model?

Goal: Mitigate the effects of program interference caused
voltage shifts
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Optimum Read Reference for Flash Memory

Read reference voltage affects the raw bit error rate

f(x) 'i g(x) f(X)ix g(x)
State-A | State-B State- State-B
¥
i
Vi f |§ Vi
—— R I R
Vo Vs V1 Vo V' refVi

BER1 = j v f(x)dx + jvr@f g(x)dx BER2 = roo f(x)dx + jv'ref g(x)dx
Vyof —00 V%o —0

There exists an optimal read reference voltage

o Predictable if the statistics (i.e. mean, variance) of threshold
voltage distributions are characterized and modeled
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Optimum Read Reference Voltage Prediction

er(X p2( r

/\@/va(\

>

Vol
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ref3 t

Vth shift learning (done every ~1k P/E cycles)
o Program sample cells with known data pattern and test Vth

o Program aggressor neighbor cells and test victim Vth after interference
o Characterize the mean shift in Vth (i.e., program interference noise)

Optimum read reference voltage prediction

o Default read reference voltage + Predicted mean Vth shift by model



FEttect of Read Reference Voltage Prediction
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More on Read Reference Voltage Prediction
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More Accurate and Online Channel Modeling
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Non-Gaussian Vth Distributions (1X-nm)
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Fig. 4: Gaussian-based model (solid/dashed lines) vs. data
measured from real NAND flash chips (markers) under dif-
ferent P/E cycle counts.
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Better Modeling of Vth Distributions (I)
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Fig. 6: Our new Student’s t-based model (solid/dashed lines)
vs. data measured from real NAND flash chips (markers) under
different P/E cycle counts.
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Better Modeling of Vth Distributions (II)

P/E Cycles 0 25K 5K 7.5K 10K 12K 14K 16K 18K 20K AVG
Gaussian 99% 1.8% 1.6% 1.8% 1.9% 2.4% 3.1% 8.7% 2.1% 2.3% 2.6%
Normal-Laplace .34% .46% .55% .61% .63% .67% .68% .710% .67% .67% .61%
Student’s t 37% S51% .61% .68% .710% .716% .76% .718% .76% .78% .68%

TABLE 1: Modeling error of the evaluated threshold voltage
distribution models, at various P/E cycle counts.
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Fig. 8: Overall latency breakdown of the three evaluated
threshold voltage distribution models for static modeling.
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Vth Prediction vs. Reality with Better Modeling
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Fig. 13: Threshold voltage distribution as predicted by our
dynamic model for 20K P/E cycles, using characterization
data from 2.5K, 5K, 7.5K, and 10K P/E cycles, shown as
solid/dashed lines. Markers represent data measured from real
NAND flash chips at 20K P/E cycles.
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Online Read Reference Voltage Prediction
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(Vop:) using the three evaluated threshold voltage distribution
models at different P/E cycle counts.
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Effect on RBER of Read Ref V Prediction
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0 0.5 1 1.5 2 0 0.5 1 1.5 2 0 0.5 1 1.5 2
P/E cycles x 10* P/E cycles x10* P/E cycles x 10*

Fig. 17: RBER achieved by actual and modeled optimal read
reference voltages (V,,,;) using the three evaluated threshold
voltage distribution models at different P/E cycle counts.
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More Accurate and Online Channel Modeling

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"

to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu
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Goal

Develop a better error correction mechanism for cases
where ECC fails to correct a page
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Observations So Far

Immediate neighbor cell has the most effect on the victim
cell when programmed

A single set of read reference voltages is used to determine
the value of the (victim) cell

The set of read reference voltages is determined based on
the overall threshold voltage distribution of all cells
in flash memory
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New Observations [Cai+ SIGMETRICS’14]

Vth distributions of cells with different-valued
immediate-neighbor cells are significantly different

o Because neighbor value affects the amount of Vth shift

Corollary: If we know the value of the immediate-neighbor,
we can find a more accurate set of read reference voltages
based on the “conditional” threshold voltage distribution

Cai et al., Neighbor-Cell Assisted Error Correction for MLC NAND Flash
Memories, SIGMETRICS 2014.
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Secrets of Threshold Voltage Distributions

Aggressor WL | 11

Victim WL |

Victim WL before MSB
page of aggressor WL
are programmed

10 01 00 01 10 11 00
T HH R L
State P(i) State ID(i+1)
N11 N10NO1 N11

Victim WL after MSB
page of aggressor WL
are programmed

‘‘‘‘‘‘‘‘

N10NO1
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If We Knew the Immediate Neighbor ...

Then, we could choose a different read reference voltage to
more accurately read the “victim” cell
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Overall vs Conditional Reading

N11 N10NO1 REF N11 N10NO1

State P’(i) State P,(i+1)

> Vth

= Using the optimum read reference voltage based on the
overall distribution leads to more errors

= Better to use the optimum read reference voltage based on
the conditional distribution (i.e., value of the neighbor)

o Conditional distributions of two states are farther apart from
each other
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Real NAND Flash Chip Measurement Results

0.035 I | T I I |
— Distribution when direct neighbor is 11 = B
0.031 —Dfstrfbutfon when direot ne?ghbor fs 10 P1 State P2 State E":: ‘::‘ P3 State
5 Distribution when direct neighbor is 01 o, 3 z
e 0025 — Distribution when direct neighbor is 00 5 2 : % N
:; 000 " Disbribution of whole wordline 3 i |
3 ot * Small margin |
- e >
S 001~
0,005~ \Large margin
50 100 150 200 300 350 400 450 500
Normalized threshold voltage
Overall | x;; (ER) x10 (P1) xo0 (P2) Xo; (P3)
Distance 65.4 65.4 64.7 66.4 65.8
Variance 385.9 286.2 256.7 242.8 252.1

SNR

I

3 4

>

12

-

BER

3x10-+

5x10-

2x10°

3x10- |

Raw BER of conditional reading is much smaller than overall reading
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Idea: Neighbor Assisted Correction (NAC)

Read a page with the read reference voltages based on
overall Vth distribution (same as today) and buffer it

If ECC fails:
o Read the immediate-neighbor page

o Re-read the page using the read reference voltages
corresponding to the voltage distribution assuming a particular
immediate-neighbor value

o Replace the buffered values of the cells with that particular
immediate-neighbor cell value

o Apply ECC again
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Neighbor Assisted Correction Flow

READ Read LSB&MSB Neighbors How to select next local
REQUEST = (either from NAC-Buffer or from Flash disk) H
T optimum read reference
v ?
Read the Page VOItage |
Read the Page (from Flash using the next set of local optimum <
(either from NAC-Buffer or from Flash disk) read reference voltages)
v
Correct the Page Yes
Are there
N any remaining sets of loca
optimum read reference
voltages?
Yes
No
SEYND L
SEND
DATA OUT DATA OUT ERROR

Trigger neighbor-assisted reading only when ECC fails

Read neighbor values and use corresponding read
reference voltages in a prioritized order until ECC passes

