
Computer Architecture
Lecture 7: Near Data Processing

Prof. Onur Mutlu
ETH Zürich
Fall 2020

9 October 2020



Sub-Agenda: In-Memory Computation

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

2



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

3



More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 

4

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 

5

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on In-DRAM Bitwise Operations

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.

6

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


More on In-DRAM Bulk Bitwise Execution
n Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]

7

https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


RowClone & Bitwise Ops in Real DRAM Chips

8https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


Pinatubo: RowClone and Bitwise Ops in PCM

9https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf

https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf


Other Examples of 
“Why Change? It’s Working OK!”

10



Mindset Issues Are Everywhere

n “Why Change? It’s Working OK!” mindset limits progress

n There are many such examples in real life

n Examples of Bandwidth Waste in Real Life

n Examples of Latency and Queueing Delays in Real Life

n Example of Where to Build a Bridge over a River

11



Another Example

12



Initial RowHammer Reviews



Missing the Point Reviews from Micro 2013



Experimental DRAM Testing Infrastructure

15Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



16

Tested
DRAM
Modules

(129 total)



Fast Forward 6 Months

17



More Reviews… Reviews from ISCA 2014



Final RowHammer Reviews



RowHammer: Hindsight & Impact (I)

20

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer: Hindsight & Impact (II)
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems (TCAD) Special Issue on Top Picks in 
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]

21

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf


RowHammer in 2020



RowHammer in 2020 (I)
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, 

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern 
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer 
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

23

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q


RowHammer in 2020 (II)
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der 

Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and 
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Source Code]
[Web Article]
Best paper award.

24

https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/


RowHammer in 2020 (III)
n Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, 

Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End 
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and 
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

25

https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE


RowHammer in 2020 (IV)

26



RowHammer in 2020 (V)

27



RowHammer in 2020 (VI)

28



More to Come…



Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed

by naysayers)



Suggestion to Researchers: Principle: Resilience

Be Resilient



Principle: Learning and Scholarship

Focus on
learning and scholarship



Principle: Learning and Scholarship

The quality of your work 
defines your impact



An Interview on Research and Education

n Computing Research and Education (@ ISCA 2019)
q https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

n Maurice Wilkes Award Speech (10 minutes)
q https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

34

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15


More Thoughts and Suggestions
n Onur Mutlu,

"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards 
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

n Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual, 
19 July 2020.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf


Sub-Agenda: In-Memory Computation

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

36



We Need to Think Differently 
from the Past Approaches

37



Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

39



Opportunity: 3D-Stacked Logic+Memory

40

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

41
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Several Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming

42



Another Example: In-Memory Graph Processing

43

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing

44

for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing

46

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Communications In Tesseract (I)

47



Communications In Tesseract (II)

48



Communications In Tesseract (III)

49



Remote Function Call (Non-Blocking)

50



Logic

Memory

Tesseract System for Graph Processing

51

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching



Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32 
Tesseract 

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

du
p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance

54

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

du
p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

M
em

or
y 

Ba
nd

w
id

th
 (T

B/
s)

Memory Bandwidth Consumption



Effect of Bandwidth & Programming Model

55

2.3x
3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract

Sp
ee

du
p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)



Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract: Advantages & Disadvantages
n Advantages

+ Specialized graph processing accelerator using PIM
+ Large system performance and energy benefits
+ Takes advantage of 3D stacking for an important workload
+ More general than just graph processing 

n Disadvantages
- Changes a lot in the system

- New programming model
- Specialized Tesseract cores for graph processing

- Cost
- Scalability limited by off-chip links or graph partitioning

57



More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]

58

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


Sub-Agenda: In-Memory Computation

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

59



Several Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming

60



Several Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming

61



3D-Stacked PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices



Four Important Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec



Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the total system 
energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU
CPUCPUCPU

Compute 
Unit 



Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the
data movement often comes from simple functions

PIM 
Core

PIM 
Accelerator

PIM 
Accelerator

PIM 
Accelerator

We can design lightweight logic to implement
these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy and improves 
performance, on average, by 55.4% and 54.2%



Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec



TensorFlow Mobile

57.3% of the inference energy is spent on
data movement

54.4% of the data movement energy comes from 
packing/unpacking and quantization

Inference Prediction



Packing

Reorders elements of matrices to minimize 
cache misses during matrix multiplication

