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Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Three Key Systems Trends

1. Data access is a major bottleneck
❑ Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
❑ Especially true for off-chip to on-chip movement
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Observation and Opportunity

◼ High latency and high energy caused by data movement

❑ Long, energy-hungry interconnects

❑ Energy-hungry electrical interfaces

❑ Movement of large amounts of data

◼ Opportunity: Minimize data movement by performing 
computation directly (near) where the data resides

❑ Processing in memory (PIM)

❑ In-memory computation/processing

❑ Near-data processing (NDP)

❑ General concept applicable to any data storage & movement 
unit (caches, SSDs, main memory, network, controllers)
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Four Key Issues in Future Platforms

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health
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Maslow’s (Human) Hierarchy of Needs, Revisited
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Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Do We Want This?

7Source: V. Milutinovic



Or This?

8Source: V. Milutinovic



Challenge and Opportunity for Future

High Performance,

Energy Efficient,

Sustainable
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The Problem

Data access is the major performance and energy bottleneck

Our current

design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 

is performed 

far away from the data
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A Computing System

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System

◼ Three key components

◼ Computation 

◼ Communication

◼ Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

◼ Are overwhelmingly processor centric

◼ All data processed in the processor → at great system cost

◼ Processor is heavily optimized and is considered the master

◼ Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)
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Yet …

◼ “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top 
Picks by IEEE Micro.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Memory Bottleneck
◼ Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,

"Runahead Execution: An Effective Alternative to Large 
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture 
Conferences (MICRO TOP PICKS), Vol. 23, No. 6, pages 20-25, 
November/December 2003.
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383


It’s the Memory, Stupid!

18http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf

http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf


An Informal Interview on Memory

◼ Madeleine Gray and Onur Mutlu,
"‘It’s the memory, stupid’: A conversation with Onur Mutlu"
HiPEAC info 55, HiPEAC Newsletter, October 2018.
[Shorter Version in Newsletter]
[Longer Online Version with References]
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https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/publications/newsletter/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/


The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015): 

20Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)

◼ All of Google’s Data Center Workloads (2015): 

21Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils of Processor-Centric Design

◼ Grossly-imbalanced systems

❑ Processing done only in one place

❑ Everything else just stores and moves data: data moves a lot

→ Energy inefficient 

→ Low performance

→ Complex

◼ Overly complex and bloated processor (and accelerators)

❑ To tolerate data access from memory

❑ Complex hierarchies and mechanisms 

→ Energy inefficient 

→ Low performance

→ Complex
22



Perils of Processor-Centric Design

23

Most of the system is dedicated to storing and moving data 



The Energy Perspective

24

Dally, HiPEAC 2015



Data Movement vs. Computation Energy

25

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy

◼ Data movement is a major system energy bottleneck

❑ Comprises 41% of mobile system energy during web browsing [2]

❑ Costs ~115 times as much energy as an ADD operation [1, 2]
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[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)

[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!
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Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

◼ Enable computation with minimal data movement

◼ Compute where it makes sense (where data resides)

◼ Make computing architectures more data-centric

29



Goal: Processing Inside Memory

◼ Many questions … How do we design the:

❑ compute-capable memory & controllers?

❑ processor chip and in-memory units?

❑ software and hardware interfaces?

❑ system software, compilers, languages?

❑ algorithms and theoretical foundations?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons



Why In-Memory Computation Today?

