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Executive Summary

* Motivation: Denser DRAM chips are more vulnerable to RowHammer but no
characterization-based study demonstrates how vulnerability scales

Problem: Unclear if existing mitigation mechanisms will remain viable for
future DRAM chips that are likely to be more vulnerable to RowHammer
Goal:
1. Experimentally demonstrate how vulnerable modern DRAM chips are to
RowHammer and study how this vulnerability will scale going forward
2. Study viability of existing mitigation mechanisms on more vulnerable chips
Experimental Study: First rigorous RowHammer characterization study across
a broad range of DRAM chips
- 1580 chips of different DRAM {types, technology node generations, manufacturers}
- We find that RowHammer vulnerability worsens in newer chips
RowHammer Mitigation Mechanism Study: How five state-of-the-art
mechanisms are affected by worsening RowHammer vulnerability
- Reasonable performance loss (8% on average) on modern DRAM chips
- Scale poorly to more vulnerable DRAM chips (e.g., 80% performance loss)

Conclusion: it is critical to research more effective solutions to RowHammer for
future DRAM chips that will likely be even more vulnerable to RowHammer
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Motivation

- Denser DRAM chips are more vulnerable to RowHammer

- Three prior works [Kim+, ISCA'14], [Park+, MR'16], [Park+, MR'16],
over the last six years provide RowHammer
characterization data on real DRAM

- However, there is no comprehensive experimental
study that demonstrates how vulnerability scales across
DRAM types and technology node generations

- Itis unclear whether current mitigation mechanisms
will remain viable for future DRAM chips that are likely
to be more vulnerable to RowHammer
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Goal

1. Experimentally demonstrate how vulnerable modern
DRAM chips are to RowHammer and predict how this
vulnerability will scale going forward

2. Examine the viability of current mitigation mechanisms
on more vulnerable chips
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DRAM Testing Infrastructures

Three separate testing infrastructures
1. DDR3: FPGA-based SoftMC [Hassan+, HPCA'17]
(Xilinx ML605)
2. DDR4: FPGA-based SoftMC [Hassan+, HPCA'17]
(Xilinx Virtex UltraScale 95)
3. LPDDR4: In-house testing hardware for LPDDR4 chips

All provide fine-grained control over DRAM commands, timing
parameters and temperature

rTeypTT———y
. F,I?GA;iB‘pqard withitwo

DDR4iSODIMM:Slots

;ﬂ ‘l:-'.‘: o \.*::( e
[Rubber Heater'Cam =211
* CEEE — A

Thermocouple 2y

=R

SAFARI DDR4 DRAM testing infrastructure




DRAM Chips Tested

DRAM Number of Chips (Modules) Tested
type-node Mfr. A Mfr. B Mfr. C Total
DDR3-old 56 (10) 88 (11) 28 (7) 172 (28)
DDR3-new 80 (10) 52 (9) 104 (13) 236 (32)
DDR4-old 112 (16) 24(3) 128 (18) 264 (37)
DDR4-new 264 (43) 16 (2) 108 (28) 388 (73)
LPDDR4-1x 12(3) 180 (45) N/A 192 (48)
LPDDR4-1y 184 (46) N/A 144 (36) 328 (82)

1580 total DRAM chips tested from 300 DRAM modules

* Three major DRAM manufacturers {A, B, C}

 Three DRAM types or standards {DDR3, DDR4, LPDDR4}
* LPDDR4 chips we test implement on-die ECC

* Two technology nodes per DRAM type {old/new, 1x/1y}
« C(Categorized based on manufacturing date, datasheet publication date, purchase
date, and characterization results

Type-node: configuration describing a chip’s type and technology

node generation: DDR3-old/new, DDR4-old /new, LPDDR4-1x/1y

SAFARI
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Effective RowHammer Characterization

To characterize our DRAM chips at worst-case conditions, we:

1. Prevent sources of interference during core test loop

- We disable:

 DRAM refresh: to avoid refreshing victim row
 DRAM calibration events: to minimize variation in test timing
 RowHammer mitigation mechanisms: to observe circuit-level effects

- Test for less than refresh window (32ms) to avoid retention failures

2. Worst-case access sequence
- We use worst-case access sequence based on prior works’ observations

- For each row, repeatedly access the two directly physically-adjacent
rows as fast as possible

SAFARI [More details in the paper] 10



Testing Methodology

-

\_

Row 0
Row 1
Row 2

REFRESH

Row 3
Row 4

Aggressor Row

Victim Row

Aggressor Row
Row

Row

DRAM_RowHammer_Characterization():
foreach row in DRAM:

set victim_row to row

set aggressor_rowl to victim_row — 1

set aggressor_row2 to victim_row + 1

Disable DRAM refresh

Refresh victim_row

for n =1 — HC: // core test loop
activate aggressor_rowl

activate aggressor_row?2
Enable DRAM refresh

Record RowHammer bit flips to storage

Restore bit flips to original values
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Disable refresh to prevent
interruptions in the core loop of
our test from refresh operations

Induce RowHammer bit flips on a
fully charged row
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Testing Methodology

-
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Row 0

Row 1 Aggressor Row
Row 2

Row 3 Aggressor Row

Row 4 Victim Row
Row 5

Aggressor Row

Ag_gressor Row

DRAM_

RowHammer_Characterization():

foreach row in DRAM:
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set victim_row to row

set aggressor_rowl to victim_row — 1

set aggressor_row2 to victim_row + 1

Disable DRAM refresh

Refresh victim_row

for n = 1 — HC: // core test loop
activate aggressor_rowl

activate aggressor_row?2
Enable DRAM refresh

Record RowHammer bit flips to storage

Restore bit flips to original values

(/L NN

Disable refresh to prevent
interruptions in the core loop of
our test from refresh operations

Induce RowHammer bit flips on a
fully charged row

Core test loop where we alternate
accesses to adjacent rows

1 Hammer (HC) = two accesses

Prevent further retention failures

Record bit flips for analysis 12



Key Takeaways from 1580 Chips

* Chips of newer DRAM technology nodes are more
vulnerable to RowHammer

* There are chips today whose weakest cells fail after
only 4800 hammers

* Chips of newer DRAM technology nodes can exhibit
RowHammer bit flips 1) in more rows and 2) farther
away from the victim row.
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1. RowHammer Vulnerability

Q. Can we induce RowHammer bit flips in all of our DRAM chips?

All chips are vulnerable, except many DDR3 chips
* Atotal of 1320 out of all 1580 chips (84%) are vulnerable
* Within DDR3-old chips, only 12% of chips (24/204) are vulnerable

* Within DDR3-new chips, 65% of chips (148/228) are vulnerable

Newer DRAM chips are more vulnerable to RowHammer
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2. Data Pattern Dependence

Q. Are some data patterns more effective in inducing RowHammer bit flips?

 We test several data patterns typically examined in prior
work to identify the worst-case data pattern

* The worst-case data pattern is consistent across chips of the
same manufacturer and DRAM type-node configuration

 We use the worst-case data pattern per DRAM chip to
characterize each chip at worst-case conditions and
minimize the extensive testing time

[More detail and figures in paper]
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3. Hammer Count (HC) Effects

Q. How does the Hammer Count affect the number of bit flips induced?
Mfr. A DDR4-new_
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Hammer Count = 2 Accesses,
SAFARI one to each adjacent row of victim 16



3. Hammer Count (HC) Effects
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RowHammer bit flip rates increase
when going from old to new DDR4 technology node generations

RowHammer bit flip rates (i.e., RowHammer vulnerability)
increase with technology node generation
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4. Spatial Effects: Row Distance

Q. Where do RowHammer bit flips occur relative to aggressor rows?
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The number of RowHammer bit flips that occur in a given row
decreases as the distance from the victim row (row 0) increases.
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4. Spatial Effects: Row Distance