Up to 40% of the
inference energy and 31% of

inference execution time 

Packing’s data movement 
accounts for up to 

35.3% of the inference energy

PackingMatrix Packed Matrix

A simple data reorganization process
that requires simple arithmetic 



Quantization

Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption 

Up to 16.8% of the 
inference energy

and 16.1% of 
inference execution time 

Majority of quantization
energy comes from 

data movement

Quantizationfloating point integer

A simple data conversion operation that requires 
shift, addition, and multiplication operations



Normalized Energy 

0

0.2

0.4

0.6

0.8

1

Texture
Tiling

Color
Blitting

Com-
pression

Decom-
pression

Packing Quantization Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

N
or

m
al

iz
ed

 E
ne

rg
y

CPU-Only PIM-Core PIM-Acc

Chrome Browser Video Playback and 
Capture

TensorFlow
Mobile

PIM core and PIM accelerator reduce
energy consumption on average by 49.1% and 55.4%



Normalized Runtime

0.0

0.2

0.4

0.6

0.8

1.0

Texture
Tiling

Color
Blitting

Comp-
ression

Decomp-
ression

Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

TensorFlowN
or

m
al

ize
d 

Ru
nt

im
e

CPU-Only PIM-Core PIM-Acc

Chrome Browser Video Playback 
and Capture

TensorFlow
Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%



73

TensorFlow
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis

Chrome
Google’s web browser



How Chrome Renders a Web Page

14

HTML

CSS

HTML 
Parser

CSS 
Parser

Render 
Tree Layout Rasteriza-

tion
Composit-

ing

HTML

CSS

HTML 
Parser

CSS 
Parser

Loading and 
Parsing

Render 
Tree Layout Rasteriza-

tion
Composi-

ting

Painting



How Chrome Renders a Web Page

15

HTML

CSS

HTML 
Parser

CSS 
Parser

Render 
Tree Layout Rasteriza-

tion
Composi-

ting

HTML

CSS

HTML 
Parser

CSS 
Parser

Loading and 
Parsing

Render 
Tree Layout

Layouting

Rasteriza-
tion

Composi-
ting

Painting

paints those objects
and generates the bitmapscalculates the

visual elements and 
position of each object

assembles all layers
into a final screen image



Browser Analysis
• To satisfy user experience, the browser must 

provide:
– Fast loading of webpages
– Smooth scrolling of webpages
– Quick switching between browser tabs

• We focus on two important user interactions:
1)  Page Scrolling 
2)   Tab Switching
– Both include page loading

16



Tab Switching

26



What Happens During Tab Switching?
• Chrome employs a multi-process architecture
– Each tab is a separate process

• Main operations during tab switching:
– Context switch
– Load the new page

27

Chrome Process

…

Tab 1 
Process 

Tab 2
Process 

Tab N
Process 



Memory Consumption
• Primary concerns during tab switching:

– How fast a new tab loads and becomes interactive
– Memory consumption

28

CPU

DRAM
Inactive Tab

CompressionDecompression

Chrome uses compression to
reduce each tab’s memory footprint

ZRAM

Compressed Tab



Data Movement Study
• To study data movement during tab switching, 

we emulate a user switching through 50 tabs

29

Compression and decompression
contribute to18.1% of the total system energy

19.6 GB of data moves between
CPU and ZRAM2

1

We make two key observations:



Can We Use PIM to Mitigate the Cost?

30

CPU
CPU-Only

Memory CPU
CPU + PIM

PIM
time

Swap out N pages

Read N Pages

Compress

Other tasks

Write back

co
m
pr
es
si
on

ZRAM

Swap out N pages

Other tasks
Compress

ZRAM
No off-chip data 

movement

PIM core and PIM accelerator are feasible to 
implement in-memory compression/decompression

data movement
high

Uncompressed
Pages

Uncompressed
Pages



Tab Switching Wrap Up

31

A large amount of data movement happens 
during tab switching as Chrome attempts to 

compress and decompress tabs

2

Both functions can benefit from PIM execution 
and can be implemented as PIM logic



More on PIM for Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

83

62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Truly Distributed GPU Processing with PIM?

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

85

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.

86

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 

87

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Accelerating Dependent Cache Misses
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

88

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Accelerating Runahead Execution 
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

89

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Accelerating Climate Modeling
n Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan 

Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

90

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


Accelerating Approximate String Matching
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

91

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Accelerating Time Series Analysis
n Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan 

Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer 
Design (ICCD), Virtual, October 2020.