◼ Push from Technology

❑ DRAM Scaling at jeopardy 

→ Controllers close to DRAM

→ Industry open to new memory architectures

◼ Pull from Systems and Applications

❑ Data access is a major system and application bottleneck

❑ Systems are energy limited

❑ Data movement much more energy-hungry than computation
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Dally, HiPEAC 2015



UPMEM Processing-in-DRAM Engine (2019)
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◼ Processing in DRAM Engine 

◼ Includes standard DIMM modules, with a large 
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


We Need to Think Differently 

from the Past Approaches
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Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory

35



Approach 1: Minimally Changing DRAM

◼ DRAM has great capability to perform bulk data movement and 
computation internally with small changes

❑ Can exploit internal connectivity to move data

❑ Can exploit analog computation capability

❑ …

◼ Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
❑ RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)

❑ Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

❑ Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

❑ "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 
DRAM Technology” (Seshadri et al., MICRO 2017)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization

Bulk Data 
Copy

Bulk Data 
Initialization

src dst

dstval



Bulk Data Copy and Initialization

Bulk Data 
Copy

Bulk Data 
Initialization

src dst

dstval



Starting Simple: Data Copy and Initialization

39

Forking

00000

00000

00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

401046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

411046ns, 3.6uJ → 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

11.6X latency reduction, 74X energy reduction 



RowClone: Intra-Subarray

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD

VDDVDD/2 + δ

Sense Amplifier

(Row Buffer)

Amplify the 

difference

0

Data gets 

copied

src

dst



RowClone: Intra-Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer, 
connect dst – copy data from row buffer to dst)



RowClone: Inter-Bank
M
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1.9X latency reduction, 3.2X energy reduction 
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Inter Bank Copy
(Pipelined 

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost



RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

◼ Initialization with arbitrary data

❑ Initialize one row

❑ Copy the data to other rows

◼ Zero initialization (most common)

❑ Reserve a row in each subarray (always zero)

❑ Copy data from reserved row (FPM mode)

❑ 6.0X lower latency, 41.5X lower DRAM energy

❑ 0.2% loss in capacity
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RowClone: Latency & Energy Benefits
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Copy and Initialization in Workloads
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RowClone: Application Performance
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End-to-End System Design

52

DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 

copy/initialization across 
layers?

How to maximize latency and 
energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 

Initialization of Bulk Data,” MICRO 2013.



More on RowClone

◼ Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



In-Memory Bulk Bitwise Operations

◼ We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ

◼ At low cost

◼ Using analog computation capability of DRAM

❑ Idea: activating multiple rows performs computation

◼ 30-60X performance and energy improvement

❑ Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

◼ New memory technologies enable even more opportunities

❑ Memristors, resistive RAM, phase change mem, STT-MRAM, …

❑ Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM Bulk Bitwise AND/OR Operation

◼ BULKAND A, B → C 

◼ Semantics: Perform a bitwise AND of two rows A and B and 
store the result in row C

◼ R0 – reserved zero row, R1 – reserved one row

◼ D1, D2, D3 – Designated rows for triple activation

1. RowClone  A  into  D1

2. RowClone  B  into  D2

3. RowClone  R0  into  D3

4. ACTIVATE  D1,D2,D3

5. RowClone  Result  into  C

58



More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


In-DRAM NOT: Dual Contact Cell

60

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



In-DRAM NOT Operation

61

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: In-DRAM Bitwise Operations
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Energy of In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and 

Energy

64
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013

[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

◼ Alternative to B-tree and its variants

◼ Efficient for performing range queries and joins

◼ Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit

67

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>5.4-6.6X Performance Improvement



Performance: BitWeaving on Ambit

68

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>4-12X Performance Improvement



More on In-DRAM Bulk AND/OR

◼ Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 

Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on In-DRAM Bitwise Operations

◼ Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 

Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


More on In-DRAM Bulk Bitwise Execution

◼ Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]

71

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


Challenge: Intelligent Memory Device

Does memory

have to be

dumb?

72



Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement

73



A Detour 

on the Review Process

74



Ambit Sounds Good, No?

75

Review from ISCA 2016



Another Review 

76

Another Review from ISCA 2016



Yet Another Review

77

Yet Another Review from ISCA 2016



The Reviewer Accountability Problem

78



We Have a Mindset Issue…

◼ There are many other similar examples from reviews…

❑ For many other papers…

◼ And, we are not even talking about JEDEC yet…

◼ How do we fix the mindset problem?

