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Another Example

= DRAM Refresh




DRAM in the System
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A DRAM Cell
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A DRAM cell consists of a capacitor and an access transistor
It stores data in terms of charge in the capacitor
A DRAM chip consists of (10s of 1000s of) rows of such cells

SAFARI



DRAM Refresh

DRAM capacitor charge leaks over time

The memory controller needs to refresh each row periodically
to restore charge

o Activate each row every N ms
o Typical N = 64 ms

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling
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First, Some Analysis

Imagine a system with 8 ExaByte DRAM (2763 bytes)
Assume a row size of 8 KiloBytes (213 bytes)

How many rows are there?
How many refreshes happen in 64ms?
What is the total power consumption of DRAM refresh?

What is the total energy consumption of DRAM refresh
during a day?

A good exercise...
Brownie points from me if you do it...
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Refresh Overhead: Performance
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SAFARI/ Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Refresh Overhead: Energy
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How Do We Solve the Problem?

= Observation: All DRAM rows are refreshed every 64mes.

= Critical thinking: Do we need to refresh all rows every 64ms?

= What if we knew what happened underneath (in DRAM cells)
and exposed that information to upper layers?
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Underneath: Retention Time Profile of DRAM

04-128ms

128-250ms

Liu et al., “"RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 10



Aside: Why Do We Have Such a Profiler

Answer: Manufacturing is not perfect
Not all DRAM cells are exactly the same

Some are more leaky than others

This is called Manufacturing Process Variation
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Opportunity: Taking Advantage of This Profile

Assume we know the retention time of each row exactly

What can we do with this information?

Who do we expose this information to?

How much information do we expose?

o Affects hardware/software overhead, powe
verification complexity, cost

How do we determine this profile informat
o Also, who determines it?

Problem

Algorithm

Program/Language

Runtime System

/ 14

ISA (Architecture)

Microarchitecture

Logic

Electrons
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Retention Time of DRAM Rows

= Observation: Overwhelming majority of DRAM rows can be
refreshed much less often without losing data
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Key ldea of RAIDR: Refresh weak rows more frequently,
all other rows less frequently

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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RAIDR: Eliminating
Unnecessary DRAM Retreshes

Liu, Jaiyen, Veras, Mutlu,
RAIDR: Retention-Aware Intelligent DRAM Refresh
ISCA 2012.
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf

RAIDR: Mechanism

1. Profiling: Identify the retention time of all DRAM rows

04-128ms

1.25KB storage in controller for 32GB DRAM memory

128-250ms

- check the bins to determine refresh rate of a row

1
Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. >



RAIDR: Results and Takeaways

System: 32GB DRAM, 8-core; Various workloads

RAIDR hardware cost: 1.25 kB (2 Bloom filters)
Refresh reduction: 74.6%

Dynamic DRAM energy reduction: 16%

Idle DRAM power reduction: 20%

Performance improvement: 9%

Benefits increase as DRAM scales in density
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Reading on RAIDR

= Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"

Proceedings of the 39th International Symposium on Computer Architecture
(ISCA ), Portland, OR, June 2012. Slides (pdf)

= One potential reading for your Homework 1 assignment

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu BenJaiyen Richard Veras Onur Mutlu

Carnegie Mellon University
{jamiel,bjaiyen, rveras, onur}@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

If You Are Interested ... Further Readings

Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2015 (MEMCON), Santa Clara, CA, August 2013.
Slides (pptx) (pdf) Video

Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson,
Yoongu Kim, and Onur Mutlu,

"Improving DRAM Performance by Parallelizing

Refreshes with Accesses”
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Takeaway 1

Breaking the abstraction layers
(between components and
transformation hierarchy levels)

and knowing what is underneath

enables you to understand and
solve problems
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Takeaway 2

Cooperation between
multiple components and layers
can enable
more effective
solutions and systems
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Digeoing Deeper:
Making RAIDR Work

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”

21



Recall: RAIDR: Mechanism

1. Profiling: Identify the retention time of all DRAM rows
- can be done at design time or during operation

2. Binning: Store rows into bins by retention time
- use Bloom Filters for efficient and scalable storage

1.25KB storage in controller for 32GB DRAM memory

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

- check the bins to determine refresh rate of a row

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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1. Profiling

To profile a row:

1. Write data to the row
2. Prevent it from being refreshed
3. Measure time before data corruption

Row 1 Row 2 Row 3
Initially 11111111... 11111111... 11111111...