92

https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/


Several Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming

93



PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block
q e.g., __pim_add(&w.next_rank, value) à pim.add r1, (r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance

95



Simple PIM Operations as ISA Extensions (II)

96

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture



Simple PIM Operations as ISA Extensions (III)

97

Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)



Always Executing in Memory? Not A Good Idea

98

-20%
-10%

0%
10%
20%
30%
40%
50%
60%

p2
p-

G
nu

te
lla

31

so
c-

Sl
as

h
do

t0
81

1

w
eb

-
St

an
fo

rd

am
az

on
-

20
08

fr
w

ik
i-

20
13 w
ik

i-
Ta

lk

ci
t-

Pa
te

nt
s

so
c-

Li
ve

Jo
ur

na
l1

ljo
ur

na
l-

20
08

Sp
ee

du
p

More Vertices

Increased
Memory Bandwidth 

Consumption 
Caching very effective

Reduced Memory Bandwidth 
Consumption due to

In-Memory Computation



PEI: PIM-Enabled Instructions (Example)

99

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}
pfence();

pim.add r1, (r2)

pfence



PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and 

virtual memory
q Simplified locality monitoring: data locality of PEIs can be 

identified simply by the cache control logic



PEI: Initial Evaluation Results
n Initial evaluations with 10 emerging data-intensive workloads

q Large-scale graph processing
q In-memory data analytics
q Machine learning and data mining
q Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality

n Pin-based cycle-level x86-64 simulation

n Performance Improvement and Energy Reduction: 
n 47% average speedup with large input data sets
n 32% speedup with small input data sets
n 25% avg. energy reduction in a single node with large input data sets

101



Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest 
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality



PEI Performance Delta: Large Data Sets

103

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)



PEI Performance: Large Data Sets

104

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

0

0.2

0.4

0.6

0.8

1

1.2

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware



PEI Performance Delta: Small Data Sets

105

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)



PEI Performance: Small Data Sets

106

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)

0

1

2

3

4

5

6

7

8

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware



PEI Performance Delta: Medium Data Sets

107

-10%

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Medium Inputs, Baseline: Host-Only)



PEI Energy Consumption

108

0

0.5

1

1.5

Small Medium Large

Cache HMC Link DRAM
Host-side PCU Memory-side PCU PMU

Host-Only
PIM-Only
Locality-Aware



PEI: Advantages & Disadvantages

n Advantages
+ Simple and low cost approach to PIM
+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

n Disadvantages
- Does not take full advantage of PIM potential

- Single cache block restriction is limiting

109



Simpler PIM: PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

111

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Automatic Offloading of Critical Code
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

112

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Automatic Offloading of Prefetch Mechanisms
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

113

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Efficient Automatic Data Coherence Support

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

114

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Efficient Automatic Data Coherence Support
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

115

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
116



Challenge and Opportunity for Future

Fundamentally
High-Performance

(Data-Centric)
Computing Architectures

117



Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement

118



Sub-Agenda: In-Memory Computation

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

119



Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory

120



Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling, 
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

121

All can be solved with change of mindset



We Need to Revisit the Entire Stack

122

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



PIM Review and Open Problems

123

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

124

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Key Challenge 1: Code Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

127

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


How to Schedule Code? (I)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.

128

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


How to Schedule Code? (II)
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

129

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


How to Schedule Code? (III)
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

130

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Challenge: Coherence for Hybrid CPU-PIM Apps

131

Traditional
coherence

No coherence
overhead



How to Maintain Coherence? (I)

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

132

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Maintain Coherence? (II)
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

133

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


CoNDA:
Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand
Saugata Ghose,  Minesh Patel, Hasan Hassan, 

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, 

Onur Mutlu



ASIC

Specialized Accelerators

135

FPGAGPU

NDAASIC

ASIC

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology 
enabled Near-Data Accelerators (NDA)

CPU
DRAM

NDA



ASIC

Coherence For NDAs

136

Challenge: Coherence between NDAs and CPUs

DRAM
L2L1

CPU
CPUCPUCPU

NDA

Compute 
Unit 

(1) Large cost of 
off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate 
a large amount of off-chip data movement



ASIC

Existing Coherence Mechanisms

137

We extensively study existing NDA coherence 
mechanisms and make three key observations: 

These mechanisms eliminate
a significant portion of NDA’s benefits1

The majority of off-chip coherence traffic 
generated by these mechanisms is unnecessary2

Much of the off-chip traffic can be eliminated
if the coherence mechanism has insight

into the memory accesses
3



ASIC

An Optimistic Approach

138

1 Gain insights before any coherence checks happens

We find that an optimistic approach to coherence can 
address the challenges related to NDA coherence