◼ By doing more research, education, implementation in 
alternative processing paradigms

79

We need to work on enabling the better future…



Aside: A Recommended Book

80

Raj Jain, “The Art of 

Computer Systems 
Performance Analysis,” 
Wiley, 1991.



81

Raj Jain, “The Art of 

Computer Systems 
Performance Analysis,” 
Wiley, 1991.



82

Raj Jain, “The Art of 

Computer Systems 
Performance Analysis,” 
Wiley, 1991.



Suggestion to Community

We Need to Fix the 
Reviewer Accountability 

Problem



Takeaway

Main Memory Needs 

Intelligent Controllers



Takeaway

Research Community 
Needs

Accountable Reviewers



Suggestions to Reviewers

◼ Be fair; you do not know it all

◼ Be open-minded; you do not know it all

◼ Be accepting of diverse research methods: there is no 

single way of doing research

◼ Be constructive, not destructive

◼ Do not have double standards…

Do not block or delay scientific progress for non-reasons



RowClone & Bitwise Ops in Real DRAM Chips

87https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


RowClone & Bitwise Ops in Real DRAM Chips

88https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Row Copy in ComputeDRAM

89

Bitline is above 
VDD/2 when R2 is 

activated.



Bitwise AND in ComputeDRAM

90

T1 very short
Sense amps are not 

activated

T2 very short
PRE cannot close R1

R3 will appear on the address bus
ACT(R2) will activate R3 and R2



Experimental Methodology
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Experimental Methodology

92

32 DDR3 Modules
~256 DRAM Chips



Proof of Concept

◼ How they test these memory modules:

❑ Vary T1 and T2, observe what happens.

SoftMCExperiment

1. Select a random subarray

2. Fill subarray with random data

3. Issue ACT-PRE-ACTs with given T1 & T2
4. Read out subarray

5. Find out how many columns in a row support either operation

❑ Row-wise success ratio

93



Proof of Concept

94

◼ Each grid represents the success ratio of operations for a specific 
DDR3 module.



Pinatubo: RowClone and Bitwise Ops in PCM

95https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

96https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Other Examples of 

“Why Change? It’s Working OK!”
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Mindset Issues Are Everywhere

◼ “Why Change? It’s Working OK!” mindset limits progress

◼ There are many such examples in real life

◼ Examples of Bandwidth Waste in Real Life

◼ Examples of Latency and Queueing Delays in Real Life

◼ Example of Where to Build a Bridge over a River
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Another Example
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Initial RowHammer Reviews



Missing the Point Reviews from Micro 2013



Experimental DRAM Testing Infrastructure

102Kim+, “Flipping Bits in Memory Without Accessing Them: An 

Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs
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Tested

DRAM

Modules

(129 total)



Fast Forward 6 Months
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More Reviews… Reviews from ISCA 2014



Final RowHammer Reviews



RowHammer: Hindsight & Impact (I)

107

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer: Hindsight & Impact (II)

◼ Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"

IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems (TCAD) Special Issue on Top Picks in 
Hardware and Embedded Security, 2019.

[Preliminary arXiv version]
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf


RowHammer in 2020



RowHammer in 2020 (I)

◼ Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, 
Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern 
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer 
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q


RowHammer in 2020 (II)

◼ Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der 
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and 
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Source Code]
[Web Article]
Best paper award.
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https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/


RowHammer in 2020 (III)

◼ Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, 
Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End 
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and 
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
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https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE


RowHammer in 2020 (IV)
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RowHammer in 2020 (V)
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RowHammer in 2020 (VI)
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More to Come…



Suggestion to Researchers: Principle: Passion

Follow Your Passion

(Do not get derailed

by naysayers)



Suggestion to Researchers: Principle: Resilience

Be Resilient



Principle: Learning and Scholarship

Focus on

learning and scholarship



Principle: Learning and Scholarship

The quality of your work 
defines your impact



An Interview on Research and Education

◼ Computing Research and Education (@ ISCA 2019)

❑ https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2
soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

◼ Maurice Wilkes Award Speech (10 minutes)

❑ https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2
soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
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https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15


More Thoughts and Suggestions

◼ Onur Mutlu,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards 
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

◼ Onur Mutlu,

"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 
19 July 2020.