119



Lifetime Extension with NAC

10'1:

Stage -0 Stage-1 Stage-2 Stage-3

1o} l \\ /

mmmsm \Without NAC

NAC fix N11

Raw BER

wesss NAC fix N11+NO1
wess NAC fix N11+NO1+N10
s NAC fix N11+NO1+N10+NOO

4n_6 ] " - " " | |

33% lifetime improvement at no performance loss

Sl RY]
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Performance Analysis of NAC

mP/E<18K mP/E=18K nP/E=22K m P/E=24K u P/E=25K
p(ECCfail)=0  p(ECCfail=10*(-14) p(ECCfail)=10*(-5) p(ECCfail)=10*(-2) p(ECCfail)=33%
1,20

46 61 37 56 47

1,15
> 1,10
=
o 1,
3 05
- 1,00 -
P
oz 095 -
°
g 0,90
©
g 0,85
2 0,80 -

0,75

0,70

cello Financial MsCambridge postmark WebSearch average

No performance loss within nominal lifetime
and with reasonable (1%) ECC fail rates
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More on Neighbor-Assisted Correction

= Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal,
Adrian Cristal, and Ken Mai,

"Neighbor-Cell Assisted Error Correction for MLC NAND
Flash Memories”

Proceedings of the ACM International Conference on
Measurement and Modaeling of Computer Systems
(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)

Neighbor-Cell Assisted Error Correction
for MLC NAND Flash Memories

Yu Cai', Gulay Yalcin®, Onur Mutlu’, Erich F. Haratsch?,
Osman Unsal®, Adrian Cristal®®, and Ken Mai’

'Electrical and Computer Engineering Department, Carnegie Mellon University
Barcelona Supercomputing Center, Spain 1A — CSIC — Spain National Research Council ~ “LSI Corporation
yucaicai @gmail.com, {omutlu, kenmai}@ece.cmu.edu, {gulay.yalcin, adrian.cristal, osman.unsal}@bsc.es
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Read Disturb Errors in Flash Memory




One Issue: Read Disturb in Flash Memory

All scaled memories are prone to read disturb errors

DRAM
SRAM

Hard Disks: Adjacent Track Interference
NAND Flash
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NAND Flash Memory Background

Block O

Flash Memory

Block N

SAFARI

Flash
Controller




Flash Cell Array

Block X

Page Y

+
-+
7

Sense Amplifiers 127

P 1 L1 . r 1t 111
Sense Amplifiers
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Flash Cell

loati Drain
oating
Gate /

Gate ‘L

-

/

Floating Gate Transistor
(Flash Cell)
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Flash Read

1 0

SAFARI 129

Vopoq=2.5V | |

Gate




Flash Pass-Through

s
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Vs =5V | |

Gate




Read from Flash Cell Array

V....=5.0
P Pass (5V) Page 1

Read (2.5V) Page 2

Pass (5V) Page 3

Pass (5V) Page 4

Vread = 2.5

Va5 = 5.0

Va5 = 5.0

Correct values 0

cAFaRjOr Page 2: 131




Read Disturb Problem: “Weak Programming” Effect

Pass (5V) Page 1

Pass (5V) Page 2

Read (25V) Page 3

Pass (5V) Page 4

SAFARI Repeatedly read page 3 (or any page other than page 2) 132



Read Disturb Problem: “Weak Programming” Effect

V...=50V
P Page 1

Vieag= 2.5V
read Page 2

Viaes = 5.0V

Page 3

Viaes = 5.0V

,
HERY . . . Page 4

Incorrect values

from page 2: |__0O 0 0
saraRr; High pass-through voltage induces™weak-programming” effectu




Executive Summary [DSN’15]

* Read disturb errors limit flash memory lifetime today

— Apply a high pass-through voltage (V) to multiple pages on a read
— Repeated application of V., can alter stored values in unread pages

* We characterize read disturb on real NAND flash chips
— Slightly lowering V, greatly reduces read disturb errors
— Some flash cells are more prone to read disturb

* Technique 1: Mitigate read disturb errors online
— V,uss Tuning dynamically finds and applies a lowered V,, per block
— Flash memory lifetime improves by 21%

* Technique 2: Recover after failure to prevent data loss

— Read Disturb Oriented Error Recovery (RDR) selectively corrects
cells more susceptible to read disturb errors

— Reduces raw bit error rate (RBER) by up to 36%
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Key Observation 1: Slightly lowering V

greatly reduces read disturb errors

III[ 1 I IIIIII] 1 I TTITIII III[

100% 99% 98% 97% 96% 95% 94%

[
—100% V.|
= 99% V.|
— 98% V...
- 97% V...

96% V...

- 95%

— 94%
0.4 Lo

104 10° 106° 107 108 10°
Read Disturb Count

Fig. 11. Raw bit error rate vs. read disturb count for different V), values,
for flash memory under 8K P/E cycles of wear.

Percentage of Vpass Reduction

ass’|’
. pass |

135
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Outline

* Mitigation: V¢ Tuning
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Read Disturb Mitigation: V

*Key Idea: Dynamically find and apply a lowered
V

pass

bass 1UNING

* Trade-off for lowering V
+Allows more read disturbs

—Induces more read errors
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Read Errors Induced by V

Reducing V. to 4.9V

pass

Voses = 4.9V

Vread = 25 V

Voses = 4.9V

Voses = 4.9V

SAFARI

Reduction

Page 1

Page 2

Page 3

Page 4
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Read Errors Induced by V... Reduction

pass
Reducing V. to 4.7V

Vipass = 4.7V I I Page 1

Vreag = 2.9 V I I 3.5 Page 2
\

Voass = 4.7 V I I Page 3

Viass = 4.7 V I I 35 Page 4

Incorrect values

from page 2: 0 0 1
SAFARI
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Utilizing the Unused ECC Capability

x 1073 ECC Correction Capability

1.0 1 |
Unused ECC capability '{
0.8 7

0.6

0.4 -
0.2 -

RBER

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
N-day Retention

1. ECC provisioned for high retention “age”
2. Unused ECC capability can be used to fix read errors

3. Unused ECC capability decreases over retention age
Dynamically adjust V. so that read errors fully utilize

the unused ECC capability
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V. ... Reduction Trade-Off Summary

pass

* Today: Conservatively set V... to a high voltage

pPass
—Accumulates more read disturb errors at the end of
each refresh interval

+No read errors

* Idea: Dynamically adjust V.. to unused ECC
capability
+ Minimize read disturb errors
oControl read errors to be tolerable by ECC

olf read errors exceed ECC capability, read again with a
higher V,, to correct read errors
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V

* Perform once for each block every day:
1. Estimate unused ECC capability (using retention age)
2. Aggressively reduce V¢ until read errors exceeds ECC
capability
3. Gradually increase V4 until read error becomes just
less than ECC capability

Tuning Steps

pass
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Evaluation of V. Tuning