After64 ms 11111111... 11111111... 11111111...

After 128 ms 11011111... 11111111... 11111111...
(64-128ms)

After 256 ms 11111011... 11111111..

(128- 256ms) (>256ms)

23



DRAM Retention Time Profiling

= Q: Is it really this easy?

= A: Ummm, not really...

24



Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon

25



Two Challenges to Retention Time Profiling

= Challenge 1: Data Pattern Dependence (DPD)

o Retention time of a DRAM cell depends on its value and the
values of cells nearby it

o When a row is activated, all bitlines are perturbed simultaneously

Bitlines
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline
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i i i . .
- heed to f — — stention time
< < <
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DPD: Implications on Profiling Mechanisms

Any retention time profiling mechanism must handle data pattern
dependence of retention time

Intuitive approach: Identify the data pattern that induces the
worst-case retention time for a particular cell or device

Problem 1: Very hard to know at the memory controller which
bits actually interfere with each other due to

o Opaque mapping of addresses to physical DRAM geometry ->
logically consecutive bits may not be physically consecutive

o Remapping of faulty bitlines/wordlines to redundant ones internally
within DRAM

Problem 2: Worst-case coupling noise is affected by non-obvious
second order bitline coupling effects

SAFARI 28



Two Challenges to Retention Time Profiling

Challenge 2: Variable Retention Time (VRT)

o Retention time of a DRAM cell changes randomly over time
a cell alternates between multiple retention time states

o Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

o When the trap becomes occupied, charge leaks more readily
from the transistor’s drain, leading to a short retention time
Called 7Trap-Assisted Gate-Induced Drain Leakage

o This process appears to be a random process [mﬁTEB'—H—]—

a Worst-case retention time depends on a random prpcgss
- need to find the worst case despite this 1

N

29
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An Example VRT Cell
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Variable Retention Time

7 Many failing cells jump from
very high retention time to very low
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VRT: Implications on Profiling Mechanisms

Problem 1: There does not seem to be a way of
determining if a cell exhibits VRT without actually observing
a cell exhibiting VRT

o VRT is a memoryless random process [Kim+ JJAP 2010]

Problem 2: VRT complicates retention time profiling by
DRAM manufacturers

o Exposure to very high temperatures can induce VRT in cells that
were not previously susceptible

-> can happen during soldering of DRAM chips
- manufacturer’s retention time profile may not be accurate

One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate

o Need to keep ECC overhead in check
32



More on DRAM Retention Analysis

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA ), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

Jamie Liu’ Ben Jaiyen* Yoongu Kim

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edt


http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Finding DRAM Retention Failures

How can we reliably find the retention time of all DRAM
cells?

Goals: so that we can

o Make DRAM reliable and secure

o Make techniques like RAIDR work
-> improve performance and energy

34



Mitigation of Retention Issues [SIGMETRICS’14]

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
fCarnegie Mellon University *Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

Handling Variable Retention Time [DsN’15]

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@ cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

Handling Data-Dependent Failures [psnie]

= Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan*  Donghyuk Lee’™*  Onur Mutlu*"
*University of Virginia TCarnegie Mellon University *Nvidia *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_dsn16.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pdf

Handling Data-Dependent Failures [MICRO17]

= Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content”
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures
by Exploiting Current Memory Content

Samira Khan* Chris Wilkerson” Zhe Wang' Alaa R. Alameldeen” Donghyuk Lee* Onur Mutlu*
*University of Virginia Intel Labs *Nvidia Research *ETH Zirich
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https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pdf

Handling Both DPD and VRT [isca17]

= Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

= First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
= Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel’*  Jeremie S. Kim*®  Onur Mutlu®*
SETH Ziirich  *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

In-DRAM ECC Complicates Things [DSN19]

= Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu,
"Understanding and Modeling On-Die Error Correction in Modern
DRAM: An Experimental Study Using Real Devices"
Proceedings of the 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Portland, OR, USA, June 2019.
[Slides (pptx) (pdf)]
[Talk Video (26 minutes)]
[Full Talk Lecture (29 minutes)]
[Source Code for EINSim, the Error Inference Simulator]
Best paper award.

