
Computer Architecture
Lecture 2a:

Memory Performance Attacks

Prof. Onur Mutlu
ETH Zürich
Fall 2020

18 September 2020

Recall: Levels of Transformation

2

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

“The purpose of computing is [to gain] insight” (Richard Hamming)
We gain and generate insight by solving problems
How do we ensure problems are solved by electrons?

Algorithm

Step-by-step procedure that is
guaranteed to terminate where
each step is precisely stated
and can be carried out by a
computer

- Finiteness
- Definiteness
- Effective computability

Many algorithms for the same
problem

ISA
(Instruction Set Architecture)

Interface/contract between
SW and HW.

What the programmer
assumes hardware will
satisfy.

Microarchitecture
An implementation of the ISA

Digital logic circuits
Building blocks of micro-arch (e.g., gates)

발표자
프레젠테이션 노트
ISA is the interface between hardware and software… It is a contract that the hardware promises to satisfy.
Algorithm: step by step procedure where each step is effectively computable (by a computer), is definite (precisely defined) – “do until fast” is not definite, and terminates

Hamming distance: number of locations in which the corresponding symbols of two equal-length strings is different

Hamming, Richard W. (1950), "Error detecting and error correcting codes", Bell System Technical Journal 29 (2): 147–160

Hamming codes

Recall: The Power of Abstraction
 Levels of transformation create abstractions

 Abstraction: A higher level only needs to know about the
interface to the lower level, not how the lower level is
implemented

 E.g., high-level language programmer does not really need to
know what the ISA is and how a computer executes instructions

 Abstraction improves productivity
 No need to worry about decisions made in underlying levels
 E.g., programming in Java vs. C vs. assembly vs. binary vs. by

specifying control signals of each transistor every cycle

 Then, why would you want to know what goes on
underneath or above?

3

Recall: Crossing the Abstraction Layers
 As long as everything goes well, not knowing what happens

underneath (or above) is not a problem.
 What if

 The program you wrote is running slow?
 The program you wrote does not run correctly?
 The program you wrote consumes too much energy?
 Your system just shut down and you have no idea why?
 Someone just compromised your system and you have no idea how?

 What if
 The hardware you designed is too hard to program?
 The hardware you designed is too slow because it does not provide the

right primitives to the software?

 What if
 You want to design a much more efficient and higher performance system?

4

Recall: Crossing the Abstraction Layers

 Two key goals of this course are

 to understand how a processor works underneath the
software layer and how decisions made in hardware affect the
software/programmer

 to enable you to be comfortable in making design and
optimization decisions that cross the boundaries of different
layers and system components

5

An Example: Multi-Core Systems

6

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S
Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

A Trend: Many Cores on Chip
 Simpler and lower power than a single large core
 Parallel processing on single chip  faster, new applications

7

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip
 What we want:

 N times the system performance with N times the cores

 What do we get today?

8

Unexpected Slowdowns in Multi-Core

9

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)
Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

발표자
프레젠테이션 노트
What kind of performance do we expect when we run two applications on a multi-core system? To answer this question, we performed an experiment. We took two applications we cared about, ran them together on different cores in a dual-core system, and measured their slowdown compared to when each is run alone on the same system. This graph shows the slowdown each app experienced. (DATA explanation…)

Why do we get such a large disparity in the slowdowns?

Is it the priorities? No. We went back and gave high priority to gcc and low priority to matlab. The slowdowns did not change at all. Neither the software or the hardware enforced the priorities.

Is it the contention in the disk? We checked for this possibility, but found that these applications did not have any disk accesses in the steady state. They both fit in the physical memory and therefore did not interfere in the disk.

What is it then? Why do we get such large disparity in slowdowns in a dual core system?

I will call such an application a “memory performance hog”
Now, let me tell you why this disparity in slowdowns happens.

Is it that there are other applications or the OS interfering with gcc, stealing its time quantums? No.

Three Questions
 Can you figure out why the applications slow down if you

do not know the underlying system and how it works?

 Can you figure out why there is a disparity in slowdowns if
you do not know how the system executes the programs?