*19 real workload I/O traces
* Assume 7-day refresh period

*Similar methodology as before to determine
acceptable V... reduction

pass

e Overhead for a 512 GB flash drive:

—128 KB storage overhead for per-block V,, setting and
worst-case page

—24.34 sec/day average V¢ Tuning overhead

SAFARI



Viass TUNing Lifetime Improvements

B Baseline .Vpass Tuning B

P/E Cycle Lifetime
DS
o
o
o

Src
wdev
usr

mds

rsrch

prn

web

stg

ts
postmark

hm
cello99

webSearch
prxy

homes
web-vm
mail

proj
financial

Average lifetime improvement: 21.0%
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Read Disturb Prone vs. Resistant Cells

PDF

N read

disturbs
Disturb-Resistant @

N read disturbs
Disturb-Prone @

Normalized V,,
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Observation 2: Some Flash Cells Are

More Prone to Read Disturb
After 250K read disturbs:

Disturb-prone cells have higher threshold voltages

Disturb-resistant cells have lower threshold voltages

'/

@sturb prone
—ER state

Dlsturb resistant
2 P1 state

Normallzed Vi e
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Read Disturb Oriented Error Recovery (RDR)

*Triggered by an uncorrectable flash error
—Back up all valid data in the faulty block
—Disturb the faulty page 100K times (more)
—Compare Vs before and after read disturb
—Select cells susceptible to flash errors (V,—0<V,<V,—0)

—Predict among these susceptible cells
* Cells with more V, shifts are disturb-prone = Lower V,,, state
* Cells with less V,, shifts are disturb-resistant = Higher V,, state

Reduces total error count by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors
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RDR Evaluation

x 103
12
No Recovery == == == = RDR
10 /
= |
2 6
4
2
O | T T T T ]
0 0.2M 0.4M 0.6M 0.8M 1M

Read Disturb Count

Reduces total error counts by up to 36% @ 1M read disturbs
ECC can be used to correct the remaining errors
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Morte on Flash Read Disturb Errors [DSN’15]

= Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai,
and Onur Mutlu,

"Read Disturb Errors in MLC NAND Flash Memory:
Characterization and Mitigation”
Proceedings of the 45th Annual IEEE/IFIP International

Conference on Depenaable Systems and Networks (DSN), Rio de
Janeiro, Brazil, June 2015.

Read Disturb Errors in MLC NAND Flash Memory:
Characterization, Mitigation, and Recovery

Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu
Carnegie Mellon University, *Seagate Technology
yucaicai@gmail.com, {yixinluo, ghose, kenmai, onur}@cmu. edu
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Data Retention in Flash Memory




O EIEM I {r =] retention loss in real NAND chip

I:&M read performance for old data
Recover old data after failure

152
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TECHSPOT

TRENDING ~ REVIEWS ~ FEATURES ~ DOWNLOADS v  PRODUCT FINDER ~ FORUMS ~

An unfortunate tale about Samsung's SSD 840
read performance degradation

An avalanche of reports emerged last September, when owners of the usually speedy

Samsung SSD 840 and SSD 840 EVO detected the drives were no longer performing as
they used to.

The issue has to do with older blocks of data: reading old files nsistently slower than
norma as slow as 30MB/s whereas newly-written files ones used in
benchmarks, perform as fast as new — aroc 500 MIB/s for the well reqarded SSD 840
EVO. The reason no one had noticed (we reviewed the drive back in September 2013) is

that data has to be several weeks old to show the problem. Samsung promptly admitted
the issue and proposed a fix.

Reference: (May 5, 2015) Per Hansson, “When SSD Performance Goes Awry”
http://www.techspot.com/article/997-samsung-ssd-read-performance-degradation/
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FlashMemory

(SuMMIT |

Why is old data slower?

Retention loss!

@aﬂen (onCt 2073
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Hashemory Retention loss

Charge leakage over time

ot o,

OO0 —=p OOCO O

>

Flash cell Flash cell Retention Flash cell
error

One dominant source of flash
memory errors [DATE ‘12, ICCD “12]

Side effect: Longer read latency
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Fasherer Multi-Level Cell (MLC)
threshold voltage distribution
PDF

<
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[
[
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Normalized Vy,
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sy Experimental Testing Platform

-USB Jack
/

E

Virtex-Il Pro
2 (USB co htroller)

>y

[ =229 0= 3x-nig
“-NANI’D Flash

= Videx-VEFPGA
(A, CanfiolieiaiaaT

[Cai+, FCCM 2011, DATE 2012, ICCD 2012, DATE 2013, ITJ NAND Daughter Board
2013, ICCD 2013, SIGMETRICS 2014, DSN 2015, HPCA 2015]

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011. 157




iasidenoy - Characterized threshold voltage distribution

o
o
S

|  0-day—o0-day
—1-day
Q.03 %\ 4-day |

O
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—
T

- | | ,".. | =
?bo 150 200 250 300 350 400 450 500
Normalized threshold voltage

Probability density function
3

Finding: Cell's threshold voltage decreases over time
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fasiveny  Threshold voltage reduces over time
Old data

PDF
Less More

charge

Normalized Vi,
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\k/f

Fashemery First read attempt fails
Old data

PDF
Less More

charge

Raw bit errors > Normalized Vi,

I ECC correctable errors 160



\ 4
A 4

Py Read-retry

Old data

PDF Increase read latency
e

Normalized Vi,

161

Fewer raw bit errors
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=y Why is old data slower?

Retention loss
- Leak charge over time
- Generate retention errors
- Require read-retry
- Longer read latency

162
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FlashMemory

I:&M read performance for old data

1
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FlashVemory The ideal read voltage
Old data

PDF

OPT: Optimal read reference voltage
- minimal read latency

OPT, OPT,

C

Normalized Vy,

164

Minimal raw bit errors
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FlashMemory In real ity

*OPT changes over time due to retention loss

*Luckily, OPT change is:

- Gradual
- Uni-directional (decreases over time)

1
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sl Retention Optimized Reading (ROR)

Components:

1. Online pre-optimization algorithm
- Learns and records OPT
- Performs in the background once every day

2. Simpler read-retry technigue

- If recorded OPT is out-of-date, read-retry with
lower voltage

166
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1. Online Pre-Optimization Algorithm

» Triggered periodically (e.qg., per day)
* Find and record an OPT as per-block V,

red

* Performed in background

*Small storage overhead
New Old

PDF V V

pred pred

Normalized V,,

SAFARI 167



2. Improved Read-Retry Technique

*Performed as normal read
*V,req Glready close to actual OPT
*Decrease V,¢if V.4 fails, and retry

PDF OPT Ve

Very close Normalized Vy,
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FlashMemory ROR result

M Baseline B ROR

Read-retry
count, 30%
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Total read
latency, 29%

latency

0% 20% 40% 60% 80% 100%
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FlogMenory Retention optimized reading