Understanding and Modeling On-Die Error Correction
in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel’ Jeremie S. Kim*T Hasan Hassan  Onur Mutlu'*
TETH Ziirich ~ *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/EIN-understanding-and-modeling-in-DRAM-ECC_dsn19.pdf
http://2019.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/EIN-understanding-and-modeling-in-DRAM-ECC_dsn19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/EIN-understanding-and-modeling-in-DRAM-ECC_dsn19-talk.pdf
https://youtu.be/_jYor0EQ16M
https://www.youtube.com/watch?v=YGWXRecr5QY
https://github.com/CMU-SAFARI/EINSim

Motre on In-DRAM ECC pMIcro20]

= Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan

Hassan, and Onur Mutlu,
"Bit-Exact ECC Recovery (BEER): Determining DRAM

On-Die ECC Functions by Exploiting DRAM Data
Retention Characteristics”

Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020.

Bit-Exact ECC Recovery (BEER):
Determining DRAM On-Die ECC Functions
by Exploiting DRAM Data Retention Characteristics

Minesh Patelf Jeremie S. Kim*T  Taha Shahroodi Hasan Hassan| Onur Mutluf?
{ETH Ziirich iCarnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/BEER-bit-exact-ECC-recovery_micro20.pdf
http://www.microarch.org/micro53/

2. Binning
How to efficiently and scalably store rows into retention

time bins?
Use Hardware Bloom Filters [Bloom, CACM 1970]

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 42



Bloom Filter

[Bloom, CACM 1970]

Probabilistic data structure that compactly represents set
membership (presence or absence of element in a set)

Non-approximate set membership: Use 1 bit per element to
indicate absence/presence of each element from an element
space of N elements

Approximate set membership: use a much smaller number of
bits and indicate each element’s presence/absence with a

subset of those bits
o Some elements map to the bits other elements also map to

Operations: 1) insert, 2) test, 3) remove all elements

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 43



Bloom Filter Operation Example

Example with 64-128ms bin:

0]1]0]1]1[0]21]0]0]10]0

N —

Hash function 1 Hash function 2 Hash function 3

Insert Row 1

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 44



Bloom Filter Operation Example

Example with 64-128ms bin:

1 & 1 & 1 =1
ofof1}l0O0|]1]O]O}lO]O]1]l]0O0]0O]l]O]1O0O]O0
Hash function 1 Hash function 2 Hash function 3

Row 1 present?
Yes
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Bloom Filter Operation Example

Example with 64-128ms bin:

0)j]o0oj1f0)1Jj0(0)0)J0(1)J]O0O[0O0}10]0{]0O

Hash function 1 Hash function 2 Hash function 3

Row 2 present?

46



Bloom Filter Operation Example

Example with 64-128ms bin:

Hash function 1 Hash function 2 Hash function 3

Insert Row 4

47



Bloom Filter Operation Example

Example with 64-128ms bin:

0]0]1]0

1

1

1 & 1 & 1
0]j]0]j]O0f[1}]0]J]0]1]1T)10(1

0

_——

Hash function 1

Hash function 2

Hash function 3

Row 5 present?
Yes (false positive)

48




Bloom Filters

Space /Time Trade-offs in

In such applications, it is envisaged that overall performance

Hash Codin g With could be improved by using a smaller core resident hash area
in conjunction with the new methods and, when necessary, by
A].lowable E].'I'OI'S using some secondary and perhaps time-consuming test to

“catch” the small fraction of errors associated with the new
methods. An example is discussed which illustrates possible

areas of application for the new methods.
BurToxn H. Broom

Computer Usage Company, Newton Upper Falls, Mass.

In this paper trade-offs among certain computational factors
in hash coding are cnalyzed. The paradigm problem con-
sidered is that of testing a series of messages one-by-one
for membership in a given set of messages. Two new hash-
coding methods are examined and compared with a par-
ticular conventional hash-coding method. The computational
factors considered are the size of the hash area (space), the
time required to identify a message as a nonmember of the
given set (reject time), and an allowable error frequency.

