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Sub-Agenda: In-Memory Computation

= Major Trends Affecting Main Memory

= The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications
= Processing in Memory: Two Directions
o Minimally Changing Memory Chips
o Exploiting 3D-Stacked Memory
= How to Enable Adoption of Processing in Memory

= Conclusion




Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement



Observation and Opportunity

High latency and high energy caused by data movement
o Long, energy-hungry interconnects

o Energy-hungry electrical interfaces

o Movement of large amounts of data

Opportunity: Minimize data movement by performing
computation directly (near) where the data resides

o Processing in memory (PIM)

o In-memory computation/processing
o Near-data processing (NDP)
a

General concept applicable to any data storage & movement
unit (caches, SSDs, main memory, network, controllers)
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Four Key Issues in Future Platforms

= Fundamentally Secure/Reliable/Safe Architectures

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures
= Fundamentally Low-Latency Architectures

= Architectures for Genomics, Medicine, Health

SAFARI



Maslow’s (Human) Hierarchy of Needs, Revisited

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” actualization:

Book, 1954-1970. oﬁlile;r'gnc_m"s

including creative
activities
Esteem needs:

prestige and feeling of accomplishment Psychological

needs
Belongingness and love needs:
infimate relationships, friends

Safety needs:
security, safety Basic

y . needs
y Everlastingenergy \

SA FA R’ Source: https://www.simplypsychology.org/maslow.html 0



Do We Want This?

SA FAR’ Source: V. Milutinovic



Or This?

SA FARI Source: V. Milutinovic 8



Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 10



The Problem

Processing of data
iSs performed
far away from the data

SAFARI
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A Computing System

= Three key components

= Computation
= Communication

= Storage/memory

Computing System
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.
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Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.
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Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4 A

Computing E a Communication E E Memory/Storage
Unit Unit Unit

\. J

Memaory System Storage System
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I expect that over the coming decade memory subsys-
i e t tem design will be the only important design issue for micro-

processors.

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Pertformance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)
One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEE Micro.

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark t Chris Wilkerson 1 Yale N. Patt §
§ECE Department TMicroprocessor Research tDesktop Platforms Group

The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Memory Bottleneck

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Effective Alternative to Large
Instruction Windows"
IEEE Micro, Special Issue: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS) Vol. 23, No. 6, pages 20-25,
November/December 2003.

RUNAHEAD EXECUTION:
AN EFFECTIVE ALTERNATIVE TO
LARGE INSTRUCTION WINDOWS
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https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro03.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2003.1261383

It’s the Memory, Stupid!

RICHARD SITES

It's the Memory, Stupid!

When we started the Alpha architecture design in 1988, we
estimated a 25-year lifetime and a relatively modest 32% per
year compounded performance improvement of implemen-
tations over that lifetime (1,000X total). We guestimated about
10X would come from CPU clock improvement, 10X from
multiple instruction issue, and 10X from multiple processors.

5, 1996 %> MICROPROCESSOR REPORT

http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf 18



http://cva.stanford.edu/classes/cs99s/papers/architects_look_to_future.pdf

An Informal Interview on Memory

= Madeleine Gray and Onur Mutlu,
"'It's the memory, stupid’: A conversation with Onur Mutiu”
HIPEAC info 55, HIPEAC Newsletter, October 2018.
[Shorter Version in Newsletter]
[Longer Online Version with References]

It's the memory, stupid”: A conversation with Onur Mutlu

‘We're beyond computation; we know how to do computation really well, we can
optimize it, we can build all sorts of accelerators ... but the memory — how to
feed the data, how to get the data into the accelerators - is a huge problem’

This was how ETH Zirich and Carnegie Mellon
Professor Onur Mutlu opened his course on
memory systems and memory-centric
computing systems at HIPEAC's summer
school, ACACES18. A prolific publisher — he
recently bagged the top spot on the
International Symposium on Computer
Architecture (ISCA) hall of fame — Onur is
passionate about computation and
communication that are efficient and secure
by design. In advance of our Computing
Systems Week focusing on data centres,

storage, and networking, which takes place 19
next week in Heraklion, HIPEAC picked his brains on all things data-based.


https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/publications/newsletter/
https://www.hipeac.net/media/public/publications/newsletter/hipeacinfo55_final_web.pdf
https://www.hipeac.net/news/6871/its-the-memory-stupid-a-conversation-with-onur-mutlu/

The Performance Perspective (T'oday)

= All of Google’s Data Center Workloads (2015):
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Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.
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The Performance Perspective (T'oday)

All of Google’s Data Center Workloads (2015):
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Figure 11: Half of cycles are spent stalled on caches.
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Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex

22



Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect

\
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Shared Shared
4 | Memory Memory
Control Control

Shared Memory

Most of the system is dedicated to storing and moving data




The Energy Perspective

Communication Dominates Arithmetic

Dally, HIPEAC 2015

—A
256 pJ 16 nJ |- ng‘xr

256-bit access
8 kB SRAM
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Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP , DRAM
16 nJ * Rd/Wr

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

—

P EEEE S . . . .y,

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC'14)

SAFARI 26



Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose' Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
SAFARI 27


https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP , DRAM
16 nJ * Rd/Wr

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




We Need A Paradigm Shift To ...

Enable computation with minimal data movement

Compute where it makes sense (where data resides)

Make computing architectures more data-centric

29



Goal: Processing Inside Memory

Processor

t Database

Core

| Media

Results

Many questions ... How do we design the:

Q

o o o 0O

compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software, compilers, languages?
algorithms and theoretical foundations?

Graphs

Interconnect

Problem

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Electrons




Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 3



UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

8GB/128xDPU PIM R-DIMM Module

LIPMEM UIPMERA LIPRAE M LIPBAERA LIFRAERA LIPME N UBRAERA UEREM
IR PN PR Pk Pk PIM PN BiNa
chip dhip thip chip chip ¢ higg dhip thip

https://mwww.anandtech.com/show/14 /50/hot-chips-31-analysis-inmemory-processing-by-upmem 32
https:/Mww. upmem.com/video-upmem-presenting-its-true-processing -in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

We Need to Think Difterently
from the Past Approaches




Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI
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Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
o Can exploit analog computation capability

a ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI 36


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initialization

SAFARI



Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mendel Rosenblum, Edouard Bugnion, Stephen Alan Hermrod,
et Witchel, and Anoop Gupta

4
+

Com icati
munications Technolog

ving Bulk Memory Copying and Initialization
Performance

' Lah

Architecture Support for Impro

Xigowei Jiang, Yan Solihin Li Zhao. Ravishankar Lyer
Intel Labs

Pept. of Electrical and Computer Engineering
North Caroling State University
Raleigh, USA

Intel Corporation
Hillshoro, USA
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Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ISCA'I5]

0[0[0]0]0)

0[0[0]0]0)
0[0[0]0]0)

Zero initialization ' '

Forking . o “cecurity) Checkpointing

4 L

VM Cloning  page Migration
Deduplication

SAFARI 39

Many more




Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6u) (for 4KB page copy via DMA)

40



Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns,3.6u) —> 90ns, 0.04ul

41



RowClone: In-DRAM Row Copy

Transfer
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

FEPPPPPPPPTPTVTITITTIITT] Row Buffer (4 Kbytes)