Retention loss =2 longer read latency
Optimal read reference voltage (OPT)
- Shortest read latency
- Decreases gradually over time (retention)
- Learn OPT periodically
- Minimize read-retry & RBER
- Shorter read latency

170
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FlashMemory

Recover old data after failure
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Hashemry Retention failure
Very old data
PDF
P1 P2 °3
(10) o, (00) opT, (01)

Normalized Vi,
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Uncorrectable errors
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Rashamy Leakage speed variation

PDF N-day
retention

0
4% low-leaking cell
®
4___(:) -leaki
N-day retention ast-leaking cell

Normalized Vy,
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Ragiior A simplified example

PDF

O »r3

Normalized V,,
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\‘X‘Al

Hash oy Reading very old data

Very old .
PDE ! Fast-leaking cells have lower V,,
Slow-leaking cells have higher V,

Normalized V,,
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FlashMemory ”Rlsky" cells

0 20 S )
. + § = 1

PDF - = 1 Risky I
o 1

- :

[ I

l ’

Normalized V
Uncorrectable errors aih
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“iam Retention Failure Recovery (RFR)

Key idea: Guess original state of the cell from
its leakage speed property ,—————eeeea-- -

.'Risky +s= [ P2

Three steps

O
L
n
+
-
[l
O
08
N

1. Identify risky cells
2. ldentify fast-/slow-leaking cells
3. Guess original states
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FlashMemory

(SuMMIT |

Program with
random data

Detect failure,
backup data

Recover data

SAFARI]

RFR Evaluation

28 days

12 addt’l.

days

*Expect to eliminate
50% of raw bit errors

*£CC can correct
remaining errors
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O EICTo eIy {-M retention loss in real NAND chip

I:!M read performance for old data
Recover old data after failure
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Haélsllgdggory Conclusion

Retention loss = Longer read latency
Retention optimized reading (ROR)

- Learns OPT periodically

- 71% shorter read latency

Retention failure recovery (RFR)

- Use leakage property to guess correct state
- 50% error reduction before ECC correction
= Recover data after failure
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Morte on Flash Read Disturb Errors HashMemory

= Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
"Data Retention in MLC NAND Flash Memory: Characterization,
Optimization and Recovery"
Proceedings of the 21st International Symposium on High-Performance

Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

Data Retention in MLC NAND Flash Memory:
Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch®, Ken Mai, Onur Mutlu
Carnegie Mellon University, "LSI Corporation
yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@]lsi.com, {kenmai, omutlu} @ece.cmu.edu
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Large Scale Field Analysis of
Flash Memory Errors




SSD Error Analysis of Facebook Systems

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The
Register] [Coverage on TechSpot] [Coverage on The Tech

Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University

meza@cmu.edu gqwu@fb.com skumar@fb.com onur@cmu.edu
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http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts
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Storage lifecycle background:
the bathtub curve for disk drives

Failure
rate

Usage
[Schroeder+,FAST'07]



Storage lifecycle background:
the bathtub curve for disk drives
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Do SSDs display similar
lifecycle periods?

P —




Usedata written to flash
to examine SSD lifecycle

(time-independent utilization metric)
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- Throttling SSD usage helps
- mitigate temperature-induced
errors.
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Summary

We do not observe the
effects of read

disturbance errors in the
field.
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- Throttling $SD usage helps
“mitigate temperature-induced
errors.
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Summary

We quantify the effects of
the page cache and write
amplification in the field.

—f

Access pattern
dependence




Large-Scale SSD Error Analysis [siGMETRICS15]

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]
[Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu qwu@fb.com skumar@fb.com onur@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

Other Works on NAND Flash
Memory Modeling & Issues




Flash Memory Programming Vulnerabilities

= Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F.
Haratsch,
"Vulnerabilities in MLC NAND Flash Memory Programming:
Experimental Analysis, Exploits, and Mitigation Techniques"
Proceedings of the 23rd International Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cail Saugata Ghose! Yixin LuotT Ken Mail Onur Mutlu$T Erich F. Haratsch?
TCarnegie Mellon University iSeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pdf

Accurate and Online Channel Modeling

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Enabling Accurate and Practical Online Flash Channel Modeling
for Modern MLC NAND Flash Memory"

to appear in IEEE Journal on Selected Areas in Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu
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https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac

Agenda

Background, Motivation and Approach
Experimental Characterization Methodology

Error Analysis and Management

Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

Large Scale Field Analysis

3D NAND Flash Memory Reliability

Summary

o o oo o o o o o O
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3D NAND Flash Memory




3D NAND Flash Reliability I [HPCA’18]

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"HeatWatch: Improving 3D NAND Flash Memory Device
Reliability by Exploiting Self-Recovery and Temperature-
Awareness"
Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

HeatWatch: Improving 3D NAND Flash Memory Device Reliability
by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo! Saugata Ghose! Yu Caif Erich F. Haratsch? Onur Mutlu$1
TCarnegie Mellon University iSeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=7ZpGozzEVpY&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pdf

3D NAND Flash Reliability II sicmETRICS 18]

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation"

Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.

[Abstract]

Improving 3D NAND Flash Memory Lifetime
by Tolerating Early Retention Loss and Process Variation

Yixin Luo’ Saugata Ghose' Yu Cai' Erich F. Haratsch* Onur Mutlu®?
TCarnegie Mellon University *Seagate Technology SETH Ziirich
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-abstract.pdf

NAND Flash Memory Lifetime Problem

it Error Rate (RBER)

Flash lifetime decreases in each generation
despite increased ECC strength

Wearout (Program/Erase Cycles, or PEC)
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Planar vs. 3D NAND Flash Memory

c D
0000
0000
0000
YXXX v
0000
N J
Planar NAND 3D NAND
Flash Memory Flash Memory

Reduce flash cell size,

Scaling Reduce distance b/w cells

Increase # of layers

Reliability  Scaling hurts reliability [Not well Studied!]

SAFARI 217



Charge Trap Based 3D Flash Cell

= Cross-section of a charge trap transistor

;

Charge Trap

\ (Insulator)

<+— Control Gate

O]

() 0] )
Substrate
@

)

#—— Gate Oxide

Drain

Tunnel Oxide
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2D vs. 3D Flash Cell Design

S Charge Trap
Gate Oxide I3 (Insulator)
e e e e : =
Floating Gate e & Control
(Conductor) e o
e e e ‘e . e Gate
Tunnel Oxide =
D Gate Oxide
Substrate D

Tunnel Oxide

2D Floating-Gate Cell 3D Charge-Trap Cell
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3D NAND Flash Memory Organization

Metal Wire
Substrate

Charge Trap-
Control Gate~

|
Wordline M-1!

Wordline 1

5 Wordline 0

X Bitline 0 Bitline 1 Bitline N-1

Fig. 43. Organization of flash cells in an M-layer 3D charge trap NAND flash memory chip, where each block consists of

M wordlines and N bitlines.