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 49



Bloom Filters: Pros and Cons

Advantages
+ Enables storage-efficient representation of set membership

+ Insertion and testing for set membership (presence) are fast

+ No false negatives: If Bloom Filter says an element is not
present in the set, the element must not have been inserted

+ Enables tradeoffs between time & storage efficiency & false
positive rate (via sizing and hashing)

Disadvantages

-- False positives: An element may be deemed to be present in
the set by the Bloom Filter but it may never have been inserted

Not the right data structure when you cannot tolerate false
positives

Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM 1970. 50



Benefits of Bloom Filters as Refresh Rate Bins

False positives: a row may be declared present in the
Bloom filter even if it was never inserted

o Not a problem: Refresh some rows more frequently than
needed

No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

Efficient: No need to store info on a per-row basis; simple
hardware = 1.25 KB for 2 filters for 32 GB DRAM system

51



Use of Bloom Filters in Hardware

Useful when you can tolerate false positives in set
membership tests

See the following recent examples for clear descriptions of
how Bloom Filters are used

o Liu et al., "RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

o Seshadri et al., "The Evicted-Address Filter: A Unified
Mechanism to Address Both Cache Pollution and Thrashing,”

PACT 2012.
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3. Refreshing (RAIDR Retresh Controller)
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3. Refreshing (RAIDR Retresh Controller)

Memory controller
chooses each row
as a refresh candidate
every 64ms

:

Row in 64-128ms bin?——> Row in 128-256ms bin?
(First Bloom filter: 256B) (Second Bloom filter: 1KB)

| | |

Refresh the row Every other 64ms window, Every 4th 64ms window,
refresh the row refresh the row

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM




RAIDR in Memory Controller: Option 1

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands

issued for per-row refresh (all accounted for in evaluations)




RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)




RAIDR: Results and Takeaways

System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

RAIDR hardware cost: 1.25 kB (2 Bloom filters)
Refresh reduction: 74.6%

Dynamic DRAM energy reduction: 16%

Idle DRAM power reduction: 20%

Performance improvement: 9%

Benefits increase as DRAM scales in density
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DRAM Refresh: More Questions

What else can you do to reduce the impact of refresh?

What else can you do if you know the retention times of
rows?

How can you accurately measure the retention time of
DRAM rows?

Recommended reading:

a Liu et al., "An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” ISCA 2013.
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DRAM Refresh: Summary and Conclusions

= DRAM refresh is a critical challenge
o in scaling DRAM technology efficiently to higher capacities

= Several promising solution directions
o Eliminate unnecessary refreshes [Liu+ ISCA'12]

o Reduce refresh rate w/ online profiling and detect/correct any errors
[Khan+ SIGMETRICS'14, Qureshi+ DSN'15, Patel+ ISCA’17]

o Parallelize refreshes with accesses [Chang+ HPCA'14]

= Examined properties of retention time behavior [Liu+ 1SCA'13]
o Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN'15]

= Many avenues for overcoming DRAM refresh challenges
o Handling DPD/VRT phenomena
o Enabling online retention time profiling and error mitigation

Exoloiti lication behavi
SAFARI 60



More Information on Refresh-Access Parallelization

= Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"”
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishtif
Alaa R. Alameldeent Chris Wilkersont Yoongu Kim Onur Mutlu

Carnegie Mellon University {Intel Labs
SAFARI o1



http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

* Refresh
+ Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
» Leakage current of cell access transistors increasing

+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
» On-current of the cell access transistor decreasing

» Bit-line resistance increasing

<+ VRT
* Occurring more frequently with cell capacitance decreasing
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Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

+* Refresh

« Niffictilt ta build hiah-asneect ration cell canacitore decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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We Will Dig Deeper More
In This Course

“Good ideas are a dime a dozen”

“Making them work is oftentimes the real contribution”

64




Computer Architecture
Lecture 2b: Memory Retresh

Prof. Onur Mutlu
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18 September 2020




Finding DRAM Retention Failures

How can we reliably find the retention time of all DRAM
cells?

Goals: so that we can

o Make DRAM reliable and secure

o Make techniques like RAIDR work
-> improve performance and energy

06



Mitigation of Retention Issues [SIGMETRICS’14]

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
fCarnegie Mellon University *Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

Towards an Online Profiling System

Key Observations:

* Testing alone cannot detect all possible failures

* Combination of ECC and other mitigation
techniques is much more effective

— But degrades performance

* Testing can help to reduce the ECC strength
— Even when starting with a higher strength ECC

Khan+, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.