I8 bits

[ 11.6X latency reduction, 74X energy reduction ]




RowClone: Intra-Subarray

Voo/2 Vi H

Src 0<—I -
dst o<—I e

Amplify the
difference
Data gets ; ;

IV/% O

copied

Sense Amplifier ‘ |
' Vp/2
(Row Buffer) '!ig oo/



RowClone: Intra-Subarray (II)

Row Buffer

1. Activate src row (copy data from src to row buffer)

(

\

2. Activate dst row (disconnect src from row buffer,
connect dst — copy data from row buffer to dst)

N




RowClone: Inter-Bank

-

Overlap the latency of the read and the write

| 1.9X latency reduction, 3.2X energy reduction )

A (f N \
Tc) f N \
= BN | Bank
(qV]
c @)
U = - 7 - Shared
e Q_ é"—',
P = I i internal bus
S f N \
W,
= ]
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Generalized RowClone

0.019% area cost

Bankl/O [ V

Inter Subarray Copy )
(Use Inter-Bank Copy Twice) —~
TC) A =
c
e o [ ][Bank]

- = [ | )
> | |

215

)

Ey C— y,

Inter Bank Copy  Intra Subarray

(Pipelined Copy (2 ACTs)
Internal RD/WR)




RowClone: Fast Row Initialization

\4

Fix a row at Zero
(0.5% loss in capacity)

47



RowClone: Bulk Initialization

Initialization with arbitrary data
o Initialize one row
o Copy the data to other rows

Zero initialization (most common)

o Reserve a row in each subarray (always zero)
o Copy data from reserved row (FPM mode)

o 6.0X lower latency, 41.5X lower DRAM energy
a

0.2% loss in capacity

SAFARI
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RowClone: Latency & |

“nergy Benetits

Latency Reduction Energy Reduction
Jltézl T 11.6x go - /44X
41.5X

10 6.0x °0

8 40

6

‘2“ -9 1.0x I 20 3.2x 15 I

0 H = 0 - |~ | - -
f > v > > o o ot —

.

Very low cost: 0.01% increase in die area

J

‘ Copy ‘ Zem>‘

Copy

| Zero |

SAFARI
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Copy and Initialization in Workloads

M /ero

mCopy  m Write B Read

[
|

0.8

0.6 -

0.4 -

0.2

Fraction of Memory Traffic

bootup compile forkbench mcached mysql shell
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RowClone: Application Performance

m |PC Improvement m Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell
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End-to-End System Design

- How to communicate
Application occurrences of bulk
copy/initialization across
layers?

Operating System

How to ensure cache
coherence?

How to maximize latency and

Microarchitecture :
energy savings?

DRAM (RowClone) How to handle data reuse?

52



RowClone: Latency and Energy Savings

M Baseline
W Inter-Bank

M Intra-Subarray
M Inter-Subarray

1.2

[N
|

A

74x

o
(00)
|

o
~
|

Normalized Savings
o
(@)

O
o
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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More on RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"

Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons? Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

Memory Controller

mini-CPU| £ | Gpy GPU |:
CPU CPU dells : [(throughput)l |(throughput)| :
core core . core core
video
core
: GPU GPU :
CPU CPU _ _ 2 [throughput)] |(throughput)| :
core core IrnC?)grleng . core core .
LLC
||

Memory Bus

Memory similar to a “conventiona

Memory

Specialized
compute-capability
In_memory

accelerator



In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

56



In-DRAM AND/OR: Triple Row Activation
YV ppto
A l e | #Voo?

Final State
AB + BC + AC

| %,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 57




In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B > C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C

SAFARI 58
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
[EEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University fIntel Pittsburgh

SAFARI >


http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

d-wordline

dual-contact
cell (DCC)

n-wordline

sense
amplifier
enable

T mm mm mm = omm o

bitline

Idea:
Feed the

bitline

Figure 5: A dual-contact
cell connected to both
ends of a sense amplifier

ANV negated value

in the sense amplifier
into a special row

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI
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In-DRAM NOT Operation

Initial State After Charge Sharing Activated d-wordline Activated n-wordline

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 01



Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 HMC 2.0 Ambit Il Ambit-3D
E 2048 T
7p] 1024 O
8 512 B POURRUR maay NI [ I
(D i‘) 256 —eriiiiiiieeeeed] R T e e
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a 73] 64 I R I e Temeaaaeaaeney B B AT DR R SRR R B
o0 24l |l R R | R
'go 9 16— | &l R | R | R
8 —_.e—l | E..........— | BH......c....eeed | BB.-.-i-iiiep—d | BM...........
o N HE e BN e BN W N
= NN BN SN BN SE EE SR B .
| | | | |
not and/or nand/nor XOI/XNor mean

Figure 9: Throughput of bitwise operations on various systems.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy ~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (}) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (/) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Ambit vs. DDR3: Performance and
Energy

Performance Improvement
B Energy Reduction
70

gg 32X 35X
40 I \ﬁ
30
20
111
0
> o o )
Q @0\ {\6\0 \+<\ &
< +

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 6]47



Bulk Bitwise Operations in Workloads

BitWeaving
Bitmap indices (database queries)
(database indexing)
| BitFunnel
Bulk Bitwise (web search)
Set operations Operations
DNA
sequence mapping

Encryption algorithms

[1] Li and Patel, BitWeaving, SIGMOD 2013
SAFAR’ [2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age<18 18<age<25 25<age<60 age>60

SAFARI



Performance: Bitmap Index on Ambit

=
Y
o

|

00 _: [ 1 Baseline I Ambit ool b,

Execution Time
of the Query (ms)

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

>5.4-6.6X Performance Improvement

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 67



Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW Count (]") _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

16 24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
[EEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuchf, Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University fIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri’® Donghyuk Lee?® Thomas Mullins®>® Hasan Hassan! Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

'Microsoft Research India *NVIDIA Research “Intel ?ETH Ziirich °Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

More on In-DRAM Bulk Bitwise Execution

= Vivek Seshadri and Onur Mutlu,

'In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zurich

visesha@microsoft.com onur .mutlu@inf.ethz.ch
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Challenge: Intelligent Memory Device

Does memory

have to be
dumb?

SAFARI



Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



A Detour

on the Review Process

74




Ambit Sounds Good, No?

Paper summary Review from ISCA 2016
The paper proposes to extend DRAM to include bulk, bit-wise
logical

operations directly between rows within the DRAM.

Strengths
- Very clever/novel idea.

- Great potential speedup and efficiency gains.

- Probably won't ever be built. Not practical to assume DRAM
manufacturers with change DRAM in this way.

SAFARI >




Another Review

Another Review from ISCA 2016

Strengths

The proposed mechanisms effectively exploit the operation of
the DRAM to perform efficient bitwise operations across entire
rows of the DRAM.

Weaknesses

This requires a modification to the DRAM that will only help this
type of bitwise operation. It seems unlikely that something like

that will be adopted.