SAFARI
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More Background and State-of-the-Art

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
[Preliminary arxiv.org version]

Errors in Flash-Memory-Based Solid-State Drives:
Analysis, Mitigation, and Recovery

YU CAI, SAUGATA GHOSE

Carnegie Mellon University

ERICH F. HARATSCH
Seagate Technology

YIXIN LUO
Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University
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https://arxiv.org/pdf/1711.11427.pdf
https://link.springer.com/book/10.1007/978-981-13-0599-3/
https://arxiv.org/pdf/1711.11427.pdf

3D vs. Planar NAND Errors: Comparison

Table 4. Changes in behavior of different types of errors in 3D NAND flash memory, compared to planar (i.e., two-dimensional)

NAND flash memory. See Section 6.2 for a detailed discussion.

Error Type

Change in 3D vs. Planar

P/E Cycling
(Section 3.1)

3D is less susceptible,
due to current use of charge trap transistors for flash cells

Program
(Section 3.2)

3D is less susceptible for now,
due to use of one-shot programming (see Section 2.4)

Cell-to-Cell Interference
(Section 3.3)

3D is less susceptible for now,
due to larger manufacturing process technology

Data Retention
(Section 3.4)

3D is more susceptible,
due to early retention loss

Read Disturb
(Section 3.5)

3D is less susceptible for now,
due to larger manufacturing process technology

SAFARI
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Improving 3D NAND
Flash Memory Lifetime by

Tolerating Early Retention Loss
and Process Variation

Yixin Luo Saugata Ghose YuCai ErichF Haratsch Onur Mutlu

CarnegieMellon sy ETHlzuc
SAFARI @SEAGATE
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Executive Summary

* Problem: 3D NAND error characteristics are not well studied
* Goal: Understand & mitigate 3D NAND errors to improve lifetime

* Contribution 1: Characterize real 3D NAND flash chips
* Process variation: 21x error rate difference across layers
* Early retention loss: Error rate increases by 10x after 3 hours
* Retention interference: Not observed before in planar NAND

* Contribution 2: Model RBER and threshold voltage
* RBER (raw bit error rate) variation model
* Retention loss model

* Contribution 3: Mitigate 3D NAND flash errors
* LaVAR: Layer Variation Aware Reading
* LI-RAID: Layer-Interleaved RAID
* ReMAR: Retention Model Aware Reading
* Improve flash lifetime by 1.85x or reduce ECC overhead by 78.9%
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Agenda

* Background & Introduction

* Contribution 1: Characterize real 3D NAND flash chips
* Contribution 2: Model RBER and threshold voltage

* Contribution 3: Mitigate 3D NAND flash errors

* Conclusion
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Agenda

* Contribution 1: Characterize real 3D NAND flash chips
* Process variation
* Early retention loss
e Retention interference
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Process Variation Across Layers

Layer M

Flash cells on different layers may
have different error characteristics

—

Layer 0

BL N BL1 BLO
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Characterization Methodology

* Modified firmware version in the flash controller
* Controls the read reference voltage of the flash chip
* Bypasses ECC to get raw data (with raw bit errors)

* Analysis and post-processing of the data on the server

Server

SAFARI
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RBER

Layer-to-Layer Process Variation

4x10™%

3x1074+

2%x107 %

1x1074-

— mse  Max
— % RBER -
~
‘ 21 X .
> 2.4 %
Ly [e—
0 20 40 60 80 100
(top) Normalized Layer Number (bottom)
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Layer-to-Layer Process Variation

4x10~%4 -- MSB (another chip) A A
-- LSB (another chip) AN -
— MSB Jr ‘ T
3x10-4{ — LSB A s A R
1
1
|

2x104- |

RBER
‘! -
>
- ~
\
\
\
//
-
\
/
4
\
-~
\
-~
\‘

1x10-4- /¢

0 20 40 60 80 100
(top) Normalized Layer Number (bottom)
Large RBER variation
across layers and LSB-MSB pages
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Retention Loss Phenomenon

Planar NAND Cell 3D NAND Cell

Control

o Charge Trap

(Insulator)

Gate Oxide

Floating Gate

(Conductor) - Control Gate

Substrate

Tunnel Oxide Gate Oxide

Substrate

Tunnel Oxide

Most dominant type of error in planar NAND.
Is this true for 3D NAND as well?
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Early Retention Loss

=
e
= =
_— =

3 hours

| — 3D NAND (a)
107'y — Planar NAND 4

3 11 days -~ 1 10x
1072

103 104 105 10° 107

Retention errors increase quickly
immediately after programming
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Characterization Summary

» Layer-to-layer process variation
* Large RBER variation across layers and LSB-MSB pages
* 2 Need new mechanisms to tolerate RBER variation!

* Early retention loss
* RBER increases quickly after programming
e > Need new mechanisms to tolerate retention errors!

 Retention interference
* Amount of retention loss correlated with neighbor cells’ states
* 2> Need new mechanisms to tolerate retention interference!

* More threshold voltage and RBER results in the J)aper:
3D NAND P/E cycling, rogram interference, read disturb, read
variation, bitline-to-bitline process variation

* Qur approach based on insights developed via our experimental
characterization: Develop error models, and build online
error mitigation mechanisms using the models
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Agenda

* Contribution 2: Model RBER and threshold voltage
e Retention loss model
* RBER variation model
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Probability

What Do We Model?

Read Reference Voltages

~ N
Vi

<
<

11

h

Threshold
Voltage
Distribution

10

Raw Bit Errors

>
’hreshold Voltage (V)
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Probability

>

Optimal Read Reference Voltage

Va Vb Vc
| |
| |
| |

|

>
Threshold Voltage (V)
Raw Bit Errors
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N
(o) BN o]

Normalized Vi

> O O
A O 0

Retention Loss Model

N
N B

~
o
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Retention Time (s)
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-

e
® Measured \

\

-- Linear Fit o

Retention Time (s)

Early retention loss can be modeled as
a simple linear function of log(retention time)

SAFARI

237



Retention Loss Model

* Goal: Develop a simple linear model that can be used online

* Models
* Optimal read reference voltage (V,and V)
* Raw bit error rate (log(RBER))

* Mean and standard deviation of threshold voltage distribution
(u and o)

* As a function of
* Retention time (log(t))
* P/E cycle count (PEC)

ce.g,V, = (axXPEC + B)xlog(t) + yXPEC + 6

* Model error <1 step for V, and V,
 Adjusted R? > 89%
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RBER Variation Model

0.10
:Evg =1.4x10"* [ Variation-agnostic Vypt
0.08 1 1[Avg = 1.6x10% [ Variation-aware Vpt
0.06 I == Fit = gamma(2.2, 7.4x107°)

Fit = gamma(1.8, 8.1x107>)

o
o
AN

MSB pages in middle layers

L

o
o
N

Probability Density

o
o
S

0 1x10~4 2x10~% 3x10~* 4x10~* 5x10~* 6x10~*
Per-Page RBER

Variation-agnostic V,,,
 Same V. for all layers optimized for the entire block

RBER distribution follows gamma distribution

KL-divergence error = 0.09
SAFARI
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Agenda

