
Computer Architecture

Lecture 28: Fine-Grained

Multithreading

Prof. Onur Mutlu

ETH Zürich

Fall 2020

4 January 2021

Approaches to (Instruction-Level) Concurrency

◼ Pipelining

◼ Out-of-order execution

◼ Dataflow (at the ISA level)

◼ Superscalar Execution

◼ VLIW

◼ Systolic Arrays

◼ Decoupled Access Execute

◼ Fine-Grained Multithreading

◼ SIMD Processing (Vector and array processors, GPUs)

2

Recall: How to Handle Data Dependences

◼ Anti and output dependences are easier to handle

❑ write to the destination in one stage and in program order

◼ Flow dependences are more interesting

◼ Five fundamental ways of handling flow dependences

❑ Detect and wait until value is available in register file

❑ Detect and forward/bypass data to dependent instruction

❑ Detect and eliminate the dependence at the software level

◼ No need for the hardware to detect dependence

❑ Predict the needed value(s), execute “speculatively”, and verify

❑ Do something else (fine-grained multithreading)

◼ No need to detect

3

How to Handle Control Dependences

◼ Critical to keep the pipeline full with correct sequence of
dynamic instructions.

◼ Potential solutions if the instruction is a control-

flow instruction:

◼ Stall the pipeline until we know the next fetch address

◼ Guess the next fetch address (branch prediction)

◼ Employ delayed branching (branch delay slot)

◼ Do something else (fine-grained multithreading)

◼ Eliminate control-flow instructions (predicated execution)

◼ Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

4

Fine-Grained Multithreading

5

Fine-Grained Multithreading

◼ Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

❑ By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

❑ Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

6

Fine-Grained Multithreading (II)

◼ Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

◼ Tolerates the control and data dependency latencies by

overlapping the latency with useful work from other threads

◼ Improves pipeline utilization by taking advantage of multiple
threads

◼ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

◼ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

7

Fine-Grained Multithreading: History

◼ CDC 6600’s peripheral processing unit is fine-grained
multithreaded

❑ Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

❑ Processor executes a different I/O thread every cycle

❑ An operation from the same thread is executed every 10 cycles

◼ Denelcor HEP (Heterogeneous Element Processor)
❑ Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

❑ 120 threads/processor

❑ available queue vs. unavailable (waiting) queue for threads

❑ each thread can have only 1 instruction in the processor pipeline; each thread
independent

❑ to each thread, processor looks like a non-pipelined machine

❑ system throughput vs. single thread performance tradeoff

8

Fine-Grained Multithreading in HEP

◼ Cycle time: 100ns

◼ 8 stages → 800 ns to

complete an
instruction

❑ assuming no memory
access

◼ No control and data
dependency checking

9

Burton Smith

(1941-2018)

Multithreaded Pipeline Example

10Slide credit: Joel Emer

Sun Niagara Multithreaded Pipeline

11

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

◼ Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

◼ Disadvantages

- Extra hardware complexity: multiple hardware contexts (PCs, register
files, …), thread selection logic

- Reduced single thread performance (one instruction fetched every N
cycles from the same thread)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
12

Modern GPUs are

FGMT Machines

13

NVIDIA GeForce GTX 285 “core”

14

…

= instruction stream decode= data-parallel (SIMD) func. unit,

control shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

15

…
64 KB of storage

for thread contexts

(registers)

◼ Groups of 32 threads share instruction stream (each group is
a Warp): they execute the same instruction on different data

◼ Up to 32 warps are interleaved in an FGMT manner

◼ Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

16

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

End of

Fine-Grained Multithreading

17

In Memory of Burton Smith

18

Burton Smith

(1941-2018)

In Memory of Burton Smith (II)

19

Computer Architecture

Lecture 28: Fine-Grained

Multithreading

Prof. Onur Mutlu

ETH Zürich

Fall 2020

4 January 2021