SAFARI 76



Yet Another Review

Yet Another Review from ISCA 2016

Weaknesses

The core novelty of Buddy RAM is almost all circuits-related
(by exploiting sense amps). | do not find architectural

innovation even though the circuits technique benefits
architecturally by mitigating memory bandwidth and relieving
cache resources within a subarray. The only related part is the

new ISA support for bitwise operations at DRAM side and its
iInduced issue on cache coherence.

SAFARI 7



The Reviewer Accountability Problem

AcknowleXgments

We thank the reviewers of ISCA 2016/2017, MICRO
2016/2017, and HPCA 2017 for their valuable comments. We

SAFARI 78



We Have a Mindset Issue...

There are many other similar examples from reviews...
o For many other papers...

And, we are not even talking about JEDEC vyet...

How do we fix the mindset problem?

By doing more research, education, implementation in
alternative processing paradigms

We need to work on enabling the better future...

SAFARI 9



Aside: A Recommended Book

WILEY PROFESSIONAL COMPUTING

COMPUTER
SYSTEMS

ANALYSIS

Techniques for
Experimental Design,
Measurement, Simulation,
and Modeling

Raj Jain

SAFARI

THE ART OF

PERFORMANCE

Raj Jain, “The Art of
Computer Systems

Performance Analysis,”
Wiley, 1991.
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pECISON MAKE S 161
DECISION MAKER'S GAMES

gven if the performance analysis is correctly done and presented, it may not be
enough 10 -persuade your EMwMe degsion makers—to follow your rec-
ommendations- The list shown in Box 10.2 is a compilation of reasons for re-
ection heard at various performance analysis presentations. You can use the
jist by presenting it immediately and pointing out that the reason for rejection
is not new and that the analysis deserves more consideration. Also, the list is
nelpful in getting the competing proposals rejected!
There is no clear end of an analysis. Any analysis can be rejected simp

E;ltcd in Box 10.2. The second most common reason for rejection of an anal-
ysis and for endless debate is the workload. Since workloads are always based
on the past measurements, their applicability to the current or future environ-
ment can always be questioned. Actually workload is one of the four areas of
discussion that lead a performance presentation into an endless debate. These
«rat holes” and their relative sizes in terms of time consumed are shown in
Figure 10.26. Presenting this cartoon at the beginning of a presentation helps
to avoid these areas.

Performance Analysis Rat Holes

Raj Jain, “The Art of
Metrics  Configuration Computer Systems
Performance Analysis,”
Wiley, 1991.

FIGURE 10.26 Four issues in performance presentations that commonly lead to end-
= 81




Box 10.2  Reasons for Not Accepting the Results of ap 5y, -
X 10 s

; s more ana]ysis.
1. This need ter understanding of the workload.

2. You need a bet 1v for long 1O
. ves performance oniy for long I/O's, packets, j 74
2 e o the 1/0s, packets, jobs, and files are shor, 'fj

; rformance only for short I/O’s, packets, j _
4. Jt Smppes pefor the performance of short 1/O’s, pa‘im ;‘:&mq
anq

t who cares ;
g?es; its the long ones that impact the system.

5. It needs too much memory/CPU/bandwidth and memoryCPypy, .
width isn’t free. . § /
6. It only saves us memory/CPU/bandwidth and memory/Cpyp,,. | 4/
width is cheap. by

7. There is no point in making the networks (similarly, CPUg/g; -
faster; our CPUs/disks (any component other than the one being d;).
cussed) aren’t fast enough to use them.

8. It improves the performance by a factor of x, but it doesnt raly
matter at the user level because everything else is so slow, ‘

9. It is going to increase the complexity and cost.

10. Let us keep it simple stupid (and your idea is not stupid),
11. It is not simple. (Simplicity is in the eyes of the beholder.)

12. It requires too much state.

13. Nobody has ever done that before. (You have a new idea.) Raj Jain. “The Art of

14. It is not going to raise the price of our stock by even an eighth,

(Nothing ever does, except rumors.) Computer Systems
15. This will violate the IEEE, ANSI, CCITT, or ISO standard. Performance Ana|ysi3 ,”
16. It may violate some future standard. Wil ey 1991

17. The standard says nothing about this and so it must not be impor-
tant.

18. ‘(i)ur competitors don’t do it. If it was a good idea, they would have

one it

19. Our competition does it this way and you don’t make money by copy"
ing others,

20. It will introduce randomness into debuggi
e into the system and make debugginé

21. It is too deterministic; it may lead the system into a cycle.

22. It’s not interoperable.

23. This impacts hardware,

24. That's beyond today’s technology.

26. Why change—it’s working OK.
H—__v
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Suggestion to Community

We Need to Fix the
Reviewer Accountability
Problem

SAFARI



Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI



Takeaway

Research Community
Needs

Accountable Reviewers

SAFARI



Suggestions to Reviewers

= Be fair; you do not know it all
= Be open-minded; you do not know it all

= Be accepting of diverse research methods: there is no
single way of doing research

= Be constructive, not destructive
= Do not have double standards...

Do not block or delay scientific progress for non-reasons

SAFARI



RowClone & Bitwise Ops i1n Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/microl19-gao.pdf 87



https://parallel.princeton.edu/papers/micro19-gao.pdf

RowClone & Bitwise Ops i1n Real DRAM Chips

MICRO-52, October 12-16, 2019, Columbus, OH, USA

|/ SN N — N S Y S [ — S
2
. T} 1 [ [ [ T
T |1 7 13 T |1 7
[ | IF 1 L
1] 13 13 I 13
W Ay &Y AY AY &Y &y
| |
®©® © 60 @ _06_ 6
-O—O ® O>——
ACT(R,) PRE ACT(R,) time
: a

Figure 4: Timeline for a single bit of a column in a row copy
operation. The data in R; is loaded to the bit-line, and over-
writes R».

SAFARI

Gao et al.
Vaa o fred o S
2
= - L changing n) =l L]
S row 1 N
Operand:1 7 T e ! !
1 01 Rl I — —
R,=01, l \
Constant:0 7 . y !
| 00 R, M |
R,=10, T L l —1 I/ \ I
Operand:0
T | 10R, ? R
Y IS PN
"@ -”'® _______::::::@_____-@ /@
AC .(RI) F,'R:E AC-':(Rz) time
T'l = ;rz = Oidle cycle

Figure 5: Logical AND in ComputeDRAM. R; is loaded with
constant zero, and R; and R3; store operands (0 and 1). The
result (0 = 1 A 0) is finally set in all three rows.

https://parallel.princeton.edu/papers/microl19-gao.pdf 88
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Row Copy in ComputeDRAM

2

Ry

WW
N

]|
E'I“':'T
E'T':'T

£ E 7 Bitline is above
Vpp/2 when R2 is

activated.
Q ;j time
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Bitwise AND in ComputeDRAM

Vad

2

R,=00, changing \l
row
Operand:1
address

-

ITJ 01 R,
R1=012
Constant:0 v

T2 very short
PRE cannot close R1
R3 will appear on the address bus

ACT(R2) will activate R3 and R2 |~ 457 57 57

activated

ACTjRﬂ PRE AC

-

|
o
=
3
[}

||
Tj_ =

o
I

0 idle cycle
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Experimental Methodology

Host SoftMC software ;L PCle] BPaR SoftMCthardware
PC 4
‘ . I DDR3 PHY l
ComputeDRAM Library DRAM _I ;
Application (a) Peltier plate heater IJ
[ |

Figure 9: (a) Schematic diagram of our testing framework. (b)
Picture of our testbed. (c) Thermal picture when the DRAM

is heated to 80 °C.