* Contribution 3: Mitigate 3D NAND flash errors
* LaVAR: Layer Variation Aware Reading
* LI-RAID: Layer-Interleaved RAID
* ReMAR: Retention Model Aware Reading

SAFARI 240



LaVAR: Layer Variation Aware Reading

* Layer-to-layer process variation
* Error characteristics are different in each layer

* Goal: Adjust read reference voltage for each layer

* Key Idea: Learn a voltage offset (Offset) for each layer

, yLayer aware __ ., Layer agnostic

e Mechanism

 Offset: Learned once for each chip & stored in a table
* Uses (2XLayers) Bytes memory per chip

L ti .
. Vogi' T AgnotE. predicted by any existing Vope model
* E.g, ReMAR [Luo+Sigmetrics'18], HeatWatch [Luo+HPCA’18],

OFCM [Lu0+]SAC 16/, ARVT [Papandreou+GLSVLSI'14]

* Reduces RBER on average by 43%

(based on our characterlzatlon data)
SAFARI
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LI-RAID: Layer-Interleaved RAID

* Layer-to-layer process variation
* Worst-case RBER much higher than average RBER

* Goal: Significantly reduce worst-case RBER

* Key Idea

* Group flash pages on less reliable layers
with pages on more reliable layers

* Group MSE pages with LSB pages

* Mechanism
* Reorganize RAID layout to eliminate worst-case RBER
* <0.8% storage overhead

SAFARI
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Conventional RAID

Wordline # | Layer # | Page | Chip0 | Chip1 | Chip2 | Chip3
0 0 MSB | Group O | Group O | Group O | Group 0
0 0 LSB | Group 1 | Group 1 | Group 1 | Group 1
1 1 MSB | Group 2 | Group 2 | Group 2 | Group 2
1 1 LSB | Group 3 | Group 3 | Group 3 | Group 3
2 2 LSB | Group 5 | Group 5 | Group 5 | Group 5
3 3 MSB | Group 6 | Group 6 | Group 6 | Group 6
3 3 LSB | Group 7 | Group 7 | Group 7 | Group 7

Worst-case RBER in any layer
limits the lifetime of conventional RAID

SAFARI

243



LI-RAID: Layer-Interleaved RAID

Page | Chip0 | Chip1 | Chip2 | Chip3 |

MSB Group 3

JAY: M Group1l Blank Group5 | Group 2

IUAY’M Group 2 Group1l Blank  Group 5

R Group 3 GROUPOY Blank

Group 4.
MSB - Group 3 _ Blank

IAY:; M Group 5 | Group 2 Groupl Blank

IUAY’E  Blank  Group 5 | Group 2  Group 1

Wordline # | Layer #
0 0
0 0
1 1
1 1
2 2
2 2
3 3
3 3 LSB | :IENS

Any page with worst-case RBER can be corrected by
other reliable pages in the RAID group
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LI-RAID: Layer-Interleaved RAID

* Layer-to-layer process variation
* Worst-case RBER much higher than average RBER

* Goal: Significantly reduce worst-case RBER

* Key Idea

* Group flash pages on less reliable layers
with pages on more reliable layers

* Group MSB pages with LSBE pages

* Mechanism
* Reorganize RAID layout to eliminate worst-case RBER
* <0.8% storage overhead

* Reduces worst-case RBER by 66.9%
(based on our characterization data)

SAFARI
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ReMAR: Retention Model Aware Reading

* Early retention loss
* Threshold voltage shifts quickly after programming

* Goal: Adjust read reference voltages based on retention loss
* Key Idea: Learn and use a retention loss model online

* Mechanism
* Periodically characterize and learn retention loss model online

* Retention time = Read timestamp - Write timestamp
» Uses 800 KB memory to store program time of each block

* Predict retention-aware V. using the model

* Reduces RBER on average by 51.9%
(based on our characterization data)
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Impact on System Reliability

—Baseline —State-of-the-art —LaVAR
LaVAR + LI-RAID —This Work

1E-2
ECC Limit

85% longer

/ ﬁash lifetime

#79% lower ECC
- /_/ storage overhead
1E-5

1E-3

1E-4

Worst-Case RBER

LaVAR, LI-RAID, and ReMAR improve flash lifetime
or reduce ECC overhead significantly
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Error Mitigation Techniques Summary

* LaVAR: Layer Variation Aware Reading
* Learn a V,,, offset for each layer and apply layer-aware V,,

* LI-RAID: Layer-Interleaved RAID

* Group flash pages on less reliable layers
with pages on more reliable layers

* Group MSB pages with LSE pages

* ReMAR: Retention Model Aware Reading
* Learn retention loss model and apply retention-aware V,,

* Benefits:
* Improve flash lifetime by 1.85x or reduce ECC overhead by 78.9%

* ReNAC (in paper): Reread a failed page using V, . based on the
retention interference induced by neighbor cell
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Agenda

* Background & Introduction

 Contribution 1: Characterize real 3D NAND flash chips
* Contribution 2: Model RBER and threshold voltage
 Contribution 3: Mitigate 3D NAND flash errors

* Conclusion
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Conclusion

* Problem: 3D NAND error characteristics are not well studied
* Goal: Understand & mitigate 3D NAND errors to improve lifetime

* Contribution 1: Characterize real 3D NAND flash chips
* Process variation: 21x error rate difference across layers
* Early retention loss: Error rate increases by 10x after 3 hours
* Retention interference: Not observed before in planar NAND

* Contribution 2: Model RBER and threshold voltage
* RBER (raw bit error rate) variation model
* Retention loss model

* Contribution 3: Mitigate 3D NAND flash errors
* LaVAR: Layer Variation Aware Reading
* LI-RAID: Layer-Interleaved RAID
* ReMAR: Retention Model Aware Reading
* Improve flash lifetime by 1.85x or reduce ECC overhead by 78.9%
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Improving 3D NAND
Flash Memory Lifetime

by Tolerating Early Retention Loss
and Process Variation

Yixin Luo Saugata Ghose YuCai ErichF Haratsch Onur Mutlu

CarnegieMellon sy ETHlzuc
SAFARI @SEAGATE

251



3D NAND Flash Reliability II sicmETRICS 18]

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation"

Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.