Towards an Online Profiling System

Initially Protect DRAM Periodically Test
with Strong ECC 1 Parts of DRAM y.

Mitigate errors and
reduce ECC 3

Run tests periodically after a short interval
at smaller regions of memory



Handling Variable Retention Time [DsN’15]

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@ cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

AVATAR

Insight: Avoid retention failures =» Upgrade row on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

(fgrub ) DRAM Rows Ref. Rate Table
min _
A 0
B Weak Cell 0
C 1
D = 0 Row protected from
= PROFILING 0 (e
= 0 retention failures
G 1
H / > 1]

AVATAR mitigates VRT by increasing refresh rate on error




RESULTS: REFRESH SAVINGS

in Refresh (%
N
ij.

Retention Testing Once a Year can revert refresh saving from
60% to 70%

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Months Since Testing

AVATAR reduces refresh by 60%-70%, similar to multi rate
refresh but with VRT tolerance




SPEEDUP

B AVATAR (1yr) B NoRefresh

1.20
1.10
Loo H— el

L 8Gb 16Gb 32Gb 64Gb

AVATAR gets 2/3 the performance of NoRefresh. More
gains at higher capacity nodes




ENERGY DELAY PRODUCT

1.0

B NoRefresh

B AVATAR (1yr
0.9 | (1yr)

0.8 -
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0.6 -
0.5 -
04 -
0.3 -
0.2 -
0.1 -
0.0 -

Energy Delay Product
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AVATAR reduces EDP,
Significant reduction at higher capacity nodes




Handling Data-Dependent Failures [psnie]

= Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan*  Donghyuk Lee’™*  Onur Mutlu*"
*University of Virginia TCarnegie Mellon University *Nvidia *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_dsn16.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pdf

Handling Data-Dependent Failures [MICRO17]

= Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content”
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures
by Exploiting Current Memory Content

Samira Khan* Chris Wilkerson” Zhe Wang' Alaa R. Alameldeen” Donghyuk Lee* Onur Mutlu*
*University of Virginia Intel Labs *Nvidia Research *ETH Zirich
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https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pdf

Handling Both DPD and VRT [isca17]

= Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

= First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
= Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel’*  Jeremie S. Kim*®  Onur Mutlu®*
SETH Ziirich  *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel Jeremie S. Kim
Onur Mutlu

mgs SAFARI
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Leaky Cells

Y

Periodic DRAM Refresh

U

Performance + Energy Overhead
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Goal: find all retention failures for
a refresh interval T > default (64ms)
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Process, voltage, temperature

Variable retention time

Data pattern dependence
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Characterization of
368 LPDDR4 DRAM Chips

@

Cells are more likely to fail at an
increased (refresh interval | temperature)

@

Complex tradeoff space between profiling

(speed & coverage & false positives)
S —
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Reach Profiling

A new DRAM retention failure
profiling methodology

+ and
than current approaches

+ Enables
SAFARI



REAPER Outline
1. DRAM Refresh Background

2. Failure Profiling Challenges

3. Current Approaches
4. LPDDR4 Characterization
5. Reach Protfiling

6. End-to-end Evaluation
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Experimental Infrastructure

*368 2y-nm LPDDR4 DRAM chips

- 4Gb chip size
- From 3 major DRAM vendors

* Thermally controlled testing chamber

- Ambient temperature range: {40°C - 55°C} + 0.25°C
- DRAM temperature is held at 15°C above ambient

SAFARI



LPDDR4 Studies

1. Temperature
2. Data Pattern Dependence
3. Retention Time Distributions

Variable Retention Time

Individual Cell Characterization

SAFARI 20/36



Long-term Continuous Profiling

Representative chip from Vendor B, 2048ms, 45°C

=
()
N

Steady-state accumulation

# New Failing Cells
= =
< <

0 1 2 3 4 5 6
Time (days)

* New failing cells continue to appear over time
- Attributed to variable retention time (VRT)