Experimental Methodology

Table 1: Evaluated DRAM modules

Group ID:
Vendnr_SizeljFreq(MHz) Part Num # Modules
SKhynix_2G_1333 HMT325S6BFR8C-H9 6
SKhynix_4 2
SKhynix_4 2
SKhynix_4 4
SKhynix_4 32 DDR3 Modules 2
Samsung 4 . 2
someng 4 ~256 DRAM Chips |
Micron_ 2G 2
Micron 2G 2
Elpida 2G 1333 EBJ21UE8SBDS0-DJ-F 2
Nanya_4G_1333 NT4GC64BSHGONS-CG 2
TimeTec_4G_1333 78 AP10NUS2R2-4G 2
Corsair 4G 1333 CMSA8GX3M2A1333C9 2




Proof of Concept

How they test these memory modules:
o Vary T; and T,, observe what happens.

< (Rl) >< IDLE “ IDLE >< x IDLE XK IDLE

SoftMC Experiment
Select a random subarray
Fill subarray with random data
[ssue ACT-PRE-ACTs with given T; & T,
Read out subarray

Find out how many columns in a row support either operation
o Row-wisesuccessratio

93



Proof of Concept

T2 T2 T2 T2 T2 T2
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
0 N 1 1 1 | | 1 L 1 1 1 L 1 1 1 1 1 1 1 1 | 1 1 1 | | 1 1 L 1 1 1 L 1 1 1 1 1 Z/l/ Il 1 1 1 | | L 1 1 L 1 1 1 1 1 1 1 |
1 . // 1// y. //
% . /’/// /// A ’;’
7 AN
T171 27 , 17, 7
54 A/ rA 7
6 A/ /)
7 A/ 7
8 A /
9 41 kKA [ | 7
Micron_2G_1066 Micron_2G_1333 Elpida_2G_1333 Nanya_4G_1333 Corsair_ 4G_1333 TimeTec_4G_1333
9 . 7 H 7 7
2 7| 7. 7
3 A /] /] A /
T1 4 1 “ 7 /
5 /] |# A 4
6 A K, 7 /]
7 1 /] /] A A
8 N . /// 7
9 # (A A
SKhynix_2G_1333 SKhynix_4G_1333C SKhynix_4G_1066 SKhynix 4G_1600 Samsung_4G_1333 Samsung_4G_1600
SKhynix_4G_1333B
N : : VIS IISISIIIIIIIGIIIIIIIIIIIIIIS ]
AND/OR on AND/OR on Open R3, Nothing Row copy on Row copy on Row copy on
all cols (0,100%) cols but no ops changed (0,80%) cols [80%,100%) cols all cols

Each grid represents the success ratio of operations for a specific

DDR3 module.
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Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou'?, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?®, Qualcomm Inc.%, Huawei Technologies Inc.s
{shuangchenli, yuanxie}ece.ucsb.edu*

SAFARI  hitps://cseweb.ucsd.edu/~jzhaoffiles/Pinatubo-dac2016.pdf 7>
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Pinatubo: RowClone and Bitwise Ops in PCM

All data via the
Narrow DDR bus

-

D &

Row-ADR

Operand Row 1
\M Operand Row 2

Operand Row 1

Operand Row 2

1 Operand Row n

{ Operand Row n

Result Row

S

Result Row

VM-based Main Memory
(a) Conventional Approach (b) Pinatubo

Figure 2: Overview: (a) Computing-centric ap-

proach, moving tons of data to CPU and write back.

(b) The proposed Pinatubo architecture, performs

n-row bitwise operations inside NVM in one step.

SAFARI https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf ’6
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Other Examples ot
“Why Change? It’s Working OKI!”




Mindset Issues Are Everywhere

"Why Change? It's Working OK!” mindset limits progress
There are many such examples in real life

Examples of Bandwidth Waste in Real Life

Examples of Latency and Queueing Delays in Real Life

Example of Where to Build a Bridge over a River

SAFARI
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Another Example




Initial RowHammer Reviews

Disturbance Errors in DRAM: Demonstration,
Characterization, and Prevention

Rejected (R2) ,T: 863kB Friday 31 May 2013 2:00:53pm PDT

|
b9bf06021da54cddf4cd0b3565558a181868b972

You are an author of this paper.

+ ABSTRACT + AUTHORS

OveMer|Nov WriQua RevExp

Review #66A 4 4 4
Review #66B < 5 3
Review #66C 3 5 Z
Review #66D 2 3 4
Review #66E < Z 3
Review #66F < < 3

SAFARI



Missing the Point peyjews from Micro 2013

PAPER WEAKNESSES

his is an excellent test methodology paper, butjthere is no

MICro-arcnitectural or arcnitectural content.

PAPER WEAKNESSES

. . v
authors|jdon't show it can be an issue in realistic DRAM usage

scenaric
- Lacks architectural/microarchitectural impact on the DRAM

disturbance analysis

PAPER WEAKNESSES

he mechanism investigated by the authors is one of many well
nown disturb mechanisms. The paper does not discuss the root
causes to sufricient depth and the importance of this

mechanism compared to others. Overall the length of the
sections restating known information is much too long in
relation to new work.



Experimental DRAM Testing Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 102
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



Tested
DRAM
Modules

(129 total)

SAFARI

Date* Timing¥ Organization Chip Victims-per-Module Rl (ms)
Manufacturer Module

(yy-ww) Freg (MTjs) tgpc(ns) Size (GB) Chips Size (Gb)*  Pins DieVersion® Average  Minimum Maximum — Min

A 10-08 1066 50625 0S5 4 1 %16 B 0 0 0 -

A, 10-20 1066  50.625 1 8 1 *8 F 0 0 0 -

As 10-20 1066 50625 0S5 4 1 %16 B 0 0 0 -
Asq 11-24 1066  49.125 1 4 2 %16 D 7.8x 10" 52x10' 1.0x10° 213
B 11-26 1066  49.125 1 4 2 %16 D 24x10° 54x 10" 44x10° 164
Aige  11-50 1066  49.125 1 4 2 %16 D 8.8x 10" L7x10' 1.6x10° 262
A Ay 1222 1600 50.625 1 4 2 %16 D 9.5 9 Lox 10" 344
Ag 1226 1600 49.125 2 8 2 %8 M 1.2x10° 37x10' 20x10° 213
Az 1240 1600 48125 2 8 B 8 K 86x10° 7.0x10° LOx 107 8.2
WS Agas 1302 1600 48.125 2 8 2 %8 - L8 10° LOx10° 3.5x10° 1L5
Ay 1314 1600  48.125 2 8 2 %8 - 4.0x 10" 1.9x 10" 6.1x10' 213
Ay 1320 1600 48.125 2 8 2 %8 K L7x10° 14x10° 20x10° 9.8
Ay 1328 1600 48.125 2 8 2 8 K 5.7x10° 54x10° 6.0x 10 164
Ay 14-04 1600 49.125 2 8 2 %8 - 27x10° 27x10° 27x10°  18.0
Apys 1404 1600  48.125 2 8 2 *8 K 0.5 0 1 62.3