[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf


Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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We Need to Think Differently 

from the Past Approaches
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Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



Processing in Memory:

Two Approaches

1. Minimally changing memory chips

2. Exploiting 3D-stacked memory
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Opportunity: 3D-Stacked Logic+Memory

127

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

128

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Several Questions in 3D-Stacked PIM

◼ What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?

❑ By changing the entire system

❑ By performing simple function offloading

◼ What is the minimal processing-in-memory support we can 

provide?

❑ With minimal changes to system and programming
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Another Example: In-Memory Graph Processing

130

◼ Large graphs are everywhere (circa 2015)

◼ Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing

131

for (v: graph.vertices) {

for (w: v.successors) {

w.next_rank += weight * v.rank;

}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Tesseract System for Graph Processing

Crossbar Network

…

…

…
…

D
R

A
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 C
o

n
tro

ller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network

…
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n
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Message Queue
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Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Communications In Tesseract (I)
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Communications In Tesseract (II)
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Communications In Tesseract (III)
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Remote Function Call (Non-Blocking)
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Logic

Memory

Tesseract System for Graph Processing
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Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s
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8 OoO
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DDR3-OoO Tesseract

32 
Tesseract 

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%
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0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
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>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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+56% +25%
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Effect of Bandwidth & Programming Model
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2.3x

3.0x

6.5x
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HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract
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HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)



Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract: Advantages & Disadvantages

◼ Advantages

+ Specialized graph processing accelerator using PIM

+ Large system performance and energy benefits

+ Takes advantage of 3D stacking for an important workload

+ More general than just graph processing 

◼ Disadvantages

- Changes a lot in the system

- New programming model

- Specialized Tesseract cores for graph processing

- Cost

- Scalability limited by off-chip links or graph partitioning
144



More on Tesseract

◼ Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications 

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Several Questions in 3D-Stacked PIM

◼ What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?

❑ By changing the entire system

❑ By performing simple function offloading

◼ What is the minimal processing-in-memory support we can 

provide?

❑ With minimal changes to system and programming
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Several Questions in 3D-Stacked PIM

◼ What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?

❑ By changing the entire system

❑ By performing simple function offloading

◼ What is the minimal processing-in-memory support we can 

provide?

❑ With minimal changes to system and programming
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3D-Stacked PIM on Mobile Devices

◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 

Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Consumer Devices

Consumer devices are everywhere!

Energy consumption is

a first-class concern in consumer devices



Four Important Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec



Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the total system 

energy is spent on data movement

Potential solution:move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPU
CPU

CPU
Compute 

Unit 



Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the

data movement often comes from simple functions

PIM 

Core

PIM 

Accelerator
PIM 

Accelerator
PIM 

Accelerator

We can design lightweight logic to implement

these simple functions in memory

Small embedded

low-power core

Small fixed-function 

accelerators

Offloading to PIM logic reduces energy and improves 

performance, on average, by 55.4% and 54.2%



Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec



TensorFlow Mobile

57.3% of the inference energy is spent on

data movement

54.4% of the data movement energy comes from 

packing/unpacking and quantization

Inference Prediction



Packing

Reorders elements of matrices to minimize 

cache misses during matrix multiplication

Up to 40% of the

inference energy and 31% of

inference execution time 

Packing’s data movement 

accounts for up to 

35.3% of the inference energy

Packing
Matrix Packed Matrix

A simple data reorganization process

that requires simple arithmetic 



Quantization

Converts 32-bit floating point to 8-bit integers to improve 

inference execution time and energy consumption 

Up to 16.8% of the 

inference energy

and 16.1% of 

inference execution time 

Majority of quantization

energy comes from 

data movement

Quantization
floating point integer

A simple data conversion operation that requires 

shift, addition, and multiplication operations



Normalized Energy 
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Normalized Runtime
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Offloading these kernels to PIM core and PIM accelerator

improves performance on average by 44.6% and 54.2%



160

TensorFlow
Google’s machine learning 

framework

Video Playback

Google’s video codec

Video Capture

Google’s video codec

Workload Analysis

Chrome
Google’s web browser



How Chrome Renders a Web Page
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How Chrome Renders a Web Page