 Can you fix the problem without knowing what is
happening “underneath”?

10

Three Questions: Rephrased & Concise
 Why is there any slowdown?

 Why is there a disparity in slowdowns?

 How can we solve the problem if we do not want that
disparity?

11

Why Is This Important?
 We want to execute applications in parallel in multi-core

systems  consolidate more and more (for efficiency)
 Cloud computing
 Mobile phones
 Automotive systems

 We want to mix different types of applications together
 those requiring QoS guarantees (e.g., video, pedestrian detection)
 those that are important but less so
 those that are less important

 We want the system to be controllable and high performance

12

13

Why the Disparity in Slowdowns?

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

발표자
프레젠테이션 노트
-In a multi-core chip, different cores share some hardware resources. In particular, they share the DRAM memory system. The shared memory system consists of this and that.
When we run matlab on one core, and gcc on another core, both cores generate memory requests to access the DRAM banks. When these requests arrive at the DRAM controller, the controller favors matlab’s requests over gcc’s requests. As a result, matlab can make progress and continues generating memory requests. These requests are again favored by the DRAM controller over gcc’s requests. Therefore, gcc starves waiting for its requests to be serviced in DRAM whereas matlab makes very quick progress as if it were running alone.

Why does this happen? This is because the algorithms employed by the DRAM controller are unfair.
But, why are these algorithms unfair? Why do they unfairly prioritize matlab accesses?
To understand this, we need to understand how a DRAM bank operates.

Almost all systems today contain multi-core chips
Multi-core systems consist of multiple on-chip cores and caches
Cores share the DRAM memory system
DRAM memory system consists of
DRAM banks that store data (multiple banks to allow parallel accesses)
DRAM memory controller that mediates between cores and DRAM memory
It schedules memory operations generated by cores to DRAM
This talk is about exploiting the unfair algorithms in the memory controllers to perform denial of service to running threads
To understand how this happens, we need to know about how each DRAM bank operates

Digging Deeper: DRAM Bank Operation

14

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:
This view of a bank is an
abstraction.

Internally, a bank consists of
many cells (transistors &
capacitors) and other
structures that enable access
to cells

15

DRAM Controllers

 A row-conflict memory access takes significantly longer
than a row-hit access

 Current controllers take advantage of this fact

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

16

The Problem
 Multiple applications share the DRAM controller
 DRAM controllers designed to maximize DRAM data

throughput

 DRAM scheduling policies are unfair to some applications
 Row-hit first: unfairly prioritizes apps with high row buffer locality

 Threads that keep on accessing the same row
 Oldest-first: unfairly prioritizes memory-intensive applications

 DRAM controller vulnerable to denial of service attacks
 Can write programs to exploit unfairness

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

17

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming
(in sequence)

random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

발표자
프레젠테이션 노트
Streaming through memory by performing operations on two 1D arrays.
Sequential memory access
Each access is a cache miss (elements of array larger than a cache line size)  hence, very memory intensive

Link to the real code…

18

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, request size: 64B
128 (8KB/64B) requests of STREAM serviced

before a single request of RANDOM
Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

발표자
프레젠테이션 노트
Pictorially demonstrate how stream denies memory service to rdarray
Stream continuously accesses columns in row 0 in a streaming manner (streams through a row after opening it)
In other words almost all its requests are row-hits
RDarray’s requests are row-conflicts (no locality)
The DRAM controller reorders streams requests to the open row over other requests (even older ones) to maximize DRAM throughput
Hence, rdarray’s requests do not get serviced as long as stream is issuing requests at a fast-enough rate
In this example, the red thread’s request to another row will not get serviced until stream stops issuing a request to row 0

With those parameters, 128 requests of stream would be serviced before 1 from rdarray
As row-buffer size increases, which is the industry trend, this problem will become more severe

This is not the worst case, but it is easy to construct and understand
Stream falls off the row buffer at some point
I leave it to the listeners to construct a case worse than this (it is possible)

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

19

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

발표자
프레젠테이션 노트
RANDOM was given higher OS priority in the experiments

Greater Problem with More Cores

 Vulnerable to denial of service (DoS)
 Unable to enforce priorities or SLAs
 Low system performance

Uncontrollable, unpredictable system

20

Greater Problem with More Cores

 Vulnerable to denial of service (DoS)
 Unable to enforce priorities or SLAs
 Low system performance

Uncontrollable, unpredictable system

21

Now That We Know What Happens Underneath

 How would you solve the problem?