B, 08-49 1066  50.625 1 8 1 *8 D 0 0 0 -

B, 09-49 1066 50.625 1 8 1 *8 £ 0 0 0 -

B, 10-19 1066 50.625 1 8 1 *8 F 0 0 0 -

B, 10-31 1333 49.125 2 8 2 *8 G 0 0 0 -

B, 11-13 1333 49.125 2 8 2 *8 c 0 0 0 -

B, 11-16 1066  50.625 1 8 1 x8 F 0 0 0 -

B, 11-19 1066 50.625 1 8 1 *8 F 0 0 0 -

B, 11-25 1333 49.125 2 8 2 *8 G 0 0 0 -
B B, 11-37 1333 49.125 2 8 2 *8 D L9x 105 1.9x 105 1.9x10° 1LS
By 11446 1333 49.125 2 8 2 %8 D 22x10° 1.5x 10° 2.7x 105 115

Totalof g - 1149 1333 49125 2 8 2 x8 ¢ 0 0 0 -
54 Modules g - 1201 1866  47.125 2 8 2 x8 D 01x10° 9.1x10° 9.1x10° 9.8
Bisy 1210 1866  47.125 2 8 2 x8 D 9.8x 10° 7.8x10° 1.2x10° 115
o 12-25 1600  48.125 2 8 2 *8 £ 7.4x 105 74x10° 7.4x10° 1L5
By, 1228 1600 48.125 2 8 2 %8 £ 52x10° 1.9x10° 7.3x10° 115

By 1231 1600  48.125 2 8 2 %8 2 4.0x10° 29x10° 5.5x10°  13.1

Bys  13-19 1600 48125 2 8 2 %8 £ LIx10° 7.4x10° 1.4x10° 147
5253 13-40 1333 49.125 2 8 2 %8 D 2.6x 10° 2.3x10* 29x10* 213
B., 14-07 1333 49.125 2 8 2 %8 D 7.5x%10° 7.5x%10° 7.5x 100 262

c, 10-18 1333 49.125 2 8 2 *8 A 0 0 0 -

C, 10-20 1066 50.625 2 8 2 *8 A 0 0 0 -

C, 10-22 1066  50.625 2 8 2 8 A 0 0 0 -
Cys 10-26 1333 49.125 2 8 2 x8 B 8.9x 10° 6.0x10° 1.2x10° 29.5

Cq 10-43 1333 49.125 1 8 1 x8 T 0 0 0 -
o 10-51 1333 49.125 2 8 2 *8 B 4.0x 102 4.0x 107 4.0x 102 29.5
Cq 11-12 1333 4625 2 8 2 x8 B 6.9x10° 6.9x 10 6.9x 107 213
C, 11-19 1333 4625 2 8 2 *8 B 9.2 102 92x 102 9.2x 102 27.9
Cp 11-31 1333 49.125 2 8 2 *8 B 3 3 3 39.3
C Cy, 11-42 1333 49.125 2 8 2 %8 B L6x 10 L6x 107 1.6x10° 393
Cp, 11-48 1600  48.125 2 8 2 *8 E TIx10* T.0x10* 7.0x10° 197
Totalof  Cis 12-08 1333 49.125 2 8 2 x8 c 3.9x10* 39x10* 39x 10 213
32 Modules Ciars 12712 1333 49.125 2 8 2 *8 G 3.7x 10* 2.1x10* 54x10* 213
Cis 1220 1600 48.125 2 8 2 %8 c 35x10° 1.2x10° 7.0x10° 279
Cpo 12-23 1600  48.125 2 8 2 *8 £ L4x 105 14x 105 1.4x10° 18.0
Cyy 12-24 1600 48.125 2 8 2 %8 c 6.5x 10° 6.5x 10* 6.5x10* 213
ES 12-26 1600  48.125 2 8 2 *8 E 23x 10* 23x 10° 23x10* 246
C,, 12-32 1600 48.125 2 8 2 %8 c L7x 10* L7x10* 1.7x10° 229
Cpipy 1237 1600  48.125 2 8 2 *8 E 23x10* L1x10* 3.4x10* 18.0

Cosap 1241 1600 48.125 2 8 2 %8 c 20x 10* 1L1x10* 32x10* 197
En 13-11 1600  48.125 2 8 2 *8 E 3.3x 105 33x 105 3.3x 105  14.7
Cs, 13-35 1600 48.125 2 8 2 %8 c 3.7x10* 3.7x10* 37x 10 213

+ We report the manufacture date marked on the chip packages, which is more accurate than other dates that can be gleaned from a module.
+ We report timing constraints stored in the module's on-board ROM [33], which is read by the system BIOS to calibrate the memory controller.
} The maximum DRAM chip size supported by our testing platform is 2Gb.
§ We report DRAM die versions marked on the chip packages, which typically progress in the following manner M - A =B —-(C—---

Table 3. Sample population of 129 DDR3 DRAM modules, categorized by manufacturer and sorted by manufacture date



Fast Forward 6 Months




More Reviews... paviews from ISCA 2014

PAPER WEAKNESSES

1) The disturbance error (a.k.a coupling or cross-talk
noise induced error) is a known problem to the DRAM
circuit community.

2) What you demonstrated in this paper is so called
DRAM row hammering issue - you can even find a

Youtube video showing this! - http://www.youtube.com
/watch?v=i3-gQSnBcdo

insignificant.

PAPER WEAKNESSES
- Row Hammering appears to be well-known, and

solutions have already been proposed by industry to
address the issue.

- I'he paper only provides a qualitative analysis o
solutions to the problem. A more robust evaluation is
really needed to know whether the proposed solution is

S AFA Necessary.




Final RowHammer Reviews

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors

Accepted A 639kB 21 Nov 2013 10:53:11pm CST |
f039be2735313b39304ae1c6296523867a485610

You are an author of this paper.

OveMer Nov WriQua RevConAnd

Review #41A 8
Review #41B 7
Review #41C 6
2
3
7

Review #41D
Review #41E
Review #41F
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RowHammer: Hindsight & Impact (I)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an dccess to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P roject Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer: Hindsight & Impact (II)

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Hardware and Embedded Security, 2019.
[Preliminary arXiv version|]

RowHammer: A Retrospective

Onur Mutlu$*  Jeremie S. Kim?*3
SETH Ziirich tCarnegie Mellon University
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

RowHammer in 2020




RowHammer 1n 2020 (I)

= Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,
Roknoddin Azizi, Lois Orosa, and Onur Mutluy,
"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques”
Proceedings of the 4/th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.

Slides (pptx) (pdf)]

Lightning Talk Slides (pptx) (pdf)]

[ Talk Video (20 minutes)]

[Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis
of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim$1 Minesh Patel’ A. Giray Yaplik¢1®
Hasan Hassan® Roknoddin Azizi® Lois Orosa$ Onur Mutlu$T

SETH Ziirich TCarnegie Mellon University


https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

RowHammer 1n 2020 (1I)

= Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der
Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (9&P), San Francisco, CA, USA, May 2020.