15

HTML
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paints those objects

and generates the bitmapscalculates the
visual elements and 

position of each object

assembles all layers

into a final screen image



Browser Analysis

• To satisfy user experience, the browser must 

provide:

– Fast loading of webpages

– Smooth scrolling of webpages

– Quick switching between browser tabs

• We focus on two important user interactions:

1)  Page Scrolling 

2)   Tab Switching

– Both include page loading

16



Tab Switching

26



What Happens During Tab Switching?

• Chrome employs a multi-process architecture

– Each tab is a separate process

• Main operations during tab switching:

– Context switch

– Load the new page

27

Chrome Process

…

Tab 1 

Process 

Tab 2

Process 

Tab N

Process 



Memory Consumption

• Primary concerns during tab switching:

– How fast a new tab loads and becomes interactive

– Memory consumption

28

CPU

DRAM

Inactive Tab

CompressionDecompression

Chrome uses compression to

reduce each tab’s memory footprint

ZRAM

Compressed Tab



Data Movement Study

• To study data movement during tab switching, 

we emulate a user switching through 50 tabs

29

Compression and decompression

contribute to18.1% of the total system energy

19.6 GB of data moves between

CPU and ZRAM2

1

We make two key observations:



Can We Use PIM to Mitigate the Cost?

30
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Tab Switching Wrap Up

31

A large amount of data movement happens 

during tab switching as Chrome attempts to 

compress and decompress tabs

2

Both functions can benefit from PIM execution 

and can be implemented as PIM logic



More on PIM for Mobile Devices
◼ Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Truly Distributed GPU Processing with PIM?

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Accelerating GPU Execution with PIM (II)

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Accelerating Linked Data Structures

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 

174

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Accelerating Dependent Cache Misses

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Accelerating Runahead Execution 

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Accelerating Climate Modeling

◼ Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan 
Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


Accelerating Approximate String Matching
◼ Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Accelerating Time Series Analysis

◼ Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan 
Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer 
Design (ICCD), Virtual, October 2020.
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https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/


Several Questions in 3D-Stacked PIM

◼ What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?

❑ By changing the entire system

❑ By performing simple function offloading

◼ What is the minimal processing-in-memory support we can 

provide?

❑ With minimal changes to system and programming
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PIM-Enabled Instructions

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead, 

Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 

[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


PEI: PIM-Enabled Instructions (Ideas)
◼ Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 

changes to the programming model

◼ Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 

operates on only a single cache block
❑ e.g., __pim_add(&w.next_rank, value) → pim.add r1, (r2)

❑ No changes sequential execution/programming model

❑ No changes to virtual memory

❑ Minimal changes to cache coherence

❑ No need for data mapping: Each PEI restricted to a single memory module

◼ Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 

characteristics and simple hardware predictors
❑ Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)
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Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}
Host Processor

w.next_rankw.next_rank

64 bytes in
64 bytes out

Conventional Architecture



Simple PIM Operations as ISA Extensions (III)
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Main Memory

w.next_rankw.next_rank

Host Processor

value

8 bytes in
0 bytes out

In-Memory Addition

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)



Always Executing in Memory? Not A Good Idea
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PEI: PIM-Enabled Instructions (Example)

186

◼ Executed either in memory or in the processor: dynamic decision

❑ Low-cost locality monitoring for a single instruction

◼ Cache-coherent, virtually-addressed, single cache block only

◼ Atomic between different PEIs

◼ Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pfence();

pim.add r1, (r2)

pfence



PIM-Enabled Instructions

◼ Key to practicality: single-cache-block restriction

❑ Each PEI can access at most one last-level cache block

❑ Similar restrictions exist in atomic instructions

◼ Benefits

❑ Localization: each PEI is bounded to one memory module

❑ Interoperability: easier support for cache coherence and 
virtual memory

❑ Simplified locality monitoring: data locality of PEIs can be 
identified simply by the cache control logic