* The set of failing cells changes over time
SAFARI 21/36



Long-term Continuous Profiling

Representative chip from Vendor B, 2048ms, 45°C

=
o
N

ling Cells

Error correction codes (ECC)
and online profiling are necessary
to manage new failing cells

* New failing cells continue to appear over time
- Attributed to variable retention time (VRT)

* The set of failing cells changes over time
SAFARI 21/36



Single-cell Failure Probability (Cartoon)
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Single-cell Failure Probability (Cartoon)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)

operate here profile here

Any cell is more likely to fail
at a longer refresh interval
OR a higher temperature

! 3
E e ﬁ

1.5 1.6 1.7 1.8 1.9 2.0
SAFARI Refresh Interval (s) 22/36

S

Read Failure Probability

0.00




REAPER Outline
1. DRAM Refresh Background

2. Failure Profiling Challenges

3. Current Approaches
4. LPDDR4 Characterization
5. Reach Profiling

6. End-to-end Evaluation
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Reach Profiling

profile at a longer refresh interval
and/or a higher temperature
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Reach Profiling

profile at a longer refresh interval
and/or a higher temperature
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Reach Profiling

profile at a longer refresh interval
and/or a higher temperature

° Pros

reach profiling searches
for cells where they are most likely to fail

eCons

- False Positives: profiler may identify
cells that fail under profiling conditions,
but not under operating conditions

SAFARI



Towards an Implementation

Reach profiling is a general methodology

3 key questions for an implementation:

What are desirable profiling conditions?

How often should the system profile?

What information does the profiler need?

SAFARI



Three Key Profiling Metrics

1. Runtime: how long profiling takes

2. Coverage: portion of all possible
failures discovered by profiling

3. False positives: number of cells
observed to fail during profiling but
never during actual operation

SAFARI



Three Key Profiling Metrics

1. Runtime: how long profiling takes

2. Coverage: portion of all possible
failures discovered by profiling

We explore how these three metrics
change under many different
profiling conditions

SAFARI



Evaluation Methodology

e Simulators

- Performance: Ramulator [Kim+, CAL'15]
- Energy: DRAMPower [Chandrasekar+, DSD’11]

* Configuration
- 4-core (4GHz), 8MB LLC
- LPDDR4-3200, 4 channels, 1 rank/channel

e Workloads

- 20 random 4-core benchmark mixes
- SPEC CPU2006 benchmark suite

SAFARI



Simulated End-to-end Performance

B2 Brute-force profiling EZ3 REAPER [ZZ1 Ideal profiling
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Simulated End-to-end Performance

B2 Brute-force profiling EZ=X REAPER [ZZ Ideal profiling
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Simulated End-to-end Performance

B2 Brute-force profiling EZ=X REAPER [ZZ Ideal profiling
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Simulated End-to-end Performance

XA Brute-force profiling [E=X1 REAPER [ZZ1 Ideal profiling

On average, REAPER enables:
16.3% system performance improvement
36.4% DRAM power reductlon

REAPER enables longer refresh intervals,
which are unreasonable
usmg brute-force profllmg
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Other Analyses in the Paper

* Detailed LPDDR4 characterization data
- Temperature dependence effects
- Retention time distributions
- Data pattern dependence
- Variable retention time
- Individual cell failure distributions

* Profiling tradeoff space characterization
- Runtime, coverage, and false positive rate
- Temperature and refresh interval

 Probabilistic model for tolerable failure rates

* Detailed results for end-to-end evaluations
SAFARI



REAPER Summary

Problem:

*DRAM refresh performance and energy overhead is high

*Current approaches to retention failure profiling are slow or unreliable

Goals:

1. Thoroughly analyze profiling tradeoffs

2. Develop a fast and reliable profiling mechanism

Key Contributions:

1. First detailed characterization of 368 LPDDR4 DRAM chips

2. Reach profiling: Profile at a longer refresh interval or higher
temperature than target conditions, where cells are more likely to fail

Evaluation:

*2.5x faster profiling with 99% coverage and 50% false positives

*REAPER enables 16.3% system performance improvement and 36.4%
DRAM power reduction

*Enables longer refresh intervals that were previously unreasonable
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Handling Both DPD and VRT [isca17]

= Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

= First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
= Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel’*  Jeremie S. Kim*®  Onur Mutlu®*
SETH Ziirich  *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