Slides (pptx) (pdf)]

[Talk Video (17 minutes)]

[Source Code]

'Web Article]

Best paper award.

TRRespass: Exploiting the Many Sides of
Target Row Refresh

Pietro Frigo*T  Emanuele Vannacci*’  Hasan Hassan®  Victor van der Veen
Onur Mutlu3  Cristiano Giuffrida*  Herbert Bos*  Kaveh Razavi*

*Vriie Universiteit Amsterdam SETH Ziirich 1TOualcrarmm Technoloeies Inc.


https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/

RowHammer 1n 2020 (111

= Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers"”
Proceedings of the 41st IEEE Symposium on Security and
Privacy ($&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

Are We Susceptible to Rowhammer?
An End-to-End Methodology for Cloud Providers

Lucian Cojocar, Jeremie Kim3', Minesh Patel3, Lillian Tsai?,
Stefan Saroiu, Alec Wolman, and Onur Mutlu$?
Microsoft Research, SETH Ziirich, TCMU, *MIT
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https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE

RowHammer 1n 2020 (IV)

MICRO 2020 Submit Work Program = Atte
Session 1A: Security & Privacy | -
5:00 PM - 515 PM
Graphene: Strong yet Lightweight Row Hammer
Protection

Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham,
Jung Ho Ahn, Jae W. Lee (Seoul National University)

515 PM - 530 PM
Persist Level Parallelism: Streamlining Integrity
Tree Updates for Secure Persistent Memory

Alexander Freij, Shougang Yuan, Huiyang Zhou (NC State
University); Yan Solihin (University of Central Florida)

5:30 PM - 5:45 PM

PThammer: Cross-User-Kernel-Boundary
Rowhammer through Implicit Accesses

Zhi Zhang (University of New South Wales and Data61
CSIRO, Australia); Yueqgiang Cheng (Baidu Security); Dongxi
Liu. Surya Nepal (Data61. CSIRO, Australia); Zhi Wang
(Florida State University), Yuval Yarom (University of
Adelaide and Data61, CSIRO, Australia)
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RowHammer 1n 2020 (V)

S&P

@& Home Program ~ Call For... ~ Attend ~ Workshops ~

Session #5: Rowhammer Room 2

Session chair: Michael Franz (UC Irvine)

RAMBIleed: Reading Bits in Memory Without Accessing Them
Andrew Kwong (University of Michigan), Daniel Genkin (University of Michigan), Daniel Gruss
Data61)

Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers
Lucian Cojocar (Microsoft Research), Jeremie Kim (ETH Zurich, CMU), Minesh Patel (ETH ZL
(Microsoft Research), Onur Mutlu (ETH Zurich, CMU)

Leveraging EM Side-Channel Information to Detect Rowhammer Attacks
Zhenkai Zhang (Texas Tech University), Zihao Zhan (Vanderbilt University), Daniel Balasubrar
Peter Volgyesi (Vanderbilt University), Xenofon Koutsoukos (Vanderbilt University)

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo (Vrije Universiteit Amsterdam, The Netherlands), Emanuele Vannacci (Vrije Univel
Veen (Qualcomm Technologies, Inc.), Onur Mutlu (ETH Zlrich), Cristiano Giuffrida (Vrije Unive
The Netherlands), Kaveh Razavi (Vrije Universiteit Amsterdam, The Netherlands)

SAFARI
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RowHammer 1n 2020 (VI)

2J™ USENIX

SECURITY SYMPOSIUM

DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips
Fan Yao, University of Central Florida; Adnan Siraj Rakin and Deliang Fan, Arizona State University

AVAILABLE MEDIA [ ] @il ®
Show details »
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More to Come...




Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed
by naysayers)




Suggestion to Researchers: Principle: Resilience

Be Resilient




Principle: Learning and Scholarship

FOCuUs on
learning and scholarship

SAFARI



Principle: Learning and Scholarship

The quality of your work
defines your impact

SAFARI



An Interview on Research and Education

= Computing Research and Education (@ ISCA 2019)

o https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2
soXY2Zi 40P9LdL3cc8GONID2Ydz

= Maurice Wilkes Award Speech (10 minutes)

a https://www.youtube.com/watch?v=tcQ3z73]puA&list=PL5Q2
soXY2Zi8D 5MGV6EnNXEIJHNV2YFBII&index=15
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https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

More Thoughts and Suggestions

= Onur Mutluy,
"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku;
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

= Onur Mutluy,

'How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual,
19 July 2020.

[Slides (pptx) (pdf)]

SAFARI


https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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We Need to Think Difterently
from the Past Approaches




Memory as an Accelerator

Memory Controller

mini-CPU| £ | Gpy GPU |:
CPU CPU dells : [(throughput)l |(throughput)| :
core core . core core
video
core
: GPU GPU :
CPU CPU _ _ 2 [throughput)] |(throughput)| :
core core IrnC?)grleng . core core .
LLC
||

Memory Bus

Memory similar to a “conventiona

Memory

Specialized
compute-capability
In_memory

accelerator



Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

1 U

Logic

Other "True 3D"” technologies
under development
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1&]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [25], [37]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Halt-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a| By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
o With minimal changes to system and programming
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Another Example: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

oo [

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128 _ +420/0—

0 1 2 3 4
Speedup

130



Key Bottlenecks 1n Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation
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Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface :
Noncacheable, Physically Addressed) :

~ n LS =
- | oy Nl =
° 2 \ il ’ 1
| ]
b e | J N 1
< “K | ik S8 B j K
o s3 ¥ " 1
e ety S0 11 4 ] 1
150 0] 1
1
1 N N /’
1 ! ,
1 < 1 ,
1 1 /7
1 1 ’
1 1 ’
| 1 / I
;/ n-vraer Lore
/7
7
/7
II /
1

v

X

>

] , Z

——— ) =

o

2o Y I TN LP PF Buffer - =

Crossbar Network o

S S | )
| | =9 R

v

Message Queue NI

SAFARI Ahn+, A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via
Remote Function Calls

Message Queue



Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI
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Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;

Vault #1

-""4-._____.
_—

Vault #2

——

—
———

——p
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Communications In Tesseract (I111)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put |
Y &w
_-——-—"’// ‘\
put \\\
TSl put
\\\.__,__._H '-----_._____________b W
put |
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

.