PEI: Initial Evaluation Results

◼ Initial evaluations with 10 emerging data-intensive workloads

❑ Large-scale graph processing

❑ In-memory data analytics

❑ Machine learning and data mining

❑ Three input sets (small, medium, large)                                                  
for each workload to analyze the impact                                            
of data locality

◼ Pin-based cycle-level x86-64 simulation

◼ Performance Improvement and Energy Reduction: 

◼ 47% average speedup with large input data sets

◼ 32% speedup with small input data sets

◼ 25% avg. energy reduction in a single node with large input data sets
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Evaluated Data-Intensive Applications

◼ Ten emerging data-intensive workloads

❑ Large-scale graph processing

◼ Average teenage follower, BFS, PageRank, single-source shortest 
path, weakly connected components

❑ In-memory data analytics

◼ Hash join, histogram, radix partitioning

❑ Machine learning and data mining

◼ Streamcluster, SVM-RFE

◼ Three input sets (small, medium, large) for each workload
to show the impact of data locality



PEI Performance Delta: Large Data Sets
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PEI Performance: Large Data Sets
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PEI Performance Delta: Small Data Sets
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PEI Performance: Small Data Sets
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PEI Performance Delta: Medium Data Sets
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PEI Energy Consumption
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PEI: Advantages & Disadvantages

◼ Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory

+ Dynamically decides where to execute an instruction

◼ Disadvantages

- Does not take full advantage of PIM potential

- Single cache block restriction is limiting
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Simpler PIM: PIM-Enabled Instructions

◼ Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead, 

Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 

[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Automatic Offloading of Critical Code

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Automatic Offloading of Prefetch Mechanisms

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Efficient Automatic Data Coherence Support

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Efficient Automatic Data Coherence Support

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement

205



Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling, 

data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

208

All can be solved with change of mindset



We Need to Revisit the Entire Stack

209

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step



PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 

Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,

"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Key Challenge 1: Code Mapping

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

?

Main GPU

3D-stacked memory

(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 

SM

Crossbar switch

Vault 

Ctrl

…. Vault 

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?

◼ Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


How to Schedule Code? (I)

◼ Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


How to Schedule Code? (II)

◼ Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


How to Schedule Code? (III)

◼ Milad Hashemi, Onur Mutlu, and Yale N. Patt,
"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional

coherence

No coherence

overhead



How to Maintain Coherence? (I)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Maintain Coherence? (II)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


CoNDA:

Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose,  Minesh Patel, Hasan Hassan, 

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, 

Onur Mutlu



ASIC

Specialized Accelerators
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FPGAGPU

NDAASIC

ASIC

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology 

enabled Near-Data Accelerators (NDA)

CPU
DRAM

NDA



ASIC

Coherence For NDAs
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Challenge: Coherence between NDAs and CPUs

DRAM
L2L1

CPU
CPU
CPU

CPU

NDA

Compute 

Unit 

(1) Large cost of 

off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate 

a large amount of off-chip data movement



ASIC

Existing Coherence Mechanisms

224

We extensively study existing NDA coherence 

mechanisms and make three key observations: 