2 Perform only the necessary coherence requests



CoNDA

139

Time

Optimistic
execution

CPU NDA

Concurrent 
CPU + NDA 
Execution

Offload NDA kernel

SignatureSignature
Send signatures

Coherence Resolution

Commit or Re-execute

CPU Thread 
Execution

We propose CoNDA, a mechanism that uses optimistic 
NDA execution to avoid unnecessary coherence traffic

No 
Coherence Request



CoNDA

140

Time

Optimistic
execution

CPU NDA

Concurrent 
CPU + NDA 
Execution

Offload NDA kernel

SignatureSignature
Send signatures

Coherence Resolution

Commit or Re-execute

CPU Thread 
Execution

We propose CoNDA, a mechanism that uses optimistic 
NDA execution to avoid unnecessary coherence traffic

No 
Coherence Request

CoNDA comes within 10.4% and 4.4% of performance 
and energy of an ideal NDA coherence mechanism



CoNDA:
Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand
Saugata Ghose,  Minesh Patel, Hasan Hassan, 

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, 

Onur Mutlu



How to Maintain Coherence? (II)
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

142

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 

143

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

144

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator-pim
q https://github.com/CMU-SAFARI/ramulator
q [Source Code for Ramulator-PIM]

145

https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim


Performance & Energy Models for PIM
n Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F. 

Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance 
Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC), Las Vegas, 
NV, USA, June 2019.
[Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code for Ramulator-PIM]

146

https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim


An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 

147

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


Simulation Infrastructures for PIM (in SSDs) 
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, 

Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of 
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

148

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


New Applications and Use Cases for PIM
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

149

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 
Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary
n Genome Read Mapping is a very important problem and is the first 

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

151



Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Accelerating Climate Modeling
n Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan 

Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

153

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


Accelerating Approximate String Matching
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. 

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, 
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, 
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

154

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf


Accelerating Time Series Analysis
n Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan 

Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer 
Design (ICCD), Virtual, October 2020.

155

https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/


PIM Review and Open Problems

156

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

157

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
158



Challenge and Opportunity for Future

Fundamentally
High-Performance

(Data-Centric)
Computing Architectures

159



Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement

160



One Important Takeaway

Main Memory Needs 
Intelligent Controllers

161



Enabling the Paradigm Shift



Recall: Computer Architecture Today
n You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly)

n You can invent new paradigms for computation, 
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve 

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined

163



Recall: Computer Architecture Today
n You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly)

n You can invent new paradigms for computation, 
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve 

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined

164



UPMEM Processing-in-DRAM Engine (2019)

165

n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


Sub-Agenda: In-Memory Computation

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

166



Maslow’s Hierarchy of Needs, A Third Time

167

Speed

Speed
Speed
Speed
Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally
High-Performance

(Data-Centric)
Computing Architectures

168



Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
169



Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures

170



Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement

171



PIM: Concluding Remarks

172



A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon 

precedent”

173



Precedent-Based Design?
n “architecture […] based upon principle, and not upon 

precedent”

174



Principled Design
n “architecture […] based upon principle, and not upon 

precedent”

175



176



The Overarching Principle

177



Another Example: Precedent-Based Design

178Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

179Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

180Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

181Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107



Principle Applied to Another Structure

182
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle

183



Overarching Principle for Computing?

184Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks

n It is time to design principled system architectures to solve 
the memory problem

n Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

n Enable computation capability inside and close to memory

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …

185



The Future of Processing in Memory is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 

186

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



We Need to Revisit the Entire Stack

187

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology 

q for at least two decades

188https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Flash Memory Timeline

189



Flash Memory Timeline

190



PIM Review and Open Problems

191

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

192

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Computer Architecture
Lecture 7: Near Data Processing

Prof. Onur Mutlu
ETH Zürich
Fall 2020

9 October 2020



We Did Not Cover The Later Slides.
They Are For Your Benefit.