We normalize data by inducing a bit flip rate of 10-¢ in each chip
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Fraction of RowHammer bit flips
with distance X from the victim row

—6420246

Chips of newer DRAM technology nodes can exhibit RowHammer
bit flips 1) in more rows and 2) farther away from the victim row.
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4. Spatial Effects: Row Distance

We plot this data for each DRAM type-node configuration per manufacturer

‘NotEnough  |[ W 1 H
_ BtFlips =y B

mau-gdad

ohvho oo

ONPOOOO ONAOOOKWO
= |
-

I

S

|

|

s

+

Fraction of RowHammer bit flips
with distance X from the victim row
000002 00000+ 00000~ 00000~ 00000

AL-pHaadT XL-¥Hadd1 meu-ydaa Plo-vdAaA

Or ;

i N°t§:t‘;“9h S No Chips
2l NEREES | =8 B |
_0, “““““““ LU U VU U U SO SO U FUUUS UL SO SUUURS AU I EOUE U SO U SO SOUU A U SO SO ANV U AU
8r

61 "No Chips

ol m B E = _ - = - _

6 4 2 0 2 46 6 420 2 4 6 4
Distance from the victim row (row 0)

[More analysis in the paper]
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4. Spatial Distribution of Bit Flips

Q. How are RowHammer bit flips spatially distributed across a chip?

We normalize data by inducing a bit flip rate of 10-¢ in each chip
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The distribution of RowHammer bit flip density per word
changes significantly in LPDDR4 chips from other DRAM types

At a bit flip rate of 107, a 64-bit word can contain up to 4 bit flips.
Even at this very low bit flip rate, a very strong ECC is required



4. Spatial Distribution of Bit Flips

We plot this data for each DRAM type-node configuration per manufacturer
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5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HCg)?
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5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HCg)?
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5. First RowHammer Bit Flips per Chip

In a DRAM type, HC;, reduces significantly from
old to new chips, i.e.,, DDR3: 69.2k to 22.4Kk,
DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k

There are chips whose weakest cells fail
after only 4800 hammers
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Key Takeaways from 1580 Chips

* Chips of newer DRAM technology nodes are more
vulnerable to RowHammer

* There are chips today whose weakest cells fail after
only 4800 hammers

* Chips of newer DRAM technology nodes can exhibit
RowHammer bit flips 1) in more rows and 2) farther
away from the victim row.
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Evaluation Methodology

* Cycle-level simulator: Ramulator [Kim+, CAL'15]
https://github.com/CMU-SAFARI/ramulator

- 4GHz, 4-wide, 128 entry instruction window

- 48 8-core workload mixes randomly drawn from SPEC
CPU2006 (10 < MPKI < 740)

* Metrics to evaluate mitigation mechanisms

1. DRAM Bandwidth Overhead: fraction of total system DRAM
bandwidth consumption from mitigation mechanism

2. Normalized System Performance: normalized weighted
speedup to a 100% baseline
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Evaluation Methodology

* We evaluate five state-of-the-art mitigation mechanisms:
Increased Refresh Rate [Kim+, 1ScA14]

PARA [Kim+, ISCA'14]

ProHIT [Son+, DAC'17]

MRLoC [You+, DAC'19]

TWiCe [Lee+, 1SCA19]

* and one ideal refresh-based mitigation mechanism:
- Ideal

* More detailed descriptions in the paper on:

- Descriptions of mechanisms in our paper and the original publications
- How we scale each mechanism to more vulnerable DRAM chips (lower HCg,¢)
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Mitigation Mech. Eval. (Increased Refresh)

. Increased
40+ - Refresh Rate -\

Normalized
System Performance (%

105 10% 103 102
HCgpg (number of hammers required to induce first RowHammer bit flip)

Substantial overhead for high HC;, ., values.