These mechanisms eliminate

a significant portion of NDA’s benefits1

The majority of off-chip coherence traffic 

generated by these mechanisms is unnecessary2

Much of the off-chip traffic can be eliminated

if the coherence mechanism has insight

into the memory accesses

3



ASIC

An Optimistic Approach

225

1 Gain insights before any coherence checks happens

We find that an optimistic approach to coherence can 

address the challenges related to NDA coherence

2 Perform only the necessary coherence requests



CoNDA
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Time

Optimistic

execution

CPU NDA

Concurrent 

CPU + NDA 

Execution SignatureSignature

Coherence Resolution

CPU Thread 

Execution

We propose CoNDA,a mechanism that uses optimistic 

NDA execution to avoid unnecessary coherence traffic

No 

Coherence Request



CoNDA
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Time

Optimistic

execution

CPU NDA

Concurrent 

CPU + NDA 

Execution SignatureSignature

Coherence Resolution

CPU Thread 

Execution

We propose CoNDA,a mechanism that uses optimistic 

NDA execution to avoid unnecessary coherence traffic

No 

Coherence Request

CoNDA comes within 10.4% and 4.4% of performance 

and energy of an ideal NDA coherence mechanism



CoNDA:

Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose,  Minesh Patel, Hasan Hassan, 

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,

Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, 

Onur Mutlu



How to Maintain Coherence? (II)

◼ Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 

Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


How to Support Virtual Memory?

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?

◼ Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

231

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

◼ Ramulator extended for PIM

❑ Flexible and extensible DRAM simulator

❑ Can model many different memory standards and proposals

❑ Kim+, “Ramulator: A Flexible and Extensible DRAM 
Simulator”, IEEE CAL 2015.

❑ https://github.com/CMU-SAFARI/ramulator-pim

❑ https://github.com/CMU-SAFARI/ramulator

❑ [Source Code for Ramulator-PIM]
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https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim


Performance & Energy Models for PIM

◼ Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F. 
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance 
Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC), Las Vegas, 
NV, USA, June 2019.
[Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code for Ramulator-PIM]
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https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim


An FPGA-based Test-bed for PIM?

◼ Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-

Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

◼ Flexible

◼ Easy to Use (C++ API)

◼ Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


Simulation Infrastructures for PIM (in SSDs) 

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, 
Saugata Ghose, and Onur Mutlu,

"MQSim: A Framework for Enabling Realistic Studies of 
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]

[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


New Applications and Use Cases for PIM

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 

Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 

Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary

◼ Genome Read Mapping is a very important problem and is the first 
step in many types of genomic analysis

❑ Could lead to improved health care, medicine, quality of life

◼ Read mapping is an approximate string matching problem

❑ Find the best fit of 100 character strings into a 3 billion character dictionary

❑ Alignment is currently the best method for determining the similarity between 
two strings, but is very expensive

◼ We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

◼ We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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Google Workloads

for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Accelerating Climate Modeling

◼ Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan 
Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


Accelerating Approximate String Matching
◼ Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Accelerating Time Series Analysis

◼ Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan 
Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer 
Design (ICCD), Virtual, October 2020.
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https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/


PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 

Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,

"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement
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One Important Takeaway

Main Memory Needs 

Intelligent Controllers

248



Enabling the Paradigm Shift



Recall: Computer Architecture Today

◼ You can revolutionize the way computers are built, if you 
understand both the hardware and the software (and 

change each accordingly)

◼ You can invent new paradigms for computation, 
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve 
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined
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Recall: Computer Architecture Today

◼ You can revolutionize the way computers are built, if you 
understand both the hardware and the software (and 

change each accordingly)

◼ You can invent new paradigms for computation, 
communication, and storage

◼ Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)

❑ Pre-paradigm science: no clear consensus in the field

❑ Normal science: dominant theory used to explain/improve 
things (business as usual); exceptions considered anomalies

❑ Revolutionary science: underlying assumptions re-examined

251



UPMEM Processing-in-DRAM Engine (2019)

252

◼ Processing in DRAM Engine 

◼ Includes standard DIMM modules, with a large 
number of DPU processors combined with DRAM chips.