194



Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 

195

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Executive Summary
• Our Goal: Accelerating pointer chasing inside            

main memory

• Challenges: Parallelism challenge and Address 
translation challenge

• Our Solution: In-Memory PoInter Chasing 
Accelerator (IMPICA)
• Address-access decoupling: enabling parallelism in the 

accelerator with low cost
• IMPICA page table: low cost page table in logic layer

• Key Results: 
• 1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput
• 6% - 41% reduction in energy consumption

196



Linked Data Structures

• Linked data structures are widely used 
in many important applications

197

Database

B-Tree Hash Table

Key-value stores
Linked data structures are 

connected by pointers



The Problem: Pointer Chasing

•Traversing linked data structures 
requires chasing pointers

198

MEM

H

E

A F

Q

M

Find(A)

Addr
(H)

Data 
(H)

Addr
(E)

Data 
(E)

Addr
(A)

Data 
(A)

Serialized and irregular access pattern
6X cycles per instruction in real workloads



DRAM layers

Our Goal

199

Accelerating pointer chasing         
inside main memory

H

E

A F

Q

M

Find(A)

MEM

Data 
(A)

Logic layer

Find
(A)



Parallelism Challenge

200

Time
Memory 
accessCPU core

In-Memory 
Accelerator

Comp Memory 
access

CPU core

Comp

Comp Comp

Memory 
accessComp Comp

Comp Memory 
access Comp

Faster for one operationSlower for two operations



Parallelism Challenge and Opportunity

•A simple in-memory accelerator can 
still be slower than multiple CPU cores

•Opportunity: a pointer-chasing 
accelerator spends a long time     
waiting for memory

201

CPU core

Accelerator

CPU core CPU core

Comp Memory access (10-15X of Comp) Comp



Our Solution: 
Address-Access Decoupling

202

Time

Comp

Memory 
access

Comp Comp
Address 
Engine

Access 
Engine

Comp

Memory 
access

Memory 
accessCPU core

CPU core

Comp Comp

Memory 
accessComp Comp

Address-access decoupling enables 

parallelism in both engines with low cost



DRAM Dies

IMPICA Core Architecture

203

Address 
Engine

Access
Engine

Memory 
Controller

DRAM

Logic Layer

DRAM Layers

Request Queue

To/From CPU

Access Queue

Response Queue

IMPICA 
Cache

Traversal 
1

Traversal 
2



Address Translation Challenge

204

TLB/MMU

Pointer (VA)

Pointer (PA)

Page table walk

PTW

PTW

PTW
PTW

PTW
No TLB/MMU on the memory side

Duplicating it is costly and creates 

compatibility issue

The page table walk requires 

multiple memory accesses



Our Solution: IMPICA Page Table

•Completely decouple the page table of 
IMPICA from the page table of the 
CPUs

205

IMPICA 
Region

Physical Address Space

Virtual Page

Physical Page

Physical Page

Virtual Page

CPU Page Table

Virtual Address Space

IMPICA Page Table

Map linked data structure into IMPICA regions

IMPICA page table is a partial-to-any mapping



IMPICA Page Table: Mechanism

Bit [47:41] Bit [40:21] Bit [20:12] Bit [11:0]

Region Table

Flat Page Table 
(2MB)

Small Page Table 
(4KB)

+

+

Virtual Address

+

Physical Address

Tiny region table is almost 

always in the cache

Flat page table 

saves one memory access



Evaluation Methodology

• Simulator: gem5
• System Configuration
• CPU
• 4 OoO cores, 2GHz
• Cache: 32KB L1, 1MB L2

• IMPICA
• 1 core, 500MHz, 32KB Cache

•Memory Bandwidth
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

•Our simulator code is open source
• https://github.com/CMU-SAFARI/IMPICA

207

https://github.com/CMU-SAFARI/IMPICA


Result – Microbenchmark Performance

208

0.0

0.5

1.0

1.5

2.0

Linked List Hash Table B-Tree

Sp
ee
du

p
Baseline + extra 128KB L2 IMPICA

1.9X

1.3X 1.2X



Result – Database Performance

209

0.90

1.00

1.10

1.20

Baseline + extra
128KB L2

Baseline + extra
1MB L2

IMPICA

Da
ta

ba
se

 
Th

ro
ug

hp
ut

+2%
+5%

+16%

0.80
0.85
0.90
0.95
1.00

Baseline + extra
128KB L2

Baseline + extra
1MB L2

IMPICA

Da
ta

ba
se

 
La

te
nc

y -4%

-13%

-0%



System Energy Consumption

210

0.0

0.5

1.0

Linked
List

Hash
Table

B-Tree DBx1000

N
or

m
al

ize
d 

En
er

gy
 Baseline + extra 128KB L2 IMPICA

-41%
-24%

-6%
-10%



Area and Power Overhead

•Power overhead: average power 
increases by 5.6%

211

CPU (Cortex-A57) 5.85 mm2 per core

L2 Cache 5 mm2 per MB

Memory Controller 10 mm2

IMPICA (+32KB cache) 0.45 mm2