This mechanism does not support HC;; ., < 32k
due to the prohibitively high refresh rates required
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Mitigation Mechanism Evaluation (PARA)
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Mitigation Mechanism Evaluation (ProHIT)

Normalized
System Performance (%

105 10* 103 102
HCgpg (number of hammers required to induce first RowHammer bit flip)
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Mitigation Mechanism Evaluation (MRLoc)
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Models for scaling ProHIT and MRLoc for HC;,; < 2k

are not provided and how to do so is not intuitive
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Mitigation Mechanism Evaluation (TWiCe)
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TWiCe does not support HC;,, < 32Kk.

We evaluate an ideal scalable version (TWiCe-ideal)
assuming it solves two critical design issues
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Mitigation Mechanism Evaluation (Ideal)
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Ideal mechanism issues a refresh command

to a row only right before the row
can potentially experience a RowHammer bit flip
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Mitigation Mechanism Evaluation
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PARA, ProHIT, and MRLoc mitigate RowHammer bit flips

in worst chips today with reasonable system performance
(92%, 100%, 100%)
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Mitigation Mechanism Evaluation
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Only PARA's design scales to low HC;,, values

but has very low normalized system performance
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Mitigation Mechanism Evaluation

[H Increased Refresh Rate  ¥=¥ PARA B ProHIT J=4 MRLoc =} TwiCe F - TwiCe-ideal
i [§]0] S ————— T R —
o~
>~ 90 ——
(O]
8 8OF - TA |
B & 70;
N e BOF e NG
T O
EE 50¢
< £ 30} Sl <
o) Pl >
wn o a a
@ 10| all= 5

0

10* 103 102
HCgpg (number of hammers required to induce first RowHammer bit flip)

Ideal mechanism is significantly better
than any existing mechanism for HC; , < 1024

Significant opportunity for developing a RowHammer solution
with low performance overhead that supports low HCg




Key Takeaways from Mitigation Mechanisms

* Existing RowHammer mitigation mechanisms can prevent
RowHammer attacks with reasonable system performance
overhead in DRAM chips today

* Existing RowHammer mitigation mechanisms do not scale
well to DRAM chips more vulnerable to RowHammer

* There is still significant opportunity for developing a
mechanism that is scalable with low overhead
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Additional Details in the Paper

* Single-cell RowHammer bit flip probability
* More details on our data pattern dependence study

 Analysis of Error Correcting Codes (ECC) in mitigating
RowHammer bit flips

» Additional observations on our data
* Methodology details for characterizing DRAM

* Further discussion on comparing data across different
infrastructures

 Discussion on scaling each mitigation mechanism
SAFARI 40



RowHammer Solutions Going Forward

Two promising directions for new RowHammer solutions:

1. DRAM-system cooperation

- We believe the DRAM and system should cooperate more to provide a
holistic solution can prevent RowHammer at low cost

2. Profile-guided

- Accurate profile of RowHammer-susceptible cells in DRAM provides a
powerful substrate for building targeted RowHammer solutions, e.g.:

* Only increase the refresh rate for rows containing RowHammer-susceptible cells

- A fast and accurate profiling mechanism is a key research challenge for
developing low-overhead and scalable RowHammer solutions
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Conclusion

* We characterized 1580 DRAM chips of different DRAM types,
technology nodes, and manufacturers.

* We studied five state-of-the-art RowHammer mitigation
mechanisms and an ideal refresh-based mechanism

 We made two key observations

1. RowHammer is getting much worse. It takes much fewer hammers to
induce RowHammer bit flips in newer chips

* e.g., DDR3: 69.2k to 22.4k, DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k

2. Existing mitigation mechanisms do not scale to DRAM chips that are
more vulnerable to RowHammer

* e.g., 80% performance loss when the hammer count to induce the first bit flip is 128

* We conclude that it is critical to do more research on
RowHammer and develop scalable mitigation mechanisms to
prevent RowHammer in future systems
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