◼ Replaces standard DIMMs

❑ DDR4 R-DIMM modules

◼ 8GB+128 DPUs (16 PIM chips)

◼ Standard 2x-nm DRAM process

❑ Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


Sub-Agenda: In-Memory Computation

◼ Major Trends Affecting Main Memory

◼ The Need for Intelligent Memory Controllers

❑ Bottom Up: Push from Circuits and Devices

❑ Top Down: Pull from Systems and Applications

◼ Processing in Memory: Two Directions

❑ Minimally Changing Memory Chips

❑ Exploiting 3D-Stacked Memory

◼ How to Enable Adoption of Processing in Memory

◼ Conclusion
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Maslow’s Hierarchy of Needs, A Third Time
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Speed

Speed

Speed

Speed

Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally

High-Performance

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

Energy-Efficient

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally

Low-Latency

(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures

with 

Minimal Data Movement
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PIM: Concluding Remarks
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A Quote from A Famous Architect

◼ “architecture […] based upon principle, and not upon 
precedent”

260



Precedent-Based Design?

◼ “architecture […] based upon principle, and not upon 
precedent”
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Principled Design

◼ “architecture […] based upon principle, and not upon 
precedent”

262
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The Overarching Principle
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Another Example: Precedent-Based Design

265Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

266Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

267Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903

Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

268Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107



Principle Applied to Another Structure

269
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle
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Overarching Principle for Computing?

271Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks

◼ It is time to design principled system architectures to solve 
the memory problem

◼ Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

◼ Enable computation capability inside and close to memory

◼ This can

❑ Lead to orders-of-magnitude improvements 

❑ Enable new applications & computing platforms

❑ Enable better understanding of nature

❑ …
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The Future of Processing in Memory is Bright

◼ Regardless of challenges 

❑ in underlying technology and overlying problems/requirements 

273

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



We Need to Revisit the Entire Stack
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Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

We can get there step by step



If In Doubt, See Other Doubtful Technologies

◼ A very “doubtful” emerging technology 

❑ for at least two decades

275
https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


Flash Memory Timeline
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Flash Memory Timeline
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PIM Review and Open Problems

278

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 

Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,

"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf
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Fall 2020
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We Did Not Cover The Later Slides.

They Are For Your Benefit.
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Accelerating Linked Data Structures

◼ Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Executive Summary

• Our Goal: Accelerating pointer chasing inside            
main memory

• Challenges: Parallelism challenge and Address 
translation challenge

• Our Solution: In-Memory PoInter Chasing 
Accelerator (IMPICA)

• Address-access decoupling: enabling parallelism in the 
accelerator with low cost

• IMPICA page table: low cost page table in logic layer

• Key Results: 
• 1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput

• 6% - 41% reduction in energy consumption
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Linked Data Structures

• Linked data structures are widely used 
in many important applications
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The Problem: Pointer Chasing

• Traversing linked data structures 
requires chasing pointers
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DRAM layers

Our Goal
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Parallelism Challenge
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Parallelism Challenge and Opportunity

• A simple in-memory accelerator can 
still be slower than multiple CPU cores

• Opportunity: a pointer-chasing 
accelerator spends a long time     
waiting for memory
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Our Solution: 
Address-Access Decoupling
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DRAM Dies

IMPICA Core Architecture
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Address Translation Challenge
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Our Solution: IMPICA Page Table

• Completely decouple the page table of 
IMPICA from the page table of the 
CPUs
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IMPICA Page Table: Mechanism

Bit [47:41] Bit [40:21] Bit [20:12] Bit [11:0]
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+

+

Virtual Address
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Evaluation Methodology

• Simulator: gem5

• System Configuration
• CPU

• 4 OoO cores, 2GHz

• Cache: 32KB L1, 1MB L2

• IMPICA
• 1 core, 500MHz, 32KB Cache

• Memory Bandwidth
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

• Our simulator code is open source
• https://github.com/CMU-SAFARI/IMPICA
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https://github.com/CMU-SAFARI/IMPICA


Result – Microbenchmark Performance
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Result – Database Performance
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System Energy Consumption
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Area and Power Overhead

• Power overhead: average power 
increases by 5.6%
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CPU (Cortex-A57) 5.85 mm2 per core

L2 Cache 5 mm2 per MB

Memory Controller 10 mm2

IMPICA (+32KB cache) 0.45 mm2