NI

&func, &w, value

NI

>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank += value; })

SAFARI
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 HMC-000 HMC-MC Tesseract

I | | | | | |
| | | |
I | | | | | | . .
I T . T I I T . T I A A A A ! A A A A ! 32
= 1 e T . . Tesseract
2 A A A A i A A A A i Cores
Y y A 4 A vy \A 4 \A 4 vy 1 \A 4 \A 4 \A 4 \A 4 1
128 128
8 000 || 8000 8000 | 8000 i order s 1r-Order
4GHz 4GHz 4GHz 4GHz > GHz > GHz I e I i
7y % “ - 3 v
v \ 4 PR <
128 128
8000 | 8000 8000 | 8000 " order Ll 1n-Order 3 3
4GHz 4GHz 4GHz 4GHz 2GHz 2GHz g [
A A A A A A A A AA AA ¢ ¢ ¢ ¢
v v v v \4 y \4 \4 \4 \ 4 \ 4 \ 4 PR PN <
I I | I | I I | | I |
I | | I | | |
| | | | v v \ 4 y ' A \ 4 A 4 v
I | | | | | |
1 1 1 1
I | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFARI Ahn+, A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

>13X Performance Improvement

16
Y On five graph processing algorithms 13.8x
19 11.6x
o 10 9.0x
>
o 8
Q
o
Y6
4
2 +36%  +25%
., == B B
DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFARI Anhn+,"A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
0GB/ "o

DDR3-000 HMC-O000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Etfect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) ] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

2.3X

Speedup

A4

, I

HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

B Memory Layers [ Logic Layers [ Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-0o00O Tesseract with Prefetching

SAFARI Anhn+,"A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM

+ Large system performance and energy benefits

+ Takes advantage of 3D stacking for an important workload
+ More general than just graph processing

Disadvantages
- Changes a lot in the system
- New programming model
- Specialized Tesseract cores for graph processing
- Cost
- Scalability limited by off-chip links or graph partitioning
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More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong®  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $0racle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 146



Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a| By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
o With minimal changes to system and programming
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Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

o By changing the entire system

o] By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
o With minimal changes to system and programming
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3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutluy,

"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"

Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating

Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim*

Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™*
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI



Four Important Workloads

e

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Energy Cost of Data Movement

|t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution:move computation close to data

Challenge:limited area and energy budget
SAFARI



Using PIM to Reduce Data Movement

2" key observation:a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%
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Workload Analysis

e

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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TensorFlow Mobile

Prediction
>

Inferenc

®

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization
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Packing

Matrix Packed Matrix
I Packing I

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic
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Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations
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Normalized Energy

CPU-Only EPIM-Core OPIM-Acc

>
T X
008 TA "W "W OO OO NN
S
Ll
206 TN TN N NN OO
()]
e
Té’ 04 |
=07 I-NY NN AN oA N RN
S 0.2 \
< 0 . . & B\ N . |
Texture Color Com- Packing Quantizationy Sub-Pixel Deblocking  Motion
Tiling Blitting pression pression Interpolation  Filter Estimation
Chrome Browser TensorFlow Video Playback and
Mobile Capture

PIM core and PIM accelerator reduce

energy consumption on average by 49.1% and 55.4%
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Normalized Runtime
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Normalized Runtime
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o

Texture Color
Tiling Blitting

Comp- Decomp- | Sub-Pixel Deblocking  Motion |TensorFlow
ression ression |Interpolation Filter Estimation

Chrome Browser Video Playback TensorFlow

and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%



Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework
© O YouTube © D YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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How Chrome Renders a Web Page

()
:
_
HTML
Parser

HTML

Render Rasteriza- Composi-

Tree tion ting
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Loading and Layouting Painting
Parsing

assembles all layers

into a final screen image
HTML

|
I
|
I
|
| : <
HTML Parser : : Rl
| Render L | Rasteriza- Composi-
Tree ayout tion tin
| | 4
CSS | : R I N
€SS Parser | | Rl I \\
I 'l ,/' | ‘\\
| \,, ,,/ ' A
- k

paints those objects
calculates the

visual elements and

and generates the bitmaps

position of each object



Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:

) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI
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What Happens During Tab Switching?

* Chrome employs a multi-process architecture

— Each tab is a separate process

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch

— Load the new page

SAFARI 27



Memory Consumption

* Primary concerns during tab switching:
— How fast a new tab loads and becomes interactive

— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI
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Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI
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Can We Use PIM to Mitigate the Cost?

CPU Only time CPU + PIM

Memory IM
Swap out N pages Swap out N pages

Other tasks
bigh -

data movement | No °ff'=Ch'P data
: movement

compression

\

Other tasks

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression
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Tab SwitchingWrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic
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More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose' Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv>  Rahul Thakur’  Daehyun Kim*?
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu™!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel( uint8 T * const out,
uint8 T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if ( rowIdx >= numRows ) return;

// Compute the index of my element

3 D_Stac ked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

.......... Logic layer

Logic layer
SM
I

Crossbar switch
[ T

Vault| .... |Vault
Ctrl Ctrl




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enablin
Programmer-Transparent Near-Data Processing in GPU

Systems"”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim™  Niladrish Ch::l‘[terjee]L Mike O’Connor!
Nandita Vij aykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,

'Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Paralle/
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog> Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt ~ Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University =~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ®Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

TCarnegie Mellon University — *University of Virginia SETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Accelerating Runahead Execution

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Accelerating Climate Modeling

= Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling
Gagandeep Singh‘“’b’C Dionysios Diamantopoulos®  Christoph Hagleitner®  Juan Gémez-Luna?

Sander Stuijk4 Onur Mutlu? Henk Corporaal®
9Eindhoven University of Technology PETH Ziirich ‘IBM Research Europe, Zurich
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Accelerating Approximate String Matching

= Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matchin
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lighting Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali* Gurpreet S. Kalsi®  Ziilal Bingsl¥ Can Firtina® Lavanya Subramanian® Jeremie S. Kim®1
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna®  Amirali Boroumand' Anant Nori™
Allison Scibisz| ~ Sreenivas Subramoney™ Can AlkanV Saugata Ghose*T  Onur Mutlu®T
T Carnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs ~ V Bilkent University ~®ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of Illinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Accelerating Time Sertes Analysis

= Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan
Gomez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer
Design (ICCD), Virtual, October 2020.

NATSA: A Near-Data Processing Accelerator
for Time Series Analysis

Ivan Fernandez® Ricardo Quislant® Christina Giannoula' Mohammed Alser*
Juan Gémez-Luna? Eladio Gutiérrez® Oscar Plata’® Onur Mutlu?
SUniversity of Malaga "National Technical University of Athens *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/

Several Questions in 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

o By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming
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PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEIL: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., _ pim_add(&w.next_rank, value) =2 pim.addril, (r2)

o No changes sequential execution/programming model

o2 No changes to virtual memory

o Minimal changes to cache coherence

o No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA

“xtensions (1)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

64 bytes in
64 bytes out

Conventional Architecture

w.next_rank

Main Memory

;

Il
|

i

|

|

|

e R — |
|

H ‘
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Simple PIM Operations as ISA Extensions (111

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.addrl, (r2)

Main Memory

T,

w.next_rank

8 bytes in
O bytes out

Il
|

i

|

|

|

e R — |
|

H ‘

In-Memory Addition
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Always Executing in Memory? Not A Good Idea

60%
50%
[0)

40% Increased

30% = Memory Bandwidth
_§' 20% Consumption

Cachi ffecti
8:;_ 10% achingvery effective - I
(Vp)]
O% —
-10% Reduced Memory Bandwidth
-20% Consumption due to

In-Memory Computation

N
G—

p2p-Gnu
tella31
soc-Slash
dot0811
web-
Stanford
amazon-
2008

More Vertices

—
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PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

pim.addrl, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfence 8-byte integer increment O O Obytes Obytes AT
pfe nce ( ) . 8-byte integer min O O 8bytes O0Obytes BFS, SP, WCC
4 Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes O9bytes HJ
Histogram bin index O X 1lbyte I16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)
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PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
o Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic
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PEI: Initial Evaluation Results

Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

Q In - mem O ry data a na |yt|CS Table 2: Baseline Simulation Configuration
. . _ C Configurati
o Machine learning and data mining omponent _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
- Th ree I n pUt Sets (Sm a I II med I u m 4 Ia rg e) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB. 16-way. 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the Im paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
1 Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4GB, 16 vaults, 256 DRAM banks [20]
— DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

Pin-based cycle-level x86-64 simulation

Performance Improvement and Energy Reduction:
47% average speedup with large input data sets
32% speedup with small input data sets
25% avg. energy reduction in a single node with large input data sets
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FEvaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality
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PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

60%

50%
40%
30%
20%
10% '
0%
WCC

M PIM-Only @ Locality-Aware

SVM  GM
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Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
M Host-Only E PIM-Only [ Locality-Aware




PEI Performance Delta: Small Data Sets

(Small Inputs, Baseline: Host-Only)
60%

40%

20%

0% [ [ _ — — [
| I I . . . r I

-20%

-40%

-60%
ATF  BFS PR SP WCC HJ HG RP SC SVM GM

M PIM-Only @ Locality-Aware
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Normalized Amount of Off-chip Transfer
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PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%

40%

30%

20%

- 1132 Wh {la

0% - -
WCC RP SC SVM GM

-10%
M PIM-Only @ Locality-Aware
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PEI Energy Consumption

1.5 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
M Cache B HMC Link @ DRAM
[0 Host-side PCU [0 Memory-side PCU 0O PMU
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PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting
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Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu' Kiyoung Choi
junwhan @snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University
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Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enablin
Programmer-Transparent Near-Data Processing in GPU

Systems"”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim™  Niladrish Ch::l‘[terjee]L Mike O’Connor!
Nandita Vij aykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
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Automatic Oftfloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Offloading of Prefetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism

for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'®, Brandon LuciaT,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand' Saugata Ghose" Minesh Patel* Hasan Hassan*
Brandon Lucia’ Rachata Ausavarungnirun'* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*?

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University SSamsung Semiconductor, Inc.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI




Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
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We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step
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PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan G6mez-Luna?, Rachata Ausavarungnirun®*

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation”

Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 210



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (II)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose”  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

'Carnegie Mellon University ETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019.

[Preliminary arXiv version]

SAFARI https: / /arxiv.org/pdf/1907.12947.pdf 21


https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs. in CPU? ey

void applyScaleFactorsKernel( uint8 T * const out,
uint8 T const * const in, const double *factor,
? size_t const numRows, size_t const numCols )
° {
// Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:
EEEEEEEEREN const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if ( rowIdx >= numRows ) return;

// Compute the index of my element
size t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)

?

.......... Logic layer,

\ 4

Logic layer
SM
I

Crossbar switch
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Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)
, ,
| , \
\ AN ———— 4. / Logic layer

v

SM

Logic layer

Crossbar switch

S -~ ~ e ] \’*\\\ Vau‘t
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How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

"Transparent Offloading and Mapping (TOM): Enablin
Programmer-Transparent Near-Data Processing in GPU

Systems"”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh? FEiman Ebrahimi' Gwangsun Kim™  Niladrish Ch::l‘[terjee]L Mike O’Connor!
Nandita Vij aykumari Onur Mutlu®? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code? (I)

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,

'Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Paralle/
Architectures and Compilation Technigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog> Onur Kayiran®
Asit K. Mishra*  Mahmut T. Kandemirt ~ Onur Mutlu>¢  Chita R. Das!

'Pennsylvania State University =~ 2College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ®Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

How to Schedule Code? (11

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

Slides (pptx) (pdf)]

[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 216


https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

How to Schedule Coder (111)

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional
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How to Maintain Coherencer (I)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'®, Brandon LuciaT,
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherencer? (I1)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand' Saugata Ghose" Minesh Patel* Hasan Hassan*
Brandon Lucia’ Rachata Ausavarungnirun'* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*?

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University SSamsung Semiconductor, Inc.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu
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Specialized Accelerators

Specialized accelerators are now everywhere!

FPGAs ] -— =

FPGA ASIC

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)

RA P 111114
/ CPU Je—> §§

~~~~~~ THIL
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Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

(1) Large cost of
off-chip communication

(2) NDA applications generate NDA
a large amount of off-chip data movement

It is impractical to use traditional coherence protocols
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Existing Coherence Mechanisms

We extensively study existing NDA coherence
mechanisms and make three key observations:

1 These mechanisms eliminate
a significant portion of NDA’s benefits

2 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary

Much of the off-chip traffic can be eliminated
3 if the coherence mechanism has insight
into the memory accesses
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An Optimistic Approach

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

| Gain insights before any coherence checks happens

2 Perform only the necessary coherence requests
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CoNDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU NDA
CPU Thread
. Execution
Concurrent Optimistic
: CPU + NDA .
| = . execution
xecution

_______________________________________________________
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CoNDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU NDA

CPU Thread
. Execution

Concurrent
' CPU + NDA
' Execution

_______________________________________________________

CoNDA comes within 10.4% and 4.4% of performance

and energy of an ideal NDA coherence mechanism
7 Ne-execyt



CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu
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How to Maintain Coherencer? (I1)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand' Saugata Ghose" Minesh Patel* Hasan Hassan*
Brandon Lucia’ Rachata Ausavarungnirun'* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu*?

TCarnegie Mellon University *ETH Ziirich *KMUTNB
°Simon Fraser University SSamsung Semiconductor, Inc.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

TCarnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 230


https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures for PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

= Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator-pim
o https://github.com/CMU-SAFARI/ramulator
a [Source Code for Ramulator-PIM]

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang®?  Onur Mutlu?
ICarnegie Mellon University ~ 2Peking University
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https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

Performance & Energy Models for PIM

= Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.
Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning"

Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.

[Slides (pptx) (pdf)]

[Poster (pptx) (pdf)]

[Source Code for Ramulator-PIM]

NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning

Gagandeep Singh®¢ Juan Gémez-Luna® Giovanni Mariani® Geraldo F. Oliveira®
Stefano Corda®¢ Sander Stuijk® Onur Mutlu? Henk Corporaal®
“Eindhoven University of Technology bETH Ziirich “IBM Research - Zurich
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https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A

Flexible and Practical Open-
Source Infrastructure for \

Enabling Experimental DRAM
Studies HPCA 2017.

AR Machme
Flexible i
- . SR 'I]emp ﬂ
= Easy to Use (C++ API) | Controller

Heater 3
Y

= Open-source \
@/ ; >

github.com/CMU-SAFARL/SoftMC
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures for PIM (in SSDs)

= Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutlu,

"MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage

Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]

[Source Code]

MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices

Arash Tavakkol”, Juan Gémez-Luna’, Mohammad Sadrosadati’, Saugata Ghose*, Onur Mutlu'*
YETH Ziirich *Carnegie Mellon University
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https://people.inf.ethz.ch/