[Abstract]

Improving 3D NAND Flash Memory Lifetime
by Tolerating Early Retention Loss and Process Variation

Yixin Luo’ Saugata Ghose' Yu Cai' Erich F. Haratsch* Onur Mutlu®?
TCarnegie Mellon University *Seagate Technology SETH Ziirich
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-abstract.pdf

One More Idea




Improving NAND Flash Memory Lifetime with
Write-hotness Aware Retention [Vlanagement

Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi*, Onur Mutlu
Carnegie Mellon University, *Dankook University

SAFARI Carnegie Mellon
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SAFARI

Executive Summary

*Flash memory can achieve 50x endurance improvement by relaxing
retention time using refresh [Cai+ ICCD "12]

* Problem: Frequent refresh consumes the majority of endurance
improvement

* Goal: Reduce refresh overhead to increase flash memory lifetime
* Key Observation: Refresh is unnecessary for write-hot data

* Key Ideas of Write-hotness Aware Retention Management (WARM)

- Physically partition write-hot pages and write-cold pages within the flash
drive

- Apply different policies (garbage collection, wear-leveling, refresh) to each
group
* Key Results

- WARM w/o refresh improves lifetime by 3.24x

- WARM w/ adaptive refresh improves lifetime by 12.9x (1.21x over refresh
only)
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Conventional Write-Hotness Oblivious
Management

Cold Page 2

Cold Page 2

Cold Page 3 Cold Page 3 |
Cold Page 4

Cold Page 5

Page 511

Unable to relax retention time for blocks with write-hot and cold pages
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Key Idea: Write-Hotness Aware Management

Cold Page 2 Page M
Cold Page 3 Page M+1
Cold Page 5 Page M+2

Page 511 Page M+255
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Write-Hotness Aware Retention Management

= Yixin Luo, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu,
"WARM: Improving NAND Flash Memory Lifetime with Write-
hothess Aware Retention Management”
Proceedings of the 31st International Conference on Massive Storage
Systems and Technologies (MSST), Santa Clara, CA, June 2015.
[Slides (pptx) (pdf)] [Poster (pdf)]

WARM: Improving NAND Flash Memory Lifetime
with Write-hotness Aware Retention Management

Yixin Luo Yu Cai Saugata Ghose
yixinluo@cs.cmu.edu yucaicai @gmail.com ghose @cmu.edu

Jongmoo Choi' Onur Mutlu
choijm@dankook.ac.kr onur@cmu.edu
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Main Characterization Results

Retention-Aware Error Management

Threshold Voltage and Program Interference Analysis
Read Reference Voltage Prediction

Neighbor-Assisted Error Correction

Read Disturb Error Handling

Retention Error Handling

Large Scale Field Analysis

3D NAND Flash Memory Reliability
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NAND Flash Vulnerabilities [HPCA’17]

HPCA, Feb. 2017

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Saugata Ghose! Yixin Luot |
f Carnegie Mellon University

Yu Cail

Modern NAND flash memory chips provide high density by
storing two bits of data in each flash cell, called a multi-level cell
(MLC). An MLC partitions the threshold voltage range of a flash
cell into four voltage states. When a flash cell is programmed,
a high voltage is applied to the cell. Due to parasitic capacitance
coupling between flash cells that are physically close to each
other, flash cell programming can lead to cell-to-cell program
interference, which introduces errors into neighboring flash
cells. In order to reduce the impact of cell-to-cell interference on
the reliability of MLC NAND flash memory, flash manufactu-
rers adopt a two-step programming method, which programs
the MLC in two separate steps. First, the flash memory partially
programs the least significant bit of the MLC to some intermedi-
ate threshold voltage. Second. it programs the most significant
bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming
exposes new reliability and security vulnerabilities. We expe-

Ken Mail
iSeagare Technology

Onur MutluST  Erich F. Haratsch?
SETH Ziirich

belongs to a different flash memory page (the unit of data
programmed and read at the same time), which we refer to,
respectively, as the least significant bit (LSB) page and the
most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage
on the control gate of the transistor, which triggers charge
transfer into the floating gate, thereby increasing the thres-
hold voltage. To precisely control the threshold voltage of
the cell, the flash memory uses incremental step pulse pro-
gramming (ISPP) [12,21,25,41]. ISPP applies multiple short
pulses of the programming voltage to the control gate, in
order to increase the cell threshold voltage by some small
voltage amount (Viep) after each step. Initial MLC designs
programmed the threshold voltage in one shot, issuing all
of the pulses back-to-back to program both bits of data at
the same time. However, as flash memory scales down, the
distance between neighboring flash cells decreases, which

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities hpcal7.pdf
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NAND Flash Errors: A Modern Survey

§HH+ Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https:/ /arxiv.org/pdf/1706.08642
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= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Errors in Flash-Memory-Based Solid-State Drives: Analysis,
Mitigation, and Recovery"
Invited Book Chapter in Inside Solid State Drives, 2018.
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Errors in Flash-Memory-Based Solid-State Drives:
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Storage Technology Drivers - 2018
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Executive Summary

* 3D NAND flash memory susceptible to retention errors
* Charge leaks out of flash cell
* Two unreported factors: self-recovery and temperature

* We study self-recovery and temperature effects
* Experimental characterization of real 3D NAND chips

 Unified Self-Recovery and Temperature (URT) Model

* Predicts impact of retention loss, wearout, self-recovery,
temperature on flash cell voltage

* Low prediction error rate: 4.9%

* We develop a new technique to improve flash reliability

* HeatWatch
* Uses URT model to find optimal read voltages for 3D NAND flash
* Improves flash lifetime by 3.85x
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Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model

e HeatWatch Mechanism

* Conclusion
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3D NAND Flash Memory Background

3D NAND
Flash Memory

a )
00000
00000
00000

0000

‘X X

\

/00

Flash Cell

Charge = Threshold Voltage

Higher Voltage State
Data Value = 0

Read Reference Voltage

Lower Voltage State
Data Value =1
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Flash Wearout

Program/Erase (P/E) = Wearout Wearout Effects:

1. Retention Loss

\ (voltage shift over time)

Insulator

2. Program Variation
(init. voltage difference b/w states)

Wearout Introduces Errors




Improving Flash Lifetime

Errors introduced by wearout
limit flash lifetime
(measured in P/E cycles)

Exploiting the
Self-R Effect
Two Ways to Improve ‘ cli-Recovery hiiec

Flash Lifetime Exploiting the
Temperature Effect
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Exploiting the Self-Recovery Effect

Partially repairs damage due to wearout

| o o o
PE P/E P/E PJ/E PJE
W_J

Dwell Time: Idle Time Between P/E Cycles

ol ————()
P/E P/E P/E P/E P/E
|\ J

Y
Longer Dwell Time: More Self-Recovery

Reduces Retention Loss
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Exploiting the Temperature Effect

High Program

Temperature Voltage

Increases Program Variation

High Storage
Temperature

Accelerates Retention Loss
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Prior Studies of Self-Recovery/Temperature

Planar (2D) NAND 3D NAND

Self-Recovery
Effect V X

Mielke 2006
Temperature V X
Effect
JEDEC 2010

(no characterization)
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Outline

* Executive Summary

* Background on NAND Flash Reliability

* Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model
* HeatWatch Mechanism

* Conclusion
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Characterization Methodology

* Modified firmware version in the flash controll

* Control the read reference voltage of the flas]

er
1 chip

* Bypass ECC to get raw NAND data (with raw |
errors)

* Control temperature with a heat chamber

01t

Heat Chamber

Server
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Characterized Devices