 What is the right place to solve the problem?
 Programmer?
 System software?
 Compiler?
 Hardware (Memory controller)?
 Hardware (DRAM)?
 Circuits?

 Two other goals of this course:
 Enable you to think critically
 Enable you to think broadly

22

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Reading on Memory Performance Attacks
 Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY),
pages 257-274, Boston, MA, August 2007. Slides (ppt)

 One potential reading for your Homework 1 assignment

23

http://users.ece.cmu.edu/%7Eomutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_usenix-security07_talk.ppt

24

Conclusions [USENIX Security’07]

 Introduced the notion of memory performance attacks in
shared DRAM memory systems

 Unfair DRAM scheduling is the cause of the vulnerability
 More severe problem in future many-core systems

 We provide a novel definition of DRAM fairness
 Threads should experience equal slowdowns

 New DRAM scheduling algorithm enforces this definition
 Effectively prevents memory performance attacks

 Preventing attacks also improves system throughput!

If You Are Interested … Further Readings
 Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture
(MICRO), pages 146-158, Chicago, IL, December 2007. Slides (ppt)

 Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA) [Slides (ppt)]

 Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

25

http://users.ece.cmu.edu/%7Eomutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_micro07_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca08_talk.ppt
http://users.ece.cmu.edu/%7Eomutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/%7Eomutlu/pub/subramanian_micro11_talk.pptx

A Recent Solution: BLISS
 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

26

http://users.ece.cmu.edu/%7Eomutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/%7Eomutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/bliss_lavanya_iccd14-talk.pdf

More on BLISS: Longer Version
 Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

27

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/%7Esafari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

Distributed DoS in Networked Multi-Core Systems

28

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

Cores connected via
packet-switched
routers on chip

~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

More on Interconnect Based Starvation
 Boris Grot, Stephen W. Keckler, and Onur Mutlu,

"Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip"
Proceedings of the 42nd International Symposium on
Microarchitecture (MICRO), pages 268-279, New York, NY,
December 2009. Slides (pdf)

29

http://users.ece.cmu.edu/%7Eomutlu/pub/pvc-qos_micro09.pdf
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/%7Eomutlu/pub/grot_micro09_talk.pdf

Takeaway

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems

30

Computer Architecture
Lecture 2a:

Memory Performance Attacks

Prof. Onur Mutlu
ETH Zürich
Fall 2020

18 September 2020

	�Computer Architecture�Lecture 2a: �Memory Performance Attacks
	Recall: Levels of Transformation
	Recall: The Power of Abstraction
	Recall: Crossing the Abstraction Layers
	Recall: Crossing the Abstraction Layers
	An Example: Multi-Core Systems
	A Trend: Many Cores on Chip
	Many Cores on Chip
	Unexpected Slowdowns in Multi-Core
	Three Questions
	Three Questions: Rephrased & Concise
	Why Is This Important?
	Why the Disparity in Slowdowns?
	Digging Deeper: DRAM Bank Operation
	DRAM Controllers
	The Problem
	A Memory Performance Hog
	What Does the Memory Hog Do?
	Effect of the Memory Performance Hog
	Greater Problem with More Cores
	Greater Problem with More Cores
	Now That We Know What Happens Underneath
	Reading on Memory Performance Attacks
	Conclusions [USENIX Security’07]
	If You Are Interested … Further Readings
	A Recent Solution: BLISS
	More on BLISS: Longer Version
	Distributed DoS in Networked Multi-Core Systems
	More on Interconnect Based Starvation
	Takeaway
	�Computer Architecture�Lecture 2a: �Memory Performance Attacks