Real 30-39 Layer 3D MLC NAND Flash Chips

2-bit MLC

N

30-to
39-layer
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Probability

MLC Threshold Voltage Distribution Background

Lowest
Voltage State

Highest
Voltage State

ad Reference Voltage

ad Reference Voltage

Read Reference Voltage

Threshold Voltage

Threshold Voltage Distribution

279



Characterization Goal

Characterized
Metrics
Retention Loss Speed Program Variation
(how fast voltage shifts (initial voltage difference
over time) between states)

Characterized Self-Recovery Temperature
Phenomena Effect Effect
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Self-Recovery Effect Characterization Results

1.2
©
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Dwell time: Idle time between P/E cycles
Increasing dwell time from 1 minute to 2.3 hours

slows down retention loss speed by 40%
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Program Temperature Effect
Characterization Results

0 10 20 30 40 50 60 70
Program Temperature (Celsius)

Increasing program temperature from 0°C to 70°C

proves program variation by 21%
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Storage Temperature Effect
Characterization Results
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Storage Temperature (Celsius)

Lowering storage temperature from 70°C to 0°C

slows down retention loss speed by 58%
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Characterization Summary

| Ma]or Results:

| * Self-recovery affects retention loss speed

e Program temperature affects program variation
« Storage temperature affects retention loss speed

Unified Model

Other Characterizations Methods in the Paper:

* More detailed results on self-recovery and temperature
* Effects on error rate
* Effects on threshold voltage distribution

* Effects of recovery cycle (P/E cycles with
long dwell time) on retention loss speed
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Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model

e HeatWatch Mechanism

* Conclusion
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Minimizing 3D NAND Errors

Optimal Read Ref.
Read Ref.
Voltage

Voltage

Probability

Retention
Errors

Optimal read reference voltage

minimizes 3D NAND errors



Predicting the Mean Threshold Voltage

Our URT Model:
V=V,+ AV

Mean

Threshold
Voltage

Initial Voltage Voltage Shift

Before Retention Due to
(Program Variation) Retention Loss
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URT Model Overview

3. Temperature

]
1. Program
]

Variation
Component

V=V,+AV

Scaling
Component

2. Self-Recovery

and Retention
Component

Voltage Shift
Due to
Retention Loss

Initial Voltage

Before Retention
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1. Program Variation Component

P/E Cycle Program
@ G Temperature
Vo
Initial
Voltage

Vo=A-T, -PEC+B-T,+C-PEC+D

Validation: R2 =91.7%
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2. Self-Recovery and Retention Component

Retention P/E Dwell
Time Cycle Time
AV
Retention Shift

I
AV (ter, t,g, PEC) = b- (PEC + ¢) - In (1 + = )
fo+a-t,g

Validation: 3x more accurate

than state-of-the-art model
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3. Temperature Scaling Component

Actual Actual
Retention Storage Dwell Dwell
Time Temp. Time Temp.

Effective Effective Dwell
Retention Time Time
. . . B treal B E, . 1 ~ 1
Arrhenius Equation: AF= ™" - exp (kB (Tmz Tmm))

Validation: Adjust an important parameter,

E, from 1.1 eVto 1.04 eV
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URT Model Summary

3. Temperature

[
1. Program [
Variation [

Scaling
Component

Component

[
[
: 2. Self-Recovery
@ @ i and Retention
[ Component
[
i
V=V,+ AV

Validation:
Prediction Error Rate = 4.9%




Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model
* HeatWatch Mechanism

* Conclusion
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HeatWatch Mechanism

* Key Idea

* Predict change in threshold voltage distribution
by using the URT model

* Adapt read reference voltage to near-optimal (V)
based on predicted change in voltage distribution
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HeatWatch Mechanism Overview

Tracking Components

SSD : P/E Cycles &
Temperature Dwell Time Retention Time

Prediction Components

L Fine-Tunin
Vopt Prediction 5

URT Parameters
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Tracking SSD Temperature

Tracking Components

Temperature

* Use existing sensors in the SSD

* Precompute temperature scaling factor
at logarithmic time intervals
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Tracking Dwell Time

Tracking Components

"

* Only need to log the timestamps of last 20 full drive writes
* Self-recovery effect diminishes after 20 P/E cycles

)
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Tracking P/E Cycles and Retention Time

Tracking Components
P/E Cycles &

Retention Time

4 )
* P/E cycle count already recorded by SSD
* Log write timestamp for each block

\° Retention time = read timestamp - write timestamp P
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Predicting Optimal Read Reference Voltage

/

* Calculate URT using tracked information
* Modeling error: 4.9%

Prediction Components :

Vopt Prediction
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Fine-Tuning URT Parameters Online

/

* Accommodates chip-to-chip variation
* Uses periodic sampling

Fine-Tuning

URT Parameters
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HeatWatch Mechanism Summary

Tracking Components

: P/E Cycles &

..-[ Storage Overhead: 0.16% of DRAM in 1TB SSD ]__.

SSD

Temperature

Prediction Components

Fine-Tuning
URT Parameters

Vopt Prediction

[ Latency Overhead: < 1% of flash read latency ] 201




HeatWatch Evaluation Methodology

28 real workload storage traces
* MSR-Cambridge

* We use real dwell time, retention time values
obtained from traces

 Temperature Model:
Trigonometric function + Gaussian noise

* Represents periodic temperature variation in each day
*Includes small transient temperature variation
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HeatWatch Greatly Improves Flash Lifetime

: Y
| = Fixed V, — Oracle 3857( ovE
10-2{ —— State-of-the-art ——— ECClimit F.‘xed\’ref
g ] — HeatWatch
(¢}
m - il Il Il I I .. | I I .
0] _— \ —
o g (
- ' 249% over
-4
e state-of-the-art
0 5000 10000 15000 20000 25000

Lifetime (P/E Cycles)

HeatWatch improves lifetime by

capturing the effect of

retention, wearout, self-recovery, temperature
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Outline

* Executive Summary
* Background on NAND Flash Reliability

 Characterization of Self-Recovery and Temperature
Effect on Real 3D NAND Flash Memory Chips

* URT: Unified Self-Recovery and Temperature Model

e HeatWatch Mechanism

* Conclusion
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Conclusion

* 3D NAND flash memory susceptible to retention errors
* Charge leaks out of flash cell
* Two unreported factors: self-recovery and temperature

* We study self-recovery and temperature effects
* Experimental characterization of real 3D NAND chips

 Unified Self-Recovery and Temperature (URT) Model

* Predicts impact of retention loss, wearout, self-recovery,
temperature on flash cell voltage

* Low prediction error rate: 4.9%

* We develop a new technique to improve flash reliability

* HeatWatch
* Uses URT model to find optimal read voltages for 3D NAND flash
* Improves flash lifetime by 3.85x
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HeatWatch

Improving 3D NAND Flash Memory Device Reliability by
Exploiting Self-Recovery and Temperature Awareness

Yixin Luo Saugata Ghose YuCai ErichF Haratsch Onur Mutlu
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